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Abstract

Local anomaly detection refers to detecting small anomalies or outliers that
exist in some subsegments of events or behaviors. Such local anomalies are eas-
ily overlooked by most of the existing approaches since they are designed for
detecting global or large anomalies. In this paper, an accurate and flexible three-
phase framework TRASMIL is proposed for local anomaly detection based on
TRAjectory Segmentation and Multi-Instance Learning. Firstly, every motion
trajectory is segmented into independent sub-trajectories, and a metric with
Diversity and Granularity is proposed to measure the quality of segmentation.
Secondly, the segmented sub-trajectories are modeled by a sequence learning
model. Finally, multi-instance learning is applied to detect abnormal trajecto-
ries and sub-trajectories which are viewed as bags and instances, respectively.
We validate the TRASMIL framework in terms of 16 different algorithms built
on the three-phase framework. Substantial experiments show that algorithms
based on the TRASMIL framework outperform existing methods in effectively
detecting the trajectories with local anomalies in terms of the whole trajectory.
In particular, the MDL-C algorithm (the combination of HDP-HMM with MDL
segmentation and Citation kNN) achieves the highest accuracy and recall rates.
We further show that TRASMIL is generic enough to adopt other algorithms
for identifying local anomalies.

Keywords: Local anomaly detection, Trajectory segmentation, Trajectory
representation, Multi-instance learning, HDP-HMM

1. Introduction

Abnormal event detection is a critical research topic in visual surveillance.
Basically, the abnormal events are defined as the events which are largely de-
viated from normal ones. So the goal of the abnormal event detection is to
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automatically discover the potential abnormal events from observations. Due
to the unpredictability and diversity of abnormal events, it is usually difficult
and infeasible to build a particular classifier for abnormal events. The remaining
core problem of abnormal event detection is how to train a good classifier for
detecting anomalies, by fully using the large amount of available normal events
and possibly few available abnormal events.

These years, many efforts have been expended on the abnormal event de-
tection. Existing work on abnormal event detection can be roughly classified
into two categories: motion-based approaches and trajectory-based approaches.
The former ones usually extract low-level motion features, e.g. optical flow [1]
and motion history image [2], from fixed spatial-temporal cubic, and then ap-
ply machine learning techniques for classification to discover possible abnormal
events. The latter ones usually first extract the trajectory for moving objects
in the scene, and then build temporal classifiers, e.g. HMM, HDP-HMM, for
trajectory classification to find potential abnormal events. The limitation of
the motion-based approaches is that simple features are usually adopted, which
only reflect the relatively coarse motion information and may not be suitable
for the detection in more complex scenes. Our proposed method belongs to
the trajectory-based approaches. With the development of the object track-
ing, trajectory-based approaches are widely applied in traffic surveillance for
detecting abnormal vehicle trajectory. They are also used in crowded scenes for
identifying complex motion patterns.

Although many trajectory-based approaches achieve many successes in de-
tecting abnormal events, most of them are usually developed for detecting global
or large anomalies, and may ignore the local anomalies that exist in some
subsegments of events or behaviors. To this end, we propose in this paper a
novel framework for local anomaly detection based on TRAjectory Segmenta-
tion and Multi-Instance Learning, called TRASMIL, which consists of three
phases: trajectory segmentation, trajectory representation and multi-instance
learning (MIL).

In trajectory segmentation phase, we consider partitioning each trajectory
into several sub-trajectories, to avoid ignoring local anomalies. The criterion
for the segmentation usually includes two folds: for each trajectories, (i) every
segmented sub-trajectories are encouraged to be independent from others with
the goal to find simple motions from complex trajectory, and (ii) the number
of sub-trajectories is encouraged to be small with avoiding over-segmentation.
In this paper, four types of different segmentation algorithms are investigated,
which includes: Maximum Acceleration (MA) [3], Minimum Description Length
(MDL) [4, 5], Log-likelihood of Regression Function (LRF) [6], and Heteroge-
neous Curvature Distribution (HCD) [7]. To evaluate the quality of trajectory
segmentation, we propose a metric, namely QMeasure, considering Diversity
and Granularity of sub-trajectories, which are corresponding to the two folds
of above mentioned criterion respectively. In our experiments, we found that
QMeasure can help determine the optimal parameter of segmentation algorithms
as well as choose appropriate segmentation algorithms, which will be validated
in the experiments of Subsection 5.5.
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In trajectory representation phase, the goal is to measure the similarity of
any given two sub-trajectories. We first model any two sub-trajectories by
sequential probabilistic models, and then calculate the distance by using the
KL-divergency method [8] on the obtained two corresponding models. In our
work, two sequential probabilistic models: Hidden Markov Model (HMM) and
Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) are selected
due to their effectiveness in modeling time-series data. The results of the HMM
and HDP-HMM are listed and compared in experiments of Subsection 5.3.

In MIL detection phase, trajectories and segmented sub-trajectories are
viewed as bags and instances in multi-instance learning, respectively. To solve
the MIL problem, we use two conventional MIL methods, Diversity Density [9]
and Citation kNN [10] in the phase. Their detection results are compared and
analyzed in the experiment section. Finally, to validate the superiority of the
proposed TRASMIL framework, all the combination methods in three phases
are experimented and compared with two whole-trajectory-based methods.

The main contribution of the proposed TRASMIL is that it can success-
fully incorporates trajectory segmentation, modeling-based representation and
multi-instance learning, which is able to effectively detect the trajectories with
local anomalies that cannot be identified by existing methods. We combine this
TRASMIL framework with 16 algorithms for different phases and test the per-
formance. Substantial experiments show that the TRASMIL-based algorithms
are effective in local anomaly detection, in which the combination of HDP-
HMM with MDL segmentation and Citation kNN, MDL-C algorithm, performs
the best.

1.1. Organization
The remainder of the paper is organized as follows. Section 2 gives a brief

overview of related work. Problem statement and framework structure are de-
scribed in Section 3. The working mechanism of TRASMIL and its combination
with 16 algorithms are introduced in Section 4. Section 5 presents experimen-
tal results, which are compared to two whole-trajectory detection algorithms.
Discussions are presented in Section 6, followed by conclusions in Section 7.

2. Related Work

Recent years, many works have been proposed for abnormal event detection.
The related works can be roughly classified into two categories: motion-based
approaches and trajectory-based approaches. Our proposed method belongs to
the trajectory-based approaches, so we will pay more attention to the previous
works about trajectory-based abnormal event detection.

For motion-based approaches, low-level features, e.g. optical flow, gradi-
ent, are first extracted from local spatial-temporal patches, then the extracted
features of the normal events will be learned as normal model by using cer-
tain classifier, e.g. Gaussian Mixture Model [11, 12], Markov Random Field
[13, 14] and Social Force Model [15]. After obtaining the normal model, for the
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new coming frames, the abnormal events will be detected for the events, which
are largely deviated from normal model by computing the likelihood. Although
motion-based approaches can achieve satisfactory results in some datasets, most
of them are only suitable for simple motion patterns since they usually model the
variation of speed and direction at pixel/patch-level. The results for detecting
complex abnormal events are undesirable.

