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Coupled Attribute Similarity Learning on
Categorical Data

Can Wang, Student Member, IEEE, Longbing Cao, Senior Member, IEEE

Abstract—Attribute independence has been taken as a major assumption in the limited research that has been conducted on similarity
analysis for categorical data, especially unsupervised learning. However, in real-world data sources, attributes are more or less
associated with each other in terms of certain coupling relationships. Accordingly, recent works on attribute dependency aggregation
have introduced the co-occurrence of attribute values to explore attribute coupling, but they only present a local picture in analyzing
categorical data similarity. This is inadequate for deep analysis, and the computational complexity grows exponentially when the data
scale increases. This paper proposes an efficient data-driven similarity learning approach that generates a coupled attribute similarity
measure for nominal objects with attribute couplings to capture a global picture of attribute similarity. It involves the frequency-based
intra-coupled similarity within an attribute and the inter-coupled similarity upon value co-occurrences between attributes, as well as
their integration on the object level. In particular, four measures are designed for the inter-coupled similarity to calculate the similarity
between two categorical values by considering their relationships with other attributes in terms of power set, universal set, join set,
and intersection set. The theoretical analysis reveals the equivalent accuracy and superior efficiency of the measure based on the
intersection set, particularly for large-scale data sets. Substantial experiments on 20 UCI data sets verify the theoretical conclusions.
In addition, intensive experiments of data structure and clustering algorithms incorporating the coupled dissimilarity metric achieve
a significant performance improvement on state-of-the-art measures and algorithms on 12 UCI data sets, which is confirmed by the
statistical analysis. The experiment results show that the proposed coupled attribute similarity is generic, and can effectively and
efficiently capture the intrinsic and global interactions within and between attributes for especially large-scale categorical data sets.

Index Terms—Similarity analysis, coupled attribute similarity, coupled object analysis, unsupervised learning, clustering.

F

1 INTRODUCTION

S IMILARITY analysis has been a problem of great
practical importance in several domains for decades,

not least in recent work, including behavior analysis
[1], document analysis [2] and image analysis [3]. A
typical aspect of these applications is clustering, in which
the similarity is usually defined in terms of one of the
following levels: between clusters, between attributes,
between data objects, or between attribute values. The
similarity between clusters is often built on top of the
similarity between data objects, e.g. centroid similarity.
Further, the similarity between data objects is generally
derived from the similarity between attribute values,
e.g. Euclidean distance and simple matching similarity
[4]. The similarity between attribute values assesses the
relationship between two data objects and even between
two clusters: the more two objects or clusters resemble
each other, the larger is the similarity [5]. The other sim-
ilarity between attributes [6] can also be converted into
the difference of similarities between pairwise attribute
values [7]. Therefore, the similarity between attribute
values plays a fundamental role in similarity analysis.

The similarity measures for attribute values are sensi-
tive to the attribute types, which are classified as discrete
and continuous. The discrete attribute is further typed as

• C. Wang and L. Cao are with the Advanced Analytics Institute, Uni-
versity of Technology, Sydney, Australia. E-mail: see {canwang613, long-
bing.cao}@gmail.com.

nominal (categorical) or binary [5]. The nominal data,
a special case of the discrete type, has only a finite
number of values, while the binary variable has exactly
two values. In this paper, we regard the binary data as
a special case of the nominal data.

Compared to the intensive study on the similarity
between two numerical variables, such as Euclidean
and Minkowski distance, and between two categorical
values in supervised learning, e.g. Heterogeneous Dis-
tance Functions [8] and Modified Value Distance Matrix
(MVDM) [9], the similarity for nominal variables has
received much less attention in unsupervised learning on
unlabeled data. Only limited efforts [5] have been made,
including Simple Matching Similarity (SMS, which uses
0s and 1s to distinguish the similarity between distinct
and identical categorical values), Occurrence Frequency
(OF) [10] and Information-theoretical Similarity (Lin)
[10], [11], to discuss the similarity between nominal val-
ues. The challenge is that these methods are too rough to
precisely characterize the similarity between categorical
attribute values, and they only deliver a local picture of
the similarity and are not data-driven. In addition, none
of them provides a comprehensive picture of similarity
between categorical attributes by combining relevant
aspects. Below, we illustrate the problem with SMS and
the challenge of analyzing the categorical data similarity.

As shown in Table 1, six movie objects are divided into
two classes with three nominal attributes: director, actor
and genre. The SMS measure between directors “Scors-
ese” and “Coppola” is 0, but “Scorsese” and “Coppola” are
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TABLE 1
An Instance of the Movie Database

Movie Director Actor Genre Class
Godfather II Scorsese De Niro Crime l1
Good Fellas Coppola De Niro Crime l1

Vertigo Hitchcock Stewart Thriller l2
N by NW Hitchcock Grant Thriller l2

Bishop’s Wife Koster Grant Comedy l2
Harvey Koster Stewart Comedy l2

very similar1. Another observation by following SMS is
that the similarity between “Koster” and “Hitchcock” is
equal to that between “Koster” and “Coppola”; however,
the similarity of the former pair should be greater be-
cause both directors belong to the same class l2.

The above examples show that it is much more com-
plex to analyze the similarity between nominal variables
than between continuous data. SMS and its variants fail
to capture a global picture of the genuine relationship
for nominal data. With the exponential increase of cate-
gorical data such as that derived from social networks, it
is important to develop effective and efficient measures
for capturing the similarity between nominal variables.

The similarity between categorical values is sensitive
to the data characteristics. In general, two attribute val-
ues are expected to be similar if they present analo-
gous frequency distributions within one attribute (e.g.
OF and Lin) [10], [11]; this reflects the intra-coupled
similarity within attributes. For example, two directors
are very similar if they appear with almost the same
frequency, such as “Scorsese” with “Coppola” and “Koster”
with “Hitchcock”. However, the reality is that the former
director pair is more similar than the latter. Ahmad
and Dey [12] introduced the co-occurrence probability
of categorical values from different attributes and com-
pared this probability for two categorical values from the
same attribute. This means that the similarity between
directors relates to the dependency of “director” on other
attributes such as “actor” and “genre” over all the movie
objects: namely, the inter-coupled similarity between at-
tributes. They both capture local pictures of the similarity
from different perspectives. No work has been reported
on systematically considering both intra-coupled similar-
ity and inter-coupled similarity. The incomplete descrip-
tion of the categorical value similarity leads to tentative
and less effective learning performance. In addition, it
is usually very costly to consider the similarity between
values in relation to the dependency between attributes
and the aggregation of such dependency [12], which is
verified in Section 6.

In this paper, we explicitly discuss the data-driven
intra-coupled similarity and inter-coupled similarity, as
well as their global aggregation in unsupervised learning
on nominal data. The key contributions are as follows:

– We propose a Coupled Attribute Similarity for Ob-
jects (CASO) measure based on the Coupled At-

1. A conclusion drawn from a well-informed cinematic source.

tribute Similarity for Values (CASV), by considering
both the Intra-coupled and Inter-coupled Attribute
Value Similarities (IaASV and IeASV), which glob-
ally capture the attribute value frequency distri-
bution and attribute dependency aggregation with
high accuracy and relatively low complexity.

– We compare the accuracy and efficiency of the four
proposed measures for IeASV in terms of four re-
lationships: power set, universal set, join set, and
intersection set; and obtain the most efficient can-
didate based on the intersection set (i.e. IRSI) from
theoretical and experimental aspects.

– A method is proposed to flexibly define the dissimi-
larity metrics with the proposed similarity building
blocks according to specific requirements.

– The proposed measures are compared with the
state-of-the-art metrics on various benchmark data
sets in terms of the internal and external clustering
criteria. All the results are statistically significant.

The paper is organized as follows. In Section 2, we
briefly review the related work. Preliminary definitions
are specified in Section 3. Section 4 proposes the frame-
work of the coupled attribute similarity analysis. Section
5 defines the intra-coupled similarity, inter-coupled sim-
ilarity, and their aggregation. The theoretical analysis is
given in Section 6. We describe the CASO algorithm in
Section 7. The efficiency and effectiveness of CASO are
empirically studied in Section 8 and a flexible method
to define dissimilarity metrics is also developed. Section
9 discusses the coupled nominal similarity with open
issues. Finally, we conclude this work in Section 10.

2 RELATED WORK

Some surveys, in particular [5], [10], discuss the similar-
ity between categorical attributes. The usual practice is
to binarize the data and use binary similarity measures
rather than directly considering nominal data. Cost and
Salzberg [9] proposed MVDM based on labels, Wilson
and Martinez [8] performed a detailed study of hetero-
geneous distance functions for instance based learning,
and Figueiredo et. al [2] introduced word co-occurrence
features for text classification. Unlike our focus, their
similarities are only designed for supervised approaches.

There are a number of existing data mining techniques
for the unsupervised learning of nominal data [10], [12].
Well-known metrics include SMS [4] and its diverse
variants such as Jaccard coefficients [13], which are all
intuitively based on the principle that the similarity
measure is 1 with identical values and 0 otherwise,
which are not data-driven. More recently, the frequency
distribution of attribute values has been considered for
similarity measures [10], such as OF and Lin. Similarity
computation has been incorporated into the learning
algorithm without explicitly defining general measures
[14]. Neighborhood-based similarity [15], [16] was also
explored to measure the proximity of objects by us-
ing functions that operate on the intersection of two
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neighborhoods. They present the similarity between a
pair of objects by considering only the relationships
among data objects, which are built on the similarity
between attribute values simply quantified by the vari-
ants of SMS. However, the couplings between attributes
involve the similarity both between attribute values and
between data objects. Such couplings are catered for
in our proposed similarity measure between attribute
values, which is incorporated with the neighborhood-
based similarity between data objects to more precisely
describe the neighborhood of an object. It represents the
neighborhood-based metric as a meta-similarity measure
[10] in terms of both the couplings between attributes
and between objects.

All the above methods are attribute-independent since
similarity is calculated separately for two categorical
values of individual attributes. However, an increasing
number of researchers argue that the attribute value
similarity is also dependent on the couplings of other
attributes [1], [10]. The Pearson correlation coefficient
[15] measures only the strength of linear dependence
between two numerical variables. Das and Mannila put
forward the Iterated Contextual Distances algorithm,
believing that the attribute, object and sub-relation simi-
larities are inter-dependent [6]. They convert each object
with binary attribute values to a continuous vector by
a kernel smoothing function, and define the similarity
between objects as the Manhattan distance between con-
tinuous vectors [6]. By contrast, we directly consider
similarity for categorical values to maintain the least
information loss. Andritsos et al. [17] introduced a con-
text sensitive dissimilarity measure between attribute
values based on the Jensen-Shannon divergence. Simi-
larly, Ahmad and Dey [12] proposed an algorithm ADD
to compute the dissimilarity between attribute values
by considering the co-occurrence probability between
each attribute value and the values of another attribute.
Though the dissimilarity metric leads to high accuracy,
the computation is usually very costly [12], which lim-
its its application in large-scale problems. In addition,
Ahmad and Dey’s [12] approaches only focus on the
interactions among different attributes, whereas our pro-
posed measure also considers the couplings within each
attribute globally.

3 PRELIMINARY DEFINITIONS

A large number of data objects with the same at-
tribute set can be organized by an information table
S =< U,A, V, f >, where universe U = {u1, · · · , um}
is composed of a nonempty finite set of data objects;
A = {a1, · · · , an} is a finite set of attributes; V =

∪n
j=1 Vj

is a collection of attribute value sets, in which Vj is the
set of attribute values from attribute aj(1 ≤ j ≤ n);
and f =

∪n
j=1 fj , fj : U → Vj(1 ≤ j ≤ n) is an

information function which assigns a particular value of
attribute aj to every object. For instance, Table 2 is an
information table consisting of six objects {u1, · · · , u6}

TABLE 2
An Example of Information Table

PPPPPPU
A

a1 a2 a3

u1 A1 B1 C1
u2 A2 B1 C1
u3 A2 B2 C2
u4 A3 B3 C2
u5 A4 B3 C3
u6 A4 B2 C3

and three attributes {a1, a2, a3}, the attribute value of
object u1 for attribute a2 is f2(u1) = B1, and the set of
all attribute values for a2 is V2 = {B1,B2,B3}.

Generally speaking, the similarity between two objects
ux, uy(∈ U) can be built on top of the similarities be-
tween their attribute values vxj , v

y
j (∈ Vj) for all attributes

aj ∈ A. Here, vxj and vyj indicate the respective attribute
values of objects ux and uy for the attribute aj , for
example, v12 = B1 and v21 = A2. By proposing a coupled
attribute value similarity measure, we define a new
object similarity for categorical data. The basic concepts
below facilitate the formulation for a coupled attribute
value similarity measure. They are exemplified by Table
2. Below, an information table S is given, and |set| is the
number of elements in a certain set.

Definition 3.1 (SIF): Two Set Information Functions
(SIFs) are defined as:

Fj : 2
U → 2Vj , Fj(U

′) = {fj(ux)|ux ∈ U ′}, (3.1)
Gj : 2

Vj → 2U , Gj(V
′
j ) = {ui|fj(ui) ∈ V ′

j }, (3.2)

where 1 ≤ j ≤ n, 1 ≤ i ≤ m, U ′ ⊆ U and V ′
j ⊆ Vj .

These SIFs describe the relationships between ob-
jects and attribute values from different levels. Function
Fj(U

′) assigns the associated value set of attribute aj
to the object set U ′. Function Gj(V

′
j ) maps the value

set V ′
j of attribute aj to the dependent object set. For

example, based on the attribute a2, F2({u1, u2, u3}) =
{B1,B2} collects the attribute values of u1, u2 and u3; and
G2({B1,B2}) = {u1, u2, u3, u6} returns the objects whose
attribute values are B1 and B2.

Note that in the two definitions below, the superscripts
x and y of vj are omitted, since any attribute value
vj ∈ Vj used here is independent of the objects ux and
uy . However, vxj and vyj are reused when defining the
similarity in the following sections.

Definition 3.2 (IIF): The Inter-information Function
(IIF) obtains a value subset of attribute ak for the corre-
sponding objects, which are derived from the value vj
of attribute aj . It is defined as:

φj→k : Vj → 2Vk , φj→k(vj) = Fk(Gj({vj})). (3.3)

This IIF φj→k is the composition of Fk and Gj . The
involved subscript j → k means that this mapping φ is
performed from attribute aj to attribute ak. Intuitively,
φj→k(vj) computes the set of attribute values from at-
tribute ak that co-occurs with a particular attribute value
vj from attribute aj . For example, φ2→1(B1) = {A1,A2}
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Fig. 1. A framework of coupled attribute similarity analy-
sis, where L9999K indicates intra-coupling and←→ refers
to inter-coupling.

TABLE 3
List of Main Notations

Variable Explanation
{u1, · · · , um} The set of m objects U
{a1, · · · , an} The set of n attributes A

l(∈ L) Any label in the label (class) set L
V ′
j (⊆ Vj) The subset of value set Vj of attribute aj

R(= max |Vj |) The maximal number of values of each attribute
vxj , v

y
j (∈ Vj) Specific values of attribute aj for objects ux, uy

vk(∈ Vk) Any value of attribute ak

specifies that the attribute values B1 of attribute a2 and
{A1,A2} of attribute a1 are related by the corresponding
objects: u1 and u2.

