
F-NSP+: A Fast Negative Sequential Patterns Mining Method with
Self-adaption Data Storage Strategy

Xiangjun Donga,∗, Yongshun Gonga, Longbing Caob,∗∗

aQilu University of Technology, Jinan, China
bUniversity of Technology, Sydney, Australia

Abstract

Mining Negative sequential patterns (NSP) is much more challenging than mining positive sequential patterns

(PSP) due to the high computational complexity and huge search space when obtaining the support of

negative sequential candidates (NSC). Very few NSP mining algorithms are available and most of them

are very inefficient since they obtain the support of NSC by scanning database repeatedly. Instead, the

state-of-the-art NSP mining algorithm e-NSP only uses PSP’s information stored in an array structure to

‘calculate’ the support of NSC by equations, without database re-scanning. This makes e-NSP highly efficient,

particularly on sparse datasets. However, when datasets becomes dense, the key process to obtain support

of NSC in e-NSP becomes very time-consuming and needs to be improved. In this paper, we propose a novel

and efficient data structure, bitmap, to obtain the support of NSC. We correspondingly propose a fast NSP

mining algorithm, f-NSP, which uses bitmap to store the PSP’s information and then obtain the support of

NSC only by bitwise operations, which is much faster than the hash method in e-NSP. Experimental results

on real-world and synthetic datasets show that f-NSP is not only tens to hundreds of times faster than e-NSP,

but also saves more than dozens of times of storage spaces than e-NSP, particularly on dense datasets with

a large number of elements in a sequence or a small number of itemsets. Further, we analyze that f-NSP will

consume more storage space than e-NSP when PSP’s support is less than a support threshold sdsup, a value

by our theoretical analysis of storage space. Accordingly, we propose a self-adaptive storage strategy and a

corresponding algorithm f-NSP+ to overcome this deficiency. f-NSP+ can automatically choose bitmap or

array structure to store PSPs information according to the PSPs support. Experimental results show that

f-NSP+ saves more than dozens of times of storage space than f-NSP and has the similar time efficiency as

f-NSP.

Keywords: , Sequential patterns, negative sequential patterns, bitmap

∗Corresponding author 1
∗∗Corresponding author 2

Email addresses: d-xj@163.com (Xiangjun Dong), longbing.cao@uts.edu.au (Longbing Cao)

Preprint submitted to Pattern Recognition January 13, 2018

1. Introduction

Negative sequential patterns (NSP) refer to sequences with non-occurring items. For instance, assume

p1 =< abc X > is a PSP; p2 =< ab¬c Y > is a NSP, where a, b and c stand for medical service codes that

a patient has received in health care, and X and Y stand for disease status. p1 shows that a patient who

usually receives medical services a, b and then c is likely to have disease status X, whereas p2 indicates that5

patients receiving treatments of a and b but NOT c have a high probability of having disease status Y [7].

It is increasingly recognized [8, 9, 40] that such NSP, composed of both occurring and non-occurring

items, can play an irreplaceable role in deeply understanding and tackling some business applications, such

as the associations between treatment services and illness, which cannot be handled by mining PSP only.

NSP cannot be described by classic PSP mining algorithms such as GSP [2], SPAM [3], FreeSpan [4], SPADE10

[5], PrefixSpan [6] and also cannot be applied by traditional sequential pattern application algorithms[29-

31]. Recent years have seen very limited progress in NSP mining [7-12], and most of the existing few NSP

algorithms, such as PNSP [9] and NegGSP [8], are inefficient because it is much more difficult than PSP to

discover PSPs especially due to the intrinsic problem complexities as NSP mining does not satisfy the Apriori

principle [8], high computational complexity as most of existing methods [8-12] calculate the support of NSC15

by additionally scanning the database after identifying PSP, and large negative sequential candidates (NSC)

search space when k-size NSC are generated by conducting a joining operation on (k-1)-size NSP [27].