For trajectory-based approaches, most of them rely on trajectories obtained
from object detection and tracking. Much previous research works have been
developed for trajectory-based approaches. The trajectory-based approaches
mainly focus on trajectory representation and trajectory classification.

In terms of trajectory representation, related algorithms are listed in Table
1. As can be seen from the table, trajectory representation methods can be clas-
sified into three types: sequence of flow vectors, sequence of other features, and
modeling-based representation. Firstly, flow vectors are usually represented as
four-dimensional vectors (x, y, dx, dy) that contain spatial coordinates and ve-
locities such as that claimed in literature [16]. Since abnormal behaviors are
triggered by motion objects, Wang et al [17] add some features of objects, such
as the size, into the flow vectors. Secondly, there are other sequences of fea-
tures which differ from the above flow vectors. For example, semantic spatial
primitives are proposed by Chan et al [18] to encode trajectories with binarized
distance relations among objects. Pelekis et al [19] propose a local trajectory
descriptor by computing local density and trajectory similarity to represent line
segments. Lastly, modeling-based representation is becoming popular for rep-
resentation due to its statistical description of trajectory distribution. Hidden
Markov Model (HMM), a method of sequence modeling is adopted by Lester et
al [20] for activity modeling. Since HDP-HMM can automatically adjust the
state number of sequences, unlike HMM, which cannot, it is also widely applied
for trajectory modeling by Hu et al [21] and Zhang et al [22].

Table 1: Related work of trajectory representation

Trajectory Representation Related Algorithms

Sequence of flow vectors Johnson et al [16], Hu et al [23], Wang et al [17] etc.

Sequence of other features
Semantic spatial primitives [18]

Local trajectory descriptor [19] etc.

Modeling-based representation HMM [20], HDP-HMM [21, 22] etc.

In terms of trajectory classification, the related work is usually based on two
metrics, e.g., similarity-based and model-based metrics. The similarity-based
methods [21, 24, 25] compute the similarity between trajectories in terms of
Euclidean distance, Hausdorff distance or Dynamic Time Warping. Zhou et
al [24] propose a supervised algorithm of trajectory edit-distance for learning
trajectory similarity function. Those trajectories having a distance to normal
ones larger than a given threshold are detected as abnormal. Fu et al [25] use
hierarchical clustering to find dominant paths and lanes. Test trajectories are
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predicted to a cluster where the spatial constraints and velocity constraints are
checked to detect anomalies. Different from Fu’s work, Hu et al [21] use Fuzzy
Self-Organizing Neural Network to learn activity patterns. Then, the Euclidean
distance between test trajectories and the best matching neuron is calculated.
Model-based methods [16, 23, 26] model the observations of normal trajectories
with no temporal order. Johnson et al develop a model of the probability
density functions (pdfs) for object trajectories. Neural network based vector
quantisation is used to learn the pdfs of flow vectors. Hu et al use HDP-HMM
and One-class SVM to learn the model of normal trajectories. Anomalies can
be detected via fitting the normal activity models. Different from Hu’s work,
sequential patterns are mined in feature selection phase by Lee et al [26], and
then a classifier model is built for trajectory classification.

In our previous work, HDP-HMM and ensemble learning were used in [22]
to generate a normal activity model for detecting anomalies. Abnormal activity
models, which are derived from normal activity models, are applied to correct
misclassified normal activities. This algorithm effectively detects emerging or
unknown events and reduces the False Positive (FP) rate. Also, [27] creatively
proposes a specific detection method based on multi-instance learning. After
trajectories are segmented and modeled, the method finds anomalies according
to their nearest neighbors. HDP-HMM demonstrates good performance exper-
imentally; however, the solution of how to detect local anomalies has not been
addressed generally or deeply in [27]. In this paper, a three-phase framework
TRASMIL for local anomaly detection is proposed and 16 different algorithms
are employed in the framework. We show that other algorithms can also be
adopted in the framework for different applications. In addition, a novel met-
ric with Diversity and Granularity QMeasure is proposed to compare different
segmentation methods and measure the quality of trajectory segmentation. Sub-
stantial experiments are conducted and show the generalization and superiority
of the framework. The MDL-C method, in particular, is the best combination
for the highest accuracy and recall.

3. The Framework for Local Anomaly Detection

3.1. Problem Statement
A trajectory in videos may be quite long and complicated; however, anoma-

lies usually occur in local subsegments. Therefore, it is understandable that
local anomalies cannot be targeted by existing methods that are designed for
the whole trajectory. In other words, previous detection methods are not effec-
tive when a trajectory has only local anomalies. Models and similarity measures
designed for whole trajectories only focus on the global variations of movement
and overlook the characteristics of local anomalies. As a result, the global tra-
jectory based approaches are more suitable for cases in which huge differences
exist between the normal and the abnormal activities. Taking Figure 1 as an
example, there are four trajectories, of which only TR3 trajectory is abnormal.
The four trajectories are very similar except that the segment of TR3 in the
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rectangle differs from others. If modeling was conducted with the global trajec-
tory, it is very likely that TR3 would be mistakenly detected as normal, so the
problem is how to effectively detect trajectories with such local anomalies.

T
X

Y

TR2
TR3

TR4

TR1

Figure 1: A short abnormal sub-trajectory in a long trajectory

To address the above problem, it is essential to segment whole trajectories
into independent sub-trajectories (see Section 4). However, the detection of
those trajectories which contain segmented sub-trajectories is different from that
for the global trajectory. If a trajectory is abnormal, it has at least one abnormal
sub-trajectory; otherwise, all sub-trajectories are normal. Likewise, in multi-
instance learning, labeled bags consist of unlabeled instances. A positive bag
has at least one positive instance; by contrary, all the instances in a negative bag
are negative [28]. Based on the above analysis, local anomaly detection based on
trajectory segmentation has a similar nature to multi-instance learning. Thus,
multi-instance learning can be applied to local anomaly detection. Applied
methods and their relationship are depicted in Figure 2, in which the whole
trajectories are deemed as bags, and normal bags are negative, while abnormal
ones are positive, and sub-trajectories are instances in the bags.

abnormal trajectory normal trajectory

Instance-Level

Bag-Level

positive instance negative instance negative instance

negative bagpositive bag

Figure 2: The relationship between multi-instance learning and local anomaly detection
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3.2. The Structure of the Framework
In this paper, a novel detection framework is proposed to effectively de-

tect local anomalies. Figure 3 shows the structure of the framework in three
phases. The diagram (a) in Figure 3 shows that a trajectory is firstly parti-
tioned into several independent sub-trajectories, such as 1.1, 1.2, 1.3. Diagram
(b) shows that each sub-trajectory is modeled via sequence learning models such
as HDP-HMM. In (c), whole trajectories and sub-trajectories are viewed as bags
and instances respectively. They are detected via multi-instance learning algo-
rithms. The proposed TRASMIL framework is a general solution to detect local
anomalies that are challenging to detect by traditional methods.

