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Abstract

Mixed data with both categorical and continuous fea-
tures are ubiquitous in real-world applications. Learn-
ing a good representation of mixed data is critical yet
challenging for further learning tasks. Existing meth-
ods for representing mixed data often overlook the het-
erogeneous coupling relationships between categorical
and continuous features as well as the discrimination
between objects. To address these issues, we propose
an auto-instructive representation learning scheme to
enable margin-enhanced distance metric learning for
a discrimination-enhanced representation. Accordingly,
we design a metric-based auto-instructor (MAI) model
which consists of two collaborative instructors. Each in-
structor captures the feature-level couplings in mixed
data with fully connected networks, and guides the
infinite-margin metric learning for the peer instruc-
tor with a contrastive order. By feeding the learned
representation into both partition-based and density-
based clustering methods, our experiments on eight UCI
datasets show highly significant learning performance
improvement and much more distinguishable visualiza-
tion outcomes over the baseline methods.

Introduction
The performance of machine learning methods is heavily
dependent on the choice of data representation (Bengio,
Courville, and Vincent 2013). Mixed data, which contains
both categorical (or discrete) features and continuous (or
numerical) features, are ubiquitous in the real world, but
only a limited number of representation learning methods
for mixed data are available. At the feature level, a good
representation should capture the heterogeneous coupling
relationships (e.g., complex interactions, dependencies) be-
tween categorical and continuous features (Cao 2015). Fur-
ther, at the object level, a good representation should express
the discrimination and margins between objects to fertil-
ize learning tasks. However, most current methods lying in
the feature-level representation learning framework fail to
consider object-level discrimination. This paper learns the
mixed data representation to capture the feature-level cou-
plings as well as object-level discrimination.
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Most of the existing representation methods for mixed
data ignore or only partially address the heterogeneous cou-
plings between categorical and continuous features (Cao,
Ou, and Yu 2012; Cao 2015). For example, k-prototype
(Huang 1997) quantifies the distance between mixed types
of objects with the summation of Euclidean distance for con-
tinuous parts and Hamming distance for categorical parts.
This method treats features independently and ignores the
couplings between features. Other methods discretize con-
tinuous data into categorical ones and then calculate the
interactions in terms of categorical ways. For example,
mADD (Ahmad and Dey 2007) models the interactions be-
tween continuous and categorical features by incorporating
weights on distance which are calculated based on equal-
length discretization. SpectralCAT (David and Averbuch
2012) and CoupledMC (Wang et al. 2015) both conduct k-
means clustering on continuous features and use a validity
index to choose clustering label as new continuous features.
These methods calculate the couplings based on discretized
continuous data which may fail to capture the distribution of
the continuous data and lead to information loss.

Several model-based methods try to capture the hetero-
geneous couplings in a transformed data space. For exam-
ple, EGMCM (Rajan and Bhattacharya 2016) learns the de-
pendency between features with Gaussian mixture copulas
based on the rank transformation of data during clustering,
which may not only result in loss of information but also
fail to capture the discriminative information between ob-
jects. In recent years, deep neural networks have enabled
representation learning (Hinton and Salakhutdinov 2006;
Vincent et al. 2010; Bengio, Courville, and Vincent 2013).
For example, autoencoder (Vincent et al. 2010) is a typi-
cal neural model with full connections between features and
hidden units. This network structure somehow captures the
latent couplings between features and generates a distributed
representation in the hidden layer. However, these methods
focus on feature-level representation for each object without
enhancing the discrimination between objects.

By constructing two compatibly encoded feature spaces
to capture feature-level complex couplings in mixed data
by neural models, we propose an auto-instructive represen-
tation learning scheme to enhance object-level discrimina-
tion in representation. Specifically, this auto-instructive rep-
resentation learning scheme consists of two collaborative in-



structors. One instructor derives a contrastive order over a
triplet by measuring their relative similarity (Frome et al.
2007). Then, the contrastive order serves as the supervi-
sion criteria to enable the metric learning component of the
peer instructor. Alternately, the peer instructor derives orders
from its encoding space as the supervision for the instruc-
tor. Under this auto-instructive learning process, these two
instructors continuously improve the level of consensus be-
tween them and reach a stable state finally. As a result, an
object discrimination-enhanced representation is learned.