Definition 3.3 (ICP): The value subset V ′
k(⊆ Vk) of

attribute ak, and the value vj(∈ Vj) of attribute aj , then
the Information Conditional Probability (ICP) of V ′

k

with respect to vj is Pk|j(V
′
k|vj), defined as:

Pk|j(V
′
k|vj) =

|Gk(V
′
k)

∩
Gj({vj})|

|Gj({vj})|
. (3.4)

Intuitively, when given all the objects with the value vj
of attribute aj , ICP is the percentage of common objects
whose values of attribute ak fall in subset V ′

k and whose
values of attribute aj are exactly vj as well. For example,
P1|2({A1}|B1) = 0.5.

All these concepts and functions form the founda-
tion for formalizing the coupled interactions within and
between categorical attributes, as presented below. The
main notations in this paper are listed in Table 3.

4 FRAMEWORK OF THE COUPLED ATTRIBUTE
SIMILARITY ANALYSIS

In this section, a framework for coupled attribute similar-
ity analysis is proposed from a global perspective of the
intra-coupled interaction within an attribute, the inter-
coupled interaction among multiple attributes, and the
integration of both.

With respect to the intra-coupled interaction, the sim-
ilarity between attribute values is considered by ex-
amining their occurrence frequencies within one at-
tribute. For the inter-coupled interaction, the similar-
ity between attribute values is captured by exposing
their co-occurrence dependency on the values of other
attributes. For example, the coupled value similarity
between B1 and B2 (i.e. values of attribute a2) con-
cerns both the intra-coupled relationship specified by
the repeated times of values B1 and B2: 2 and 2, and
the inter-coupled interaction triggered by the other two
attributes (a1 and a3). Next, the coupled interaction is
derived by the integration of intra-coupling and inter-
coupling. In this way, the couplings of attributes lead
to more accurate similarity (∈ [0, 1]) between attribute
values, rather than a rude assignment of either 0 or 1.

In the framework described in Fig. 1, the couplings
of attributes are revealed via the similarity between
attribute values vxj and vyj of each attribute aj by means
of the intra-coupling and inter-coupling. Further, the
coupled similarity for objects is built on top of the
pairwise similarity between attribute values according
to the integration of couplings. Finally, two learning
tasks are explored for the data structure analysis and
data clustering evaluation by incorporating the coupled
interactions, revealing that the couplings of attributes are
essential to learning applications in empirical studies.

Given an information table S with a set of m objects U
and a set of n attributes A, we specify those interactions
and couplings in the following sections.

5 COUPLED ATTRIBUTE SIMILARITY

The attribute couplings are proposed in terms of both
intra-coupled and inter-coupled similarities. Below, the
intra-coupled and inter-coupled relationships, as well as
the integrated coupling, are formalized and exemplified.

5.1 Intra-coupled Interaction

According to [5], the discrepancy in attribute value
occurrence times reflects the value similarity in terms of
frequency distribution. It reveals that greater similarity is
assigned to the attribute value pair which owns approx-
imately equal frequencies. The higher these frequencies
are, the closer the two values are. Different occurrence
frequencies therefore indicate distinct levels of attribute
value significance.

These principles are also consistent with the similarity
theorem presented in [11], in which the commonality
corresponds to the product of frequencies and the full
description relates to the total sum of individual fre-
quencies and their product. In addition, a comparative
evaluation on similarity measures for categorical data
has been done in [10], delivering OF and Lin as the two
best similarity measures among 14 existing measures on
18 data sets. Both these measures assign higher weights
to mismatches or matches on frequent values, and the

Page 4 of 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

maximum similarity is attained when the attribute val-
ues exhibit approximately equal frequencies [10].

Thus, when calculating attribute value similarity, we
consider the relationship between the attribute value
frequencies of an attribute, proposed as intra-coupled
similarity to satisfy the above principles.

Definition 5.1 (IaASV): The Intra-coupled Attribute
Similarity for Values (IaASV) between values vxj and
vyj of attribute aj is:

δIaj (vxj , v
y
j ) =

|Gj({vxj })| · |Gj({vyj })|
|Gj({vxj })|+ |Gj(v

y
j )|+ |Gj({vxj })| · |Gj({vyj })|

.

(5.1)

Since 1 ≤ |Gj(v
x
j )|, |Gj(v

y
j )| ≤ m and 2 ≤ |Gj(v

x
j )| +

|Gj(v
y
j )| ≤ m, then δIaj ∈ [1/3,m/(m + 4)] is obtained

according to Proof (a) in the Appendix. For example, in
Table 2, both B1 and B2 are observed twice, δIa2 (B1,B2) =
0.5.

Note that there is still an issue in the above defini-
tion: if two attribute values vxj and vyj have the same
frequency, then we have δIaj (vxj , v

x
j ) = δIaj (vxj , v

y
j ). This is

somewhat intuitively problematic, but the inter-coupled
similarity proposed in the next section remedies this is-
sue because the inter-coupled similarities between vxj , v

x
j

and between vxj , v
y
j are overwhelmingly distinct.

By taking the frequency of attribute values into consid-
eration, IaASV characterizes the value similarity in terms
of attribute value occurrence times.

5.2 Inter-coupled Interaction
IaASV considers the interaction between attribute values
within an attribute aj . It does not involve the couplings
between attributes (e.g. ak(k ̸= j) and aj) when calculat-
ing the attribute value similarity. For this, we discuss the
dependency aggregation, i.e. inter-coupled interaction.

In 1993, Cost and Salzberg [9] presented a powerful
new method MVDM for measuring the dissimilarity
between categorical values. MVDM takes into account
the overall similarity of classification of all objects on
each possible value of each attribute. The dissimilarity
Dj|L between two attribute values vxj and vyj for a
specific attribute aj regarding labels L is:

Dj|L(v
x
j , v

y
j ) =

∑
l∈L

|Pl|j({l}|vxj )− Pl|j({l}|vyj )|, (5.2)

where l(∈ L) is a label in the information table S. Pl|j is
the ICP defined in (3.4) by replacing the attribute ak with
the label l, the attribute value subset V ′

k with the label
subset L′ ⊆ L (here L′ = {l}), in which g∗l (L

′) refers
to the set of objects whose labels fall in L′. Dj|L indi-
cates that values are identified as being similar if they
occur with the same relative frequency for all classes.
According to the principle [18] that, for the categorical
data distribution, the sum of L1 dissimilarities and twice
the total variation dissimilarity are equivalent, we have:

Dj|L(v
x
j , v

y
j ) = 2 · max

L′⊆L
|Pl|j(L

′|vxj )− Pl|j(L
′|vyj )|. (5.3)

The detailed proof on the equivalence of Equations (5.2)
and (5.3) is specified by Proof (b) in the Appendix.

In the absence of labels, the above (5.3) is adapted to
satisfy our target problem by replacing the class label
information with other attribute knowledge to enable
unsupervised learning. We regard this interaction be-
tween attributes as inter-coupled similarity in terms of
the co-occurrence comparisons of ICP. The most intuitive
variant of (5.3) is IRSP:

Definition 5.2 (IRSP): The Inter-coupled Relative Sim-
ilarity based on Power Set (IRSP) between values vxj
and vyj of attribute aj based on another attribute ak is
defined as δPj|k(v

x
j , v

y
j , Vk) (below δPj|k for short):

δPj|k = min
V ′
k⊆Vk

{2− Pk|j(V
′
k|vxj )− Pk|j(V

′
k|v

y
j )}, (5.4)

where V ′
k = Vk\V ′

k is the complementary set of a set V ′
k

under the complete value set Vk of attribute ak.
The main difference between (5.4) and (5.3) includes:

1) the multiplier 2 in (5.3) is omitted; 2) labels are
replaced with other values of a particular attribute ak,
i.e., V ′

k and Vk are substituted for L′ and L, respectively;
3) a complementary set V ′

k rather than the original set
V ′
k is concerned for vyj in ICP, note that Pk|j(V

′
k|v

y
j )} =

1−Pk|j(V
′
k|v

y
j )}; and 4) dissimilarity is considered rather

than similarity: the new dissimilarity measure

D′
j|k(v

x
j , v

y
j ) = max

V ′
k⊆Vk

|Pk|j(V
′
k|vxj ) +Pk|j(V

′
k|v

y
j )− 1| (5.5)

is obtained by following the previous three steps, then
we have δPj|k = 1−D′

j|k(v
x
j , v

y
j ). The detailed conversion

process and relevant proof are provided in Proof (c) in
the Appendix. In fact, two attribute values are closer to
each other if they have more similar probabilities with
other attribute value subsets in terms of co-occurrence
object frequencies.

In Table 2, by employing (5.4), we want to obtain
δP2|1(B1,B2, {Ai}4i=1), i.e. the similarity between two at-
tribute values B1,B2 of attribute a2 regarding attribute
a1. As shown in Table 4, the set of all attribute values
of attribute a1 is V1 = {A1,A2,A3,A4}. The number of
all power sets within V1 is 24, i.e., the number of the
combinations consisting of V ′

1 ⊆ V1 and V ′
1 ⊆ V1 is 24.

The minimal value among them is 0.5, which indicates
that the corresponding similarity δP2|1 is 0.5.

This process shows that the combinational explosion
brought about by the power set needs to be considered
when calculating attribute value similarity by IRSP. For
a given set of attribute values, the power set considers all
the subsets, the universal set concerns all the elements
involved, and the join and intersection sets focus on
parts of the elements. We start with the power set-based
IRSP, and will proceed to the universal set-based IRSU,
the join set-based IRSJ, and the intersection set-based
IRSI to see whether the problem can be reduced in this
way. We therefore try to define three more similarity
metrics IRSU, IRSJ, IRSI based on IRSP.
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TABLE 4
Example of Computing Similarity Using IRSP

V ′
1 V ′

1 P1|2(V
′
1 |B1) P1|2(V

′
1 |B2) 2− P1|2(V

′
1 |B1)− P1|2(V

′
1 |B2)

∅ {A1,A2,A3,A4} 0 1 1
{A1} {A2,A3,A4} 0.5 1 0.5
· · · · · · · · · · · · · · ·

{A1,A2,A3,A4} ∅ 1 0 1

TABLE 5
Computing Similarity Using IRSU

vk P1|2({vk}|B1) P1|2({vk}|B2) max
A1 0.5 0 0.5
A2 0.5 0.5 0.5
A3 0 0 0
A4 0 0.5 0.5

TABLE 6
Computing Similarity Using IRSJ

vk P1|2({vk}|B1) P1|2({vk}|B2) max
A1 0.5 0 0.5
A2 0.5 0.5 0.5
A4 0 0.5 0.5

Definition 5.3 (IRSU, IRSJ, IRSI): The Inter-coupled
Relative Similarity based on Universal Set (IRSU),
Join Set (IRSJ), and Intersection Set (IRSI) between
values vxj and vyj of attribute aj based on another at-
tribute ak are defined as δUj|k(v

x
j , v

y
j , Vk), δJj|k(v

x
j , v

y
j , Vk)

and δIj|k(v
x
j , v

y
j , Vk) (below δj|k, δJj|k, and δIj|k for short),

respectively:

δUj|k = 2−
∑

vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.6)

δJj|k = 2−
∑
vk∈

∪max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.7)

δIj|k =
∑
vk∈

∩min{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}, (5.8)

where vk ∈
∪

and vk ∈
∩

denote vk ∈ φj→k(x)
∪

φj→k(y) and vk ∈ φj→k(v
x
j )

∩
φj→k(v

y
j ), respectively.

In the above, each value vk(∈ Vk) of attribute ak, rather
than its value subset V ′

k ⊆ Vk, is considered to reduce
computational complexity. As shown in Table 5, the
similarity δU2|1 based on IRSU is δU2|1(B1,B2, {Ai}4i=1) =
2 − 0.5 − 0.5 − 0 − 0.5 = 0.5. Since IRSU only concerns
all the single attribute values rather than exploring the
whole power set, it solves the combinational explosion
issue to a great extent. In IRSU, ICP is merely calculated
8 times compared with 32 times by IRSP, which leads to
a substantial improvement in efficiency.

IIF (3.3) is used to further reduce the time cost of ICP
with two more similarity measures: IRSJ (5.7) and IRSI
(5.8). With (5.7), the calculation of δJ2|1 is further simpli-
fied since A3 ̸∈ φ2→1(B1)

∪
φ2→1(B2). As shown in Table

6, we obtain δJ2|1(B1,B2, {Ai}4i=1) = 2− 0.5− 0.5− 0.5 =
0.5, which reveals the fact that it is enough to compute
ICP with w ∈ V1 that belongs to φ2→1(B1)

∪
φ2→1(B2)

instead of all the elements in V1. From this aspect, IRSJ
further reduces the complexity compared to IRSU.

Based on IRSU, an alternative IRSI is concerned. With

TABLE 7
Computing Similarity Using IRSI

vk P1|2({vk}|B1) P1|2({vk}|B2) min
A2 0.5 0.5 0.5

(5.8), the calculation of δI2|1 is once again simplified as
in Table 7 since only A2 ∈ φ2→1(B1)

∩
φ2→1(B2). Then,

we easily get δI2|1(B1,B2, {Ai}4i=1) = 0.5. In this case, it
is sufficient to compute ICP with A2 ∈ V1 which only
belongs to φ2→1(B1)

∩
φ2→1(B2). It is trivial that the

cardinality of intersection
∩

is no larger than that of join
set

∪
. Thus, IRSI is more efficient than IRSU due to the

reduction of intra-coupled relative similarity complexity.
Intuitively, IRSI is the most efficient of all the proposed

inter-coupled relative similarity measures: IRSP, IRSU,
IRSJ, IRSI. In fact, all four measures lead to the same
similarity result, such as 0.5 in our example. These
measures are mathematically equivalent to one another.
This assumption is proved in Section 6.

Accordingly, the similarity between the value pair
(vxj , v

y
j ) of attribute aj can be calculated on top of these

four optional measures by aggregating all the relative
similarity on attributes other than aj .

Definition 5.4 (IeASV): The Inter-coupled Attribute
Similarity for Values (IeASV) between attribute values
vxj and vyj of attribute aj is:

δIej (vxj , v
y
j , {Vk}k ̸=j) =

n∑
k=1,k ̸=j

αkδj|k(v
x
j , v

y
j , Vk), (5.9)

where αk is the weight parameter for attribute ak,∑n
k=1,k ̸=j αk = 1, αk ∈ [0, 1], and δj|k(v

x
j , v

y
j , Vk) is one of

the inter-coupled relative similarity candidates.
Therefore, δIej ∈ [0, 1]. For the parameter αk, in this

paper, we simply assign αk = 1/(n − 1). For example,
in Table 2, we then have δIe2 (B1,B2, {V1, V3}) = 0.5 ·
δ2|1(B1,B2, {Ai}4i=1)+0.5 · δ2|3(B1,B2, {Ci}3i=1) = 0.25 if
α1 and α3 equal to 0.5.