1.1 1.2 1.3

2.1 2.2 2.3

i.1 i.2 i.3 i.4 i.5

(a) Trajectory Segmentation (b) Trajectory Representation (c) Multi-instance Learning

positive bag

negative instance

Phase One Phase Two Phase Three

positive instance

negative bag

subtrajectory

HDP-HMM

Figure 3: The working mechanism of the TRASMIL framework

With the proposed framework, many different algorithms can be fed into the
three stages to form different combinations for detecting local anomalies. We
create and test the following 16 combinations (as shown in Table 3).

1. Trajectory segmentation. There are algorithms that segment a trajectory
into several independent sub-trajectories for image retrieval or trajectory
clustering. We choose four of them: Maximum Acceleration (MA) [3],
Minimum Description Length (MDL) [4, 5], Log-likelihood of Regression
Function (LRF) [6], and Heterogeneous Curvature Distribution (HCD) [7].
Furthermore, a segmentation metric QMeasure (see Equation 1 in Section
4.1) is proposed to evaluate the four algorithms.

2. Trajectory representation. Representation of the sub-trajectories is critical
for measuring the distance between them. In addition to be represented
as sequences of feature vectors, sub-trajectories can be represented by
sequence learning models such as HMM and HDP-DMM. The distance
between two sequences can then be computed by the KL divergence [8].

3. Multi-instance learning. To learn a classifier for trajectories and sub-
trajectories, we apply the classical multi-instance learning algorithms such
as Diversity Density (DD) [9], Citation kNN (CkNN) [10], and their en-
semble versions. Finally, the trajectories which are predicted to be positive
are viewed as abnormal.

With the above combinations, the following three questions need to be ad-
dressed:
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1. Is the three-phase framework effective for local anomaly detection?
2. Which combination performs the best?
3. How does the proposed approach compare to alternative approaches?

We discuss them in the sections below.

4. The Working Mechanism of the TRASMIL Framework

4.1. Trajectory Segmentation
Many trajectory segmentation algorithms [3–7, 29, 30] have been proposed

for video indexing and retrieval, in which object motion retrieval in videos usu-
ally relies on object detection and tracking to extract the trajectories. In order to
effectively extract local features of trajectories for retrieval, it is necessary to seg-
ment them into subsegments in terms of a certain evaluation metric. However,
the same evaluation metrics cannot be used in local anomaly detection. Two
additional aspects should be considered in evaluating segmentation methods.
One is the independence between sub-trajectories, which means that movement
patterns among different sub-trajectories can be distinguished from each other.
In trajectory detection phase, these independent movement patterns are viewed
as instances of bags in multi-instance learning. The other is the Granularity of
segmentation, which measures the total segmented number of each trajectory for
controlling over-segmentation, since too many small sub-trajectories segmented
from a trajectory are harmful for classification with ignoring the full information
of each sub-trajectory. The above two aspects need to be measured to evaluate
the quality of trajectory segmentation.

Let TR1 be a trajectory, which is often sampled by a sequence of discrete
feature points −→p1,

−→p2, ...,
−→pn1 , thus in general TR1 =< −→p1,

−→p2, ...,
−→pn1 >. Assume

that TR1 can be partitioned into N sub-trajectories, which constitute a set
SUBs = {TR1.1, TR1.2...TR1.N}, the set of segmentation points are also corre-
spondingly labeled as SEG = {−→ps1 ,

−→ps2 , ...,
−−−→psN−1 |(1 ≤ s1 ≤ s2 ≤ ... ≤ sN−1 ≤

ni)}. Thus, different SEG sets reflect different kinds of segmentation. It is
obvious that TR1.1 =< −→p1,

−→p2, ...,
−→ps1 >. Figure 4 shows the sub-trajectories

and segmentation points associated with the trajectory TR1.
Since it is difficult to depict and measure the independence between sub-

trajectories, the Diversity among the sub-trajectories is alternatively measured
in our work. We propose a metric QMeasure to evaluate the results for tra-
jectory segmentation by considering both the Diversity and the Granularity of
sub-trajectories, whose function is shown in Equation (1). The motivation of
QMeasure comes from two aspects: 1) the Diversity (the first term in QMeasure
function (1)) among different sub-trajectories is encouraged to be large since
large Diversity among instances contributes to large variance, which is found to
be useful when applying multi-instance learning in literature [31]. 2) the Gran-
ularity (the second term in QMeasure function (1)) is introduced to control
the total numbers of segmented sub-trajectories, whose goal is to prevent the
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T
X

Y

TR1

TR1.1

TR1.2

TR1.3

TR1.4

TR1.5

PS1

PS2

PS3

PS4

Figure 4: An example of sub-trajectories and segmentation points for trajectory TR1

trajectory over-segmentation with too many small segmented sub-trajectories.
The QMeasure function is computed as follows:

QMeasure =
1

N2

N∑
p=1

N∑
q=1

Dist(TRi.p, TRi.q) +
λ

N

N∑

k=1

Len(TRi.k), (1)

where p, q and k are the index of different sub-trajectories of trajectory TRi, N
is the number of the sub-trajectories. Len(TRi.k) is the length of sub-trajectory
TRi.k. Parameter λ is the weight of Granularity and it is set as 0.0001 for the
purpose of normalization, so the two terms in Eq. (1) will be comparable, which
will be seen in Table 2. Generally, higher QMeasure means better segmentation
which contributes to better classification result. Diversity is embodied through
the distance between sub-trajectories Dist(TRi.p, TRi.q), which can be the dis-
tance of two multi-dimensional vectors, or the difference of their distribution
with the KL divergence. Granularity is measured in terms of the average length
Len(TRi.k) of sub-trajectories, where the Granularity term is encouraged to be
large. As can be seen in the equation, the summation of sub-trajectory lengths
is approximate to the length of the trajectory. However, the summation is of-
ten less than or more than the trajectory length because of removed noise or
overlapped segmentation points. So we use the summation of the sub-trajectory
lengths to avoid over-segmentation.

In the trajectory segmentation phase, we select four types of different seg-
mentation algorithms: Maximum Acceleration (MA) segmentation, Minimum
Description Length (MDL), Segmentation with Log-likelihood of Regression
Function (LRF), and Heterogeneous Curvature Distribution (HCD).

Maximum Acceleration (MA) segmentation is proposed by Chen et al [3].
After trajectory smoothing, a sequence of varied acceleration is computed. Then
segmentation is performed at points of maximum acceleration at different scales.
Trajectory smoothing and multi-scale segmentation make motion matching flex-
ible and robust, and sub-trajectories have different motion patterns with respect
to acceleration.