To summarize, the main contributions of this work are:

• A comprehensive representation for mixed data simulta-
neously learns (1) the couplings between categorical fea-
tures and continuous features at the feature level, and (2)
the discrimination between objects at the object level.

• An auto-instructive representation learning scheme with
two collaborative instructors learns more discriminative
representation between objects by learning the margin-
enhanced distance metric.

• A metric-based auto-instructor (MAI) model built on two
compatible encoding feature spaces is devised to capture
the feature-level couplings and enhance the object-level
discrimination for the representation of mixed data.

Substantial experiments on eight real-world datasets are
undertaken to evaluate our approach. The results prove its ef-
fectiveness from three aspects: (1) the representation learned
by MAI achieves much better performance compared with
other methods for clustering; (2) data representation analy-
sis, including internal clustering criteria and data visualiza-
tion, indicates that MAI produces more distinguishable rep-
resentation which more clearly reflects the cluster structure
in datasets; (3) the convergence test shows that MAI arrives
at a stable state in a few iterations.

Related Work
Most methods achieve mixed representation by transforma-
tion and then learn feature couplings on the transformed
data. Continuous feature discretization is a classic method
for transforming mixed data (Dougherty et al. 1995). For ex-
ample, spectralCAT (David and Averbuch 2012) discretizes
continuous features in an automatic manner, in which clus-
ter analysis is applied to each continuous feature while cal-
culating the validity index. However, the transformed data
is regarded as independent features and fed into clustering
models. The couplings between categorical and continuous
features are ignored (Cao 2015; Cao, Ou, and Yu 2012).
coupledMC (Wang et al. 2015) as a state-of-the-art method
takes discretization in spectralCAT to transform continuous
features into categorical ones, and then uses the similarity
between categorical values as continuous representation of
mixed data and calculates the Pearson correlation between
new continuous features. Due to the information loss of dis-
cretization, the similarity of categorical values and Pearson
correlation cannot capture the real interactions between cate-
gorical and continuous features. Other methods also attempt
to represent categorical features with numerical vectors, e.g.,
one-hot encoding, CDE (Jian et al. 2017) and UFT (Wei,

Chow, and Chan 2015), but they cannot model the heteroge-
neous couplings in mixed data.

Other methods devise a specific distance or similarity for
mixed data in clustering tasks. K-prototype (Huang 1997)
is an extension to k-means for clustering mixed data by
calculating the Euclidean distance for continuous features
and the Hamming distance for categorical features and
then uses the weighted summation as the final distance for
mixed data. Many other methods (Ahmad and Dey 2007;
Chen and He 2016; Ji et al. 2012; Jia and Cheung 2017) han-
dle mixed data by proposing different distance measures for
continuous or categorical features. Most of them consider
the interactions between categorical and continuous features
w.r.t. the co-occurrences between discretized continuous and
categorical features.

Autoencoder has shown its superiority in producing se-
mantically meaningful and well-separated representations
on image and text datasets (Hinton and Salakhutdinov 2006;
Baldi 2012). However, autoencoder mainly captures the
feature-level couplings through minimizing reconstruction
error whereas it does not explicitly enhance the discrimina-
tion between objects.

Distance metric learning is another way to learn the dis-
crimination information between objects by learning a dis-
tance metric for the input space of data from a given collec-
tion of pairs of similar/dissimilar points that preserves the
distance relation in the training data (Yang and Jin 2006).
However, most metric learning methods (Frome et al. 2007;
Chechik et al. 2010; Weinberger and Saul 2009) need class
labels to guide the learning process and cannot be applied
to mixed data directly. Unsupervised distance metric learn-
ing, also called manifold learning, is essential to learn an
underlying low-dimensional manifold, e.g., principle com-
ponent analysis, ISOMAP (Tenenbaum, De Silva, and Lang-
ford 2000) and local linear embedding (Saul and Roweis
2003). However, they all focus on continuous data and can-
not be applied to mixed data or learn the heterogeneous cou-
plings between categorical and continuous data.

Problem Statement
The usual way to represent data is based on an information
tableD = (X ,F). LetX = {x1, x2, ..., xN} be a set of data
objects with size N , described by a set of dc categorical fea-
tures and dn continuous features, i.e., F = Fc ∪ Fn where
Fc = {f c1 , ..., f cdc} and Fn = {fn1 , ..., fndn}. Each categor-
ical feature f ci has a value domain Vi = {vi1, vi2, ...}. The
value domains of different categorical features are distinct,
i.e., Vi ∩ Vj = ∅,∀i 6= j. The whole value set of categorical
features is the union of all the value domains: V = ∪Vi, and
the size of V is denoted as L. For each continuous feature
fni , the continuous value in object x is denoted by axi .