5.3 Coupled Interaction

So far, we have built formal definitions for both IaASV
and IeASV measures. IaASV emphasizes the attribute
value occurrence frequency, while IeASV focuses on
the co-occurrence comparison of ICP with four inter-
coupled relative similarity options. Then, the Coupled
Attribute Similarity for Values (CASV) is naturally derived
by simultaneously considering both measures.

Definition 5.5 (CASV): The Coupled Attribute Similar-
ity for Values (CASV) between attribute values vxj and
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vyj of attribute aj is:

δAj (v
x
j , v

y
j , {Vk}nk=1) = δIaj (vxj , v

y
j ) · δ

Ie
j (vxj , v

y
j , {Vk}k ̸=j),

(5.10)
where Vk(k ̸= j) is a value set of attribute ak different
from aj to enable the inter-coupled interaction. δIaj and
δIej are IaASV and IeASV, respectively, which will be
detailed in the following sections.

As indicated in Equation (5.10), CASV gets larger
by increasing either IaASV or IeASV. Here, we choose
the multiplication of these two components. The ra-
tionale is twofold: (1) IaASV is associated with how
often the value occurs while IeASV reflects the extent of
the value difference brought by other attributes, hence
intuitively, the multiplication of them indicates the total
amount of attribute value difference; (2) the multipli-
cation method is consistent with the adapted simple
matching distance introduced in [5]. Alternatively, in
our future work, we could consider other combination
forms of IaASV and IeASV according to the data struc-
ture, such as δAj (v

x
j , v

y
j , {Vk}nk=1) = β · δIaj (vxj , v

y
j ) + γ ·

δIej (vxj , v
y
j , {Vk}k ̸=j), where 0 ≤ β, γ ≤ 1 (β + γ = 1)

are the corresponding weights. Thus, IaASV and IeASV
can be controlled flexibly to display in which cases the
former is more significant than the latter, and vice-versa.

Additionally, δAj = δIaj · δIej ∈ [0,m/(m + 4)] since
we have δIaj ∈ [1/3,m/(m + 4)](m ≥ 2) as well as
δIej ∈ [0, 1]. For example, in Table 2, the CASV of
attribute values B1 and B2 is δA2 (B1,B2, {V1, V2, V3}) =
δIa2 (B1,B2)·δIe2 (B1,B2, {V1, V3}) = 0.5× 0.25 = 0.125. For
the Movie data set, then δADirector(Scorsese, Coppola)=
δADirector(Coppola,Coppola) = 0.33, and δADirector (Koster,
Coppola) = 0 while δADirector (Koster,Hitchcock) = 0.25.
They correspond to the fact that “Scorsese” and “Coppola”
are very similar directors just as “Coppola” is to himself,
and the similarity between “Koster” and “Hitchcock” is
larger than that between “Koster” and “Coppola”, as
clarified in Section 1.

In the following theoretical analysis in Section 6, the
computational accuracy and complexity of the four inter-
coupled relative similarity options are analyzed.

6 THEORETICAL ANALYSIS

This section compares the proposed four inter-coupled
relative similarity measures (IRSP, IRSU, IRSJ and IRSI)
in terms of their computational accuracy and complexity.

1) Accuracy Equivalence
According to the set theory, these four measures are

equivalent to one another in calculating value similarity;
we therefore have the following theorem. This theorem
is deduced by Proof (d) in the Appendix.

Theorem 6.1: IRSP, IRSU, IRSJ and IRSI are all equiva-
lent to one another.

The above theorem indicates that IRSP, IRSU, IRSJ
and IRSI are equivalent to one another in terms of the
information and knowledge they present. It also explains
the similarity result in Section 5.2. Thus, these measures

TABLE 8
Time Cost of ICP

Metric Calculation Times of ICP δ2|1(B1,B2)

IRSP 2 · 2|Vk| 32
IRSU 2 · |Vk| 8
IRSJ 2 · |φj→k(v

x
j )

∪
φj→k(v

y
j )| 6

IRSI 2 · |φj→k(v
x
j )

∩
φj→k(v

y
j )| 2

can induce exactly the same computational accuracy
in different learning tasks including classification and
clustering.

2) Computational Complexity Comparison
When calculating the similarity between every pair

of attribute values for all attributes, the computational
complexity linearly depends on the time cost of ICP,
which is quantified by the calculation counts of ICP.
This reflects the efficiency difference between distinct
similarity measures. Table 8 summarizes the time costs
of the four inter-coupled relative similarity measures.

Let |ICP
(M)
j|k | represent the time cost of ICP for

δMj|k(v
x
j , v

y
j ) with the associated measure M = {P,U, J,

I}, whose elements are IRSP, IRSU, IRSJ and IRSI,
respectively. From Table 8, |ICP

(P )
j|k | ≥ |ICP

(U)
j|k | ≥

|ICP
(J)
j|k | ≥ |ICP

(I)
j|k | holds constantly. It demonstrates

the competitive efficiency of IRSI compared to the other
three measures. In Table 2, 32 calculation counts of ICP
are required in IRSP, compared with only two calcula-
tion counts when using IRSI.

Suppose the maximal number of values for each at-
tribute is R(= maxnj=1 |Vj |). In total, the number of value
pairs for all the attributes is at most n ·R(R−1)/2, which
is also the number of calculation steps. For each inter-
coupled relative similarity, we calculate ICP for |ICP

(M)
j|k |

times. As we have n attributes, the total ICP time cost
for CASV is 2 · |ICP

(M)
j|k | · (n − 1) flops per step. The

computational complexity for calculating all four options
of CASV is shown in Table 9.

As indicated in Table 9, all the measures have the same
calculation steps, while their flops per step are sorted in
descending order since 2R > R ≥ R∪ ≥ R∩, in which
R∪ and R∩ are the cardinality of the join and inter-
section sets of the corresponding IIFs, respectively. This
evidences that the computational complexity essentially
depends linearly on the time cost of ICP with given data.
Specifically, IRSP has the largest complexity O(n2R22R),
compared to the smaller equal ones O(n2R3) presented
by the other three measures (IRSU, IRSJ, and IRSI). Of
the latter three candidates, though they have the same
computational complexity, IRSI is the most efficient due
to R∩ ≤ R∪ ≤ R. In fact, the dissimilarity ADD that
Ahmad and Dey [12] used for mixed data clustering
corresponds to the worst measure IRSP.

Considering both the accuracy analysis and complex-
ity comparison, we conclude that IRSI is the best per-
forming measure because it indicates the least complex-
ity but maintains equal accuracy to present couplings.
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TABLE 9
Computational Complexity for CASV

Metric Calculation Steps Flops per Step Complexity
IRSP nR(R− 1)/2 2(n− 1)2R O(n2R22R)
IRSU nR(R− 1)/2 2(n− 1)R O(n2R2R)
IRSJ nR(R− 1)/2 2(n− 1)R∪ O(n2R2R)
IRSI nR(R− 1)/2 2(n− 1)R∩ O(n2R2R)

7 COUPLED SIMILARITY ALGORITHM

In previous sections, we have discussed the construction
of CASV and its theoretical comparison among the inter-
coupled relative similarity candidates. In this section,
a coupled similarity between objects is built based on
CASV. Below, we consider the sum of all these CASV
measures, following the Manhattan dissimilarity [5].

Definition 7.1 (CASO): Given an information table S,
the Coupled Attribute Similarity for Objects (CASO)
between objects ux and uy is CASO(ux, uy):

CASO(ux, uy) =
n∑

j=1

δAj (v
x
j , v

y
j , {Vk}nk=1), (7.1)

where δAj is the CASV measure defined in (5.10), vxj and
vyj are the attribute values of attribute aj for objects ux

and uy respectively, and 1 ≤ x, y ≤ m, 1 ≤ j ≤ n.
For CASO, all the CASVs with each attribute are

summed up for two objects. For example the similar-
ity between u2 and u3 in Table 2 is CASO(u2, u3) =∑3

j=1 δ
A
j (v

2
j , v

3
j , {Vk}3k=1) = 0.5 + 0.125 + 0.125 = 0.75.

CASO has the properties of non-negativity since
CASO(ux, uy) ∈ [0,mn/(m + 4)], in particular
CASO(ux, ux) ∈ [n/3,mn/(m + 4)], and symmetry, i.e.
CASO(ux, uy) = CASO(uy, ux), although it does not
guarantee the property of triangle inequality. Therefore,
CASO is a non-metric similarity measure.

We then design an algorithm CASO IRSI(), given be-
low, to compute the coupled object similarity with IRSI
(i.e. the best inter-coupled relative similarity candidate).
The whole process of this algorithm is summarized as
follows: (1) Compute the IaASV for values vxj and vyj of
attribute aj (Line 5); (2) Compute the IeASV for attribute
values vxj and vyj based on IRSI (Line 10 to Line 20); (3)
Compute the CASV for attribute values vxj and vyj (Line
6); and (4) Compute the CASO for objects ux and uy

(Line 7).
Before the similarity calculation is performed, some

data preprocessing is conducted to enable this algorithm.
In detail, all the categories of each attribute need to be
encoded as numberings, starting at one and increasing
to the maximum, which is the respective number of at-
tribute values. To reduce unnecessary iterations in Line 7,
pairwise CASV similarity for any two values of the same
attribute, rather than the only two values involved of
each attribute, is pre-calculated for reuse when comput-
ing the object similarity. Explicitly, this pseudocode also
embodies the fact that the computational complexity for
IRIS is indeed O(n2R3). However, it might not be very
attractive for extremely large data sets with attributes
that take too many values. Thus, we are working on

Algorithm 1: Coupled Attribute Similarity for Objects

Data: Data set Sm×n with m objects and n attributes,
object ux, uy(x, y ∈ [1,m]), and weight α = (αk)1×n.

Result: Coupled Similarity for objects CASO(ux, uy).
1 begin

// Compute pairwise similarity for any
two values of the same attribute.

2 for attribute aj , j = 1 : n do
3 for every value pair (vxj , v

y
j ∈ [1, |Vj |]) do

4 U1 ←− {i|vij == vxj }, U2 ←− {i|vij == vyj };
// Compute intra-coupled similarity

for two values vxj and vyj .
5 δIaj (vxj , v

y
j ) = (|U1||U2|)/(|U1|+ |U2|+ |U1||U2|);

// Compute coupled similarity for
two attribute values vxj and vyj .

6 δAj (vxj , v
y
j , {Vk}nk=1)←−

δIaj (vxj , v
y
j ) · IeASV (vxj , v

y
j , {Vk}k ̸=j);

// Compute coupled similarity between
two objects ux and uy.

7 CASO(ux, uy)←− sum(δAj (vxj , v
y
j , {Vk}nk=1));

8 end

9 Function IeASV (vxj , v
y
j , {Vk}k ̸=j)

10 begin
// Compute inter-coupled similarity for

two attribute values vxj and vyj .
11 for attribute (k = 1 : n) ∧ (k ̸= j) do
12 {vzk}z∈U3 ←− {vxk}x∈U1

∩
{vyk}y∈U2 ;

13 for intersection z = U3(1) : U3(|U3|) do
14 U0 ←− {i|vik == vzk};
15 ICPx ←− |U0

∩
U1|/|U1|;

16 ICPy ←− |U0

∩
U2|/|U2|;

17 Min(x,y) ←− min(ICPx, ICPy);

// Compute IRSI for vxj and vyj .
18 δIj|k(v

x
j , v

y
j , Vk) = sum(Min(x,y));

19 δlej (vxj , v
y
j , {Vk}k ̸=j) = sum[α(k)× δIj|k(v

x
j , v

y
j , Vk)];

20 return δlej (vxj , v
y
j , {Vk}k ̸=j);

strategies of attribute reduction to effectively reduce the
number of coupled attributes.

8 EXPERIMENTS AND EVALUATION

In this section, extensive experiments are performed
on several UCI and bibliographic data sets to show
the effectiveness and efficiency of our proposed cou-
pled similarity measures. The experiments are designed
in two categories: coupled similarity comparisons and
CASO applications. For simplicity, we assign the weight
vector α = (αk)1×n with values α(k) = 1/(n − 1) in
Definition 5.4.

8.1 Coupled Similarity Comparison

To compare efficiency, experiments are conducted on the
inter-coupled relative similarity measures: IRSP, IRSU,
IRSJ, and IRSI. Experiments are first performed for effi-
ciency comparison, followed by scalability analysis. Note
that the time cost of ICP is quantified by the calculation
counts of ICP.
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Fig. 2. Complexity on individual attributes.

8.1.1 Efficiency Comparison

The goal in this set of experiments is to show the
obvious superiority of IRSI compared with the most
time-consuming measure IRSP. As discussed in Section
6, the computational complexity linearly depends on the
time cost of ICP with given data. Thus, we consider the
comparison of complexity represented by the time cost
of ICP from the following two aspects.

In terms of a single attribute, the time costs of ICP
on Movie [12], MMR, Soybean-small and Zoo data sets
are shown in Fig. 2. We only consider the attributes
whose number of values is more than 1, thus, there are
only 24 attributes for Soybean-small rather than 35. The
horizontal axis refers to the ordinal number of nominal
attributes, e.g., 1 indicates attribute a1; while the vertical
axis indicates the total time cost (i.e. calculation counts)
of ICP for all value pairs of each attribute with four
options: IRSP, IRSU, IRSJ, IRSI. The results show that
for any individual attribute, IRSI always has the smallest
time cost, followed by IRSJ and IRSU, while IRSP is far
more time-consuming.

In more detail, we observe that the complexity of IRSP
for each attribute is around three or four times the size
of IRSU for these four data sets. Theoretically, this ratio
ξ(P/U) can be fixed within an interval based on the
given data structure. Suppose we have an information
table S with m objects and n attributes. For all the
attributes, let T (= minnk=1 |Vj |) and R(= maxnk=1 |Vj |) be
their minimal and maximal number of values, respec-
tively. Then, for any attribute aj :

ξj(P/U) =
|ICP

(P )
j |

|ICP
(U)
j |

∈
[
2T

T
,
2R

R

]
, (8.1)

where |ICP
(M)
j | is the time cost of ICP for aj . Proof (e)

in the Appendix supports this statement. For Zoo, T = 2
and R = 6, and the corresponding multiples ξj , which

range from 2.0 to 3.5, all fall in [2, 10.7].
With respect to all attributes, all the time costs of ICP

for all the attribute value pairs are considered. Table 10
reports the total time cost of ICP with four measures
on 12 data sets in terms of relative proportion and
direct frequency, where R and n denote the maximal
number of attribute values and the number of attributes,
respectively, and |ICP (M)| indicates the total time cost of
ICP for all attributes. Let ξ(U/P ) and ξ(I/J) denote the
proportion |ICP (U)|/|ICP (P )| and |ICP (I)|/|ICP (J)|,
respectively. Then ξ(U/P ) ∈ [R/2R, T/2T ] is deduced
according to the proof of Equation (8.1). This property
can be checked in Table 10, 27.1% ∈ [25%, 37.5%] for the
data set Hayesroth.

