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The semantic information in any document collection is critical for query understanding in information retrieval.
Existing concept lattice-based retrieval systems mainly rely on the partial order relation of formal concepts to
index documents. However, the methods used by these systems often ignore the explicit semantic information
between the formal concepts extracted from the collection. In this paper, a concept coupling relationship analysis
model is proposed to learn and aggregate the intra- and inter-concept coupling relationships. The intra-concept
coupling relationship employs the common terms of formal concepts to describe the explicit semantics of formal
concepts. The inter-concept coupling relationship adopts the partial order relation of formal concepts to capture
the implicit dependency of formal concepts. Based on the concept coupling relationship analysis model, we
propose a concept lattice-based retrieval framework. This framework represents user queries and documents in
a concept space based on fuzzy formal concept analysis, utilizes a concept lattice as a semantic index to organize
documents, and ranks documents with respect to the learned concept coupling relationships. Experiments are
performed on the text collections acquired from the SMART information retrieval system. Compared with classic
concept lattice-based retrieval methods, our proposed method achieves at least 9%, 8% and 15% improvement
in terms of average MAP, IAP@11 and P@10 respectively on all the collections.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid growth of Web data, query understanding plays
an essential role in obtaining information which is relevant to the
user’s needs. Classic information retrieval (IR) systems often rely on
keyword-matching to index documents from the corpus, where queries
and documents are represented by methods such as the Boolean Model,
Vector Space Model and Probabilistic Model. In practice, however,
existing retrieval systems often return inaccurate and incomplete results
due to semantic challenges such as polysemy and synonymy. This is
known as vocabulary or word mismatch (Furnas et al., 1987).

Various efforts have been made to address the word mismatch
problem, such as query expansion techniques and concept lattice-based
retrieval methods for query transformation. Query expansion generates
a novel query by augmenting the original query with new features
with similar meaning, where the features are additional terms extracted
from a thesaurus, such as WordNet, explicit relevance feedback or
pseudo relevance feedback (Carpineto and Romano, 2012). Rather
than incorporating extra terms from other data sources to expand

* Corresponding author.
E-mail address: cy_shi@bit.edu.cn (C. Shi).

the original query, concept lattice-based retrieval methods can refine
and expand the query and explore navigation search strategies using
the specificity/generality relation of the concept lattice (Priss, 2000;
Carpineto and Romano, 2005).

Concept lattice-based retrieval methods are based on formal concept
analysis (FCA) (Ganter and Wille, 1999), a type of unsupervised classi-
fication that provides an intentional description for clusters, which con-
tributes to better understanding. The concept lattice generated by FCA
has demonstrated its usefulness in document indexing and navigation
strategy in the IR domain (Priss, 2000; Carpineto and Romano, 2005;
Codocedo and Napoli, 2015). For instance, the concept lattice can be
used to drive the transformation between the representation of a query
and the representation of each document and provide the navigation
in a conceptual document space (Carpineto and Romano, 2000; Messai
et al., 2010). Meanwhile, some methods have been proposed to obtain
the semantic information between formal concepts (Formica, 2008;
Codocedo et al., 2014). These approaches only consider whether terms
occur in queries and documents, but regarding all terms equally may
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significantly reduce the quality of the retrieved outcomes since different
terms may have different degrees of importance for those queries and
documents. This type of problem can be tackled with fuzzy information
(Formica, 2010).

To overcome the problem of uncertain, vague and implicit infor-
mation in queries and documents for IR, fuzzy formal concept analysis
(FFCA) can be adopted to model these characteristics by incorporating
fuzzy logic into FCA (Bělohlávek et al., 2005). Several approaches using
fuzzy concept lattices based on FFCA (Formica, 2012; Poelmans et
al., 2014; Kumar et al., 2015) have been proposed to deal with this
challenge. In these methods, queries and documents are represented
by fuzzy formal concepts that consist of vague (non-crisp) extents
and intents, i.e., crisply generated concepts (here, ‘extent’ refers to
an object set in a concept, and ‘intent’ refers to an attribute set in a
concept). They adopt the partial order relation of concepts to compute
the relationship between concepts and return related documents for
the given query. However, these methods neglect the explicit semantic
information between concepts (the common objects and attributes of
concepts). As a result, the coupling relationship between concepts,
consisting of the common terms (objects and attributes) of concepts and
the partial order relations of concepts, is neglected.

Learning coupling relationships, i.e. coupling learning (Cao, 2015),
has demonstrated its significant value in improving existing analytical
and learning tasks, e.g., similarity learning for clustering (Cheng et al.,
2013), classification (Liu et al., 2014), recommendation systems (Li
et al., 2013), keyword queries (Meng et al., 2014), and outlier detec-
tion (Pang et al., 2016). In this work, we propose a novel approach
to measure the coupling relationship between concepts by capturing
both the intra-concept coupling relation (explicit semantic similarity)
and the inter-concept coupling relation (implicit semantic similarity)
based on FFCA and the fuzzy concept lattice. The intra-concept coupling
relation directly reveals the similarity between concepts by considering
the common objects and attributes of concepts, and the inter-concept
coupling relation reveals the dependency aggregation between concepts
by exploring the topological distance between concepts based on the
partial order relation of concepts in the concept lattice. Using this
observation, the concept coupling relationship is used to generate a
semantic similarity measure between the given query concept and other
concepts. Lastly, we represent documents in a concept space and rank
them based on the semantic similarity measure. The key contributions
of this paper are as follows:

∙ The intra-concept coupling relation is learned to describe the
explicit semantics of concepts by calculating the intersection of
the intent and vague extent of concepts based on the Jaccard
measure.

∙ The inter-concept coupling relation is analyzed to capture the
implicit dependency of concepts by their topological distance
based on the hierarchical structure of the lattice and the partial
order relation of concepts.

∙ A novel concept lattice-based retrieval system based on the
learned concept coupling relationships is proposed, which ag-
gregates the intra- and inter-concept couplings, and we rank
documents in a concept space using this system.

Substantial experiments are undertaken to test our method by
comparing four currently used document retrieval techniques on text
collections acquired from the SMART information retrieval system. The
performance of our method is evaluated in terms of mean average
precision, 11-point interpolated average precision and precision in the
first 10 ranked documents. The results show that our approach achieves
significant improvement over the baselines.

The rest of the paper is organized as follows. The preliminary work
in this area is in Section 2. Section 3 introduces the framework of our
proposed concept lattice and coupling learning-based retrieval system.
Section 4 learns the concept coupling relationships, and a lattice-based
retrieval system based on the concept coupling relationship is detailed in

Table 1
Fuzzy formal context 𝐾 for document representation using a threshold 𝑇 = 1∕6.

𝐷𝑀 𝑀𝐿 𝑇𝑀 𝑇𝑅

𝑑1 0 2/3 0 1/3
𝑑2 0 0 1/2 1/2
𝑑3 0 0 0 1/3
𝑑4 1/4 0 0 0
𝑑5 1/2 1/3 1/6 0
𝑑6 0 0 1/2 0
𝑑7 2/3 1/3 0 0

Section 5. The experimental results are presented in Section 6, followed
by a summary of related work. Lastly, Section 8 concludes the paper and
presents the prospective future work.

2. Preliminary

In this section, the preliminary work consisting of fuzzy formal
concept analysis and concept lattice-based retrieval is introduced in
detail.

2.1. Fuzzy formal concept analysis

Definition 1 (Fuzzy Formal Context). A fuzzy formal context (fuzzy
context for short) 𝐾 = (𝑂,𝐴,𝑅 = 𝜙(𝑂×𝐴)) consists of an object set O, an
attribute set A, and a fuzzy relation 𝑅 in 𝑂×𝐴. Each pair (𝑜, 𝑎) ∈ 𝑅 has a
membership value 𝜇(𝑜, 𝑎) (∈ [0, 1]), meaning object 𝑜 has attribute 𝑎 with
membership grade 𝜇(𝑜, 𝑎). The set 𝑅 = 𝜙(𝑂 × 𝐴) = {((𝑜, 𝑎), 𝜇(𝑜, 𝑎))|∀𝑜 ∈
𝑂, 𝑎 ∈ 𝐴, 𝜇 ∶ 𝑂 × 𝐴 → [0, 1]} is a fuzzy relation in 𝑂 × 𝐴.