Given a reference object x and two comparative objects
xi, xj , we denote them as a triplet 〈x, xi, xj〉. 〈hp,hpi ,h

p
j 〉

and 〈hc,hci ,hcj〉 are corresponding representation vectors to
learn in two encoding spaces. δh(hi,hj) signifies the order
of the local distance pairs d(h,hi) and d(h,hj) where d(·, ·)
denotes a distance function. The contrastive orders δph and
δch induced from two spaces are used as the supervision for
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Figure 1: The MAI architecture: metric-based
auto-instructor for mixed data representation.

distance metric learning in peer instructors. After learning,
[hp,hc] is selected as the final representation for each object.

Representation Learning with MAI
To implement the coupling and discrimination-enhanced
representation learning, we propose the metric-based auto-
instructor (MAI) model which consists of two collabora-
tive instructors. The architecture of MAI, as demonstrated
in Figure 1, is a coupled three-layer neural model consist-
ing of P-Instructor and C-Instructor.Dp

i denotes the distance
between representation vectors hp and hpi . The first layer in-
puts the two compatible feature vectors encoded from the
raw mixed data, namely the plain encoding space and the
coupled encoding space. The second layer is the represen-
tation layer which learns the coupling relationships between
the features in the input layer and update the representation
according to the errors backpropogated from the above layer
for infinite-margin optimization. The third layer is the auto-
instructive metric learning layer for learning the enhanced
discrimination between objects. In the following part, we de-
tail each layer and derive the parameter learning algorithm.

Encoding Layer
In this layer, each object is encoded into two collaborative
vectors from the original information table, namely a plain
encoding vector and a coupled encoding vector. These two
encoding spaces are based on different assumptions and de-
scribe the same object from different perspectives.

In the plain encoding space, each feature is treated equally
and independently. The plain encoding vector does not
differentiate categorical features from continuous features.
However, in the coupled encoding space, continuous fea-
tures are considered to be highly correlated with categorical
features. The joint density of mixed-type features including
one continuous feature and one categorical feature is esti-
mated to help construct the coupled encoding space.

Plain Encoding Space The plain encoding space consists
of transformed categorical features and continuous features
which keep the most complete information. We use one-hot
encoding to transform the categorical features into |V| bi-
nary features. Each binary feature has a single 1 correspond-
ing to one categorical value, and all the rest of the entries are
0s. The continuous features are kept with the original values
and then concatenated with transformed categorical features
to obtain the plain encoding vector. Accordingly, the dimen-
sionality of the plain encoding vector fp ∈ Rdn+|V| for each
object.

Coupled Encoding Space The coupled encoding space is
derived from the coupled encoding matrices of all objects.
In a coupled encoding matrix, rows represent the continu-
ous features and columns represent the categorical values.
Each entry is filled according to the density estimation of
mixed-type pair features, i.e., the interaction between one
continuous feature and one categorical feature. For a mixed-
type pair of features 〈fni , f cj 〉, we treat them as two variables
〈Ai, Vj〉 and use product kernel (Scott 2015) to estimate its
density. Hence, the joint density of value axi from variable
Ai and vj from feature Vj is defined as:

p(axi , vj) =
1

N

N∑
k=1

{Lλ(vkj , vj)W (
aki − axi
hi

)} (1)

whereW ((aki −axi )/hi) is a continuous data kernel function
and hi is the bandwidth for the continuous variable. In this
paper, we use the Gaussian kernel as the continuous data ker-
nel function, denoted as Kh(z) = 1√

2πh
exp(− z

2

2 ) where
the bandwidth is chosen according to the standard nonpara-
metric statistics (Li and Racine 2008).L(vkj , vj) is a categor-
ical data kernel function. Here we follow the settings in (Li
and Racine 2008) by choosing the Aitchison and Aitken’s
kernel function (Aitchison and Aitken 1976):

Lλ(vkj , vj) =

{
1, if vkj = vj

λ, otherwise
(2)

where λ� 1 is the bandwidth for the categorical variable.
After obtaining the density of any two pairs of categori-

cal variables and continuous variables, the coupled encoding
matrix Mx for object x is defined as follows.