Minimum Description Length (MDL) is used by Lee et al [4, 5] to partition
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a trajectory. Characteristic points where the motion changes rapidly are first
detected. Then, from these points, the optimal segmentation points are found by
minimizing the MDL cost. The optimization result improves the conciseness and
preciseness of segmentation. MDL segmentation aims to find that the simple
representation of motion and its conciseness is similar to the Granularity we
measure.

Segmentation with Log-likelihood of Regression Function (LRF) is proposed
by Zhou et al [6]. They model each trajectory as a regression function f(T )
with time variable T and compute the log-likelihood of each of them. Then
segmentation points are sequentially determined at the position where the log-
likelihood of a subsegment is smaller than the predefined threshold.

The Heterogeneous Curvature Distribution (HCD) method has been devised
as follows by Bashir et al [7, 30] to segment trajectories. Two adjacent windows
X and Y with equal width slide on a trajectory. Firstly, curvature data and
its distribution of each window are calculated. Secondly, likelihood ratio test
is adopted to determine if data of the windows X and Y are drawn from the
same distribution. If the negative log-likelihood ratio, denoted as LD, is larger
than the predefined threshold, then LD value and the point

−→
Ps partitioning

two neighbor windows are added into a candidate list of segmentation points;
otherwise, the two windows would be slid by constant length which is less than
the sliding window size and the first and second steps are repeated. Finally,
from the candidate list, distinct maxima are determined which are located as
the local peak of LD sequence, and the corresponding points

−→
Ps are then treated

as segmentation points of the trajectory. This algorithm partitions complex
motion into individual curve segments of uniform motion.

To clearly understand the four segmentations, we take a trajectory for an
example, which is segmented into many simple sub-trajectories by the four al-
gorithms. Since the trajectory is long and complex so that it is not suitable
for full display, a part of its sub-trajectories for the four segmentations are
depicted respectively in Figure 5(1)-(4). As can be seen from the figure, the
segmentations in Figure 5(2) and 5(3) are better than that in Figure 5(1) and
5(4) since the latter two are under-segmented and over-partitioned respectively.
According to the QMeasure metric, Figure 5(2) is slightly better than Figure
5(3) since the Diversity among sub-trajectories via MDL is larger than that
among sub-trajectories via LRF with the same number of segmentation points.
To clearly understand the relationship of QMeasure values and segmentation
results, we list the QMeasure values of the example trajectory shown in Figure
5 and their two terms, Diversity term and Granularity, in Table 2. In the ta-
ble, λ is set as 10−4 that makes the two terms comparable. For the example
trajectory, QMeasure values are different among four segmentations and the
QMeasure value of MDL segmentation is the highest than others. In terms of
the Diversity and Granularity, MDL has the highest value of Diversity while
MA has the highest value of Granularity. The Diversity of LRF is the lowest
because most segmented sub-trajectories are similar with each other, which can
be seen in Figure 5(3). The lowest Granularity of HCD is due to the most seg-
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Figure 5: The results of a trajectory segmented by four methods

Table 2: QMeasure values of the example trajectory in Figure 5 where λ is set as 10−4

Segmentation Algorithms Diversity Granularity QMeasure

Maximum Acceleration 0.2074 0.2349 0.4423

Minimum Description Length 0.6279 0.1889 0.8178

Log-likelihood of Regression Function 0.1787 0.2285 0.4073

Heterogeneous Curvature Distribution 0.6052 0.1731 0.7783

mentation points in Figure 5(4). Thus, the values of Table 2 measure the two
aspects Diversity and Granularity of trajectory segmentation in Figure 5. More-
over, Figure 5 and Table 2 indicate that both the Diversity and Granularity are
necessary and important. From the figure, HCD segmentation of the example
trajectory with more segments is harmful to preserve the motion information,
which indicates that the Granularity is important. From the table, we can
find that MA is with higher diversity and equivalent granularity compared with
LRF, and the QMeasure results of MA are better than LRF, which indicates
that the Diversity plays an important role in QMeasure as well as classifica-
tion results. In the three-phase TRASMIL framework, trajectory segmentation
phase is significant since it has a key influence on detection results, which will
be shown in the experiments of Section 5. The proposed QMeasure is viewed
as an evaluation metric of segmentation results, and helps select appropriate
segmentation algorithms.
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Figure 6: The graphical model of HDP-HMM [33]

4.2. Trajectory Representation using HDP-HMM
In regard to trajectory representation, modeling based representation is ap-

propriate for describing sub-trajectories and measuring the similarity between
them. A sub-trajectory can be depicted by a sequence of feature vectors by sam-
pling n points from the original. However, it is inefficient for a complex motion
because latent features are difficult to extract. Modeling-based representation
can statistically describe the temporal distribution of motion trajectories. Thus,
it is preferable to adopt modeling based representation methods, e.g., HMM [32]
and HDP-HMM [33], in our framework. The similarity between sub-trajectories
is measured via the KL divergence [8] between their models.

A sub-trajectory TR1.1, modeled by HMM, is assumed to be a Markov
process with hidden states. On the right side of Figure 6, feature points−→p1,

−→p2, ...,
−→ps1 form an observation sequence, and z1, z2, z3, ..., zs1 are a discrete

hidden state sequence. State k varies according to state transition probability
πk. Every feature point only depends on the current state, which has a probabil-
ity distribution over the feature points, denoted as −→pt ∼ F (φzt

). However, the
downside of HMM is that the state number needs to be determined in advance
and is unchangeable during the modeling. This means that HMM performs
well only in cases where we have prior knowledge. If significant difference exists
between the pre-assigned number of states and the ground truth, it is hard to
achieve the real distribution of sub-trajectories, which is proved by experiments
in Section 5.

Modeling-based representation by HDP-HMM can automatically determine
the number of states, which is accomplished by HDP [34]. Specifically, arbitrary
priors are placed on HMM model parameters πk and φk.

πk ∼ DP (α, β), φk ∼ H (2)

where α, β are hyper parameters of the Dirichlet Process, H is the common
base distribution. HDP is used to learn the ground truth parameters from data,
which is depicted on the left side of Figure 6. The details of HDP are omitted
in this paper due to limited space. The two parts in Figure 6 are merged to
form the process of the HDP-HMM modeling of TR1.1. We then adopt Beam
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positive bag

negative bag

point ap

Figure 7: A virtual abnormal point ap in DD

sampling [35], which is a MCMC sampling algorithm. (It beats Gibbs sampling
for fast convergence, robust performance and straightforward implementation)

4.3. Multi-Instance Learning
In the above two sections, we have discussed two phases of the proposed

framework: segmenting trajectories and then modeling sub-trajectories. This
section discusses the last phase: detecting abnormal sub-trajectories by multi-
instance learning [28]. In multi-instance learning, a training set consists of
labeled bags which are sets of instances with no labels. For binary classifica-
tion, a bag is labeled as positive if it includes at least one positive instance.
Otherwise, all the instances in the bag are negative. According to the above
rule, a trajectory is viewed as a bag and its sub-trajectories form the instances
of the bag. Abnormal TR+

i represents a positive bag and TR+
i.p is the pth in-

stance in that bag. Likewise, TR−i and TR−i.p represent a negative bag and its
pth instance respectively. To detect anomalies, MIL algorithms are used to find
positive bags. Two representative algorithms are adopted in this phase: Diverse
Density (DD) [9] and Citation-kNN [10].