Two derivation operators (.)′ for 𝐸 ⊆ 𝑂, and 𝐼 ⊆ 𝐴 in the fuzzy
context 𝐾 = (𝑂,𝐴,𝑅) with a confidence threshold 𝑇 are defined as
follows:

𝐸′ = {𝑎 ∈ 𝐴|𝜇(𝑜, 𝑎) ⩾ 𝑇 ,∀𝑜 ∈ 𝐸} (1)

𝐼 ′ = {𝑜 ∈ 𝑂|𝜇(𝑜, 𝑎) ⩾ 𝑇 ,∀𝑎 ∈ 𝐼}. (2)

Definition 2 (Fuzzy Formal Concept). A fuzzy formal concept (fuzzy
concept for short) of a fuzzy context 𝐾 = (𝑂,𝐴,𝑅 = 𝜙(𝑂 × 𝐴)) with a
threshold 𝑇 is a pair (𝜙(𝐸), 𝐼), where 𝐸 ⊆ 𝑂 and 𝐼 ⊆ 𝐴, 𝐸′ = 𝐼 , 𝐼 ′ = 𝐸.
Each object 𝑜 ∈ 𝐸 has a membership value 𝜇𝑜 defined as 𝑚𝑖𝑛𝑎∈𝐼𝜇(𝑜, 𝑎),
thus 𝜙(𝐸) = {(𝑜1, 𝜇0(𝑜1)), (𝑜2, 𝜇0(𝑜2)),… , (𝑜𝑚, 𝜇0(𝑜𝑚))|𝑜𝑖 ∈ 𝐸}. The sets 𝐸
and 𝐼 are respectively called the extent and intent of the fuzzy concept.

The set 𝐵(𝑂,𝐴,𝑅), consisting of all fuzzy concepts from the fuzzy
context 𝐾, is ordered by inheritance relation (≤) as follows:

(𝜙(𝐸1), 𝐼1) ≤ (𝜙(𝐸2), 𝐼2) ⇔ 𝜙(𝐸1) ⊆ 𝜙(𝐸2) 𝑜𝑟 𝐼2 ⊆ 𝐼1. (3)

Thus (𝜙(𝐸1), 𝐼1) is called a sub-concept of (𝜙(𝐸2), 𝐼2) and (𝜙(𝐸2), 𝐼2) is
called a super-concept of (𝜙(𝐸1), 𝐼1). The fuzzy concept lattice 𝐵(𝑂,𝐴,𝑅)
of the fuzzy context 𝐾 is defined as (𝐵(𝑂,𝐴,𝑅),≤), where 𝐵(𝑂,𝐴,𝑅) is
all the concepts from the fuzzy context 𝐾. In addition, the fuzzy concept
lattice has supremum and infimum, grouping all the objects and attributes
respectively of the fuzzy context. For instance, consider a fuzzy context
using the bag of words representation for documents in Table 1 with a
threshold 𝑇=1/6. Suppose that object set 𝑂 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6, 𝑑7},
and attribute set 𝐴 = {𝐷𝑀,𝑀𝐿, 𝑇𝑀, 𝑇𝑅}, where ‘‘𝐷𝑀 ’’, ‘‘𝑀𝐿’’,
‘‘𝑇𝑀 ’’, ‘‘𝑇𝑅’’ denote ‘‘data mining’’,‘‘ machine learning’’, ‘‘text mining’’,
‘‘text retrieval’’ respectively. The corresponding fuzzy concepts and the
fuzzy concept lattice are shown in Table 2 and Fig. 1 respectively. The
membership value of 𝑑5 in 𝐶1 is 1/6. Concept 𝐶10 is the supremum of
the lattice, and concept 𝐶2 is the infimum of the lattice.
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Table 2
Notations for fuzzy concepts from the fuzzy context 𝐾.

Notations Fuzzy concepts for corresponding notations

𝐶1 ((𝑑5(1/6)), (𝐷𝑀 , 𝑀𝐿, 𝑇𝑀))
𝐶2 ((), (𝐷𝑀 , 𝑀𝐿, 𝑇𝑀 , 𝑇𝑅))
𝐶3 ((𝑑5(1/3), 𝑑7(1/3)), (𝐷𝑀 , 𝑀𝐿))
𝐶4 ((𝑑2(1/2), 𝑑5(1/6), 𝑑6(1/2)), (𝑇𝑀))
𝐶5 ((𝑑1(1/3)), (𝑀𝐿, 𝑇𝑅))
𝐶6 ((𝑑4(1/4), 𝑑5(1/2), 𝑑7(2/3)), (𝐷𝑀))
𝐶7 ((𝑑1(2/3), 𝑑5(1/3), 𝑑7(1/3)), (𝑀𝐿))
𝐶8 ((𝑑2(1/2)), (𝑇𝑀 , 𝑇𝑅))
𝐶9 ((𝑑1(1/3), 𝑑2(1/2), 𝑑3(1/3)), (𝑇𝑅))
𝐶10 ((𝑑1(1), 𝑑2(1), 𝑑3(1), 𝑑4(1), 𝑑5(1), 𝑑6(1), 𝑑7(1)), ())

Fig. 1. The corresponding fuzzy concept lattice for the fuzzy context 𝐾.

2.2. Foundations of concept lattice-based retrieval

Concept lattice-based retrieval systems regard document searching
as a transformation process from a query to each document in a concept
space (Carpineto and Romano, 2000), based on a concept lattice that is
a conceptual representation of a collection of documents. The concept
lattice contains a set of concepts derived from the common terms found
within that collection of documents. The intent of a concept provides a
semantic ‘‘context’’ specific to the collection to describe the documents
in the concept extent, following the assumption that if one term always
appears jointly with other terms, the single terms do not refer to distinct
concepts although their tuple does convey a useful meaning (Carpineto
and Romano, 2000). To achieve a query-document transformation, a
user query as a pseudo-document in a context is mapped into the concept
lattice. In this manner, a query concept can be obtained when the
intent of the concept is equal to the query description. For instance,
concept 𝐶1 in Fig. 1 is regarded as a query concept for the terms ‘‘data
mining, machine learning, text mining’’. With the query concept as the
starting point for IR, related concepts consisting of documents can be
transformed from the query concept based on the generality/specificity
relations in a concept lattice and type of navigation strategy.

Two main navigation strategies have been proposed in the lit-
erature. The neighborhood expansion (NE) strategy (Carpineto and
Romano, 2000) transforms a query into each document in terms of

the sequence of minimal refinements/enlargements determined by the
concept lattice. The hierarchical exploration (HE) strategy (Messai et
al., 2010) navigates the lattice by exploring the minimal enlargements
that transform the query into each document. The ranked relevance of
concepts determined by both navigation strategies can be computed
in terms of the topological distance between both concepts, which is
defined as the length of the shortest path between the two concepts.
In Fig. 1, for instance, given the query concept 𝐶1 for the query ‘‘data
mining, machine learning, text mining’’, concepts 𝐶2, 𝐶3 and 𝐶4 ranked
at distance 1, concepts 𝐶5, 𝐶6, 𝐶7, 𝐶8 and 𝐶10 ranked at distance 2,
and concepts 𝐶9 ranked at distance 3 are obtained by using NE, while
concepts 𝐶3 and 𝐶4 ranked at distance 1, and concepts 𝐶6, 𝐶7 and 𝐶10
ranked at distance 2 are obtained by using HE. For both strategies, the
supremum 𝐶10 and the infimum 𝐶2 of the lattice are omitted to compute
the document ranking since the supremum has all the documents in
the collection and the infimum has all the terms used to describe the
documents in the collection. Thus NE provides all the documents, while
HE provides the related documents containing 𝑑1, 𝑑2, 𝑑4, 𝑑5, 𝑑6 and
𝑑7. These observations illustrate that NE provides a larger quantity of
relevant documents than HE, while the relevant documents HE provides
are of better quality than the documents provided by NE. This has also
been observed by Codocedo (Codocedo et al., 2014).