These results also show that the efficiency advantage
of IRSU over IRSP becomes more obvious when the
maximal number of values R becomes larger, i.e., the
proportion ξ(U/P ) reduces monotonously from 50% to
0.1% when R increases from 2 to 16. However, due to
the fact that IRSJ and IRSI involve the relevant join set
and intersection set respectively, the variation tendency
of their relative efficiency ratio ξ(I/J) ∈ [0, 1] mainly
depends on the data structure rather than R and n
alone. The probability of achieving a smaller ratio ξ(I/J)
increases as R grows, since we have more opportunity
to obtain an intersection set smaller than a join set.
This can be observed in Table 10 by the fact that there
is a general decreasing tendency that nevertheless has
several disorder ratios.

After fixing R, we consider the variation law for
the efficiency of IRSU and IRSI with the increasing n.
It is found that the ICP time costs of both measures
become greater as n grows. For instance, the calculation
frequency of ICP for IRSI increases from 78 to 4774 when
n varies between 4 and 36 with R = 3. Similarly, the
time costs of the other two options (IRSU and IRSI) also
increase when either n or R goes up. The superiority of
IRSI becomes more remarkable as the data grows more
complicated and bigger compared to the other three
metrics. Table 10 further evidences that IRSI is the most
efficient measure in contrast to the worst measure, IRSP.

8.1.2 Scalability Analysis
As we have discussed in Section 6, the complexity for
IRSP is O(n2R22R), while the other three have equal
smaller complexity O(n2R3). Here, scalability analysis
is explored in terms of n and R separately.

From the perspective of the number of attributes n,
the Soybean-large data set is considered with 307 objects
and 35 attributes. Here, we fix R as 7, and focus on
n ranging from 5 to 35 with a step length of 5. In
terms of the total time cost of ICP, the computational
complexity comparisons among four measures (IRSP,
IRSU, IRSJ and IRSI) are depicted in Fig. 3 (a). The result
indicates that the complexity of all these measures keeps
increasing when n becomes larger. The acceleration of
IRSP (from 3328 to 74128) is the greatest by contrast
to the slightest acceleration of IRSI (from 632 to 15704).
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TABLE 10
Complexity Comparison on All Attributes

Data Set Corral Voting Led24 Lense Tic Chess Movie Hayesroth Molecular Solar Mushroom Letter
R 2 2 2 3 3 3 4 4 4 7 12 16
T 2 2 2 2 3 2 3 3 4 2 1 10
n 6 16 24 4 9 36 3 4 57 10 22 16

ξ(U/P ) 50.0% 50.0% 50.0% 46.4% 37.5% 49.4% 27.8% 27.1% 25.0% 20.0% 1.7% 0.1%
ξ(I/J) 100% 100% 100% 100% 100% 88.7% 11.0% 100% 99.2% 82.3% 42.5% 48.4%

|ICP (U)| 120 960 2208 78 1296 5390 212 468 153216 2544 76020 394294

|ICP (I)| 120 960 2208 78 1296 4774 16 468 152022 1998 21736 140434
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Fig. 3. Scalability on n and R respectively.

Apart from these two, the scalability curves are almost
the same for IRSU and IRSI, though the complexity of
IRSU is slightly higher than that of IRSJ with varied n.
Therefore, IRSI is the most stable and efficient measure
for calculating the intra-coupled relative similarity in
terms of the scalability on n.

From the perspective of the maximal number of
attribute values R, the variation of R is considered when
n is fixed. Here, we take advantage of the Adult data set
with 30718 objects and 13 attributes chosen. Specifically,
the integer attribute “fnlwgt” is discretized into different
intervals (from 10 to 10000) to form distinct R ranging
from 16 to 10000, since one of the existing categorial
attributes “education” already has 16 values. The out-
comes are shown in Fig. 3(b), in which the horizontal
axis refers to R, and the vertical axis indicates the relative
complexity ratios in terms of ξ(J/U), ξ(I/J), and ξ(I/U).
From this figure, we observe all the ratios between 10%
and 100%, which again verifies the complexity order
for these four measures indicated in Section 6. Another
issue is that all three curves decrease as R grows, which
means the efficiency advantage of IRSJ over IRSU (from
85.5% to 46.8%), IRSI over IRSJ (from 78.2% to 40.2%),
and IRSI over IRSU (from 66.9% to 18.8%) all become
more and more obvious with the increase of R. The
general downturn trend of these ratios comes from the
fact that there is a higher probability of obtaining a
join set smaller than the whole set, and an intersection
set smaller than the join set, with larger R. The same
conclusion also holds for the ratio ξ(U/P ), but this is due
to the monotonously decreasing property of ξ(U/P ) on
R, which has been proved in Proof (f) in the Appendix.
We omit this ratio in Figure 3(b) since the denominator
|ICP (P )| becomes exponentially large when R grows,
e.g., it equals to 5.12× 1083 when R = 500. Hence, IRSI

is the least time-consuming intra-coupled similarity with
regard to scalability on R.

In summary, all of the above experiment results clearly
show that IRSI outperforms IRSU, IRSJ and IRSI on
computational complexity, no matter how small or large,
simple or complicated a data set is. In particular, with
the increase in the number of either attributes or attribute
values, IRSI demonstrates superior efficiency compared
to the others. IRSJ and IRSU follow, with IRSP being the
most time-consuming, especially for large-scale data.

8.2 Learning Applications

In this part of our experiments, we focus on two levels
of algorithmic accuracy comparison:

1) Compare the proposed four intra-coupled mea-
sures: IRSP, IRSU, IRSJ, IRSI.

2) Compare our novel Coupled Attribute Dissimilarity
for Objects (CADO) induced from CASO with exist-
ing categorical dissimilarity measures.

Three independent groups of experiments are conducted
with extensive data sets based on machine learning
applications. In the following, we evaluate the CADO
which is derived from (7.1):

CADO(ux, uy) (8.2)

=

n∑
j=1

h1[δ
Ia
j (vxj , v

y
j )] · h2[δ

Ie
j (vxj , v

y
j , {Vk}k ̸=j)],

where h1(t) and h2(t) are decreasing functions. Based
on intra-coupled and inter-coupled similarities, h1(t) and
h2(t) can be flexibly chosen to build dissimilarity mea-
sures according to specific requirements. In terms of the
capability of revealing the data relationship, the better
the induced dissimilarity, the better is its similarity.

Here, we consider h1(t) = 1/t − 1 and h2(t) = 1 − t
to reflect the complementarity between similarity and
dissimilarity measures, since they are both decreasing
functions of t. The rationale behind these two functions
is as follows. The first conversion corresponds to the
improved SMD with frequency [5], if only 0 and 1 are
assigned to δIej (i.e. SMD [19]: dissimilarity 0 for identical
values, and otherwise 1). The second transformation
guarantees the consistency of CADO with the dissimi-
larity measure ADD [12], when a constant is fixed for
δIaj . In addition, h1(t) = 1/t − 1 is also consistent with
the converted measures proposed in [11]; h2(t) = 1 − t
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Fig. 4. Data structure index comparison.

follows the way of converting OF to OFD [10] as well,
presented in the next section. Both these functions are
designed to include existing classical measures as special
cases of our proposed coupled similarity. The detailed
specialization to the improved SMD and the ADD are
explained in Section 9.

8.2.1 Data Structure Analysis
This section performs experiments to explicitly specify
the internal structures for the labeled data. Clusterings
are normally evaluated by assigning the best score to the
algorithm that produces clusters with highest similarity
within a cluster and lowest similarity between clusters
based on a certain similarity measure. We work in a
different way, in which similarity measures are evaluated
with clustering criteria and given labels. In this way,
a better cluster structure can be clarified with a better
similarity measure in terms of the clustering internal
descriptors, such as Sum-Square, Davies-Bouldin Index
(DBI) [20], and Dunn Index (DI) [21].

To reflect the data cluster structure more clearly, the
induced dissimilarity metrics are evaluated by four
descriptors: Relative Dissimilarity (RD), DBI, DI, and
Sum-Dissimilarity (SD). In detail, RD is the ratio of
average inter-cluster dissimilarity upon average intra-
cluster dissimilarity for all cluster labels; SD is the sum of
object dissimilarities within all the clusters. Since internal
criteria seek clusters with high intra-cluster similarity
and low inter-cluster similarity, dissimilarity metrics that
produce clusters with high RD or DI and low DBI or SD
are more desirable.

Four object dissimilarity metrics are considered here:
Simple Matching Dissimilarity [5] (SMD, i.e. Ham-
ming distance [19]), Occurrence Frequency Dissimilarity
(OFD) [10], ADD proposed by Ahmad and Dey [12],
and CADO. SMD is a simple, well-known measure for

categorical data, while OFD considers matching in terms
of attribute value frequency distribution, both formal-
ized as the sum of value dissimilarities for all the at-
tributes. Further, attribute value dissimilarities DSMD

j =
DOFD

j = 0 if vxj = xy
j , otherwise they equal 1 and

1−
[
1+ log m

|Gj({vx
j })|
· log m

|Gj({vy
j })|

]−1 for SMD and OFD,
respectively. The dissimilarity measure ADD, derived
from (7.1) with the worst inter-coupled relative similarity
candidate IRSP, considers the sum of inter-coupled inter-
actions between all the corresponding attribute values.
These three measures only concern the local picture,
while our proposed CADO is globally formalized based
on (8.2).

The cluster structures produced by the above four
dissimilarity metrics are then analyzed on 10 data sets
in different scales. The results after dissimilarity normal-
ization are shown in Fig. 4, where the X axis refers to
the data sets Movie, Balloon, Soybean-small, Zoo, Hayesroth,
Voting, Breastcancer, Tic, Letter, and Mushroom, respec-
tively. They are ordered according to the number of
objects involved (i.e. m) to describe distinct data scales,
ranging from 6 to 8124. As discussed previously, larger
RD, larger DI, smaller DBI, and smaller SD indicate
better characterization of the cluster differentiation capa-
bility, which corresponds to a better dissimilarity metric
being induced. From Fig. 4, we observe that, with the
exception of a few items, the corresponding RD and
DI indexes on CADO are mostly the largest ones when
compared with those on SMD, OFD, and ADD; while
the associated DBI and SD index curves on CADO are
mostly below the other three curves. The results show
that our proposed CADO is better than SMD and OFD in
terms of differentiating objects in distinct clusters. ADD
also seems to be slightly better than SMD and OFD in
most cases. The degrees of improvement of CADO upon
SMD, OFD, and ADD mainly depend on data structure
rather than on data scale |U |(= m) alone.

In constructing CADO, all four candidates (IRSP,
IRSU, IRSJ, and IRSI) are used. Just as we proved in
Section 6, all the indexes are the same regardless of
exactly what δj|k(x, y) refers to, which directly verifies
that these four intra-coupled relative similarity measures
present equal accuracy.

8.2.2 Clustering Evaluation

To demonstrate the effectiveness of our proposed CADO
in clustering applications, we compare two classical
clustering methods based on two dissimilarity metrics
on six data sets. CADO is used with the outperforming
measure IRSI.

One of the clustering approaches is the k-modes (KM)
algorithm [5], designed to cluster categorical data sets.
The main idea of KM is to specify the number of clusters
k and then to select k initial modes, followed by allo-
cating every object to the nearest mode. The other is a
branch of graph-based clustering, i.e. spectral clustering
(SC) [22], which makes use of Laplacian Eigenmaps on a
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Fig. 5. Clustering evaluation on six data sets.

dissimilarity matrix to perform dimensionality reduction
for clustering prior to the k-means algorithm. In respect
of attribute dependency aggregation, however, Ahmad
and Dey [12] evidenced that their proposed metric ADD
outperforms SMD in terms of KM clustering. Thus, we
aim to compare the performance of CADO (8.2) against
ADD [12] for further clustering evaluation.

We conduct four groups of experiments on six UCI
data sets: KM with ADD, KM with CADO, SC with
ADD, and SC with CADO. The clustering performance
is evaluated by comparing the obtained cluster of each
object with that provided by the data label in terms
of accuracy (AC) and normalized mutual information
(NMI) [23], which are essentially the external criteria
compared with the internal criterion analysis in Section
8.2.1. AC ∈ [0, 1] is a degree of closeness between the
obtained clusters and its actual data labels, while NMI
∈ [0, 1] is a quantity that measures the mutual depen-
dence of two variables: clusters and labels. The larger
AC or NMI is, the better the clustering is, and the better
the corresponding dissimilarity metric is.

Fig. 5 reports the results on six data sets with dif-
ferent |U |, ranging from 15 to 699 in the increasing
order. The performance of AC and NMI is individually
evaluated for KM-ADD, KM-CADO, SC-ADD, and SC-
CADO. Followed by Laplacian Eigenmaps, the subspace
dimensions are determined by the number of labels
in SC. For each data set, the average performance is
computed over 100 tests for KM and SC with distinct
start points.

As can clearly be seen from Fig. 5, the clustering
methods with CADO, whether KM or SC, outperform
those with ADD on both AC and NMI. That is to say,
the dissimilarity metric CADO is better than ADD for
measuring clustering quality. Specifically for KM, the AC
improving rate ranges from 5.56% (Balloon) to 16.50%
(Zoo), while the NMI improving rate falls within 4.76%
(Soybean-s, i.e. Soybean-small) and 37.38% (Breastcancer).

With regard to SC, the former rate takes the minimal and
maximal ratios as 4.21% (Balloon) and 20.84% (Soybean-l,
i.e. Soybean-large), respectively, however, the latter rate
belongs to [5.45% (Soybean-l), 38.12% (Shuttle)]. AC and
NMI evaluate clustering quality from different aspects;
generally, they take minimal and maximal ratios on
distinct data sets. Statistical analysis, namely the t-test,
has been done on AC and NMI, at a 95% significance
level. The null hypothesis that CADO is better than ADD
in terms of AC and NMI is accepted. Another significant
observation is that SC mostly outperforms KM whenever
it has the same dissimilarity metric; this is consistent
with the finding in [22], indicating that SC very often
outperforms k-means for numerical data.

In summary, we have the following findings: 1) intra-
coupled relative similarity measures IRSP, IRSU, IRSJ
and IRSI all present the same learning accuracy, but IRSI
is the most efficient, especially for large-scale data; 2)
our proposed object dissimilarity metric CADO is better
than others, i.e. the traditional SMD, frequency distribu-
tion only OFD, and dependency aggregation only ADD,
for categorical data in terms of data structure analysis
and clustering quality; 3) the incorporation of CASO
or CADO into existing categorical clustering algorithms
such as overlap-based methods (e.g. k-modes can greatly
lift their performance.

9 DISCUSSIONS

Below, we discuss the potential opportunities triggered
by our proposed CASV, CASO and CADO. The de-
generative aspect discusses the degeneration of CADO
and CASV with special cases, while the extended aspect
focuses on the direct extension of CASO and CADO.