e-NSP is an efficient NSP mining method [7, 27] that overcomes the above challenges towards (1) identify-

ing NSP without database re-scanning, and (2) generating a limited number of truly useful NSC. It represents

the state-of-the-art progress made in NSP mining.20

e-NSP works as follows. Firstly, in e-NSP [27], a series of important concepts about NSP mining have

been defined, including negative containment, which draws a clear boundary between whether a data sequence

set contains a NSC. Secondly, e-NSP converts the negative containment problem to a positive containment

problem. Finally, e-NSP ‘calculates’ the support of NSC based on the support of corresponding PSPs, without

any additional database scans. In order to do so, e-NSP uses an array to store the PSPs’ sequence ID; each25

PSP has a corresponding array. The array stores all sequence IDs of the sequences that contain this PSP in

a dataset (see Table 2). Then e-NSP uses a hash method to obtain the union sets of relevant arrays, which

is the key process that e-NSP ‘calculates’ the support of NSC by equations. In this way, there is no need

to re-scan the database after discovering PSP. As a result, e-NSP is tens to thousands of times faster than

PNSP and NegGSP, especially on sparse datasets with a small number of elements in a sequence, a large30

number of itemsets, and under low minimum supports [7].

However, when datasets becomes dense, the efficiency of e-NSP will be decreased and need to be improved,

especially on the following two key complexities: time efficiency and space efficiency.

Time efficiency. The key process that e-NSP ‘calculates’ support of NSC is to obtain the union sets of

the arrays. There are two key factors that affect the runtime of this process. One is the number of the35

union sets needed to calculate the support of NSC. The other is the number of sequence ID in the arrays.

2

The bigger the two numbers are, the more the runtime of this process is. The number of the union sets is

directly proportional to the number of elements in a sequence, and the number of sequence ID in the arrays is

directly proportional to the PSPs’ support. With the number of elements in a sequence or the PSPs’ support

increasing, the time efficiency of e-NSP will be decreased. Hence, it is essential to develop even faster NSP40

mining methods to handle this circumstance.

Space efficiency. As introduced above, in order to ‘calculate’ the support of NSC, e-NSP needs to store

every PSP’s sequences ID (except the size of the PSP is one) in a array. When the support of PSP is large,

the number of sequence ID in the arrays is large too. Meanwhile, if the minimum support is relevantly low,

a larger number of PSPs will be generated, which would consume large amounts of storage space (see more45

discussions in Section 5). It is thus essential to develop efficient storage structures.

To address the above critical challenges and overcome the deficiency of e-NSP, in this paper, we further

propose a novel and efficient data structure, bitmap, to store the PSP’s information and obtain the support

of NSC, and a corresponding fast algorithm, f-NSP. First, f-NSP creates a bitmap whose length is the number

of sequences in dataset. Then, f-NSP fills in the bitmap with one (‘1’) or zero (‘0’). If a sequence occurs in a50

data sequence, then f-NSP fill in the corresponding position of the sequence’s bitmap with ‘1’; otherwise with

‘0’ (see Table 2). This step can use any existing PSP mining algorithms (with slight changes if necessary).

Finally, f-NSP obtains the support of NSC only by ‘bitwise’ operations, which is much faster than the hash

method in e-NSP.

Experimental results on real-world and synthetic datasets show that f-NSP is not only tens to hundreds55

of times faster than e-NSP, but also saves more than dozens of times of storage space than e-NSP when

the minimum support min sup is more than a support threshold sdsup=0.03125, a value obtained by our

theoretical analysis (see more discussions in Section 5). Experimental results also show that f-NSP works

particularly well on dense datasets with a large number of elements in a sequence or a small number of

itemsets or high support of PSP or large number of PSP. Therefore, f-NSP substantially improve the time60

and space efficiency of e-NSP. It is the proposed bitmap structure and the corresponding fast method to

calculate the support of NSC that makes f-NSP highly time and space efficient simultaneously.