The navigation strategies discover the implicit semantic information
between concepts based on the generality/specificity relations in a
concept lattice. However, the strategies have several disadvantages.
Some concepts obtain the same score as the query concept using both
strategies. For example, concepts 𝐶3 and 𝐶4 obtain the same score as
concept 𝐶1. Meanwhile, both strategies ignore the explicit semantic
information between concepts. The concept-based similarity measures
integrate set-based similarity measures, such as the Jaccard index,
to calculate the explicit semantic information between concepts. For
instance, the similarity between concept 𝐶𝑖 = (𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 =
(𝜙(𝐸𝑗 ), 𝐼𝑗 ) based on the Jaccard index is defined as follows:

𝑆(𝐶𝑖, 𝐶𝑗 ) =
|𝐸𝑖 ∩ 𝐸𝑗 |

|𝐸𝑖 ∪ 𝐸𝑗 |
∗ 𝜆 +

|𝐼𝑖 ∩ 𝐼𝑗 |
|𝐼𝑖 ∪ 𝐼𝑗 |

∗ (1 − 𝜆) (4)

where |.| denotes the cardinality of the set, and 𝜆 is a parameter such
that 𝜆 ∈ [0, 1]. The similarity measure considers the common objects
and attributes, rather than the membership value between objects and
attributes. To enrich the semantic information between concepts for IR,
in this paper, we adopt a concept-based similarity measure that consists
of the explicit and implicit semantic information between concepts. The
explicit semantics of concepts is obtained by calculating the intersection
of the intent and vague extent of concepts based on the Jaccard measure.
The implicit semantics of concepts is computed by their topological
distance based on the hierarchical structure of the lattice.

3. Framework

In this section, we introduce the proposed framework which consists
of a five-step processing approach to rank documents in the collection.
The framework and working mechanism are illustrated in Fig. 2.

The first step is document representation of the document collec-
tion. Documents in text format are preprocessed by text segmentation,
removing stop words and word stemming. They are then represented
by the Vector Space Model. Each document is represented as a vector
𝑑𝑖 = (𝑤𝑖1, 𝑤𝑖2,… , 𝑤𝑖𝑗 ,… , 𝑤𝑖𝑛)T, where 𝑛 is the number of all the distinct
words which are extracted from the collection. The weight 𝑤𝑖𝑗 of term
𝑡𝑗 in document 𝑑𝑖 is calculated by the probability of that term occurring
in the document.

The second step is lattice generation. The full collection of docu-
ments and queries is analyzed to form a document-term matrix 𝐷 =
(𝑑1, 𝑑2,… , 𝑑𝑖,… , 𝑑𝑚)T, where 𝑚 is the number of documents and queries
in the collection. In general, each query is inserted into matrix 𝐷 as a
pseudo-document. We convert matrix 𝐷 to a fuzzy formal context 𝐾.
Each document 𝑑𝑖 in matrix 𝐷 is regarded as an object 𝑜𝑖 ∈ 𝑂 of context
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Fig. 2. The framework of lattice-based retrieval by integrating the concept coupling relationship.

𝐾, and each term 𝑡𝑗 in matrix 𝐷 is regarded as an attribute 𝑎𝑗 ∈ 𝐴 of
context 𝐾. The membership value 𝜇(𝑜𝑖, 𝑎𝑗 ) of attribute 𝑎𝑗 in object 𝑜𝑖
is weight 𝑤𝑖𝑗 of term 𝑡𝑗 in document 𝑑𝑖. Lastly, a concept lattice can be
obtained from the fuzzy context 𝐾 using lattice construction algorithms.

The third step is concept selection. A concept space can be con-
structed using the set of concepts, which is obtained by a lattice
algorithm. Based on the concept space and the generality/specificity
relation of concepts, query-document transformation is adopted for
document ranking. To reduce the computing complexity for document
ranking, important concepts need to be selected from the set of concepts
in the constructed concept lattice. A concept is defined as an important
concept when all the descriptive attributes of a document in a concept
are equal to the intent of the concept.

The fourth step concerns the concept coupling relationship. Based
on the important concepts and the concept lattice, the intra- and inter-
concept coupling relations between concepts can be respectively calcu-
lated by leveraging the common objects and attributes of concepts with
the Jaccard measure and the topological distance between concepts.
The concept coupling relationship can then be characterized by a linear
combination of the intra- and inter-concept coupling between concepts.

The final step is to rank documents in a concept space. Each
document in the collection is represented by a concept in a concept
space. A similarity measure between concepts is obtained based on
concept coupling relationship analysis, and documents are ranked by
the similarity measure.

4. Concept coupling relationship analysis

Motivated by the coupled nominal similarity in unsupervised learn-
ing (Wang et al., 2011) and the term coupling analysis in document
analysis (Cheng et al., 2013), we propose concept coupling relationship
analysis for IR. Intra- and inter-concept coupling relations are detailed
in this section. Here concept coupling relationship analysis based on a
concept lattice is presented.

4.1. Intra-concept coupling relation

A number of approaches have been proposed to measure the sim-
ilarity between concepts and capture the relation between concepts in
FFCA using set theory analysis (Formica, 2008, 2010). These approaches
suppose that concepts are relational if they have common objects or
attributes. For instance, fuzzy concepts ‘‘𝐶6’’ and ‘‘𝐶7’’ in Table 2
are similar since they have common documents, i.e., ‘‘𝑑5’’ and ‘‘𝑑7’’.
Accordingly, the explicit relation between concepts in the fuzzy context
is estimated by detecting the common objects and attributes. We employ
the explicit relation between concepts to describe the intra-concept
coupling relation between concepts in a concept space.

In most existing approaches, the explicit relation between concepts
is simply estimated by the cardinality of the intersection of extents
and intents, i.e., the number of elements in the set of the intersection
of extents and intents. These methods ignore the weights of objects
of extents (the weights of objects of extents refer to the membership
values of objects of the extents). In the proposed method, the Jaccard
measure (Bollegala et al., 2007) is applied to compute the explicit
relation between concepts by integrating the weights of the extent
objects. For the calculation of the explicit relation, the Jaccard measure
can be replaced by other similarity measures, such as cosine similarity
and matching coefficient, which will be explored in our future work.

Definition 3. Concepts 𝐶𝑖 = (𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 = (𝜙(𝐸𝑗 ), 𝐼𝑗 ) are related
if they have common objects and attributes in the fuzzy context 𝐾. The
explicit relation between 𝐶𝑖 and 𝐶𝑗 is quantified as:

𝐸𝑥𝑅(𝐶𝑖, 𝐶𝑗 ) = 𝐸𝑅(𝐸𝑖, 𝐸𝑗 ) ∗ 𝜆 +
|𝐼𝑖 ∩ 𝐼𝑗 |
|𝐼𝑖 ∪ 𝐼𝑗 |

∗ (1 − 𝜆) (5)

𝐸𝑅(𝐸𝑖, 𝐸𝑗 ) =
1

|𝐻|

∗
∑

𝑜∈𝐻

𝜇𝑜𝑖𝜇𝑜𝑗
𝜇𝑜𝑖 + 𝜇𝑜𝑗 − 𝜇𝑜𝑖𝜇𝑜𝑗

(6)

where |.| denotes the cardinality of the set, 𝜆 is a parameter such that
𝜆 ∈ [0, 1]; 𝜇𝑜𝑖 and 𝜇𝑜𝑗 represent the membership values of the object 𝑜 of
𝐶𝑖 and 𝐶𝑗 ; 𝐸𝑅(𝐸𝑖, 𝐸𝑗 ) is the extent relationship between extent 𝐸𝑖 and
extent 𝐸𝑗 respectively, and |𝐻| denotes the number of the elements in
𝐻 = {𝑜|𝑜 ∈ 𝐸𝑖 ∩ 𝐸𝑗}. If 𝐻 = ∅, 𝐸𝑅(𝐸𝑖, 𝐸𝑗 ) = 0.