Mx =

 r(f
n
1 , v1) . . . r(fn1 , vL)
...

. . .
...

r(fndn , v1) . . . r(fndn , vL)

 (3)

where r(fni , vj) is defined by the density of the mixed-type
variables, which encodes the product of interaction between
the continuous value and smoothed categorical value.

r(fni , vj) =

{
axi , if p(axi , vj) ≥ τ
λaxi , otherwise

(4)

where p(axi , vj) is the joint density of mixed-type features
estimated according to Eq. (1) and τ is the threshold. A small
value of τ around 0.02 is preferred in our experiments.



As a result, the heterogeneous couplings between cate-
gorical and continuous features are captured by Mx. Since
each object is represented by a coupled encoding matrix
Mx, we vectorize Mx as the coupled encoding features,
f c ∈ Rdn×|V|.

Representation Layer
The features from plain encoding space in the encoding layer
are uncorrelated and independent. To capture the couplings
between features, we link this encoding vector fp to the K-
length representation vector hp in terms of a fully connected
network

hp = σ(fp ·W1) (5)

where the weight matrix W1 ∈ RK×(dn+|V|) encodes the
interaction strength over features, and the logistic function
σ(z) = 1/(1 + e−z).

Similarly, we map the coupled encoding vector f c to the
J-length representation vector hc in terms of another fully
connected network with the interaction weight matrix W2 ∈
RJ×(dn×|V|) and

hc = σ(f c ·W2). (6)

To this point, we have employed two fully connected net-
works to represent the interactions between all features from
the input layers by the representation vectors hp and hc re-
spectively. In this stage, this representation mainly captures
the feature-level couplings like autoencoder. To enhance the
discrimination between objects in terms of hp and hc rep-
resentation, we put a metric learning layer on the represen-
tation layer to backpropagate the errors caused in infinite-
margin optimization.

Auto-instructive Metric Learning Layer
For P-Instructor, the distance metricDp between two objects
x and xi is defined by their representation hp and hpi :

Dp(hp,hpi ) = (hp − hpi )W3(hp − hpi )
> (7)

where W3 ∈ RK×K is a symmetric positive semi-definite
matrix and can be decomposed as W3 = M1M

>
1 , M1 ∈

RK×e and e ≥ rank(W3). Then, Eq. 7 can be rewritten as:

Dp(hp,hpi ) = (hpM1 − hpiM1)(hpM1 − hpiM1)> (8)

For C-Instructor, the distance metric Dc between two ob-
jects x and xi is defined similarly:

Dc(hc,hci ) = (hc − hci )W4(hc − hci )
> (9)

where W4 ∈ RJ×J is a symmetric positive semi-definite
matrix and W4 = M2M

>
2 .

Given a reference object x and two comparative objects
xi, xj , we can easily obtain the metric pairs 〈Dp(hp,hpi ),
Dp(hp,hpj )〉 and 〈Dc(hc,hci ),Dc(hc,hcj)〉 according to the
above definition. In normal metric learning methods (Frome
et al. 2007), it needs to provide the order of metric pairs
D(h,hi) and D(h,hj). However, we do not have class la-
bels to define this order in an unsupervised learning prob-
lem. To address the unsupervised challenge, we design an
auto-instructive process to get a contrastive order of distance

pairs from the peer instructor. Formally, we define a binary
function δh to denote the order of distance pairs over a triplet
of representations.

δh(hi,hj) =

{
1, if d(h,hi) > d(h,hj)

0, otherwise.
(10)

where d is a local distance function, e.g., Euclidean distance,
cosine dissimilarity. Here we choose d(h,hi) = ‖h−hi‖2.

Given a triplet 〈x, xi, xj〉, C-Instructor induces an order
δch(hi,hj) to work with the distance metric learning process
in P-Instructor. Accordingly, the log probability of Dp

i >
Dp
j conditional on δchc is:

logPΘp(Dp
i > Dp

j |δ
c
hc) = δchc(hci ,h

c
j) log σ(Dp

i −D
p
j )

+ (1− δchc(hci ,h
c
j)) log (1− σ(Dp

i −D
p
j )) (11)

where Dp
i is the simplified notation of Dp(hp,hpi ), and

Θp = {W1,M1} defines the model parameter set in the
P-Instructor.