f-NSP, however, will consume more storage space than e-NSP when PSP’s support is less than sdsup (see

more discussions in Section 5). To address this problem, we further propose a self-adaptive storage strategy

and a corresponding algorithm f-NSP+. f-NSP+ can automatically choose bitmap or array to store PSP’s65

information according to the PSP’s support. That is, when PSPs support is more than or equal to sdsup,

f-NSP+ uses the bitmap structure as in f-NSP; otherwise, f-NSP+ uses array as in e-NSP and automatically

converts array to bitmap such that f-NSP+ can use bitwise operations to fast calculate the support of NSC

as in f-NSP. Experimental results show that f-NSP+ can save more than dozens of times of storage space

than f-NSP and has the similar time efficiency as f-NSP.70

The rest of this paper is organized as follows. Section 2 discusses the related work. In Section 3, we

formalize the problem of mining PSP and NSP. The proposed algorithm f-NSP is detailed in Section 4.

3

Section 5 proposes a space optimization algorithm of f-NSP: f-NSP+. The experimental results are presented

in Section 6. Section 7 reveals the conclusions and future work.

2. Related Work75

Sequential patterns mining, which discovers frequent subsequences as patterns in a sequence database, is

an significant data mining research problem with broad applications, and has been conducted on addressing

many real behaviors, such as optimization strategy [41], classification and clustering problems [39, 42, 45, 48],

Phenotype structure learning [47] and so forth. It is also deemed as an important strategy to solve many

pattern recognition problems. For instance, sequential patterns mining can be used as the key method to80

predict Human Activity [54], as well as be implemented in biological sequences analysis [38, 44, 46]. Since

the first proposal of sequential pattern mining in [1], many algorithms have been successfully proposed to

enhance the algorithm efficiency. However, NSP mining still has huge challenges due to its own properties as

discussed in Section 1. For the readability consideration, we first discuss some fundamental concepts of NSP

mining. Further discussions concerning the NSP mining algorithms can be found in [27].85

firstly, we discuss the basic concept of negative containment. Different researchers present inconsistent

definitions and explanations. Hsueh et al. [9] consider that data sequence ds =< dc > cannot contain

negative sequence ns =< ¬(ab)c¬d > since size(ns) > size(ds); while authors of [8] actually allow that ds

contains ns.

Another issue is how to deal with a non-occurring element. Chen [9] argues that ds =< dc > cannot90

contain < ¬cd > because < d > in ds has no antecedent itemset; ds cannot contain < c¬d > because

< c > in ds has no successor. However, Zheng [8] actually allows that ds contains them. Furthermore, the

containment position of each element is very tricky. Chen [9] proposes that a data sequence ds =< aacbc >

cannot contain a negative sequence ns =< a¬bc >, since the opposite evidence of < abc > can be found in

ds. however, Zheng [9] presents a divided opinion since it matches a and c; it finds the corresponding positive95

element in ds for each negative element of ns, such as the second a for ¬b. According to our understanding,

since < e > means that e occurs, there is no element (including element e) that occurs before or after e.

Accordingly, < e > contains < e¬? >, < ¬? e >, < ¬?e¬? >, where “?” represents any element. The above

discussion shows that there is not a consolidated concept of negative containment in the literature. More

discussions are in Section 4.2 and [27].100

Secondly, unlike PSP mining, few methods are available in the literature about mining NSP. We briefly

introduce them. In [8], a GSP-like way is introduced to mine for NSP, called NegGSP. It discovers PSP by

GSP first, then generates and prunes NSC. It then counts the support of NSC by re-scanning the database

to generate negative patterns. Chen et al. [9] designed a negative NSP mining approach PNSP for mining

sequential patterns in the form of < (abc)¬(de)(ijk) >. This approach proceeds in terms of three stages.105

First, PSP are mined by traditional algorithms and all positive itemsets are derived from these PSP. Second,

all negative itemsets are derived from these positive itemsets. Finally, both positive and negative itemsets

4

cooperate generate NSC, which are in turn joined iteratively to generate longer NSC in an Apriori-like way.

This approach calculates the support of NSC by scanning the database again.