The intra-concept coupling relation is defined as a conditional
probability manner by normalizing the relation 𝐸𝑥𝑅(𝐶𝑖, 𝐶𝑗 ) between
𝐶𝑖 and 𝐶𝑗 with respect to the total number of relations between
concept 𝐶𝑖 and other concepts. This is because our task is to rank
documents for a given query. In the situation, concept 𝐶𝑖 is regarded
as a query concept. With normalization, the relation 𝐸𝑥𝑅(𝐶𝑖, 𝐶𝑗 ) is
scaled into [0,1] to compose the concept coupling relationship with the
inter-concept coupling relation (introduced below). The intra-concept
coupling relation is defined as follows.

Definition 4. The intra-concept coupling relation between concepts 𝐶𝑖 =
(𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 = (𝜙(𝐸𝑗 ), 𝐼𝑗 ) is defined as:

𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1 𝑖 = 𝑗
𝐸𝑥𝑅(𝐶𝑖, 𝐶𝑗 )

∑𝑛
𝑗=1,𝑗≠𝑖 𝐸𝑥𝑅(𝐶𝑖, 𝐶𝑗 )

𝑖 ≠ 𝑗 (7)

where 𝑛 is the total number of all distinct concepts in the concept lattice.

From the above observations, we have 𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) ≥ 0 and
∑𝑛

𝑗=1,𝑗≠𝑖𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) = 1 for all the concepts 𝐶𝑗 (𝑖 ≠ 𝑗). Note that
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Table 3
The intra-concept coupling relation between 𝐶1 and other concepts.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝐶1 1.000 0.210 0.222 0.119 0.070

𝐶6 𝐶7 𝐶8 𝐶9 𝐶10

𝐶1 0.133 0.133 0.070 0.000 0.046

𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) ≠ 𝐼𝑎𝐶𝑅(𝐶𝑗 , 𝐶𝑖), due to the dominators of 𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) and
𝐼𝑎𝐶𝑅(𝐶𝑗 , 𝐶𝑖) that capture the different relations with other concepts.
For instance, given concept 𝐶1 and parameter 𝜆 = 0.5, the intra-concept
coupling relation between 𝐶1 and the other concepts from Table 2 is
obtained by considering the weights of the objects of the extents and
the occurrence of the intents of concepts in Table 3.

The intra-concept coupling relation reflects the explicit semantic
similarity between concepts, however, it ignores the implicit semantic
information between concepts. Next, the topological distance between
concepts based on the hierarchical structure of a concept lattice is used
to define the implicit semantic information and specify the inter-concept
coupling relation between them.

4.2. Inter-concept coupling relation

Concepts generated using FFCA are organized as a concept lattice by
the partial order relation, i.e., inheritance relation in the concept lattice.
The partial order relation reflects the implicit relatedness between con-
cepts rather than considering the explicit relatedness between concepts
by using the intra-concept coupling relation. The topological distance
between concepts is used to characterize the partial order relation,
where the topological distance is defined by the hierarchical distance
between concepts. The smaller the distance between concepts, the more
related the concepts.

Definition 5. Concepts 𝐶𝑖 = (𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 = (𝜙(𝐸𝑗 ), 𝐼𝑗 ) are
interrelated if they are a parent–child relation (refer to the sub-concept
and super-concept relation described in Section 2) in a concept lattice.
The implicit relation between 𝐶𝑖 and 𝐶𝑗 is formalized as:

𝐼𝑚𝑅(𝐶𝑖, 𝐶𝑗 ) =

{

0 otherwise
1

1 + 𝑒𝑥
if 𝐶𝑖 and 𝐶𝑗 are inter-related (8)

where 𝑥 represents the hierarchical distance between concepts, i.e., the
linked edge number of the shortest path between 𝐶𝑖 and 𝐶𝑗 . For example,
the hierarchical distance between 𝐶1 and 𝐶6 is 2 through the link
‘‘𝐶1 → 𝐶3 → 𝐶6’’, while the hierarchical distance between 𝐶1 and 𝐶9 is
0 since there are no parent–child relations between 𝐶1 and 𝐶9 in Fig. 1.

Similar to the intra-concept coupling relation, the inter-concept
coupling relation is defined as a conditional probability manner by
normalizing the implicit relation 𝐼𝑚𝑅(𝐶𝑖, 𝐶𝑗 ) between 𝐶𝑖 and 𝐶𝑗 with
respect to the total number of relations between concept 𝐶𝑖 and other
concepts.

Definition 6. The inter-concept coupling relation between concepts 𝐶𝑖 =
(𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 = (𝜙(𝐸𝑗 ), 𝐼𝑗 ) is defined as:

𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1 𝑖 = 𝑗
𝐼𝑚𝑅(𝐶𝑖, 𝐶𝑗 )

∑𝑛
𝑗=1,𝑗≠𝑖 𝐼𝑚𝑅(𝐶𝑖, 𝐶𝑗 )

𝑖 ≠ 𝑗 (9)

where 𝑛 is the total number of all distinct concepts in the concept lattice.
We determine that 𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) = 0, when ∑𝑛

𝑗=1,𝑗≠𝑖𝐼𝑚𝑅(𝐶𝑖, 𝐶𝑗 ) = 0.

Note that 𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) falls in [0,1]. When 𝐶𝑖 has no parent–
child relation with any other distinct concept 𝐶𝑗 , we determine that
𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) = 0. The definition reflects that the smaller the topological
distance between concepts, the more similar the concepts with respect to
the underlying relation. For instance, given the concept 𝐶1 from Table 2,

Table 4
The inter-concept coupling relation between 𝐶1 and other concepts.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝐶1 1.000 0.326 0.326 0.326 0.000

𝐶6 𝐶7 𝐶8 𝐶9 𝐶10

𝐶1 0.144 0.144 0.000 0.000 0.058

Table 5
The concept coupling relationship between 𝐶1 and other concepts.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝐶1 1.000 0.268 0.274 0.223 0.035

𝐶6 𝐶7 𝐶8 𝐶9 𝐶10

𝐶1 0.139 0.136 0.035 0.00 0.052

we obtain the inter-concept coupling relation between 𝐶1 and other
concepts in Table 4. The underlying (implicit) relation by the topological
distance between concepts makes the related concepts more alike, which
facilitates the document ranking for IR.

4.3. Concept coupling relationship

The concept coupling relationship captures the comprehensive se-
mantic relation between concepts by aggregating the intra-concept
coupling relation and inter-concept coupling relation. Based on Eqs. (7)
and (9), the concept coupling relationship is defined as follows.

Definition 7. The concept coupling relationship between concepts 𝐶𝑖 =
(𝜙(𝐸𝑖), 𝐼𝑖) and 𝐶𝑗 = (𝜙(𝐸𝑗 ), 𝐼𝑗 ) is defined as:

𝐶𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) =
{

1 𝑖 = 𝑗
𝛽 ∗ 𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) + (1 − 𝛽) ∗ 𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) 𝑖 ≠ 𝑗

(10)

where 𝛽 ∈ [0, 1] is the parameter that determines the weight of the
intra-concept coupling relation and inter-concept coupling relation,
i.e., 𝐼𝑎𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) and 𝐼𝑟𝐶𝑅(𝐶𝑖, 𝐶𝑗 ) respectively. The concept coupling
relationship not only captures the explicit semantic relation by the
intra-concept coupling relation, but also obtains the implicit semantic
relation by inter-concept coupling relation. We observe that the higher
the concept coupling relationship, the more related the concepts. For
instance, given concept 𝐶1 from Table 2 and parameter 𝛽 = 0.5, the
concept coupling relationship between 𝐶1 and other concepts in Table 5
is obtained. Compared with the ranking concepts using NE and HE
for query concept 𝐶1, the concept coupling relationship has the better
ability to distinguish the correlation between concepts. Each concept
(excluding concept 𝐶5 and 𝐶8) obtains different scores to concept 𝐶1 by
the concept coupling relationship (CCR), while many concepts obtain
the same scores as concept 𝐶1 by NE and HE. The concept relation
computed by CCR is more reasonable since CCR concerns the weight
of the extent objects in the concepts.