Degenerative Aspect: Many existing similarity mea-
sures for attribute values are special cases of our pro-
posed CADO or CASV. On one hand, CADO could
degenerate as an intra-attribute-independence measure
if frequency functions Gj({vxj }), Gj({vyj }) take a nonzero
constant value ξ. In this way, the dissimilarity mea-
sure ADD between vxj and vyj proposed by Ahmad
and Dey [12] is exactly ξ/2 · CADO, which consid-
ers the interactions between attributes but lacks the
couplings within each attribute. On the other hand,
an inter-attribute-independence measure could be pro-
duced by considering δIej (vxj , v

y
j , {Vk}k=j) for IeASV,

in which δIj|j(v
x
j , v

y
j , Vj) replaces δIj|k(v

x
j , v

y
j , Vk) (k ̸=

j) for IRSI. Such an example is the improved SMD
with frequency [5]. Moreover, an intra-inter-attribute-
independence measure could be obtained by specializing
gj(v

x
j ) = gj(v

y
j ) = ξ and δIej (vxj , v

y
j , {Vk}k=j) both, which

corresponds to the classical similarity measure SMS and
its variants such as Jaccard coefficients [5]. Therefore, our
proposed measures have the capability of generalization
on the existing similarity measures which assume inde-
pendence and partial dependence among attributes.

Extended Aspect: The couplings or relationships be-
tween attribute values, attributes, objects, and even clus-
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ters should be considered to cater for the interactions
among the data. We may naturally induce various cou-
pled tasks in data mining and machine learning, such
as data discretization and clustering ensemble. We have
already proposed a coupled discretization algorithm CD
[24], which concerns both the information attribute de-
pendency and deterministic attribute relationship to dis-
close the couplings of uncertainty and certainty degree.
A coupled framework for clustering ensembles have
been reported in [25] by considering both the relation-
ships within each base clustering and the interactions
between distinct base clusterings, in which CASO or
CADO is applied. In addition, how to appropriately
choose the weights αk for IeASV defined in Equation
(5.9), rather than simply treating them as equal, is in
great need of further exploration. Further, we are also
working on a flexible way to control the respective
importance of IaASV and IeASV by using corresponding
weights β and γ, according to the specific data structure.
The other data mining and machine learning tasks, e.g.
fraud detection [1] and relational learning [26], can also
be considered to involve coupled interactions.

10 CONCLUSION AND FUTURE WORK
We have proposed CASO, a novel data-driven coupled
attribute similarity measure for objects incorporating
both intra-coupled attribute similarity for values and
inter-coupled attribute similarity for values in unsu-
pervised learning on nominal data. The measure in-
volves both attribute value frequency distribution (intra-
coupling) and attribute dependency aggregation (inter-
coupling) and the interaction of the two, which captures
a global picture of the similarity and has been shown
to improve learning accuracy in diverse similarity mea-
sures. Theoretical analysis and substantial experiments
have shown that the inter-coupled relative similarity
measure IRSI significantly outperforms the other options
(IRSP, IRSU and IRSJ) in terms of efficiency, in particular
on a large-scale data set having a huge number of at-
tribute values, while maintaining equal accuracy. More-
over, our derived dissimilarity metric is more general
and accurate in capturing the internal structures of the
predefined clusters and clustering quality in accordance
with intensive empirical results. Very substantial exper-
iments on accuracy and efficiency have been conducted
on single attributes and on all attributes, as well as
a scalability test on the number of attributes and the
maximal number of attribute values, and on the data
structure and clustering performance by incorporating
the proposed similarity. This has clearly shown that
the proposed coupled nominal similarity leads to more
accurate, efficient and scalable learning performance on
large scale categorical data sets, supported by statistical
analysis. The reason is that our proposed measure is
global as a result of effectively integrating different
aspects of the similarity.

We are currently applying the CASO measure with
IRSI to attribute discretization and other data mining

and machine learning tasks. We are working on the
assignment of attribute weights, and the flexible en-
gagement of IaASV and IeASV. We are designing the
strategies of attribute reduction to fit extremely large
data. We are also considering extending the notion of
“coupling” for the similarity of numerical data. More-
over, the proposed concepts Inter-information Function
and Information Conditional Probability have the potential
to be used in other applications. One of the clustering
criteria, Minimal-Sum-Square, can also be adapted to
involve the couplings of categorical data and thus can
be improved. Flexible dissimilarity measures can also
be built on our fundamental similarity building blocks
according to a range of requirements.
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APPENDIX

Proof (a)

Theorem 10.1 (a): [Definition 5.1] Intra-coupled At-
tribute Similarity for Values (IaASV) between values vxj
and vyj of attribute aj is δIaj (vxj , v

y
j ), we have δIaj ∈

[1/3,m/(m+ 4)].

Proof 1: According to Definition 5.1, we have that 1 ≤
|Gj({vxj })|, |Gj({vyj })| ≤ m holds, then

δIaj (vxj , v
y
j )

=
|Gj({vxj })| · |Gj({vyj })|

|Gj({vxj })|+ |Gj(v
y
j )|+ |Gj({vxj })| · |Gj({vyj })|

=
1

|Gj({vyj })|−1 + |Gj({vxj })|−1 + 1

≤ 1

2
√
|Gj({vyj })|−1 · |Gj({vxj })|−1 + 1

On one hand, δIaj (vxj , v
y
j ) is a monotonously increasing

function of variables |Gj({vxj })| and |Gj({vyj })|, respec-
tively. Therefore, δIaj (vxj , v

y
j ) takes its minimum value 1/3

when |Gj({vxj })| = |Gj({vyj })| = 1.
On the other hand, because of both 2 ≤ |Gj({vxj })| +
|Gj({vyj })| ≤ m and the above function property, then
δIaj (vxj , v

y
j ) takes its maximum value m/(m + 4) when

|Gj({vxj })| = |Gj({vyj })| = m/2.
Thus, considering both aspects above, we have

δIaj (vxj , v
y
j ) ∈ [1/3,m/(m+ 4)].

Proof (b)

Theorem 10.2 (b): [Definition 5.2] Two Equations
(5.2) and (5.3) are equal to each other:
Dj|L(v

x
j , v

y
j ) =

∑
l∈L |Pl|j({l}|vxj ) − Pl|j({l}|vyj )| =

2 ·maxL′⊆L |Pl|j(L
′|vxj )− Pl|j(L

′|vyj )| holds.

[Note] This theorem is deduced from a property in
probability theory, which is “The total variation distance
between two probability measures P and Q on a sigma-
algebra F of the subsets of the sample space Ω is
defined via δ(P,Q) = supA∈F |P(A)−Q(A)|. For a finite
alphabet, we can write δ(P,Q) = 1

2

∑
x∈Ω |P(x)−Q(x)|.”

If we regard P = Pl|j(·|vxj )) and Q = Pl|j(·|vyj ), A = L′

and x = l, then the above theorem holds accordingly.

Proof 2: Assume that L = {l1, l2, · · · , ln} and L′ =
{l1, l2, · · · , lk} (k ≤ n), we have

F (L′) = 2 · |Pl|j(L
′|vxj )− Pl|j(L

′|vyj )|

= |2 ·
k∑

i=1

Pl|j({li}|vxj )− 2 ·
k∑

i=1

Pl|j({li}|vyj )|.

Since
∑n

i=1 Pl|j(li|vxj ) =
∑n

i=1 Pl|j(li|vyj ) = 1 holds, then:

F (L′) = |[
k∑

i=1

Pl|j({li}|vxj ) + 1−
n∑

i=k+1

Pl|j({li}|vxj )]

− [
k∑

i=1

Pl|j({li}|vyj ) + 1−
n∑

i=k+1

Pl|j({li}|vyj )]|

= |
k∑

i=1

Pl|j({li}|vxj )−
k∑

i=1

Pl|j({li}|vyj )

+
n∑

i=k+1

Pl|j({li}|vyj )−
n∑

i=k+1

Pl|j({li}|vxj )|

= |
k∑

i=1

[Pl|j({li}|vxj )− Pl|j({li}|vyj )]

+

n∑
i=k+1

[Pl|j({li}|vyj )− Pl|j({li}|vxj )]|

≤
k∑

i=1

|Pl|j({li}|vxj )− Pl|j({li}|vyj )|

+

n∑
i=k+1

|Pl|j({li}|vyj )− Pl|j({li}|vxj )|

≤
n∑

i∈1

|Pl|j({li}|vxj )− Pl|j({li}|vyj )|

=
∑
l∈L

|Pl|j({l}|vxj )− Pl|j({l}|vyj )|)

If there exists k > 0, such that

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )

holds for 1 ≤ i ≤ k < n and

Pl|j({li}|vxj ) < Pl|j({li}|vyj )

holds for k + 1 ≤ i ≤ n, then F (L′) takes its maximal
value:

∑
l∈L |Pl|j({l}|vxj )− Pl|j({l}|vyj )|.

If for all 1 ≤ i ≤ k < n,

Pl|j({li}|vxj ) < Pl|j({li}|vyj )

holds, then we have

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )

for k + 1 ≤ i ≤ n. Thus, we alternatively consider

F (L′′) = 2 · |Pl|j(L
′′|vyj )− Pl|j(L

′′|vxj )|,
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where L′′ = L− L′. In fact,

max
L′⊆L

F (L′) = max
L′′⊆L

F (L′′)

holds. Similar to the above deduction,

max
L′⊆L

F (L′) = max
L′′⊆L

F (L′′)

=
∑
l∈L

|Pl|j({l}|vxj )− Pl|j({l}|vyj )|.

The rest special case is that for 1 ≤ i ≤ n,

Pl|j({li}|vxj ) ≥ Pl|j({li}|vyj )

holds. This is in fact

Pl|j({li}|vxj ) = Pl|j({li}|vyj )

for every possible i, then F (L′) = 0 takes the maximal
value as well (i.e.

∑
l∈L |Pl|j({l}|vxj )− Pl|j({l}|vyj )|).

Therefore, we have

Dj|L(v
x
j , v

y
j ) =

∑
l∈L

|Pl|j({l}|vxj )− Pl|j({l}|vyj )|

= 2 · max
L′⊆L

|Pl|j(L
′|vxj )− Pl|j(L

′|vyj )|.

Proof (c)

[Definition 5.2] The conversion is conducted from
equations (5.3) to (5.4) via (5.5): “Dj|L(v

x
j , v

y
j ) =

2 · maxL′⊆L |Pl|j(L
′|vxj ) − Pl|j(L

′|vyj )|” to “δPj|k =

minV ′
k⊆Vk

{2− Pk|j(V
′
k|vxj )− Pk|j(V

′
k|v

y
j )}”.

Proof 3: The whole conversion procedural is divided
into four steps.

(1) The multiplier 2 in Dj|L(v
x
j , v

y
j ) is omitted:

D
(1)
j|L(v

x
j , v

y
j ) = max

L′⊆L
|Pl|j(L

′|vxj )− Pl|j(L
′|vyj )|.

(2) Labels are replaced with other values of a particular
attribute ak:

D
(2)
j|k(v

x
j , v

y
j ) = max

V ′
k⊆Vk

|Pk|j(V
′
k|vxj )− Pk|j(V

′
k|v

y
j )|.

(3) A complementary set V ′
k rather than the original

one V ′
k is concerned for vyj in ICP, based on Pk|j(V

′
k|v

y
j ) =

1− Pk|j(V
′
k|v

y
j ):

D
(3)
j|k(v

x
j , v

y
j ) = max

V ′
k⊆Vk

|Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j )− 1|,

which is D′
j|k(v

x
j , v

y
j ) formalized in equation (5.5).

(4) Dissimilarity is considered rather than similarity,
we use δPj|k = 1−D′

j|k(v
x
j , v

y
j ) for simplicity:

D
(4.1)
j|k (vxj , v

y
j ) = 1−D

(3)
j|k(v

x
j , v

y
j )

= 1− max
V ′
k⊆Vk

|Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j )− 1|.

If Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j )− 1 ≥ 0, then we have

D
(4.2)
j|k (vxj , v

y
j ) = min

V ′
k⊆Vk

{2− Pk|j(V
′
k|vxj )− Pk|j(V

′
k|v

y
j )}

according to the fact that

1−max(|f(x)|) = min(1− f(x))

for all f(x) ≥ 0 (x ∈ R), where f(x) is a function and R
is the real number field.

If Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j ) − 1 < 0, we alternatively

use V ′′
k = Vk − V ′

k = V ′
k . Then we have

D
(4.1′)
j|k (vxj , v

y
j ) = 1− max

V ′′
k ⊆Vk

|Pk|j(V
′′
k |vxj ) + Pk|j(V

′′
k |v

y
j )− 1|

Since Pk|j(V
′′
k |vxj ) = 1 − Pk|j(V

′
k|vxj ) and Pk|j(V

′′
k |v

y
j ) =

Pk|j(V
′
k|v

y
j ) = 1− Pk|j(V

′
k|v

y
j ), we have

Pk|j(V
′′
k |vxj ) + Pk|j(V

′′
k |v

y
j )− 1 > 0.

Hence, we have

D
(4.2′)
j|k (vxj , v

y
j ) = min

V ′′
k ⊆Vk

{2− Pk|j(V
′′
k |vxj )− Pk|j(V

′′
k |v

y
j )}

according to the fact that 1−max(|f(x)|) = min(1+f(x))
for all f(x) ≥ 0 (x ∈ R), where f(x) is a function and R
is the real number field.

In fact, we can see that

D
(4.1)
j|k (vxj , v

y
j ) = D

(4.1′)
j|k (vxj , v

y
j ).

Therefore, we have obtained that

D
(4.1)
j|k (vxj , v

y
j ) = D

(4.1′)
j|k (vxj , v

y
j )

= D
(4.2)
j|k (vxj , v

y
j ) = D

(4.2′)
j|k (vxj , v

y
j ).

By following the above four steps, we have success-
fully converted from (5.3) to (5.4) via (5.5): Dj|L(v

x
j , v

y
j )

to D
(4.2)
j|k (vxj , v

y
j ) or D

(4.2′)
j|k (vxj , v

y
j ) via D

(3)
j|k(v

x
j , v

y
j ) or

D′
j|k(v

x
j , v

y
j ).

Proof (d)

Theorem 10.3 (d): [Theorem 6.1] IRSP, IRSU, IRSJ and
IRSI are all equivalent to one another.

Proof 4: Part (I) IRSP⇐⇒IRSU
Let V ∗

k be the value set of attribute ak that makes

Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j )

maximal. Below, we show that for every vk ∈ V ∗
k ,

Pk|j({vk}|vxj ) ≥ Pk|j({vk}|vyj )

holds. In fact, if there exists vzk (∈ V ∗
k ) satisfying

Pk|j({vzk}|vxj ) < Pk|j({vzk}|v
y
j ),
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then set V ∗∗
k = V ∗

k \{vzk}, V ∗∗
k = V ∗

k

∪
{vzk}, it directly

follows that

Pk|j(V
∗∗
k |vxj ) + Pk|j(V

∗∗
k |v

y
j ) > Pk|j(V

∗
k |vxj ) + Pk|j(V

∗
k |v

y
j ).

This results in the contradiction between V ∗∗
k and V ∗

k

because of the maximal assumption of V ∗
k .