Similarly, the log conditional probability of Dc
i > Dc

j in
C-Instructor is:

logPΘc(Dc
i > Dc

j |δ
p
hp) = δphp(hpi ,h

p
j ) log σ(Dc

i −Dc
j)

+ (1− δphp(hpi ,h
p
j )) log (1− σ(Dc

i −Dc
j)) (12)

where Θc = {W2,M2}.
As a result, we can write a pair of coupled loss functions

w.r.t. P-Instructor and C-Instruct over all possible triplets:
LΘp = −

∑
〈x,xi,xj〉

logPΘp(Dp
i > Dp

j |δ
c
hc)

LΘc = −
∑

〈x,xi,xj〉

logPΘc(Dc
i > Dc

j |δ
p
hp)

(13)

Specially, if we regard Dp(hp,hpi ) as an energy function,
and MAI can be viewed as an energy-based model (LeCun et
al. 2006). Without loss of generality, we have the following
log loss when δhc(hci ,h

c
j) = 1:

L = − logPΘp(Dp
i > Dp

j ) = − log σ(Dp
i −D

p
j )

= log (1 + e(Dp
j−D

p
i ))

(14)

This form is a common variation of the hinge loss, which
can be seen as a “soft” version of the hinge loss with an
infinite margin (LeCun et al. 2006). That is, we set up an
infinite-margin metric learning objective, which backpropa-
gates the error to the representation layer to enlarge the mar-
gins between the representation of objects.

Parameter Learning
In the previous section, we have set up a pair of coupled loss
functions as Eq. (13). As both loss functions are differen-
tiable, a gradient descent-based algorithm can be derived for
parameter estimation.

First of all, the gradient of the loss function from the P-
Instructor w.r.t. the model parameters Θp is given as follows:

∂L

∂Θp
= −

∑
〈x,xi,xj〉

∂

∂Θp
logPΘp(Dp

i > Dp
j |δ

c
hc) (15)



where Θp = {W1,M1}. Then, the gradients w.r.t. M1 and
W1 for each triplet 〈x, xi, xj〉 are given below:

∂

∂M1
logPΘp(Dp

i > Dp
j |δ

c
hc) (16)

= 2[δchc(1− σ(Dp
i −D

p
j ))− (1− δchc)σ(Dp

i −D
p
j )]H

where
H = [(hp − hpi )

>(hp − hpi )− (hp − hpj )
>(hp − hpj )]M1.

∂

∂W1
logPΘp(Dp

i > Dp
j |δ

c
hc) = 2[δchc(1− σ(Dp

i −D
p
j ))

− (1− δchc)σ(Dp
i −D

p
j ))(Ri −Rj)] (17)

where Ri and Rj are given below:

Ri =2f>((hp − hpi ) ·W3 � ((hp � (1− hp)))

− 2f>i ((hp − hpi ) ·W3 � ((hpi � (1− hpi )))
(18)

Rj =2f>((hp − hpj ) ·W3 � ((hp � (1− hp)))

− 2f>j ((hp − hpj ) ·W3 � ((hpj � (1− hpj )))
(19)

where � denotes the element-wise product.
Similarly, the gradients of the loss function from the C-

Instructor have the same form. Accordingly, we can obtain
the gradient-based updated equation for each parameter. The
complete process of MAI is briefly demonstrated in Algo-
rithm 1, where Γ is a function to assign the adaptive learn-
ing rate, e.g., AdaGrad, RMSProp, Adam (Ruder 2016). For
constructing a mini-batch of triplets, we first randomly se-
lectNb different reference objects, and then sample a pair of
comparative objects for each reference object.

When the model has been trained, given a plain encoding
vector fp and a coupled encoding vector f c, we can imme-
diately get the new representation [hp,hc] (cf. Eq. 5, 6) by
concatenating hp and hc. Additionally, the distance between
objects x and xi can be measured by the average distance
metric D(x, xi) = [Dp(hp,hpi ) + Dc(hc,hci )]/2 (cf Eq. 7,
9). This distance can be directly used for clustering tasks. In
fact, hpD = hpM1 (cf. Eq. 8) can be regarded as a metric-
based representation, and then [hpD,h

c
D] is the concatenated

representation over two encoding spaces.