5. Concept lattice-based retrieval system

In this section, a concept lattice-based retrieval system called cou-
pled concept lattice-based retrieval (CCLR) which is based on concept
coupling relationships is introduced. The system consists of three core
parts: lattice generation, concept selection and document ranking with
concept coupling relationship analysis. The details are introduced be-
low.

5.1. Lattice generation

In this work, a concept lattice is generated by using FFCA as the
classification technique for a document collection and consists of all the
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concepts and relations between concepts, which are composed of the
concept space for document ranking.

To obtain the concept lattice, a fuzzy context 𝐾 = (𝑂,𝐴,𝑅 = 𝜙(𝑂×𝐴))
as defined in Section 2.1 is obtained by a document-term matrix 𝐷 =
(𝑑1, 𝑑2,… , 𝑑𝑖,… , 𝑑𝑚)T, where 𝑚 is the number of documents and queries
in the collection. Each document 𝑑𝑖 in matrix 𝐷 is regarded as an object
𝑜𝑖 ∈ 𝑂 of context 𝐾, and each term 𝑡𝑗 in matrix 𝐷 is regarded as an
attribute 𝑎𝑗 ∈ 𝐴 of context 𝐾. The membership value 𝜇(𝑜𝑖, 𝑎𝑗 ) of an
object 𝑜𝑖 ∈ 𝑂 and an attribute 𝑎𝑗 ∈ 𝐴, (𝑜𝑖, 𝑎𝑗 ) ∈ 𝑅, is the weight 𝑤𝑖𝑗
of term 𝑡𝑗 in document 𝑑𝑖, represented by the probability of term 𝑡𝑗
occurring in document 𝑑𝑖, which is defined as follows:

𝜇(𝑜𝑖, 𝑎𝑗 ) = 𝑤𝑖𝑗 =
𝑡𝑓 (𝑡𝑗 )
𝑁𝑑𝑖

(11)

where 𝑡𝑓 (𝑡𝑗 ) is the frequency of term 𝑡𝑗 in document 𝑑𝑖, and 𝑁𝑑𝑖 is the
total number of terms in document 𝑑𝑖.

To achieve better retrieval performance, the most informative terms
need to be selected as attributes of the fuzzy context using the signal-
noise ratio as a measure to compute the weight of terms in the document
collection. For a collection of 𝑛 documents, noise 𝑁𝑡𝑗 of term 𝑡𝑗 is defined
as:

𝑁𝑡𝑗 =
𝑛
∑

𝑖=1

𝑡𝑓𝑖𝑡𝑗
𝐹𝑡𝑗

𝑙𝑜𝑔
𝐹𝑡𝑗

𝑡𝑓𝑖𝑡𝑗
(12)

and signal 𝑆𝑡𝑗 is:

𝑆𝑡𝑗 = 𝑙𝑜𝑔𝐹𝑡𝑗 −𝑁𝑡𝑗 (13)

where 𝐹𝑡𝑗 is the frequency of term 𝑡𝑗 in the collection, 𝑡𝑓𝑖𝑡𝑗 is the
frequency of term 𝑡𝑗 in the 𝑖th document. The weight of term 𝑡𝑗 in the
𝑖th document is (𝑡𝑓𝑖𝑡𝑗 ∕𝐹𝑡𝑗 )(𝑆𝑡𝑗 ∕𝑁𝑡𝑗 ). For our approach, the top 𝐽 terms
in each document are chosen as the attributes of the fuzzy context. To
obtain better retrieval results, the words in the queries are incorporated
as the attributes of the fuzzy context.

Depending on the fuzzy context 𝐾 in the above, a concept lattice can
be constructed by using any lattice construction algorithm. Incremental
lattice algorithms, adopted in the work of Carpineto (Carpineto and
Romano, 2000), have better performance for lattice-based retrieval,
however, the lattice structure computed by these methods is not imme-
diately available. In this paper, the LATTICE algorithm (Lindig, 2000)
is applied to compute both concepts and the explicit lattice structure,
which are used for the intra- and inter-concept coupling relations
between concepts.

5.2. Concept selection

In existing work, a concept space can be constructed using the set
of concepts, which is obtained by a concept lattice algorithm. Based on
the concept space and the generality/specificity relation of concepts, we
can transform a query concept into each concept. Each document in the
collection can be represented by a concept the intent of which is equal to
the description of the document. The concept is defined as the important
concept. Such a concept exists, and its extent contains at least that
document. For instance, concept 𝐶3 = ((𝑑5(1∕3), 𝑑7(1∕3)), (𝐷𝑀,𝑀𝐿)) in
Table 2 is important since the intent of 𝐶3 is equal to the description of
𝑑7 in Table 1. To reduce the computing complexity of document ranking
and obtain high quality related documents, the important concepts need
to be chosen from the set of concepts. A search algorithm is designed
to traverse the concept lattice and obtain all important concepts from
the concept lattice in Algorithm 1, where the 𝑢𝑝𝑝𝑒𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 function
of a node 𝑡𝑒𝑚𝑝 refers to the closest super-concepts of 𝑡𝑒𝑚𝑝, implying that
there is an edge between the node 𝑡𝑒𝑚𝑝 and the closest super-concepts of
𝑡𝑒𝑚𝑝, and there is no other intermediate concept between both concepts
in the lattice. For example, 𝐶1, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶8 and 𝐶9 are important
concepts in Table 2.

Algorithm 1 Important concept search
Input: Lattice 𝐻 = 𝐵(𝑂,𝐴,𝑅)
Output: Important concepts 𝑟𝑒𝑠𝑢𝑙𝑡

1: 𝑞𝑢𝑒𝑢𝑒 ← Queue()
2: 𝑞𝑢𝑒𝑢𝑒.addQueue(𝐻.𝑖𝑛𝑓𝑖𝑚𝑢𝑚)
3: 𝑟𝑒𝑠𝑢𝑙𝑡 = set()
4: 𝑙𝑎𝑏𝑒𝑙 = set()
5: while 𝑞𝑢𝑒𝑢𝑒.isNotEmpty() do
6: 𝑡𝑒𝑚𝑝 ← 𝑞𝑢𝑒𝑢𝑒.pop()
7: 𝑙𝑎𝑏𝑒𝑙.add(𝑡𝑒𝑚𝑝)
8: for 𝑜𝑏𝑗 in 𝑡𝑒𝑚𝑝.𝑒𝑥𝑡𝑒𝑛𝑡 do
9: 𝑎𝑡𝑡 = 𝑜𝑏𝑗.𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

10: if 𝑎𝑡𝑡 == 𝑡𝑒𝑚𝑝.𝑖𝑛𝑡𝑒𝑛𝑡 then
11: 𝑟𝑒𝑠𝑢𝑙𝑡.add(𝑡𝑒𝑚𝑝)
12: break
13: end if
14: end for
15: for 𝑡𝑒𝑟𝑚 in 𝑡𝑒𝑚𝑝.𝑢𝑝𝑝𝑒𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
16: if not 𝑙𝑎𝑏𝑒𝑙.has(𝑡𝑒𝑟𝑚) then
17: 𝑞𝑢𝑒𝑢𝑒.addQueue(𝑡𝑒𝑟𝑚)
18: end if
19: end for
20: end while
21: 𝑟𝑒𝑠𝑢𝑙𝑡.delete(𝐻.𝑖𝑛𝑓𝑖𝑚𝑢𝑚)
22: 𝑟𝑒𝑠𝑢𝑙𝑡.delete(𝐻.𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚)