In trajectory detection, Diverse Density (DD) aims to find a representative
abnormal point ap in the feature space of sub-trajectories to represent anomalies
in the training data, as shown in Figure 7. It seems close to at least one
subsegment from each abnormal trajectory and far away from all the normal
trajectories. It can be computed by maximizing the diverse density over all the
trajectories. The equation and its derivation are as follows:

dd(ap) = Pr(ap|TR+
1 , . . . , TR+

m, TR−1 , . . . , TR−n ), (3)

=
∏

i

Pr(ap|TR+
i )

∏

j

Pr(ap|TR−j ).

where dd(ap) means the diverse density of abnormal point ap; the second line in
Equation (3) assumes that bags are conditionally independent. Intuitively, if one
of the subsegments in abnormal trajectory TR+

i is close to ap, then Pr(ap|TR+
i )

is high. After the point ap is learned, trajectory TRj can be predicted to be
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Figure 8: Combinations of algorithms based on the TRASMIL framework

abnormal or not according to the value of Pr(ap|TRj). To improve performance,
the Bagging DD algorithm [36], the ensemble version of DD, is employed in the
experiments in Section 5.

In Citation-kNN [10], each trajectory is taken as a whole. Both its R-nearest
neighbors and C-nearest neighbors are computed to predict anomalies. The R-
nearest neighbors of trajectory TRi refer to its nearest neighbors, and C-nearest
neighbors are the trajectories that view TRi as their nearest neighbors. The
sum of normal trajectories in the two neighbor sets is counted, and denoted as
RCnormal. Likewise, RCabnormal represents the sum of abnormal trajectories.
If RCabnormal > RCnormal, we will predict TRi as being abnormal, otherwise
normal. If R-nearest neighbors only (such as kNN) are measured, the majority
voting scheme could easily be confused by the noise of false anomalies and the
label is often mistakenly predicted. Thus, we use Citation kNN rather than
kNN in the framework. In addition, the measure of R and C-nearest neighbors
depends on the distances between trajectories. Here, the minimum Hausdorff
distance [10] is used to evaluate the distance. It is defined as:

Dist(TRi, TRj) = min
TRi.p

min
TRj.q

Dist(TRi.p, TRj.q) (4)

where Dist(TRj , TRi) = Dist(TRi, TRj). The distance between sub-trajectories
Dist(TRi.p, TRj.q) can be computed by the KL divergence [8].

4.4. Combination Methods
In this paper, we present a three-phase framework TRASMIL for local

anomaly detection. In the first phase, four different segmentation methods are
adopted to obtain a set of sub-trajectories for each trajectory. They are MA,
MDL, LRF and HCD segmentation. In the second phase, HMM and HDP-HMM
are then used for modeling sub-trajectories and a distance measure based on the
KL divergence [8] is adopted to measure the distance between models in the sec-
ond phase. In the last phase, two MIL methods, Bagging DD and Citation kNN
are employed to detect trajectory bags with many sub-trajectories. During the
implementation, 16 combination algorithms are applied in the framework for
local anomaly detection. Details of combinations are depicted in Figure 8 and
Table 3.
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Table 3: The details of 16 different combinations
Index Algorithms Combination Details

1 MA-H-DD MA + HMM + Bagging DD

2 MA-H-C MA + HMM + Citation kNN

3 MDL-H-DD MDL + HMM + Bagging DD

4 MDL-H-C MDL + HMM + Citation kNN

5 LRF-H-DD LRF + HMM + Bagging DD

6 LRF-H-C LRF + HMM + Citation kNN

7 HCD-H-DD HCD + HMM + Bagging DD

8 HCD-H-C HCD + HMM + Citation kNN

9 MA-DD MA + HDP-HMM + Bagging DD

10 MA-C MA + HDP-HMM + Citation kNN

11 MDL-DD MDL + HDP-HMM + Bagging DD

12 MDL-C MDL + HDP-HMM + Citation kNN

13 LRF-DD LRF + HDP-HMM + Bagging DD

14 LRF-C LRF + HDP-HMM + Citation kNN

15 HCD-DD HCD + HDP-HMM + Bagging DD

16 HCD-C HCD + HDP-HMM + Citation kNN

As the experiments show, MDL-C performs the best among the 16 algo-
rithms. Therefore, rather than introducing all algorithms, we only illustrate the
MDL-C procedure as shown in Algorithm 1. Line 2− 3 describe the first phase.
For every trajectory TRi, the sub-trajectories set SUBs is obtained via MDL
segmentation, whose implementation is omitted due to limited space (please
refer to [4]). In the second phase, Line 4 − 6 describe HDP-HMM modeling
based representation for all sub-trajectories TRi.p Then from Line 8 to Line 17,
we compute the distance Dist between HDP-HMM models and the distance
TRDist between trajectories. The rest part (from Line 18 to the end) describes
the last trajectory detection phase via Citation kNN. Specifically, R-Nearest
Neighbors RNN of testing data are firstly found at Line 18 − 20 and then C-
Nearest Neighbors CNN of testing data are determined. Lastly, anomalies are
detected according to its RNN and CNN at Line 27 − 33. As can be seen,
the MDL-C method is implemented by stages in TRASMIL. The time cost of
every phase is accumulated where HDP-HMM modeling phase is relatively time-
consuming than others. Moreover, the results of every phase have an influence
on the final detection. Thus, it is significant to select the appropriate method
in the three phase of TRASMIL.

5. Experimental Results

We test our proposed approach on two publicly available datasets provided
by the CAVIAR project [37]. The first dataset consists of video clips filmed
with a wide angle camera lens in the entrance lobby of the INRIA Labs at
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Algorithm 1 The procedure of the MDL-C algorithm
Input: Trajectory sets TRs, which consist of training set TRtrain and testing

set TRtest.
Output: Trajectories which are detected abnormal.
1: for TRi ∈ TRs do
2: SEG∗ = arg minSEG MDL(TRi).
3: SUBs(TRi) = {TRi.1, TRi.2...} is obtained by SEG∗.
4: for TRi.p ∈ SUBs(TRi) do
5: Model θip is built by HDP-HMM with Beam sampling for TRi.p.
6: end for
7: end for
8: for TRi ∈ TRtest do
9: for TRj ∈ TRtrain do

10: for TRi.p ∈ SUBs(TRi) do
11: for TRj.q ∈ SUBs(TRj) do
12: Dist(TRi.p, TRj.q) = 1

2DKLSY M (θip||θjq).
13: end for
14: end for
15: TRDist(TRi, TRj) = minTRi.p minTRj.q Dist(TRi.p, TRj.q).
16: end for
17: end for
18: for TRi ∈ TRs do
19: R-Nearest Neighbors RNN(TRi) are found according to TRDist.
20: end for
21: for TRi ∈ TRtest do
22: for TRj ∈ TRtrain do
23: if TRi ∈ RNN(TRj) then
24: TRj is joined in C-Nearest Neighbors set CNN(TRi), TRj ∈

CNN(TRi).
25: end if
26: end for
27: The sums RCnomal, RCabnormal are counted in the two nearest neighbor

sets respectively.
28: if RCnomal < RCabnormal then
29: TRi is detected abnormal and outputted.
30: else
31: TRi is predicted to be normal.
32: end if
33: end for
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Grenoble. The second also uses a wide angle lens along and across the hallway
in a shopping center in Lisbon. The two datasets are labeled manually, and the
corresponding xml files are provided. The trajectories of moving objects can be
obtained from these files.