Experiments
Considering the computational power of GPUs on matrix
operation, we use a GPU-based adaptive stochastic gradi-
ent descent (SGD) optimizer over mini-batches to speed up
the training, thus MAI can be applied on large data. We use
Adam in our implementation1.

Comparison Methods
We compare two baseline methods and two state-of-the-art
methods with our models.
• Plain encoding: plain encoding vectors ignore the cou-

pling between features, and the distance over each feature
between two objects are calculated independently.

1The MATLAB implementation of Algorithm 1 is available at
https://github.com/jiansonglei/MAI

Algorithm 1 A SGD-based learning algorithm for MAI

Input: X : data objects, MaxIter: maximum iterations,
nBatch: number of minibatches, Nb: batchSize

Output: Θp,Θc - the parameters
1: Construct the plain encoding Fp and the coupled encod-

ing Fc

2: Initialize Θp,Θc

3: while iter ≤MaxIter do
4: for q = 1 : nBatch do
5: Mtriplet : {〈x,xi,xj〉}Nb ← getMinibatch()
6: Calculate {〈hp,hpi ,h

p
j 〉}Nb ofMtriplet (cf. Eq. 5)

7: Calculate {〈hc,hci ,hcj〉}Nb ofMtriplet (cf. Eq. 6)
8: δc ← order for each 〈hc,hci ,hcj〉 (cf. Eq. 10)
9: δp ← order for each 〈hp,hpi ,h

p
j 〉 (cf. Eq. 10)

10: ∇LΘp(Mtriplet)← the gradient w.r.t. {W1,M1}
(cf. Eq. 16, 17)

11: ∇LΘc(Mtriplet)← the gradient w.r.t. {W2,M2}
12: Θp ← Θp − Γ(∇LΘp(Mtriplet))
13: Θc ← Θc − Γ(∇LΘc(Mtriplet))
14: end for
15: end while

• Coupled encoding: coupled encoding vectors highlight
the coupling relationships between categorical and con-
tinuous features.

• CoupledMC: a state-of-the-art method for feature repre-
sentation of mixed data.

• Autoencoder (Hinton and Salakhutdinov 2006): uses neu-
ral networks to learn the representation in an unsupervised
way. We use plain encoding vectors as the input of the au-
toencoder.

• MAI-F: our model uses [hp,hc] as the representation.
• MAI-D: our model uses [hpD,h

c
D] as the representation.

The length of the representation layer in MAI and the hidden
layer of Autoencoder is set to 200. The maximum number of
iterations is 30 and the batchsize is 200 in MAI. The dimen-
sionalities of M1 and M2 are set to 60 in MAI.

Evaluation Methods and Datasets
We apply the representation methods to the typical partition-
based clustering k-means and density-based clustering DB-
SCAN (Ester et al. 1996), to test the quality of representa-
tion. To evaluate the clustering performance, the Adjusted
Mutual Information (AMI) (Vinh, Epps, and Bailey 2010)
is used, whose higher values indicate better clustering. The
Adjusted Rand Index (ARI) is another measure to evaluate
the clustering performance (Rajan and Bhattacharya 2016;
Ni et al. 2017), which is based on ground-truth labels simi-
lar to AMI, hence we only report the AMI results. The AMI
results of k-means on each dataset are the average over 20
validations of clustering with distinct starting points due to
the instability of k-means clustering. In k-means clustering,
we fix the cluster number to the number of classes in Table
1. For DBSCAN clustering, the Euclidean distance is used
to find the neighbors.



Table 1: Statistics of UCI datasets

Datasets |X | |Fc| |Fn| |Class|
Echo 132 2 8 3
Hepatitis 155 13 6 2
MPG 398 2 5 6
Heart 270 8 5 2
ACA 690 8 6 2
CRX 690 9 6 2
CMC 1473 7 2 3
Income 32561 8 6 2

We use eight real-world UCI datasets (Lichman 2013)
from different domains for the experiments: Echocardio-
gram (Echo), Hepatitis, Auto MPG Dataset (MPG), Stat-
log Heart (Heart), Australian Credit Approval (ACA), Credit
Approval (CRX), Contraceptive Method Choice (CMC),
and Census Income (Income). The statistics of the datasets
are shown in Table 1, including the number of objects, the
number of categorical features, the number of continuous
features, and the number of ground-truth classes. We substi-
tute the missing values with the mode value for categorical
features and the mean value for continuous features.