Lin et al. only handle NSP with the last element as negative [10, 13, 14]. Ref. [10] proposes an algorithm110

NSPM for mining such NSP. The work in [13, 14] extends that in [10], which adds fuzzy and strong constraints

to NSPM respectively. In [12], a genetic algorithm is proposed to mine NSP. It generates candidates by

crossover and mutation by involving a dynamic fitness function to generate as many candidates as possible

and avoiding population stagnation. Only the form of (¬A,B), (A,¬B) and (¬A,¬B) are suitable for [15],

which is similar to mine negative association rules [11, 26]. It generates frequent itemsets first, then generate115

frequent and infrequent sequences, and finally derive NSP from the infrequent sequences. The works in [16-

18] are three extended version of [15] by adding fuzzy, multiple level, multiple minimum supports conditions

respectively. The work in [19] mentions the question of mining NSP, but has not given a specific method of

how to mine it. Ref. [20] mines NSP in the same form as [15] in incremental transaction databases. [51] aims

to catch the influence (positive and negative interactions) of items in the time series databases, which could120

be recognized as the sequential patterns over time.

The authors of [21] propose an approach to mine event-oriented negative sequential rules from infrequent

sequences in forms of < A >⇒< ¬B >, < ¬A >⇒< B >, < ¬A >⇒< ¬B >. Based on [21], [22] further

presents an approach to discover both positive and negative impact-oriented sequential rules. Authors of

[23, 24] discuss the questions about sequence classification by using positive and negative patterns. The125

method in [25] uses positive and negative usage patterns to filter Web recommendation lists. [49] finds

conditional patterns considering positive and negative rules both. [50] introduces an algorithm for discovering

two new patterns in multiple databases, i.e., synthesizing heavy association rules and exceptional rules. Hu

et.al. propose a special binary partition tree called High-Yield Partition Tree to mine high-utility item sets

[52]. And further negative rules mining approaches can be found in [34, 35, 36, 37, 53].130

Different from the above work, e-NSP [7, 27] is an efficient NSP mining method without any additional

database scans after mining PSP. It only uses PSP’s information stored in an array to ‘calculate’ the support

of NSC by equations. This makes e-NSP to obtain high time efficiency, particularly on sparse datasets.

However, when datasets are dense, the efficiency of e-NSP decreases, as discussed in the following sections.

As shown in [27], e-NSP is the most advanced method and has been built on an innovative data structure135

and working mechanism. This paper will utilize bitmap strategy to further enhance e-NSP for better time

and space efficiency. Even though bitwise operations is a straightforward technique to facilitate the set

operations, unlike other PSP or association rules mining methods using bitmap structure, such as SPAM

[3], Index-BitTableFI [33] and dEclat [34], our proposed algorithms employ different bitmap structure and

operation to catch hidden sequential patterns in a very short time span. For example, f-NSP creates bitmaps140

for PSPs whose sizes are greater than 1. If a PSP appears in a data sequence i, then the bitmap of this PSP

is set to 1 in position i ; otherwise, the bit is set to 0. The length of each bitmap is equal to the number

of sequences in the database. SPAM, however, is a PSP mining method by building a depth-first tree with

5

Table 1: Symbol Description

Symbol Description

min sup Minimum support threshold

sdsup Space division support

s Sequence

ns Negative sequence

P (ns) ns’s positive partner

EidSs Elements id set of sequence s

OPS(EidSs) Order preserving sequence with

EidSs

MPS(s) Maximum positive sub-sequence of

s

1-negMSns 1-neg-size maximum subsequence of

ns

1-

negMSSns

1-neg-size maximum subsequence

set of ns

FSE or fse First subsequence ending position

LSB or lsb Last subsequence beginning position

B(s) the bitmap of a sequence s

N(B(s)) the number of one in bitmap

a large number of bitmaps, i.e. a vertical bitmap is created for each item in the dataset, and each bitmap

has a bit corresponding to each transaction in the dataset. And then, SPAM uses its own defined bitwise145

operation to calculate each candidate’s support. In a nutshell, the bitmap structure and bitwise operations

of f-NSP combine a unique NSP mining strategy that adapts to the set theory in e-NSP.