5.1. Experiment 1 on the First CAVIAR Dataset
In the first CAVIAR dataset, there are 30 videos and 265 sequences are ex-

tracted from the videos. Six basic scenarios are acted in the entrance lobby
of the INRIA Labs, including “One person walking”, “Browsing”, “Resting,
slumping or fainting”, “Leaving bags behind”, “People/groups meeting, walk-
ing together and splitting up” and “Two people fighting”. These scenarios
consist of four movements “walking”, “inactive”, “active” and “running”. Fig-
ure 9 represents four movements in different scenarios. Obviously, Figure 9(a)
and (b) depict “walking” and “running” respectively. In Figure 9(c), one per-
son dressed in a red coat is browsing the reception desk, which belongs to
“active” movement. In Figure 9(d), a man is slumping on the floor, which is
“inactive” movement. We conduct several experiments on the dataset. Firstly,

(a) two people are walking (b) one is runnning and another is lying on floor

(c) one person is browsing (d) one person is slumping on the floor

Figure 9: Different scenarios with four movements in the first CAVIAR dataset

two movements “walking” and “inactive” are selected as experimental data.
There are 99 “walking” sequences and 22 “inactive” sequences whose lengths
are more than 100. To clearly observe movement trajectories, we take exam-
ples of movements “walking” and “inactive” in Figure 10. In the figure, (a)
and (b) depict “walking” trajectory and “inactive” trajectory with the first 100
points respectively, because the whole trajectories are fairly long and complex.
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We define the “inactive” sequences as abnormal trajectories for local anomalies
and perform the experiments with 10-fold cross validation. Then, the other
two movements “active” and “running” are added into training and testing sets
for multi-normal-one-abnormal classification and multi-normal-multi-abnormal
classification in Subsection 5.4.
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(b) “inactive” trajectory
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(a) “walking” trajectory

Figure 10: Two example trajectories of movements “walking” and “inactive” with the first
100 points respectively

In the model training phase with HDP-HMM, the training process is ter-
minated when the state number remains unchanged for 20 iterations, which is
selected experimentally to make all trajectories convergent. The learned state
numbers of sub-trajectories are varied from 1 to 5 because of their different move-
ment patterns. Note that relatively few states are learned since sub-trajectories
mean simple motions, which are extracted from long trajectories. We take ex-
amples of a sub-trajectory with the state number of 2 in Figure 11. The figure
shows the variations of the state number with the pre-assigned numbers 50, 20,
8 and 2 respectively. As can be seen in the figure, the four training processes
are converged to the same state number of 2, which is always unchanged by the
prior state number. It indicates that HDP-HMM modeling can automatically
learn the ground truth of state number.

5.2. Experiment 2 on the Second CAVIAR Dataset
Another experiment is performed on the sequence data extracted from the

second dataset. Each clip of the dataset is recorded from two different view-
points - corridor and frontal. These two video sequences are synchronized frame
by frame in terms of timeframe, which can be seen from Figure 12(a) and 12(b)
respectively. Figure 12(c) depicts that the couple are standing there and brows-
ing the store when one person is walking along the corridor. Figure 12(d) depicts
that a man is going inside a store and his companion is waiting for him. We
select the corridor viewpoint with three types of movements and choose two of
three to carry out the experiments. There are 124 sequences in the first category
and 21 in the second which are regarded as normal and abnormal respectively.
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Figure 11: Variation of states with different pre-assigned state numbers during the sampling
on the first dataset

(a) couple are walking along corridor 

      and browsing in the corridor view

(b) couple are walking along corridor 

      and browsing in the frontal view

(c) couple are standing there and

      browing the store

(d)  a man is going inside a store, and his 

       companion is waiting outside for him

Figure 12: Different scenarios with movements in the second CAVIAR dataset
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Likewise, during the HDP-HMM modeling, we stop training when the state
number remains unchanged for 30 iterations, which is also determined experi-
mentally for the convergence of all trajectories . After unchanged 30 iterations,
every sub-trajectory determines its convergent state number. In Figure 13, we
take the learning process of a sub-trajectory with the state number of 2 for ex-
amples. The different prior state numbers 50, 20, 8 and 2 are also assigned in the
learning process. From the figure, the state numbers in the four sub-figures are
converged to 3, which likewise validates the advantage of HDP-HMM modeling
over HMM.
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Figure 13: Variation of states with different prior state numbers during the sampling on the
second dataset

5.3. Performance Evaluation
We first compare eight combinations (as shown in Table 4) with HDP-HMM

trajectory representation and then make comparisons with HMM. We carry out
10 comparative experiments on the CAVIAR datasets, along with two tradi-
tional methods based on the whole trajectories.

In multi-instance learning, classification accuracy is usually used to evaluate
the performance of different approaches.

Accuracy =
TP + TN

testNum
(5)

where TP is the number of the correctly classified abnormal trajectories while
TN is the number of normal trajectories, and testNum is the number of tra-
jectories in the testing dataset. In Table 4, we know that the accuracy of most
approaches based on the proposed framework is higher than that of the whole
trajectory-based methods, which indicates the effectiveness of the framework.
In the last two contrast experiments, we use kNN and Regularized Least Squares
(RLS) for abnormal detection. The whole trajectory-based modeling is likely
to miss local or small anomalies, since a trajectory is long and complicated.
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Though the accuracy of kNN and RLS in the first dataset is slightly higher
than some of our approaches, other evaluation criteria such as recall and AUC
in Table 5 show that these two algorithms actually perform worse than the other
algorithms.

In the MIL detection phase, Bagging DD (the ensemble version of Diver-
sity Density) and Citation kNN algorithms are adopted. The result shows the
accuracy of Citation kNN is very high, close to 100%. The MDL-C algorithm
shows the highest accuracy (98.97%) on the first dataset, and the second best
is 96.88%. However, the accuracy of Bagging DD is usually less than that of
Citation kNN in Table 4. The main reason is given below: the DD algorithm
is used to find an abnormal point to represent all the anomalies and effectively
distinguish from normal activities, but trajectories are usually so complex that
we rarely find an abnormal point which can accurately reflect all the abnormal
activities. Therefore, DD is not suitable for such applications of anomaly trace
detection. With the HDP-HMM modeling-based representation and the corre-
sponding similarity measure, Citation kNN is more accurate for measuring the
distances between complex trajectories to determine its neighbors. It is based
on the labels of R nearest neighbors and C nearest neighbors to predict classi-
fication. Since Citation kNN is more suitable for trajectory detection, we use
it as the benchmark of MIL classification and conduct further analysis of the
performance of the TRASMIL-based detection.