Similarly, for any vk ∈ V ∗
k ,

Pk|j({vk}|vxj ) ≤ Pk|j({vk}|vyj )

holds. Hence,

δPj|k(v
x
j , v

y
j )

= min
V ′
k⊆Vk

{2− Pk|j(V
′
k|vxj )− Pk|j(V

′
k|v

y
j )}

= 2− max
V ′
k⊆Vk

{Pk|j(V
′
k|vxj ) + Pk|j(V

′
k|v

y
j )}

= 2− [Pk|j(V
∗
k |vxj ) + Pk|j(V

∗
k |v

y
j )]

= 2− [
∑

vk∈V ∗
k

Pk|j({vk}|vxj ) +
∑

vk∈V ∗
k

Pk|j({vk}|vyj )]

= 2− [
∑

vk∈V ∗
k

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+
∑

vk∈V ∗
k

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2−
∑

vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δUj|k(v
x
j , v

y
j )

Part (II) IRSU⇐⇒IRSJ
Note that in the following Part (II) and Part (III),

vk ∈ vxj \v
y
j and vk ∈ vyj \vxj are the abbreviated forms for

vk ∈ φj→k(v
x
j )\φj→k(v

y
j ) and vk ∈ φj→k(v

y
j )\φj→k(v

x
j ),

respectively.
Given vk ̸∈ φj→k(v

x
j )

∪
φj→k(v

y
j ), that is

vk ̸∈ φj→k(v
x
j ) and vk ̸∈ φj→k(v

y
j ).

If vk ̸∈ φj→k(v
x
j ), we then have

g∗k({vk})
∩

gj(v
x
j ) = ∅,

so Pk|j({vk}|vxj ) = 0. Similarly, Pk|j({vk}|vyj ) = 0. There-
fore,

δUj|k(v
x
j , v

y
j )

= 2−
∑

vk∈Vk

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )},

= 2− [
∑
vk∈

∪max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+
∑
vk ̸∈

∪max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2−
∑
vk∈

∪max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δJj|k(v
x
j , v

y
j )

Part (III) IRSJ⇐⇒IRSI
If vk ∈ φj→k(v

x
j )\φj→k(v

y
j ), then Pk|j({vk}|vyj ) = 0.

Accordingly, we have

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )} = Pk|j({vk}|vxj ).

Similarly, if vk ∈ φj→k(v
y
j )\φj→k(v

x
j ), it indicates

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )} = Pk|j({vk}|vyj ).

Therefore, we have

δJj|k(v
x
j , v

y
j )

= 2−
∑
vk∈

∪max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= 2− [
∑

vk∈vx
j \v

y
j

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+
∑

vk∈vy
j \vx

j

max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

+
∑
vk∈

∩max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

= 2− [1−
∑
vk∈

∩Pk|j({vk}|vxj ) + 1−
∑
vk∈

∩Pk|j({vk}|vyj )

+
∑
vk∈

∩max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}]

=
∑
vk∈

∩[Pk|j({vk}|vxj ) + Pk|j({vk}|vyj )]

−
∑
vk∈

∩max{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

=
∑
vk∈

∩min{Pk|j({vk}|vxj ), Pk|j({vk}|vyj )}

= δIj|k(v
x
j , v

y
j )

Thus, IRSP, IRSU, IRSJ, and IRSI are all equivalent to
one another.

Proof (e)
Theorem 10.4 (e): [Experiment 8.1.1] For any attribute

aj , the proportion ξj(P/U) ∈ [ 2
T

T , 2R

R ]. For all attributes,
the proportion ξ(P/U) ∈ [ 2

T

T , 2R

R ].

Proof 5: According to Definitions 5.2 and 5.3, and Table
9, we know that

ξj|k(P/U) =
|ICP

(P )
aj|k |

|ICP
(U)
aj|k |

=
2|Vk|

|Vk|
,

where |ICP
(P )
aj|k | and |ICP

(U)
aj|k | represent the time costs

of ICP for δPj|k(v
x
j , v

y
j ) and δUj|k(v

x
j , v

y
j ), respectively. Since

T = minnk=1 |Vj | and R = maxnk=1 |Vj |, then T ≤ |Vk| ≤ R
for any set of attribute values Vk. We know |Vk| is
a positive integer, so based on Lemma 1 below, the
statement

ξj|k(P/U) ∈ [
2T

T
,
2R

R
]

Page 16 of 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17

holds. In addition, we have

ξj(P/U) =
|ICP

(P )
j |

|ICP
(U)
j |

=

∑
k ̸=j |ICP

(P )
aj|k |∑

k ̸=j |ICP
(U)
aj|k |

,

ξ(P/U) =
|ICP (P )|
|ICP (U)|

=

∑
1≤j≤n |ICP

(P )
j |∑

1≤j≤n |ICP
(U)
j |

.

Based on Lemma 2 below, we then obtain that

ξj(P/U) ∈
[
2T

T
,
2R

R

]
and ξ(P/U) ∈

[
2T

T
,
2R

R

]
.

Lemma 1: If x is a positive integer, then function q(x) =
2x/x is a monotonically increasing function.

Proof 6: To verify the monotonically increasing prop-
erty of function q(x) = 2x/x, we only need to look at the
derivative of q(x) since q(x) is a continuous function of
x, that is

q′(x) =
2x · ln 2 · x− 2x

x2
=

2x · (ln 2 · x− 1)

x2
.

If q′(x) > 0, then we can guarantee that q(x) is a strictly
monotonically increasing function. Here, q′(x) > 0 is
equivalent to x > 1/ ln 2. As x is a positive integer,
then q(x) = 2x/x is a strictly monotonically increasing
function when x ≥ 2 > 1/ ln 2. We also have q(1) = 2
when x = 1, and q(2) = 2 when x = 2, so q(1) ≤ q(2).
Thus, q(x) = 2x/x is a monotonically increasing function
when x is a positive integer.

Lemma 2: If x1, · · · , xn are positive integers, where T =
min1≤i≤n xi and R = max1≤i≤n xi, then

2T

T
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn
≤ 2R

R
.

Proof 7: Without loss of generality, we assume 1 ≤ x1 ≤
x2 ≤ · · · ≤ xn, then T = x1, R = xn, and the question is
to prove

2x1

x1
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn
≤ 2xn

xn

According to Lemma 1, we have for i = 1, · · · , n,

2x1

x1
≤ 2xi

xi
⇐⇒ 2x1 · xi ≤ 2xi · x1.

Then, we can naturally obtain that
n∑

i=1

(2x1 · xi) ≤
n∑

i=1

(2xi · x1),

which is equivalent to

2x1 · (x1 + x2 + · · ·+ xn) ≤ x1 · (2x1 + 2x2 + · · ·+ 2xn).

Therefore, we have

2x1

x1
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn
.

Similarly, we can prove that

2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn
≤ 2xn

xn

Thus, the inequality

2T

T
≤ 2x1 + 2x2 + · · ·+ 2xn

x1 + x2 + · · ·+ xn
≤ 2R

R

holds for T = min1≤i≤n xi and R = max1≤i≤n xi.

Proof (f)

Theorem 10.5 (f): [Experiment 8.1.2] Multi-variant func-
tion ξ(U/P ) is a monotonously decreasing function on
the maximal number of values R.

Proof 8: The multi-variant function ξ(U/P ) is

ξ(U/P ) =
|ICP (U)|
|ICP (P )|

=

∑
1≤j≤n |ICP

(U)
j |∑

1≤j≤n |ICP
(P )
j |

=

∑
1≤j≤n

∑
k ̸=j |ICP

(U)
aj|k |∑

1≤j≤n

∑
k ̸=j |ICP

(P )
aj|k |

.

Since |ICP
(U)
aj|k | = |Vk| and |ICP

(P )
aj|k | = 2|Vk|, then the

question is to prove that the function

F (x1, x2, · · · , xn) =
x1 + x2 + · · ·+ xn

2x1 + 2x2 + · · ·+ 2xn

is a monotonously decreasing function on xn, if we
assume integers 1 ≤ x1 ≤ x2 ≤ · · · ≤ xn. To verify
this, we only need to look at the partial derivative of
F on xn since F is a continuous function of xn. If
∂F/∂xn ≤ 0, then we can say that F is a monotonously
decreasing function on xn. Suppose M =

∑n−1
i=1 xi and

N =
∑n−1

i=1 2xi , then we have

∂F

∂xn
=

N + 2xn − (M + xn) · 2xn · ln 2
(N + 2xn)2

=
(N −M · 2xn · ln 2) + 2xn · (1− xn · ln 2)

(N + 2xn)2
.

To judge whether ∂F/∂xn ≤ 0, we discuss the follow-
ing four cases:

1) 2 ≤ xn−1 ≤ xn: In this case, according to Lemma 2,
we have

N

M
≤ 2xn−1

xn−1
≤ 2xn · ln 2 ⇐⇒ N ≤M · 2xn · ln 2,

1

ln2
< 2 ≤ xn ⇐⇒ 1 < xn · ln 2.

Thus, ∂F/∂xn < 0 holds.

2) xn−1 = 1 and 2 ≤ xn: In this case, according to
Lemma 2, we have

N

M
≤ 21

1
< 22 · ln 2 ≤ 2xn · ln 2 ⇐⇒ N < M · 2xn · ln 2,

1

ln2
< 2 ≤ xn ⇐⇒ 1 < xn · ln 2.
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Thus, ∂F/∂xn < 0 holds.

3) xn−1 = xn = 1: In this case, we have

F (x1, · · · , xn−1, xn) = F (1, · · · , 1, 1) = n

2n
=

1

2
.

For xn−1 = 1, xn = 2, then

F (x1, · · · , xn−1, xn) = F (1, · · · , 1, 2) = n− 1 + 2

2(n− 1) + 4
=

1

2
.

Thus, F (x1, · · · , xn−1, 2) ≤ F (x1, · · · , xn−1, 1).

4) 2 ≤ xn−1 and xn = 1: This case is impossible since
we assume xn−1 ≤ xn.

Therefore, we discover that for both xn−1 = 1 and
2 ≤ xn−1, F is a monotonously decreasing function
on xn. That is to say, multi-variant function ξ(U/P ) is
a monotonously decreasing function on the maximal
number of values R.
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of five aspects: We make a Clear Differentiation of our work with the
state of the art; We specify an Explicit Justification for all the defini-
tions and the connections between them; We provide a Solid Theoretical
Foundation (i.e., six mathematical proofs) for all the statements in pro-
posed theorems and experimental discoveries; We complement Plenty of
Supporting Experiments (i.e, another three groups of experiments in
addition to the only two parts of experiments in the previous conference
version) to verify our proposed conclusions from a variety of perspectives
including the statistical analysis; We offer a Complete Presentation of
this work by additionally including a clear pseudocode of our main algo-
rithm to help other peers and researchers to implement our method easily
as well as discussions to analyze our method, and propose open issues with
future work.

The detailed improved and enhanced points of this journal version based
on the previous conference version are listed in the following. Even com-

∗The authors are with the Advanced Analytics Institute, University of Technology, Sydney,
Australia. E-mail: see {canwang613, longbing.cao}@gmail.com.
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pared to the initial submission version of CIKM 2011, most of the items
below are newly addressed.

– We rewrite the Sections “Abstract” (on Page 1), “Introduction” (on
Pages 1 and 2), and “Conclusion and Future Work” (on Page 13) to
strengthen the motivation and significance of the preliminary version.

– We significantly revise the Section “Related Work” with the aim at
providing a thorough review of the relevant research, better and more
clearly justifying the differentiation of the current approaches with
our work in terms of nominal similarity in unsupervised learning (on
Pages 2 and 3).

– We unify all the notations throughout this paper in an easier and
more understandable way in Section 3 (on Pages 3 and 4).

– We add a new section to exhibit the whole picture of our proposed
Coupled Attribute Similarity Analysis Framework in Section 4 (on
Page 4).

– We clearly explain the rationale of Definition 5.1 on the Intra-coupled
Attribute Similarity for Values (IaASV), motivate why two attribute
values should be considered similar if their frequencies are similar,
and clarify a small issue of this definition (on Pages 4 and 5).

– We study the derivation process of IRSP measure with details in
the Appendix (the paragraphs around Definition 5.2: from Equa-
tions (5.2) to (5.3), from Equations (5.3) to (5.4) via (5.5)); and we
give detailed examples for IRSP, IRSU, IRSJ, and IRSI measures in
Section 5.2 (on Pages 5 and 6).

– We provide supporting arguments for the rationale of Definition 5.5
on the Coupled Attribute Similarity for Values (CASV) from twofold
perspectives to explain why using multiplication to couple the mea-
sures, together with some discussion for its extension (the first para-
graph after Definition 5.5 on Page 7).

– We add a concrete example (Table 8) to analyze the computational
complexity in Section 6 (on Page 7).

– We depict the algorithm to compute the Coupled Attribute Similarity
for Objects (CASO) in the form of pseudocode as Algorithm 1 and
analyze it in Section 7 with details (on Page 8).

– We provide a detailed justification on the choices of h1(t) and h2(t) for
the Coupled Attribute Dissimilarity for Objects (CADO) in Equation
(8.2) (on Pages 10 and 11).

– We expand the experiment part to newly include Section 8.1.1 about
Efficiency Comparisons in terms of a single attribute and all at-
tributes (on Page 9 and in the Appendix), and Section 8.2.1 on Data
Structure Analysis (on Page 11). The experiments in Section 8.2.2
are enhanced with statistical analysis (on Pages 11 and 12).
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– We add the Section “Discussions” to further reveal the potential and
future opportunities in terms of degenerative aspect and extended
aspect (on Pages 12 and 13).

– We expand the Section “References” according to the up-to-date re-
search progress emerging on this topic after the completion of our
preliminary version and the newly involved measures and algorithms
(on Pages 13 and 14).

– We attach the Appendix as supplementary material, including the
detailed Proofs: the proof of a statement on Definition 5.1 (on Page
5), the derivation process of IRSP measure in Definition 5.2 with
two proofs (on Page 5), the proof of Theorem 6.1 (on Page 7), the
proof of a statement in Section 8.1.1 (on Page 9), and the proof of a
statement in Section 8.1.2 (on Page 10).

2. Addressing CIKM Reviewers’ Comments

We revise and enhance the previous conference version according to the
comments from CIKM 2011 reviewers.

Those comments mainly focus on the lack of comparison to other existing
measures. Thus, we design several additional experiments such as Effi-
ciency Comparisons in Section 8.1.1, Data Structure Analysis in Section
8.2.1 (adding current similarity measure OFD and ADD).

To improve the technical quality, we give six detailed proofs for the relevant
theorems and statements in the Appendix, among them Theorem (d) 6.1
is the most important; and we explain the rationale of Definition 5.5, as
requested by the reviewers.

We are very grateful to the reviewers of CIKM 2011 for their helpful com-
ments and suggestions, which allow us to improve the quality of our work. We
are confident that a sufficient amount of new material (roughly 60%) has been
added to warrant this journal version.
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ABSTRACT
The similarity between nominal objects is not straightfor-
ward, especially in unsupervised learning. This paper pro-
poses coupled similarity metrics for nominal objects, which
consider not only intra-coupled similarity within an attribute
(i.e., value frequency distribution) but also inter-coupled
similarity between attributes (i.e. feature dependency ag-
gregation). Four metrics are designed to calculate the inter-
coupled similarity between two categorical values by consid-
ering their relationships with other attributes. The theoret-
ical analysis reveals their equivalent accuracy and superior
efficiency based on intersection against others, in particular
for large-scale data. Substantial experiments on extensive
UCI data sets verify the theoretical conclusions. In addition,
experiments of clustering based on the derived dissimilarity
metrics show a significant performance improvement.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications–data mining

General Terms: Algorithms, Measurement, Performance

Keywords: Similarity measure, Complexity, Accuracy

1. INTRODUCTION
Similarity analysis has been a problem of great practical

importance in several domains, including data mining, for
decades [8]. By defining certain similarity measures between
attribute values, it gauges the strength of the relationship
between two data objects: the more two objects resemble
each other, the larger the similarity is [7].