3. Problem Statement

For the self-containing readability consideration, we here define PSP and NSP and their corresponding

concepts, which set up the foundation for further introduction of f-NSP in the next section. The main symbols150

used in this paper are summarized in Table 1.

3.1. Mining Positive Sequential Patterns

Assume a set of items I = {i1, i2, . . . , in}, an itemset is a subset of I. A sequence is an ordered list of

itemsets. A sequence s is described by < s1s2 . . . sl >, where sj ⊆ I(1 ≤ j ≤ l). sj is also called an element

, described as (x1x2 . . . xm), where xk is an item, xk ∈ I(1 ≤ k ≤ m). If an element only contains one item,155

6

the bracket is omitted, i.e., element (x) is coded x. An item in a sequence can appear at most once in an

element, but can occur multiple times in different elements.

The sequence length is the length of sequence s, which is the total number of items in all elements in s.

The sequence size(s) is the size of sequence s, described as size(s), it is the total number of elements in s.

For example, assume a sequence s =< a(bc)de > is composed of 4 elements a,(bc), d and e, meanwhile, it is160

also comprised of 5 items a, b, c, d and e. Hence s is a 4-size and 5-length sequence.

Sequence sα =< α1α2 . . . αn > is named a sub-sequence of sequence sβ =< β1β2 . . . βm > and sβ is

a super-sequence of sα, denoted as sα ⊆ sβ , if there exists 1 ≤ j1 < j2 < . . . < jn ≤ m such that

α1 ⊆ βj1 , α2 ⊆ βj2 , . . . , αn ⊆ βjn . We also say that sβ contains sα. For example, < c >, < ac > and

< (ab)d > are all sub-sequences of < (ab)cd >.165

We use a set of tuples < sid, ds > to represent a sequence dataset D, where ds is the data sequence and

sid is the number of sequence. | D | is the number of tuples in D. The set of tuples containing sequence

s is denoted as {< s >}. The support count sup c(s) is the frequency of {< s >} occurring in D, i.e.,

sup c(s) =| {< s >} |=| {< sid, ds >,< sid, ds >∈ D ∧ (s ⊆ ds)} |. The support of s, denoted by sup(s), is

the percentage of | {< s >} | in D, i.e., sup(s) =| {< s >} |/| D |. The minimum support threshold min sup170

is predefined by users.

A sequence s is called a frequent (positive) sequential pattern if sup(s) ≥ min sup. By contrast, s is

infrequent if sup(s) < min sup. PSP mining aims to discover all positive sequences that satisfy the minimum

support. For simplicity, we often omit ‘positive’ when discussing positive items, positive elements and positive

sequences in mining PSP.175

3.2. Mining Negative Sequential Patterns

In real applications, the number of negative sequences is large, and many of them are not meaningful. In

order to reduce the number of NSC and discover meaningful NSP efficiently, constraints must be added to

negative sequences. Here we define the problem of NSP mining, taking three constraints in [7].

Definition 1. Positive Partner. The positive partner of a negative element ¬e is e, denoted as p(¬e), i.e.,180

p(¬e) = e. The positive partner of positive element e is e itself, i.e., p(e) = e. The positive partner of a

negative sequence ns =< s1 . . . sk > is to change all negative elements in ns to their positive partners, denoted

as p(ns), i.e., p(ns) = {< s′1 . . . s
′
k >| s′i = p(si), si ∈ ns}. For example, p(< ¬(ab)c¬d >) =< (ab)cd >.

Constraint 1. Frequency constraint. For simplicity, this paper only focuses on the negative sequences ns

whose positive partners are frequent, i.e., sup(p(ns)) > min sup.185

Constraint 2. Format constraint. Continuous negative elements in a NSC are not allowed, because we

cannot tell the right order of two continuous negative elements if there is no positive element between them.

For example, < ¬(ab)c¬d > satisfies Constraint 2, but < ¬(ab)¬cd > does not.