K-means Clustering Results
The AMI results of MAI-F and MAI-D, compared with
plain encoding, coupled encoding, coupledMC and autoen-
coder on k-means clustering, are shown in Table 2. MAI-
F and MAI-D are in the first two positions on six datasets.
On average, MAI-F demonstrates approximately 33%, 59%,
56%, and 27% improvement over plain encoding, coupled
encoding, coupledMC and autoencoder respectively. MAI-
D demonstrate an approximate 34%, 61%, 57%, and 28%
improvement over plain encoding, coupled encoding, cou-
pledMC and autoencoder respectively.

For most datasets, the MAI representation achieves the
best performance since it better captures the complex cou-
pling in mixed data and enhances the discrimination be-
tween objects as well. Plain encoding cannot differentiate
categorical and continuous features or capture the hetero-
geneity between them. Coupled encoding only highlights the
couplings between categorical features and continuous fea-
tures. CoupledMC is rule-based so that it cannot learn from
data and the discretization also brings bias to the represen-
tation. Autoencoder cannot learn from other discriminative
information except the reconstruction error.

DBSCAN Clustering Results
The AMI results of MAI-F compared with plain encod-
ing, coupled encoding, coupledMC and autoencoder on DB-
SCAN clustering are shown in Table 32. MAI-F achieves the
best performance on seven datasets, and on average MAI-F
performs more than twice better than the other comparison
methods in terms of AMI.

2We do not display MAI-D in the tables due to space limitation,
and MAI-D has close results to MAI-F in our experiments.

Since DBSCAN clustering detects clusters in an auto-
matic way, the cluster numbers of different representations
are varied. MAI uses an infinite-margin metric model to
marginalize the distance between objects, therefore the clus-
ters are more visible in MAI-F which helps the clustering al-
gorithm to find the proper clusters. Taking the largest dataset
Income as an example, DBSCAN produces 493 clusters and
291 clusters with plain encoding and representation learned
by the autoencoder respectively. The huge number of clus-
ters has less semantic meaning in real applications. Due to
the discrimination-enhanced representation learned by MAI,
the cluster number detected by MAI-enabled DBSCAN is
closer to the ground-truth number of classes.

Data Representation Analysis
To evaluate the separability of the representations, we calcu-
late the Calinski-Harabasz (CH) index based on the ground-
truth class label (Caliński and Harabasz 1974) .

CH =

∑
i nid

2(ci, c)/(NC − 1)∑
i

∑
x∈Ci

d2(x, ci)/(N −NC)
(20)

where Ci is the i-th cluster; ni is the number of objects in
Ci; ci is the center of Ci; d(x, y) is the distance between x
and y. A larger CH indicates better clustering results.

The CH index is a classical internal clustering validation
measure which evaluates the cluster validity based on the
average between- and within-cluster sum of squares. Instead
of calculating CH on the clustering results, we conduct CH
on the ground-truth clustering label to reflect the separability
of different representation methods without introducing bias
from the clustering process. The CH results of representa-
tions from plain encoding, coupled encoding, coupledMC,
autoencoder and MAI are shown in Table 4. It shows that
the CH index of MAI-F is the largest compared with the
other methods, which indicates MAI produces more separa-
ble representation and reflects the cluster structure in data.

To illustrate the separability of MAI-enabled represen-
tation, Figure 2 visualizes the representations by differ-
ent methods on dataset CRX. For the visualization, t-SNE
(Maaten and Hinton 2008) is applied to the representation
of each object. It shows that the representation learned from
MAI is the most separable and the cluster structure is clearer
than the others. The separation of representation makes clus-
tering easier which is evidenced in Table 2. Since k-means
clustering is sensitive to initialization, the clustering results
always vary each time and the deviation of clustering results
is large. However, the deviation of clustering results of MAI
is almost 0 for most datasets, which results from the large-
margin separation of representation from MAI.

Convergence Test
We apply the representation learned in each iteration into k-
means clustering and show that the AMI results vary with
representations from each iteration. Here, we report the con-
vergence speed of the MAI model on datasets CRX and ACA.
Similar results can be obtained on other datasets. As Figure
3 shows, the clustering performance converges within 15 it-
erations.



Table 2: K-means clustering performance w.r.t. AMI ± standard deviation. The top two performers for each are boldfaced.