Table 4: The accuracy of different approaches in the two CAVIAR datasets

Algorithms
Accuracy(%)

Dataset1 Dataset2

MDL-DD 91.38 90.63

MDL-C 98.97 96.88

MA-DD 83.62 85.94

MA-C 96.55 90.63

LRF-DD 89.66 92.19

LRF-C 93.10 82.82

HCD-DD 91.38 92.19

HCD-C 89.96 87.50

Whole + HDP-HMM + RLS 89.96 75.00

Whole + HDP-HMM + kNN 90.63 87.50

In Table 5, we compare the precision, recall and AUC (Area Under ROC)
of our approach with two traditional methods. This shows that the first four
methods (based on our TRASMIL framework) beat the last two ones in terms
of recall and AUC.

Recall =
TP

TP + FN
(6)

where FN is the number of the misclassified abnormal trajectories. The recall
value of 100% means a complete detection of true anomalies. According to the
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Table 5: The Precision, Recall and AUC of four TRASMIL-based algorithms vs. two whole-
trajectory methods (in Percent)

Algorithms
Dateset1 Dateset2

Precision Recall AUC Precision Recall AUC

MDL-C 95.00 100.00 99.38 90.00 87.50 92.86

MA-C 83.33 100.00 97.92 63.34 62.50 78.57

LRF-C 80.00 80.00 87.92 38.10 62.50 74.11

HCD-C 62.50 100.00 93.75 50.00 62.50 76.79

Whole + HDP-HMM + RLS 100.00 40.00 70.00 25.00 50.00 64.29

Whole + HDP-HMM + kNN 75.00 60.00 77.92 50.00 37.50 66.07

performance of kNN and RLS in Tables 4 and 5, we know that they miss many
abnormal trajectories and mistakenly predict them as normal. This indicates
that the two whole trajectory-based methods kNN and RLS are not desirable.
In other words, Table 5 shows that our methods miss fewer true anomalies than
others, and are suitable for local anomaly detection. Likewise, AUC also shows
the advantages of our approach.

As for datasets, the detection performance in the first dataset exceeds that in
the second, because the abnormal samples in the first dataset differ greatly from
the normal samples, while the difference in the second dataset is small, which
creates a bigger challenge to the anomaly detection. However, the proposed
framework applied in the two distinct datasets has better results than the others.

Tables 4 and 5 also show that different combination algorithms based on
the framework result in different performance. Specifically, the MDL-C algo-
rithm performs best since MDL conducts concise segmentation effectively for
local anomaly detection, according to the proposed metric QMeasure Equation
(1). In contrast, the LRF-C algorithm is the worst performer in our framework.
From this we can see that the choice of segmentation algorithms is very impor-
tant, and the quality of segmentation directly affects the detection performance.
The results by different segmentations will be checked by the proposed QMea-
sure in Section 5.5. In addition, the ROC curve shown in Figure 14 reflects
the relationship of true positive rate (TPR) and false positive rate (FPR) for
these methods in Table 5. The approaches based on the proposed framework
outperform the two methods based on whole trajectory.

For abnormal detection, there are some simple methods such as speed thresh-
old based method, where the threshold is used to distinguish the abnormal
speeds from the normal ones. Firstly, we compute the average speed for every
trajectory. Then the threshold parameter is learned by grid search with step
length 0.001 in the training set. The optimal value of threshold is selected when
it achieves the highest F1-score in training set, where F1-score is a measure of
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Figure 14: ROC curve in two datasets

classification results and whose computation is as follows:

F1 score =
2 ∗ Precision ∗Recall

Precision + Recall
. (7)

We have experiments on the two CAVIAR datasets. Table 6 shows their classi-
fication results. As we can see from the table, the results in the two datasets are
not good. In Dataset 1, the recall of anomalies is very low, which means missing

Table 6: The performance of speed-threshold-based approach in the two CAVIAR datasets

Dataset Accuracy(%) Precision(%) Recall(%) F1-score(%) AUC(%)

Dataset1 86.11 66.67 33.33 44.44 65.00

Dataset2 75.00 33.33 100.00 50.00 85.71

many anomalies. On the contrary, Dataset 2 has the poor precision, which indi-
cates that the learned threshold is inclined to the normal speeds so many normal
trajectories are misclassified. As can be seen, speed-threshold-based method is
unstable and very sensitive to noises. To clearly understand the training data,
we depict the distribution of speed values of trajectories in Figure 15. As can
be seen from the feature, speed threshold is not efficient to distinguish them,
since there are many overlapping values of the speed for normal and abnormal
samples.

Lastly, we verify that HDP-HMM can automatically determine the appropri-
ate number of states. We compare HDP-HMM with HMM using MDL segmen-
tation and two MIL methods, Bagging DD and Citation kNN. Both HDP-HMM
and HMM are based on our TRASMIL framework. The detection accuracy is
depicted in Table 7. We use HMM with the state number of 4 for modeling
sub-trajectories. As a result, HDP-HMM trajectory modeling has better per-
formance than HMM, as shown in Table 7. This is because the HMM model
can hardly reflect the real distribution of the data if the parameter is arbitrarily

23



  

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Abnormal Trajectories

Normal Trajectories

Speed Speed

P
e
r
c
e
n
t

P
e
r
c
e
n
t

(a) Dataset 1 (b) Dataset 2

Abnormal Trajectories

Normal Trajectories

Figure 15: The distribution of speed value of trajectories in Dataset 1 and Dataset 2

given without the prior knowledge. It indicates that modeling with an appro-
priate number of states can represent the sub-trajectory well, which is very
important for similarity analysis of sub-trajectories and the follow-up anomaly
detection.

Table 7: The comparison of the performance of two different modeling-based representation
methods HDP-HMM and HMM with the state number 4

TRASMIL-based methods Accuracy(%)

Trajectory

Segmentation

Detecting

Method

Sub-trajectory

Modeling Methods
Dateset1 Dateset2

MDL segmentation

Bagging DD
HDP-HMM 91.38 90.63

HMM 89.96 81.25

Citation kNN
HDP-HMM 98.97 96.88

HMM 96.55 93.75

5.4. The Extension of the First CAVIAR Dataset
To improve the reliability of the TRASMIL framework, more types of move-

ments in the first CAVIAR dataset have been added into the experiments.
Firstly, we construct a multi-normal-one-abnormal scenario, where “inactive”
sequences are defined as abnormal trajectories while “walking”, “active” and
“running” sequences are normal ones. Figure 16 depicts the accuracy of 16 dif-
ferent combination methods in the dataset. Most methods are more than 80%
with respect to the accuracy. Specifically, HDP-HMM-based methods gener-
ally perform better than HMM-based method, which validates the advantage of
HDP-HMM again. For the four different segmentations, we can see that MDL
segmentation exceeds the others, especially in the ‘HMM’ group of Figure 16(b).
In other groups of Figure 16(a) and (b), MDL is slightly better than the oth-
ers. For the two MIL detection methods, Citation kNN is generally over than
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Figure 16: The accuracy of 16 different combination methods in the TRASMIL framework
for the multi-normal-one-abnormal scenario: in (a) Bagging DD is used in the MIL detec-
tion phase, HMM and HDP-HMM in representation phase, MA, MDL, LRF and HCD in
segmentation phase; (b) is similar with (a) except that Citation is used in the MIL detection
phase.