5.3. Document ranking

The documents in the collection can be represented by the important
concepts selected in the above step. To rank these documents for a
given query, we propose a novel method, namely concept coupling
relationship analysis, to measure the similarity between concepts. The
concept coupling relationship between concepts aggregates the intra-
and inter-concept coupling relation between concepts. A similarity
measure between the given query concept and other concepts can be
generated using Eq. (10). In particular, when the two documents 𝑑𝑖 and
𝑑𝑗 obtain the same score as a result of the similarity of the corresponding
concepts and the query concept, these documents are ranked based on
the cosine similarity of the descriptive vector of documents. The cosine
similarity between two documents is given as

𝑠𝑖𝑚(𝑑𝑖, 𝑑𝑗 ) =
∑𝑛

𝑘=1 𝑤𝑖𝑘 ×𝑤𝑗𝑘
√

∑𝑛
𝑘=1 𝑤

2
𝑖𝑘 ×

√

∑𝑛
𝑘=1 𝑤

2
𝑗𝑘

(14)

where 𝑛 is the number of keywords and 𝑤𝑖𝑘 and 𝑤𝑗𝑘 are the weight
of the 𝑘th keyword of document 𝑑𝑖 and 𝑑𝑗 , respectively. For instance,
documents 𝑑5, 𝑑7, 𝑑6, 𝑑1, 𝑑4, 𝑑2 and 𝑑3 can be respectively represented
by the important concepts 𝐶1, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶8 and 𝐶9 in Table 2. Given
the query ‘‘data mining, machine learning, text mining’’, corresponding
to the query concept 𝐶1, we can obtain a document ranking list, i.e., 𝑑7,
𝑑6, 𝑑4, 𝑑1, 𝑑2 and 𝑑3 for the query based on the concept coupling
relationship between 𝐶1 and other concepts in Table 5.

6. Experiments and evaluation

6.1. Experimental settings

Experiments are conducted on data collections from the SMART
Information Retrieval System:1 CACM (3204 document abstracts ex-
tracted from the Association of Computing Machinery, 45 queries), CISI
(1460 document abstracts in library science and related areas extracted
from Social Science Citation Index by Institute for Scientific Information,

1 http://ir.dcs.gla.ac.uk/resources/test_collections/.
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Table 6
Data and lattice description. Note: object number (𝑂𝑁), attribute number (𝐴𝑁), threshold
(𝑇𝑆), the density of the context (𝐷𝐶 [%]), concept number (𝐶𝑁), time spent on lattice
construction (𝑇𝐿𝐶, in minutes).

ON AN TS DC CN TLC

CACM 3204 4075 0.03 0.18 24 945 2492
CISI 1460 4604 0.03 0.17 11 078 192
CRAN 1400 2787 0.03 0.30 13 355 145
MED 1033 4770 0.02 0.34 21 594 171

35 queries), CRAN (1400 document abstracts extracted from publica-
tions of aeronautic reviews, 35 queries), MED (1033 document abstracts
extracted from the National Library of Medicine, 30 queries), where
queries are keyword sequences in text.

Textual data is first pre-processed for queries and documents by
text segmentation, word stemming and removing stop words. The
parameters in our experiments are listed in Table 6. We set 𝜆 = 0.5
and 𝛽 = 0.5 for the framework. Lattice constructions are undertaken
once offline. All experiments are conducted on a Think Centre M6400T
desktop computer with Intel Core i5 CPU and 4G RAM.

In our approach, a query is regarded as an object in the fuzzy
context. A corresponding query concept in the lattice is obtained for
the query when the description of the query is equal to or closest to the
intent of the concept. To compare the results of our CCLR approach, we
have implemented four classic retrieval methods, namely lattice-based
ranking using the HE (LRHE) strategy (Messai et al., 2010), lattice-
based ranking using the NE (LRNE) strategy (Carpineto and Romano,
2000), the query likelihood (QL) model, and the exact matching (EM)
method. LRHE and LRNE are classic lattice-based retrieval methods.
The QL model is a language model constructed for each document in
the collection and ranks each document by the probability of specific
documents given a query. The EM method is a Boolean retrieval
which searches the collection for documents with at least one keyword
provided in a query.

6.2. Evaluation measures

Precision and recall are measures used to assess the relevance of
documents returned by a retrieval system. They are defined as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|
|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

(15)

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|

(16)

where 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 represents the document set in which documents are
relevant to a query, 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 represents the document set in which
documents are retrieved by retrieval systems, and 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is defined
as 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

⋂

𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑. Precision is a measure of exactness or quality,
whereas recall is a measure of completeness or quantity. Literatures
show that a good retrieval system should have a good quality/quantity
balance of the answers, where precision and recall are considered
as a trade-off between quality and quantity of related documents in
document retrieval (Codocedo et al., 2014). To achieve balance between
quality and quantity in our work, we consider the coupled concept
relation for document ranking in a concept space, where the common
objects and attributes of concepts are used to capture the explicit
concept relation and the partial order relation of concepts is used to
capture the implicit concept relation.

To evaluate CCLR with other systems, more robust evaluation
measures are needed, i.e., eleven-point interpolated average precision
(𝐼𝐴𝑃@11) and mean average precision (𝑀𝐴𝑃 ), since precision and recall
only consider unordered documents in the answer of a retrieval system.
To formalize the measures, 𝐿 = {𝑑1, 𝑑2,… , 𝑑𝑛} denotes the retrieval
results ranked by a retrieval system for a query, and 𝐿𝑗 ∈ 𝐿 denotes
the sub-list of 𝐿 which contains from 𝑑1 ∈ 𝐿 to 𝑑𝑗 ∈ 𝐿. Interpolated

precision (𝑖𝑝) is calculated in a given interval defined by the edges 𝑟1
and 𝑟2 as follows:

𝑖𝑝(𝑟1, 𝑟2) = 𝑎𝑟𝑔𝑚𝑎𝑥∀𝑑𝑗∈𝐿{𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿𝑗 ) ⇔ 𝑟𝑒𝑐𝑎𝑙𝑙(𝐿𝑗 )} (17)

where 𝑟𝑒𝑐𝑎𝑙𝑙(𝐿𝑗 ) ∈ [𝑟1, 𝑟2]. Then 𝐼𝐴𝑃@11 and 𝑀𝐴𝑃 are defined as
follows:

𝐼𝐴𝑃@11 =

∑10
𝑖=0 𝑖𝑝(

𝑖
10 ,

𝑖+1
10 )

11
(18)

𝑀𝐴𝑃 =
∑

∀𝑗∈|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒| 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿𝑗 )
|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒|

. (19)

6.3. Experimental results

For all data collections, we compare LRHE, LRNE, EM and QL with
our CCLR approach by mean average precision (MAP) in Table 7, eleven-
point interpolated average precision (IAP@11) in Table 8 and precision
in the first 10 ranked documents (P@10) in Table 9. We observe that
LRNE augments the performance of LRHE on all the datasets, excluding
P@10 on the CISI collection. LRNE achieves around 51%, 41% and 25%
improvement in terms of average MAP, IAP@11 and P@10 respectively.
LRNE achieves better performance over LRHE, since LRNE can obtain
more important concepts to represent documents than LRHE. This
demonstrates that the number of important concepts is critical for
document ranking in classic concept lattice-based retrieval methods.

Compared to LRHE and LRNE, CCLR further improves the per-
formance over LRHE and LRNE and achieves the best scores on all
the datasets. Compared to LRHE, CCLR achieves 63%, 50% and 44%
improvement in terms of average MAP, IAP@11 and P@10 respectively.
Compared to LRNE, CCLR achieves 9%, 8% and 15% improvement in
terms of average MAP, IAP@11 and P@10 respectively. These results in-
dicate that CCLR achieves better performance than classic lattice-based
retrieval methods. First, CCLR has the advantage of LRNE, which can
obtain more important concepts to represent documents. Second, CCLR
can capture the explicit and implicit semantic information between
concepts through concept coupling relationship analysis, while LRHE
and LRNE can only obtain the implicit semantic information between
concepts by the partial order relation of the concept lattice.