When objects are described by numerical features, their
similarity measures geometric analogies which reflect the
relationship of data values. For instance, the values 10m
and 12m are more similar than 10m and 2m. A variety of
similarity metrics have been developed for numerical data,

∗The first author of this paper for correspondence.
†The third author of this paper.
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Table 1: An Instance of the Movie Database
Movie Director Actor Genre Class

Godfather II Scorsese De Niro Crime G1

Good Fellas Coppola De Niro Crime G1

Vertigo Hitchcock Stewart Thriller G2

N by NW Hitchcock Grant Thriller G2

Bishop’s Wife Koster Grant Comedy G2

Harvey Koster Stewart Comedy G2

such as Euclidean and Minkowski distances [7]. By con-
trast, the similarity analysis between records described by
nominal variables has received much less attention. Hetero-
geneous Distances [10] and Modified Value Distance Matrix
(MVDM ) [5], for example, depict the similarity between cat-
egorical values in supervised learning. For unlabeled data,
only a few works [7], including Simple Matching Similarity
(SMS, which only uses 0s and 1s to distinguish similarities
between distinct and identical categorical values) and Occur-
rence Frequency [2], discuss the similarity between nominal
values. We illustrate the problem with these works and the
challenge of analyzing similarity for categorical data below.

Taking the Movie data (Table 1) as an example, six movie
objects are divided into two classes with three nominal fea-
tures: director, actor and genre. The SMS measure between
directors “Scorsese” and “Coppola” is 0, but “Scorsese” and
“Coppola” are very similar directors1. Another observation
by following SMS is that the similarity between “Koster”
and“Hitchcock” is equal to that between“Koster”and“Cop-
pola”; however, the similarity of the former pair should be
greater since it belongs to the same class G2.

Both instances show that it is much more complex to an-
alyze similarity between nominal variables than continuous
data, and SMS and its variants fail to capture the genuine
relationship between nominal values. With the increase of
categorical data such as that derived from social networks,
it is important to develop effective and efficient measures for
capturing similarity between nominal variables.

Thus, we discuss the similarity for categorical values by
considering data characteristics. Two attribute values are
similar if they present analogous frequency distributions for
one attribute [2]; this reflects the intra-coupled similarity
within a feature. For example, two directors are very simi-
lar if they appear with almost the same frequency, such as
“Scorsese” with “Coppola” and “Koster” with “Hitchcock”.
However, the reality is that the former director pair is more

1A conclusion drawn from a well-informed cinematic source.

973

Page 22 of 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

similar than the latter. To improve the accuracy of intra-
coupled similarity, it is believed that the object co-occurrence
probabilities of attribute values induced on other features
are comparable [1]. To this end, the similarity between di-
rectors should also cater for the dependencies on other fea-
tures such as “actor” and “genre” over all the movie objects,
namely, the inter-coupled similarity between attributes. The
coupling relationships between values and between attributes
contribute to a more comprehensive understanding of ob-
ject similarity [4]. No work that systematically considers
both intra-coupled and inter-coupled similarities has been
reported in the literature. This fact leads to the incomplete
description of categorical value similarities, and apart from
this, the similarity analysis on dependency aggregation is
usually very costly.

In this paper, we propose a Coupled Object Similarity
(COS) measure by considering both Intra-coupled and Inter-
coupled Attribute Value Similarities (IaAVS and IeAVS),
which capture the attribute value frequency distribution and
feature dependency aggregation with a high learning accu-
racy and relatively low complexity, respectively. We com-
pare accuracies and efficiencies among the four proposed
metrics for IeAVS, and come up with an optimal one from
both theoretical and experimental aspects; we then evaluate
our proposed measure with an existing metric on a variety of
benchmark categorical data sets in terms of clustering quali-
ties; and we develop a method to define dissimilarity metrics
flexibly with our fundamental similarity building blocks ac-
cording to specific requirements..

The paper is organized as follows. In Section 2, we briefly
review the related work. Preliminary definitions are speci-
fied in Section 3. Section 4 proposes the coupled similarities,
and the theoretical analysis is given in Section 5. We demon-
strate the efficiency and effectiveness of COS in Section 6
with experiments. Finally, we end this paper in Section 7.

2. RELATED WORK
There are some surveys [2, 7] that discuss the similar-

ity between categorical attributes. Cost and Salzberg [5]
proposed MVDM based on labels, while Wilson and Mar-
tinez [10] studied heterogeneous distances for instance based
learning. Unlike our focus here, the measures in their study
are only designed for supervised approaches.

For unsupervised learning, there exist some data mining
techniques for nominal data [1, 2]. The most famous are
the SMS measure and its diverse variants such as Jaccard
coefficients [7], which are all intuitively based on the prin-
ciple that the similarity measure is 1 with identical values
and is otherwise 0. More recently, attribute value frequency
distribution has been considered for similarity measures [2];
neighborhood-based similarities [8] are explored to describe
the object neighborhood by using an overlap measure. They
are different from our proposed method, which directly re-
veals the similarity between a pair of objects.

Recently, increasing numbers of researchers have argued
that the attribute value similarities are also dependent on
their coupling relations [2, 4]. Das and Mannila presented
the Iterated Contextual Distances algorithm, believing that
the feature and object similarities are inter-dependent [6].
Ahmad and Dey [1] proposed computing the dissimilarity
by considering the co-occurrence. While the dissimilarity
metric of the latter leads to high accuracy, the computation

Table 2: An Example of Information Table
����U

A
a1 a2 a3

u1 A1 B1 C1

u2 A2 B1 C1

u3 A2 B2 C2

u4 A3 B3 C2

u5 A4 B3 C3

u6 A4 B2 C3

is usually very costly, which limits its application in large-
scale problems.

3. PROBLEM STATEMENT
A large number of data objects with the same features

can be organized by an information table S =< U,A, V, f >,
where U = {u1, · · · , um} is composed of a nonempty finite
set of data objects; A = {a1, · · · , an} is a finite set of fea-
tures; V =

⋃n
j=1 Vj is a set of all attribute values, in which

Vj is the set of attribute values of feature aj(1 ≤ j ≤ m);
and f = ∧n

j=1fj (fj : U → Vj) is an information function
which assigns a particular value of each feature to every ob-
ject. For instance, Table 2 consists of six objects and three
features, with f2(u1) = B1 and V2 = {B1, B2, B3}.

Generally speaking, the similarity between two objects
ui1 , ui2 ∈ U is built on top of the similarities within their
values x, y ∈ Vj for all the features aj . The basic concepts
below are defined to facilitate the formulation for attribute
value similarities, where |H| is the number of elements in H.

Definition 3.1. Given an information table S, three Set
Information Functions (SIFs) are defined as f∗

j : 2U →
2Vj , gj : Vj → 2U , and g∗j : 2Vj → 2U . Specifically:

f∗
j ({uk1 , · · · , ukt}) = {fj(uk1), · · · , fj(ukt)}, (3.1)

gj(x) = {ui|fj(ui) = x, 1 ≤ j ≤ n, 1 ≤ i ≤ m}, (3.2)

g∗j (W ) = {ui|fj(ui) ∈ W, 1 ≤ j ≤ n, 1 ≤ i ≤ m}, (3.3)

where ui, uk1 , · · · , ukt ∈ U , and W ⊆ Vj .

These SIF s describe the relationships between objects and
attribute values from different levels. For example, f∗

2 ({u1, u2,
u3}) = {B1, B2}, g2(B1) = {u1, u2} for value B1, while
g∗2({B1, B2}) = {u1, u2, u3, u6} if given W = {B1, B2}.

Definition 3.2. Given an information table S, its Inter-
information Function (IIF) ϕj→k : Vj → 2Vk is defined:

ϕj→k(x) = f∗
k (gj(x)). (3.4)

This IIF ϕj→k is the composition of f∗
k and gj . It ob-

tains the kth attribute value subset for the corresponding
objects, which are derived from the jth attribute value x.
For example, ϕ2→1(B1) = {A1, A2}.

Definition 3.3. Given an information table S, the kth
attribute value subset W ⊆ Vk, and the jth attribute value
x ∈ Vj , the Information Conditional Probability (ICP)
of W with respect to x is Pk|j(W |x):

Pk|j(W |x) = |g∗k(W )
⋂

gj(x)|
|gj(x)| . (3.5)
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Intuitively, when given all the objects with the jth at-
tribute value x, ICP is the percentage of the common objects
whose kth attribute values fall in subsetW and jth attribute
value is exactly x as well. For example, P1|2({A1}|B1) = 0.5.

All these concepts and functions are composed to formal-
ize the so-called coupled interactions between categorical at-
tribute values, as presented below.

4. COUPLED SIMILARITIES
In this section, Coupled Attribute Value Similarity

(CAVS) is proposed in terms of both intra-coupled and
inter-coupled value similarities. When we consider the simi-
larity between attribute values, “intra-coupled” indicates the
involvement of attribute value occurrence frequencies within
one feature, while the “inter-coupled”means the interaction
of other features with this attribute. For example, the cou-
pled value similarity between B1 and B2 concerns both the
intra-coupled relationship specified by the repeated times of
values B1 and B2: 2 and 2, and the inter-coupled interaction
triggered by the other two features (a1 and a3).

Suppose we have the Intra-coupled Attribute Value
Similarity (IaAVS) measure δIaj (x, y) and Inter-coupled

Attribute Value Similarity (IeAVS) measure δIej (x, y)

for feature aj and x, y ∈ Vj , then CAVS δAj (x, y) is natu-
rally derived by simultaneously considering both of them.

Definition 4.1. Given an information table S, the Cou-
pled Attribute Value Similarity (CAVS) between attribute
values x and y of feature aj is:

δAj (x, y) = δIaj (x, y) · δIej (x, y) (4.1)

where δIaj and δIej are IaAVS and IeAVS, respectively.

4.1 Intra-coupled Interaction
According to [7], it is a fact that the discrepancy of at-

tribute value occurrence times reflects the value similarity
in terms of frequency distribution. Thus, when calculating
attribute value similarity, we consider the relationship be-
tween attribute value frequencies on one feature, proposed
as intra-coupled similarity in the following.

Definition 4.2. Given an information table S, the Intra-
coupled Attribute Value Similarity (IaAVS) between at-
tribute values x and y of feature aj is:

δIaj (x, y) =
|gj(x)| · |gj(y)|

|gj(x)|+ |gj(y)|+ |gj(x)| · |gj(y)| . (4.2)

In this way, different occurrence frequencies indicate dis-
tinct levels of attribute value significance. Gan et al. [7]
reveal that greater similarity is assigned to the attribute
value pair which owns approximately equal frequencies. The
higher these frequencies are, the closer such two values are.
Thus, function (4.2) is designed to satisfy these two prin-
ciples. Besides, since 1 ≤ |gj(x)|, |gj(y)| ≤ m, then δIaj ∈
[1/3,m/(m + 2)]. For example, in Table 2, both values B1

and B2 are observed twice, so δIa2 (B1, B2) = 0.5.
Hence, by taking into account the frequencies of cate-

gories, an effective measure (IaAVS) has been captured to
characterize the value similarity in terms of occurrence times.

4.2 Inter-coupled Interaction
In terms of IaAVS, we have considered the intra-coupled

similarity, i.e., the interaction of attribute values within one
feature aj . This does not, however, involve the couplings
between other features ak(k �= j) and feature aj when cal-
culating attribute value similarity. Accordingly, we discuss
this dependency aggregation, i.e., inter-coupled interaction.

In 1993, Cost and Salzberg [5] proposed a powerful method,
MVDM, for measuring the dissimilarity between categorical
values. MVDM considers the overall similarities of classifi-
cation of all objects on each possible value of each feature.
The idea is that attribute values are identified as being sim-
ilar if they occur with the same relative frequency for all
classifications. In the absence of labels, the above measure
is adapted to satisfy our target problem by replacing the
class label with some other feature to enable unsupervised
learning. We regard this interaction between features as
inter-coupled similarity in terms of the co-occurrence com-
parisons of ICP. The most intuitive variant is IRSP :

Definition 4.3. Given an information table S, the Inter-
coupled Relative Similarity based on Power Set (IRSP)
between attribute values x and y of feature aj based on an-
other feature ak is:

δPj|k(x, y) = min
W⊆Vk

{2− Pk|j(W |x)− Pk|j(W |y)}, (4.3)

where W = Vk\W is the complementary set of a set W
under the complete set Vk.

In fact, two attribute values are closer to each other if
they have more similar probabilities with other attribute
value subsets in terms of co-occurrence object frequencies.
In Table 2, by employing (4.3), we want to get δP2|1(B1, B2),
i.e. the similarity between two attribute values B1, B2 of fea-
ture a2 regarding feature a1. Since the set of all attribute
values of feature a1 is V1 = {A1, A2, A3, A4}, the number of
all power sets within V1 is 24, i.e., the number of the com-
binations consisting of W ⊆ V1 and W ⊆ V1 is 24. The
minimal value among them is 0.5, which indicates that sim-
ilarity δP2|1(B1, B2) = 0.5.

This process shows the combinational explosion brought
about by the power set needs to be considered when calcu-
lating attribute value similarity by IRSP. We therefore try
to define three more similarities based on IRSP as follows.

Definition 4.4. Given an information table S, the Inter-
coupled Relative Similarity based on Universal Set
(IRSU), Join Set (IRSJ), and Intersection Set (IRSI)
between attribute values x and y of feature aj based on an-
other feature ak are the following formulae respectively:

δUj|k(x, y) = 2−
∑

w∈Vk

max{Pk|j({w}|x), Pk|j({w}|y)}, (4.4)

δJj|k(x, y) = 2−
∑

w∈⋃
max{Pk|j({w}|x), Pk|j({w}|y)}, (4.5)

δIj|k(x, y) =
∑

w∈⋂
min{Pk|j({w}|x), Pk|j({w}|y)}, (4.6)

where w ∈ ⋃
and w ∈ ⋂

denote w ∈ ϕj→k(x)
⋃

ϕj→k(y)
and w ∈ ϕj→k(x)

⋂
ϕj→k(y), respectively.

Each kth attribute value w ∈ Vk, rather than its value
subset W ⊆ Vk, is considered to reduce computational com-
plexity. In this way, IRSU is applied to compute similarity
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δU2|1(B1, B2), and we get δU2|1(B1, B2) = 0.5. Since IRSU
only concerns all the single attribute values rather than
exploring the whole power set, it has solved the combina-
tional explosion issue to a great extent. In IRSU, ICP is
merely calculated 8 times compared with 32 times by IRSP,
which leads to a substantial improvement in efficiency. Then
with (4.5), the calculation of δJ2|1(B1, B2) is further simpli-
fied since A3 �∈ ϕ2→1(B1)

⋃
ϕ2→1(B2). Thus, we obtain

δJ2|1(B1, B2) = 0.5, which reveals the fact that it is enough to
compute ICP with w ∈ V1 that belongs to ϕ2→1(B1)

⋃
ϕ2→1

(B2) instead of all the elements in V1. From this perspective,
IRSJ reduces the complexity further when compared with
IRSU. Based on IRSU, an alternative IRSI is considered.
For example, with (4.6), the calculation of δI2|1(B1, B2) is
once again simplified since onlyA2 ∈ ϕ2→1(B1)

⋂
ϕ2→1(B2).