Bagging DD. Among the 16 combination methods, MDL-C is the most excel-
lent with one hundred percent of accuracy while MA-H-DD performs the worst
with the lowest accuracy (73.61%). In the figure, it indicates that the proposed
TRASMIL framework is applied to the multi-normal-one-abnormal scenario.

Secondly, we define movements “walking” and “active” as normal trajecto-
ries, “inactive” and “running” as abnormal ones, in order to construct a multi-
normal-multi-abnormal scenario. Detection accuracy of the 16 methods is shown
in Figure 17. Similar with Figure 16, the accuracy of most methods exceeds 80%
expect for MA-H-DD and LRF-H-DD. From the figure, the methods used MDL
and HCD segmentation are comparable and excellent, while the performance of
LRF-based methods is changed largely between HMM and HDP-HMM. MDL-
C method still performs the best in the multi-normal-multi-abnormal experi-
ment for the highest accuracy (95.83%). From the figure, we can see that the
TRASMIL framework is suitable for the multi-normal-multi-abnormal scenario.

5.5. QMeasure Evaluation on Trajectory Segmentation
In Section 4.1, we propose QMeasure metric for checking the quality of tra-

jectory segmentation. Several experiments are executed on MA segmentation
and MDL segmentation to reflect the relationship between QMeasure values and
classification results. Specifically, we compute a series of QMeasure values of
testing set as well as the corresponding classification results in MIL phase when
the parameter values of segmentation methods vary in a range, which is shown
in Figure 18. Note that the QMeasure values are computed via the summation
of QMeasure value of every trajectory in testing set. For varied parameters,
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Figure 17: The accuracy of 16 different combination methods in the TRASMIL framework
for the multi-normal-multi-abnormal scenario: in (a) Bagging DD is used in the MIL detec-
tion phase, HMM and HDP-HMM in representation phase, MA, MDL, LRF and HCD in
segmentation phase; (b) is similar with (a) except that Citation is used in the MIL detection
phase.

the parameter num of MA means the predefined number of subsegments while
the parameter len of MDL is the step length of searching segmentation points.
Figure 18(a) depicts the QMeasure and F1-score of MA-C detection when the
subsegment number num of MA varies from 1 to 10. When num is equal to
3, both the QMeasure value and the F1-score value achieve the highest point.
So the subsegment number num of 3 is the optimal parameter for MA segmen-
tation. Likewise, Figure 18(b) depicts the QMeasure and F1-score of MDL-C
detection when the step length len varies from 10 to 100. The step length len of
10 is selected as the experimental parameter when the corresponding QMeasure
is the highest. From Figure 18(a) and (b), we can see that higher QMeasure
value usually means better classification result. Moreover, when the parame-
ters are the optimal respectively, MDL segmentation performs better than MA
segmentation because of higher QMeasure (57.79). Also, for trajectory classifi-
cation, the F1-score (100%) of MDL-C exceeds that (95.83%) of MA-C. Thus,
it indicates that QMeasure can help determine the optimal parameter of seg-
mentation algorithms as well as choose appropriate segmentation algorithms.

6. Discussion

The TRASMIL framework is a general solution for detecting local anomalies.
The following three aspects can be used in applying the TRASMIL framework.
(1) As shown in the proposed combinations, there is no specific requirement on

the combination of algorithms of trajectory segmentation, trajectory repre-
sentation and multi-instance learning. This implies that many algorithms
can be adopted in the framework.
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Figure 18: The contrast curve between F1-score values and the corresponding QMeasure values
with the varied step length len of MDL segmentation from 10 to 100 in the first CAVIAR
datasets

(2) The combination of three stage-oriented algorithms in TRASMIL is subject
to application requirements.

(3) In particular, whether a segmentation method is suitable can be checked by
the proposed metric QMeasure.

In the case that the running time is not demanding, HDP-HMM is a good
choice because of its good performance, while in the other cases HMM does
better since the modeling with HMM is less time-consuming than it is with
HDP-HMM. In multi-instance learning, many alternative algorithms can be
used. There are two assumptions proposed in [38]: one is that a key instance
exists in a positive bag, such as DD and mi-SVM; the other is that there is no key
instance and every instance contributes to the bag labeling such as MILES [39].
The definition of abnormal events and their differences from abnormal events
can be analyzed; the assumption the detection task should take can then be
determined. Subsequently, the TRASMIL framework can be used as a generic
approach for local abnormal event detection.

The performance of local anomaly detection based on the TRASMIL frame-
work suffers from the selection of specific methods in the three phases. Specifi-
cally, trajectory segmentation methods have a direct impact on it. For example,
if trajectories are incorrectly partitioned and a local anomaly is divided into two
smaller ones which locate at the endpoints of sub-trajectories, the abnormal tra-
jectory tends to be missed. Thus, it is important to choose the right method.
This paper is based on available trajectory data, but this is often not the case in
real life data. This challenges trajectory-based anomaly detection. The recent
use of wireless sensors in collecting activity trajectories may be helpful for this.
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7. Conclusions

Most of the existing algorithms for abnormal event detection tend to miss
local anomalies. To address this problem, a three-phase framework TRASMIL
based on trajectory segmentation and multi-instance learning has been proposed
for detecting local anomalies. The three phases consist of trajectory segmenta-
tion, trajectory representation and multi-instance learning. We have tested 16
combinations of different algorithms for the three stages to validate the effec-
tiveness of the framework. The trajectories are first partitioned in many sub-
trajectories with four different segmentation algorithms; a metric QMeasure is
devised to measure the quality of segmentation. A sequence learning process is
built for each sub-trajectory with HMM and HDP-HMM respectively. Finally,
a MIL classifier with Bagging DD and Citation kNN is designed to predict the
labels of the sub-trajectories. Substantial experimental results have shown that
the TRASMIL-based combinations beat the traditional methods and achieve
better accuracy and recall. Furthermore, the combination of MDL, HDP-HMM
with Citation kNN (MDL-C) performs the best among all algorithms. We dis-
cuss that the fact that TRASMIL is generic and can be applied for local anomaly
detection with consideration of the characteristics of target applications.
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