Compared to QL and EM, CCLR surpasses EM with a score of CCLR:
7, EM: 6 (the tie for P@10 in the MED dataset is considered as a point
for CCLR and EM), and exceeds QL with a score of CCLR:8, QL:4 in
terms of MAP, IAP@11 and P@10. This demonstrates that CCLR obtains
relatively better performance than EM and QL on all the datasets. First,
CCLR employs formal concepts to represent documents in a concept
space, while QL and EM apply the vector space model to represent
document in a term space. Second, CCLR ranks documents for a query
using the intra- and inter-concept coupling relation. The intra-concept
coupling relation employs common attributes and objects to obtain the
explicit semantic information between concepts and the inter-concept
coupling relation applies the partial order relation of the concept lattice
to capture the implicit semantic information between concepts. QL and
EM can only employ the common terms between documents and a query
to capture the explicit semantic information between documents and
the query. Rather than the above reasons, the characteristic of each
collection may affect the performance of each method. We observe
that CCLR obtains the best performance on the CACM collection, QL
obtains the best performance on the CISI collection and EM obtains
the best performance on the CRAN and MED collections. The results
show that the CACM dataset may contain fewer common terms between
documents and queries than the other three datasets, namely the CISI,
CRAN and MED datasets.

To further prove the performance of CCLR, experiments are con-
ducted with the interpolated precision at 11 different recall levels on the
four collections CACM, CISI, CRAN and MED. The experiment results
are shown in Fig. 3. In practice, ordinary users want to find related
documents in the first web pages, not to find all related documents.
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Fig. 3. The interpolated precision at 11 different recall levels on four collections.

Table 7
MAP comparison between our approach (CCLR) and the other models (LRHE, LRNE, EM,
QL).

LRHE LRNE EM QL CCLR

CACM 0.097 0.135 0.051 0.139 0.143
CISI 0.099 0.113 0.124 0.156 0.137
CRAN 0.111 0.186 0.270 0.185 0.198
MED 0.216 0.399 0.451 0.403 0.410

Table 8
IAP@11 comparison between our approach (CCLR) and the other models (LRHE, LRNE,
EM, QL).

LRHE LRNE EM QL CCLR

CACM 0.116 0.151 0.058 0.154 0.161
CISI 0.123 0.129 0.140 0.175 0.153
CRAN 0.128 0.207 0.293 0.206 0.214
MED 0.250 0.422 0.467 0.416 0.429

Table 9
P@10 comparison between our approach (CCLR) and the other models (LRHE, LRNE, EM,
QL).

LRHE LRNE EM QL CCLR

CACM 0.144 0.180 0.064 0.186 0.204
CISI 0.189 0.180 0.188 0.251 0.203
CRAN 0.123 0.168 0.214 0.200 0.191
MED 0.323 0.463 0.550 0.476 0.550

Thus, we focus on the low recall points, such as the 0.1, 0.2, 0.3, 0.4
recall point, at which there are a subset of related documents returned by
a retrieval system. We observe that CCLR achieves stable good precision
on all the collections at the low recall points, while the performance of
EM and QL, fluctuates at the low recall points on all the collections. For
instance, at the low recall points in Fig. 3, CCLR obtains the third best
performance on the CRAN collection and the second best performance
on the other collections; QL obtains the best performance on the CISI
collection and the fourth best performance on the other collections; EM
obtains the best performance on the CRAN collection and the worst
performance on the CACM collection. These results show that CCLR
obtains high precision at the low recall points, though it does not always
obtain the best performance compared to the other approaches.

In all, CCLR can obtain better and more stable performance because
concept coupling relationship analysis can capture more explicit and
implicit semantic information between concepts to rank documents in
CCLR.

6.4. Sensitivity of thresholds

In this section, we analyze the effect of threshold selection on
retrieval performance, i.e., retrieval efficiency and effectiveness, for
CCLR on the CISI collection. The threshold values are set as 0.025, 0.030,
0.035, 0.040, 0.045 and 0.050, and we fix all the other parameters of
CCLR. The results are shown in Fig. 4.

The time complexity of CCLR is 𝑂(|𝑀| × |𝐷𝑜𝑐|2 × |𝑉 |), where |.| is
the cardinality of the set, 𝑀 includes all the concepts of the lattice,
𝐷𝑜𝑐 refers to the documents in the collection, and 𝑉 is the vocabulary
dictionary of the collection. When the threshold becomes smaller, the
corresponding lattice size 𝑀 in the same context grows exponentially,
which has been proved by Lin (Lindig, 2000). Hence, the retrieval
efficiency (refers to the time complexity) of CCLR grows exponentially.

CCLR achieves two peaks with MAP, IAP@11 and P@10 respectively
when the threshold is in the interval [0.025, 0.05]. Meanwhile, CCLR
achieves the best performance at 0.03. This shows that CCLR may obtain
better performance using the smaller threshold. However, the retrieval
efficiency will be larger using the smaller threshold. To balance retrieval
effectiveness and efficiency, the threshold of CCLR is set as 0.03 on the
CISI collection in our experiments.

6.5. Query analysis

In this section, a brief analysis of some queries of the CISI collection
is presented in Tables 10 and 11 to illustrate how CCLR obtains better
performance and further improvements to the approach are described.
In Tables 10 and 11, the top 10 returned documents (𝐷𝑜𝑐), the corre-
sponding concepts (𝐼𝑛𝑡𝑒𝑛𝑡 and 𝐸𝑥𝑡𝑒𝑛𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) and the corresponding
similarity (𝑆𝑖𝑚) between concepts are presented for Query 6 and 7. A
document is represented by a concept, where the concept intent is equal
to the descriptions of the document and the concept extent contains the
document.

Query 6, as the best case, is represented by the query concept with
the intent word, human, communication, verbal, possibility, computer and
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Fig. 4. The effect of threshold selection on CISI collection.

Table 10
Query analysis for query 6 in the CISI collection.

Doc Intent Extent support Sim

query 6 Word, human, communication, verbal, possibility, computer 1 1
doc 400 Telephone, computer 1 0.0052
doc 967 Communication, information 28 0.0052
doc 1357 Feedback, communication, improvement, investigation 1 0.0042
doc 602 Network, communication, information, scientist 1 0.0042
doc 156 Result, information, search, computer 1 0.0042
doc 398 Communication, information, channel, formal 1 0.0042
doc 694 Generation, program, develop, computer 1 0.0042
doc 529 Provide, retrospect, search, computer 1 0.0042
doc 680 Word,program, full, swift 1 0.0042
doc 228 Communication, theory, selection, message 1 0.0042

Table 11
Query analysis for query 7 in the CISI collection.

Doc Intent Extent support Sim

query 7 Describe, work, original, save, form, data, article, paper, publish, print,
computer, plan, byproduct, code, retrieve, process, system, present

1 1

doc 1349 Work 55 0.1794
doc 357 Data 102 0.1794
doc 457 Paper 51 0.1794
doc 1004 Describe, standard, Henriette, bibliography, form, international, readable,

avaram, remain, catalogue, machine, interchange, system, progress, discuss,
record, problem, work, paper,

1 0.0018

doc 689 Grease, input, code, retrieval, system, integration 1 0.0017
doc 917 Work,field, process, system, library 1 0.0017
doc 703 Inform, chemic, small, search, computer, retrieval, system 1 0.0016
doc 1136 Specific, data, inform, retrieval , system, discuss, problem 1 0.0016
doc 1307 Original, easier, extent, make, measure, inform, term, review, contrast,

propos, stew, compare, retrieval, common, system, present
1 0.0016

doc 1207 Technical, project, inform, computer, facility, system 1 0.0015

has only one relevant document in the CISI collection. Through concept
coupling relationship analysis, doc 400 achieves the highest similarity
to the query, where doc 400 is mapped into the concept with the intent
telephone, computer. Though the concept with the intent communication,
information has the same score as the concept with the intent telephone,
computer, doc 400 has a higher cousin similarity with the query than
doc 976. In this case, a query modification can be obtained by refining
the terms word, human, communication, verbal, possibility with the term
telephone. Thus, CCLR is able to find the unique relevant document by
concept coupling relationship analysis, demonstrating the capabilities
of our approach.