Datasets Plain encoding Coupled encoding CoupledMC Autoencoder MAI-F MAI-D

Echo 0.1789±0.1033 0.1749±0.0444 0.1237±0.1147 0.2493±0.0207 0.3246±0.0000 0.3304±0.0000
Hepatitis 0.1453±0.0703 0.1761±0.0292 0.1532±0.0342 0.1689±0.0163 0.1848±0.0000 0.1905±0.0000
MPG 0.1490±0.0106 0.1477±0.0184 0.1373±0.0347 0.1536±0.0086 0.1831±0.0232 0.1770±0.0000
Heart 0.3130±0.0688 0.1439±0.0642 0.1037±0.1215 0.3302±0.0042 0.2632±0.0000 0.2774±0.0000
ACA 0.3204±0.1518 0.3433±0.1726 0.3182±0.0627 0.3477±0.0844 0.4258±0.0000 0.4258±0.0000
CRX 0.2322±0.1191 0.0836±0.1109 0.2714±0.1361 0.1445±0.1477 0.4267±0.0000 0.4267±0.0000
CMC 0.0293±0.0052 0.0269±0.0013 0.0333±0.0070 0.0292±0.0037 0.0327±0.0077 0.0303±0.0081
Income 0.1139±0.0361 0.1414±0.0291 0.1258±0.0658 0.1314±0.0000 0.1325±0.0000 0.1325±0.0000
Average 0.1853±0.0707 0.1547±0.0588 0.1583±0.0722 0.1944±0.0353 0.2467±0.0064 0.2488±0.0010

Table 3: DBSCAN clustering performance w.r.t. AMI. Note:
|C| refers to the number of detected clusters. AE refers to
autoencoder and CMC refers to CoupledMC for short.

Datasets PF(|C|) CF(|C|) CMC(|C|) AE(|C|) MAI-F(|C|)
Echo 0.123(5) 0.011(3) 0.067(2) 0.188(7) 0.392(3)
Hepatitis 0.019(4) 0.044(2) 0.037(5) 0.016(2) 0.075(3)
MPG 0.031(20) 0.037(16) 0.049(13) 0.149(2) 0.237(3)
Heart 0.024(4) 0.001(2) 0.003(2) 0.003(2) 0.130(3)
ACA 0.003(4) 0.021(7) 0.031(2) 0.087(20) 0.227(6)
CRX 0.003(4) 0.018(6) 0.061(2) 0.102(16) 0.242(5)
CMC 0.002(21) 0.009(2) 0.115(5) 0.003(13) 0.043(2)
Income 0.157(493) 0.052(6) 0.052(6) 0.108(291) 0.1304(15)
Average 0.0451 0.0242 0.0519 0.0818 0.1845

Table 4: Calinski-Harabasz index on representation w.r.t. the
Euclidean distance for ground-truth labels.

Datasets PF CF CMC AE MAI-F

Echo 14.60 7.14 5.12 21.99 56.81
Hepatitis 11.76 8.65 15.91 16.05 44.15
MPG 19.18 7.34 7.53 41.88 45.91
Heart 32.35 16.83 5.64 56.49 91.85
ACA 72.90 31.69 16.92 124.37 288.31
CRX 67.78 65.94 20.77 106.97 226.55
CMC 16.82 12.46 17.21 22.44 35.35
Income 1419.90 2029.04 1729.04 3009.80 5045.45

Conclusions
We have proposed a metric-based auto-instructor (MAI) rep-
resentation learning model which captures both the fea-
ture couplings and the discrimination between objects for
mixed data. By auto-instructive metric learning with infinite-
margin objectives induced from two collaborative instruc-
tors, MAI builds the consensus of mixed data representation
between the plain encoding space and the coupled encoding
space. Extensive experiments have demonstrated that MAI
outperforms other state-of-the-art representation methods.
With data representation analysis, we have shown that the
MAI representation makes data objects more distinguishable
and discloses the natural cluster information in data. MAI is
easily extended to a deep structure like the stacked autoen-
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Figure 2: The t-SNE visualization of data representations by
different methods on dataset CRX.
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(b) MAI on ACA dataset

Figure 3: Convergence test on datasets CRX and ACA.

coder. In fact, MAI is a very general representation learning
framework not limited to mixed data, which has the potential
to be applied to multimodal learning and domain adaption.
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