Then, we easily get δI2|1(B1, B2) = 0.5. In this case, it is suf-
ficient to compute ICP with w ∈ V1 which only belongs to
ϕ2→1(B1)

⋂
ϕ2→1(B2). It is trivial that the cardinality of

intersection
⋂

is no larger than that of join set
⋃
. Thus,

IRSI is further more efficient than IRSU due to the reduc-
tion of intra-coupled relative similarity complexity.

Intuitively speaking, it is a fact that IRSI is the most
efficient of all the proposed inter-coupled relative similarity
measures: IRSP, IRSU, IRSJ, IRSI. In addition, all four
measures lead to the same similarity result, such as 0.5.
According to the above discussion, we can naturally define

the similarity between the jth attribute value pair (x, y) on
top of these four optional measures by aggregating all the
relative similarities on features other than attribute aj .

Definition 4.5. Given an information table S, the Inter-
coupled Attribute Value Similarity (IeAVS) between at-
tribute values x and y of feature aj is:

δIej (x, y) =

n∑

k=1,k �=j

αkδj|k(x, y), (4.7)

where αk is the weight parameter for feature ak,
∑n

k=1 αk =
1, αk ∈ [0, 1], and δj|k(x, y) is one of the inter-coupled rela-
tive similarity candidates.

Accordingly, we have δIej ∈ [0, 1], then δAj = δIaj · δIej ∈
[0,m/(m+ 2)] since δIaj ∈ [1/3,m/(m+ 2)]. In Table 2, for

example, δIe2 (B1, B2) = 0.5·δ2|1(B1, B2)+0.5·δ2|3(B1, B2) =
(0.5 + 0)/2 = 0.25 if α1 = α3 = 0.5 is taken with equal
weight. Furthermore, coupled attribute value similarity (4.1)
is obtained as δA2 (B1, B2) = δIa2 (B1, B2) · δIe2 (B1, B2) =
0.5×0.25 = 0.125. For the Movie data set in Section 1, then
δADirector(Scorsese, Coppola) = δADirector(Coppola, Coppola)
= 0.33, and δADirector (Koster, Coppola) = 0 while δADirector

(Koster,Hitchcock) = 0.25. They correspond to the fact
that “Scorsese”and“Coppola”are very similar directors just
as“Coppola”is to himself, and the similarity between“Koster”
and “Hitchcock” is larger than that between “Koster” and
“Coppola”, as clarified in Section 1.

After specifying IaAVS and IeAVS, a coupled similarity
between objects is built based on CAVS. Then, we consider
the sum of all these CAVSs analogous to the construction
of Manhattan dissimilarity [7]. Formally, we have:

Definition 4.6. Given an information table S, the Cou-
pled Object Similarity (COS) between objects ui1 and ui2 :

COS(ui1 , ui2) =
n∑

j=1

δAj (xi1j , xi2j), (4.8)

Table 3: Computational Complexity for CAVS

Metric Calculation Steps Flops per Step Complexity

IRSP nR(R− 1)/2 2(n− 1)2R O(n2R22R)
IRSU nR(R− 1)/2 2(n− 1)R O(n2R2R)
IRSJ nR(R− 1)/2 2(n− 1)P O(n2R2R)
IRSI nR(R− 1)/2 2(n− 1)Q O(n2R2R)

where δAj is the CAVS measure defined in (4.1), xi1j and
xi2j are the attribute values of feature aj for objects ui1 and
ui2 respectively, and 1 ≤ i1, i2 ≤ m, 1 ≤ j ≤ n.

For COS, all the CAVSs with each feature are summed
up for two objects. For example (Table 2), COS(u2, u3) =∑3

j=1 δj(x2j , x3j) = 0.5 + 0.125 + 0.125 = 0.75.

5. THEORETICAL ANALYSIS
This section compares four proposed inter-coupled relative

similarity measures (IRSP, IRSU, IRSJ and IRSI ) in terms
of their computational accuracies and complexities.

1) Computational Accuracy Equivalence
From the aspect of set theory, these four measures are

equivalent to one another in calculating value similarity.

Theorem 5.1. IRSP, IRSU, IRSJ and IRSI are all equiv-
alent to one another.2

The above theorem also explains the similarity result in
Section 4.2. Thus, these measures induce exactly the same
computational accuracy in machine learning tasks.

2) Computational Complexity Comparison
Suppose we have an information table S with m objects

and n features, the maximal number of attribute values for
all the features is R. In total, the number of attribute value
pairs for all the features is at most n ·R(R− 1)/2, which is
also the number of calculation steps. For each inter-coupled

relative similarity, we calculate ICP for |ICP
(M)

j|k | times by a

measure IRSM. As we have n attributes, the total ICP time

costs for CAVS is 2|ICP
(M)

j|k | · (n − 1) flops per step. Since

we have four options for M , the computational complexities
for calculating all the CAVSs are shown in Table 3.

As indicated in Table 3, all the measures have the same
calculation steps, while their flops per step are sorted in de-
scending order since 2R > R ≥ P ≥ Q, in which P and Q
are the join and intersection sets of the corresponding IIF s,
respectively. This evidences that the computational com-
plexity essentially depends on the time costs of ICP linearly
with given data. Specifically, IRSP has the largest complex-
ity O(n2R22R), compared to the smaller equal ones O(n2R3)
presented by the other three measures (IRSU, IRSJ, and
IRSI ). Of the latter three candidates, though they have the
same computational complexity, IRSI is the most efficient
due to Q ≤ P ≤ R. In fact, the dissimilarity that Ahmad
and Dey [1] have used for mixed data clustering corresponds
to the worst measure IRSP discussed here.

Considering both the accuracy analysis and complexity
comparison, we conclude that IRSI is the best performing
because it indicates the least complexity but still maintains
an equal accuracy to present coupling.

2All detailed proofs of Theorem 5.1 are available on request.
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Figure 1: Scalability on |A| and R respectively.

6. EXPERIMENT AND EVALUATION
In this section, several experiments are performed on ex-

tensive UCI data sets to show the effectiveness and efficiency
of our proposed coupled similarities. The experiments are
divided into two categories: coupled similarity comparison
and COS application. For simplicity, we just assign the
weight vector α = (αk)1×n with values α(k) = 1/n in (4.7).

6.1 Coupled Similarity Comparison
To compare efficiencies, we conduct extensive experiments

on the inter-coupled relative similarity metrics: IRSP, IRSU,
IRSJ, and IRSI. The goal in this set of experiments is to
show the obvious superiority of IRSI, compared with the
most time-consuming measure IRSP. As discussed in Sec-
tion 5, the computational complexity linearly depends on
the time costs of ICP with given data. Thus, we consider a
comparison of complexities represented by the time costs of
ICP. Also explained in Section 5, the complexity for IRSP is
O(n2R22R), while the other three have equal smaller com-
plexity O(n2R3). Here, scalability analysis is explored in
terms of these two factors separately: the number of fea-
tures |A| and the maximal number of attribute values R.

From the perspective of |A|, Soybean-large data set is
considered with 307 objects and 35 features. Here, we fix R
to be 7, and focus on |A| ranging from 5 to 35 with step 5.
In terms of the total time costs of ICP, the computational
complexity comparisons among four measures (IRSP, IRSU,
IRSJ, and IRSI ) are depicted in Figure 1(|A|). The result
indicates that the complexities of all these measures keep
increasing when |A| becomes larger. The acceleration of
IRSP (from 3328 to 74128) is the greatest compared with
the slightest acceleration of IRSI (from 632 to 15704). Apart
from these two, the scalability curves are almost the same for
IRSU and IRSI, though the complexity of IRSU is slightly
higher than that of IRSJ with varied |A|. Therefore, IRSI is
the most stable and efficient measure to calculate the intra-
coupled relative similarity in terms of |A|.

From the perspective of R, the variation of R is con-
sidered when |A| is confirmed. Here, we take advantage of
the Adult data set with 30718 objects and 13 features cho-

sen. Specifically, the integer feature “fnlwgt” is discretized
into different intervals (from 10 to 10000) to form distinct R
ranging from 16 to 10000, since one of the existing categorial
attributes “education” already has 16 values. The outcomes
are shown in Figure 1(R), in which the horizontal axis refers
to R, and the vertical axis indicates the relative complex-
ity ratios in terms of ξ(J/U), ξ(I/J), and ξ(I/U). From
this figure, we observe all the ratios between 10% and 100%,
which again verifies the complexity order for these four mea-
sures indicated in Section 5. Another issue is that all three
curves decrease as R grows, which means the efficiency ad-
vantages of IRSJ upon IRSU (from 85.5% to 46.8%), IRSI
upon IRSJ (from 78.2% to 40.2%), and IRSI upon IRSU
(from 66.9% to 18.8%) all become more and more obvious
with the increasing of R. The general trend of these ratios
always falling comes from the fact that there is a higher
probability of getting a join set smaller than the whole set,
and an intersection set smaller than the join set, with larger
R. The same conclusion also holds for the ratio ξ(U/P ),
but this is due to the fact that q−1(x) = x/2x is a strictly
monotonously decreasing function when x > 1. We omit
this ratio in Figure 1(R) since the denominator |ICP (P )|
becomes exponentially large when R grows, e.g., it equals
to 5.12 × 1083 when R = 500. Hence, IRSI is the least
time-consuming intra-coupled similarity with regard to R.

In summary, all the above experiment results clearly show
that IRSI outperforms IRSP, IRSU, and IRSJ in terms
of the computational complexity. In particular, with the
increasing numbers of either features or attribute values,
IRSI demonstrates superior efficiency compared to the oth-
ers. IRSJ and IRSU follow, with IRSP being the most
time-consuming, especially for the large-scale data set.

6.2 Application
In this part of our experiments, we focus on the compu-

tational accuracy comparison. In the following, we evaluate
the COD which is derived from (4.8):

COD(ui1 , ui2) =
n∑

j=1

h1(δ
Ia
j (xi1j , xi2j)) · h2(δ

Ie
j (xi1j , xi2j)),

(6.1)
where h1(t) and h2(t) are decreasing functions. Based on
intra-coupled and inter-coupled similarities, h1(t) and h2(t)
can be flexibly chosen to build dissimilarity measures ac-
cording to specific requirements. Here, we consider h1(t) =
1/t − 1 and h2(t) = 1 − t to reflect the complementarity of
similarity and dissimilarity measures. In terms of the capa-
bility on revealing the relationship between data, the better
the dissimilarity induced, the better is its similarity.

To demonstrate the effectiveness of our proposed COD in
application, we compare two clustering methods based on
two dissimilarity metrics on six data sets. Here, COD is
used with the outperforming measure IRSI.

One of the clustering approaches is the k-modes (KM ) al-
gorithm [7], designed to cluster categorical data sets. The
main idea of KM is to specify the number of clusters k and
then to select k initial modes, followed by allocating every
object to the nearest mode. The other is a branch of graph-
based clustering, i.e., spectral clustering (SC ) [9], which
makes use of the Laplacian Eigenmaps on dissimilarity ma-
trix to perform dimensionality reduction for clustering prior
to the k-means algorithm. In respect of feature dependency
aggregations, however, Ahmad and Dey [1] evidenced that
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Figure 2: Clustering evaluation on six data sets

their proposed metric ADD outperforms SMD in terms of
KM clustering. Thus, we aim to compare the performances
of ADD [1] and COD (6.1) for further clustering evaluations.

We conduct four groups of experiments on the same data
sets: KM with ADD, KM withCOD, SC with ADD, and SC
withCOD. The clustering performance is evaluated by com-
paring the obtained cluster of each object with that provided
by the data label in terms of accuracy (AC ) and normalized
mutual information (NMI ) [3]. AC∈ [0, 1] is a degree of
closeness between the obtained clusters and its actual data
labels, while NMI∈ [0, 1] is a quantity that measures the
mutual dependence of two variables: clusters and labels.
AC= 1 or NMI= 1 if the clusters and labels are identical,
and AC= 0 or NMI= 0 if the two sets are independent. In
fact, the larger AC or NMI is, the better the clustering is,
and the better the corresponding dissimilarity metric is.

Figure 2 reports the results on six data sets with different
|U |, ranging from 15 to 699 in increasing order. In terms of
AC and NMI, the evaluations are conducted with KM-ADD,
KM-COD, SC-ADD, and SC-COD individually. Followed
by Laplacian Eigenmaps, the subspace dimensions are de-
termined by the number of labels in SC. For each data set,
the average performance is computed over 100 tests for KM
and k-means in SC with distinct start points.

As can be clearly seen from Figure 2, the clustering meth-
ods with COD, whether KM or SC, outperform those with
ADD in terms of both AC and NMI measures. That is
to say, dissimilarity metric COD is better than ADD on
clustering qualities. Specifically for KM, the AC improving
rate ranges from 5.56% (Balloon) to 16.50% (Zoo), while
the NMI improving rate falls within 4.76% (Soybean-s) and
37.38% (Breastcancer). With regard to SC, the former rate
takes the minimal and maximal ratios as 4.21% (Balloon)
and 20.84% (Soybean-l), respectively; however, the latter
rate belongs to [5.45% (Soybean-l), 38.12% (Shuttle)]. Since
AC and NMI evaluate clustering quality from different as-
pects, they generally take minimal and maximal ratios on
distinct data sets. Another significant observation is that
SC mostly outperforms KM a little whenever it has the
same dissimilarity metric; in fact, Luxburg [9] has indicated
that SC very often outperforms k-means for numerical data.

We draw the following two conclusions: 1) intra-coupled
relative similarity IRSI is the most efficient one when com-
pared with IRSP, IRSU and IRSJ, especially for large-scale

data; 2) our proposed object dissimilarity metric COD is
better than others, such as dependency aggregation only
ADD, for categorical data in terms of clustering qualities.

7. CONCLUSION
We have proposed COS, a novel coupled object similarity

metric which involves both attribute value frequency distri-
bution (intra-coupling) and feature dependency aggregation
(inter-coupling) in measuring attribute value similarity for
unsupervised learning of nominal data. Theoretical analysis
and substantial experiments have shown that inter-coupled
relative similarity measure IRSI significantly outperforms
the others (IRSP, IRSU, IRSJ ) in terms of efficiency, in par-
ticular on large-scale data, while maintaining equal accuracy.
Moreover, our derived dissimilarity metric is more compre-
hensive and accurate in capturing the clustering qualities in
accordance with substantial empirical results.

We are currently applying the COS measure with IRSI to
feature discretization, clustering ensemble, and other data
mining tasks. We are also considering extending the notion
of “coupling” for the similarity of numerical data. Moreover,
the proposed concepts Inter-information Function and In-
formation Conditional Probability for the information table
have potential for other applications.
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