Query 7, as the inferior case, is represented by the query concept with
the intent describe, work, original et al. and has eight relevant documents
in the CISI collection. However, no relevant document occurs in the
top 10 document set for query 7. This problem may be due to the fact
that there are less common attributes between concept intents and the

attributes of concept intents are equally important. To overcome this
issue, a semantic measure, such as the information content approach
proposed by Formica (2008), and the weight model, such as the TF-IDF
model, of terms need to be adopted to improve the approach.

6.6. Scalability issue

Our experiments are conducted on the smaller datasets due to the
limitation of the computation of a concept lattice. With the state-
of-the-art FCA algorithms, it is feasible to apply CCLR for smaller
datasets, such as personal book or email collections. It is difficult to
apply CCLR directly to large-scale data, such as the entire Web and
TREC collections. For large-scale data, lattice-based retrieval, such as
CCLR, can be used to refine and represent the top results returned by
an effective retrieval algorithm from language models or probability
models. This procedure may be more efficient than constructing the
lattice of the entire document collection to rank documents.
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7. Related work

Concept lattices based on formal concept analysis (FCA) (Ganter and
Wille, 1999) are important techniques for representing the conceptual
hierarchies used in information retrieval (Priss, 2000; Carpineto and
Romano, 2005; Poelmans et al., 2013; Codocedo and Napoli, 2015).
They integrate the discovery, dependencies and reasoning with gen-
eral/specific relationships between concepts. For instance, an algorithm
mining association rule between user query keywords (UQWs) and non-
user query keywords from the concept lattice of the low-adjacence set,
defined as the webpages that include UQWs, has been proposed to
obtain the semantic information between user queries and web pages
(Du and Li, 2010), and a lattice-based approach for a mathematical
search has been proposed in which math expressions are converted into
the corresponding MathML representation (Nguyen et al., 2012), similar
to the work of Peng Tang, which employs lattices for chemical structural
retrieval (Tang et al., 2015). FCA provides the capabilities of query rep-
resentation and transformation, document browsing, visualization, and
navigation in the standard IR models. For example, CREDO (Carpineto
et al., 2004) proposed by Carpineto et al. is a system that allows the
users to query Web documents and see the retrieval results organized in
a browsable concept lattice. Different to the work of Carpineto, there is
other work on FCA-based retrieval systems that embed the users in the
IR process to improve the performance of the systems. FooCA employs
search engine retrievals to represent a context, and establishes a concept
lattice to visualize the data with the refining context based on the
search strategies and the preferences users have chosen (Koester, 2006).
CreChainDo adopts the user feedback approach to lattice navigation in
which the feedback is converted into a reduction or an extension of the
context of the lattice (Nauer and Toussaint, 2009).

A number of approaches employ different navigation strategies based
on concept lattices to find the related documents for a given user query.
In general, these approaches first search for a query concept that best
represents the user query in the given concept lattice. The neighborhood
expansion strategy (Carpineto and Romano, 2000) searches concepts
in an ‘‘expanding ring’’ order from the query concept, where there
may be super- and sub-concepts of the query concept in the ring. The
hierarchical exploration strategy (Messai et al., 2005) searches concepts
by exploring the super-concepts of the query concept. The above
methods regard document ranking as query-document transformation
driven by conceptual representations of the whole document collection
to obtain the implicit semantic information between documents, rather
than considering the explicit similarity metrics between documents or
concepts. A concept lattice exploration strategy based on the notion of
‘‘cousin concepts’’ (Codocedo et al., 2014) has been proposed to obtain
the explicit semantic information between documents. The strategy
ranks documents based on the semantic measure, which consists of
the occurrence of the concept extents and the semantic information
of the concept intents using an external lexical hierarchy (Formica,
2008). The method ignores the implicit semantic information between
documents. In our work, we leverage the intra- and inter-concept cou-
pling relation to obtain the explicit and implicit semantic information
between documents. An exploring strategy has been proposed in this
paper to compute the inter-concept coupling relation between concepts
by the super- and sub-concepts of the query concept in the hierarchical
structure of lattices.

Apart from the above navigation strategies of concept lattices, fuzzy
concept lattices based on FFCA, incorporating fuzzy logic into FCA, can
be adopted to model the uncertain, vague and implicit information in
queries and documents (Georgescu and Popescu, 2002). For example,
rough set theory is employed in combination with FFCA to perform a
Semantic Web search and to discover information on the Web, and FFCA
is used to support the construction of formal ontologies in the presence
of uncertain data for the development of the Semantic Web (Formica,
2012). The fuzzy extension of FFCA, as a mathematical model, is
exploited to automatically build ontologies, which is regarded as a

formal and reusable model for the knowledge representation (De Maio et
al., 2012). Regarding the similarity between concepts based on FFCA,
Formica proposed to combine the similarity of concept extents (fuzzy
sets) and concept intents (Formica, 2010, 2013). In particular, concept
intents are compared according to the information content approach.
Similar to the work of Formica, we employ FFCA in this paper to model
the uncertain information of queries and documents, and integrate
the similarity of concept extents (fuzzy sets) and concept intents to
compute the explicit semantic information between concepts, i.e., the
intra-concept coupling relation.

The coupling relationship has been proposed recently to represent
the complex relation between terms, which consists of explicit and
implicit relationships. The coupled object similarity measure, consisting
of both attribute value frequency distribution (intra-coupling) and
feature dependency aggregation (inter-coupling), has been proposed to
measure attribute value similarity for unsupervised learning of nominal
data (Wang et al., 2011). Coupled term-term relation analysis has
been designed for clustering by integrating the intra-relation (i.e. co-
occurrence of terms) and inter-relation (i.e. dependency of terms via link
terms) between a pair of terms (Cheng et al., 2013). Keyword and query
coupling relationship analysis has been developed to select semantically
related queries based on intra- and inter-keyword couplings (Meng et
al., 2014). Similar to the above work, we propose concept coupling
relationship analysis to capture the intra-concept coupling relation (ex-
plicit similarity) and inter-concept coupling relation (implicit similarity)
between concepts. The intra-concept coupling relation is represented by
the similarity of fuzzy concepts, and the inter-concept coupling relation
is represented by the topological distance between fuzzy concepts. In
this way, concept coupling relationship analysis can be used to rank
documents in a concept space.

8. Conclusions and future work

To address the challenges of learning semantic information in query
and document representation for information retrieval, especially un-
certain, vague and fuzzy semantic information, this work proposes a
concept lattice-based retrieval framework based on concept coupling
relationship analysis. The proposed framework employs formal concepts
extracted by fuzzy formal concept analysis to represent queries and doc-
uments in a concept space. Then concept coupling relationship analysis,
consisting of the intra- and inter-concept coupling relation, is applied
to rank documents represented by formal concepts. The intra-concept
coupling relation is computed by the common objects and attributes of
concepts and used to capture the explicit semantic information between
concepts. The inter-concept coupling relation is calculated by the partial
order relation of concepts and used to capture the implicit semantic
information between concepts. Substantial experiments are conducted
on four classical datasets used in information retrieval which show that
our approach significantly outperforms the baselines. We discuss the
importance of balancing effectiveness and efficiency in the threshold
selection and provide a method to address the deficiencies of lattice-
based retrieval, whereby lattice-based retrieval refines the top results
returned by other retrieval models.

Our further work will focus on investigating (i) the effect of introduc-
ing weighted models to enrich the fuzzy context and rationally represent
documents, (ii) the improvement of lattice construction using parallel
algorithms, and (iii) how to combine the proposed method with other
models, such as linguistic models, for semantic retrieval.
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