Constraint 3. Negative element constraint. The smallest negative unit in a NSC is an element. If an

element consists of more than one item, either all or none of items are allowed to be negative.190

7

Similar to the settings in [8], this is to avoid the complexity of handling partially negative element. For

example, < ¬(ab)cd > satisfies Constraint 3, but < (¬ab)cd > does not because, in element (¬ab), only ¬a

is negative while b is not.

Definition 2. Positive/Negative Element-id Set. Element-id is the order number of an element in a

sequence. Given a sequence s =< s1s2 . . . sm >, id(si) = i is the element identifier of element si. Element-id195

set EidSs of s is the set that includes all elements and their ids in s, i.e., EidSs = {(si, id(si)) | si ∈ s =

(s1, 1), (s2, 2), . . . , (sm,m)}(1 ≤ i ≤ m).

The set including all positive and negative element-ids of a sequence s is called positive and negative

element-id set of s, denoted as EidS+
s , EidS−s , respectively. For example, s =< ¬(ab)c¬d >, EidS+

s =

{(c, 2)}, EidS−s = {(¬(ab), 1), (¬d, 3)}.200

Definition 3. Order-preserving Sequence. For any subset EidS′s = {(α1, id1), (α2, id2), . . . , (αp, idp)}(1 >

p ≤ m) of EidSs, α =< α1α2 . . . αp >, if ∀αi, αi+1 ∈ α(1 ≤ i < p), there exists idi < idi+1, then α

is called an order-preserving sequence of EidS′s, denoted as α = OPS(EidS′s). For example, given s =<

¬(ab)c¬d >, its EidSs = {(¬(ab), 1), (c, 2), (¬d, 3)}, EidS+
s = {(c, 2)}, EidS−s = {(¬(ab), 1), (¬d, 3)}. We can

get OPS(EidS+
s) =< c >. Also, if EidS′s = {(¬(ab), 1), (c, 2)}, we can create a sequence OPS(EidS′s) =<205

¬(ab)c >.

Definition 4. Sub-sequence and Super-sequence of Negative Sequence. Sequence sα is called a sub-sequence

of a negative sequence sβ , and sβ is a super-sequence of sα, if ∀EidS′sβ , EidS′sβ is a subset of EidSsβ ,sα =

OPS(EidS′sβ), denoted as sα ⊆ sβ . If sα is a negative sequence, it is required to satisfy Constraint 2, which

means that there must not be continuous negative elements in sα. For example, given sβ =< ¬(ab)cd > and210

sα =< ¬(ab)d >, EidSsβ = {(¬(ab), 1), (c, 2), (d, 3)}, EidS′sβ = {(¬(ab), 1), (d, 3)} is a subset of EidSsβ .sα is

a sub-sequence of sβ since sα = OPS(EidS′sβ).

Definition 5. Maximum Positive Sub-sequence. We use n − neg − size to denote a negative sequence

containing n negative elements. Let ns =< s1s2 . . . sm > be an m-size and n-neg-size negative sequence

(m − n > 0), OPS(EidS+
ns) is called the maximum positive sub-sequence of ns, denoted as MPS(ns).215

For example, given a negative sequence s =< ¬(ab)cd >, EidS+ = {(c, 2), (d, 3)}, its maximum positive

sub-sequence is MPS(s) =< cd >.

Definition 6. Negative Sequential Pattern. A negative sequence s is a negative sequential pattern (NSP)

if its support is not less than the threshold min sup.

4. f-NSP Algorithm220

In this section, we introduce f-NSP. Since f-NSP is built on e-NSP [7, 27], its main definitions and NSC

generation method are similar to e-NSP. After reviewing e-NSP, we introduce the important definitions, data

structure, the method to calculate NSC’s supports, and the corresponding algorithm f-NSP.

8

Figure 1: The framework of e-NSP

4.1. The Framework of e-NSP

The framework and working mechanism of e-NSP [7, 27] is illustrated in Figure 1. Given a sequence225

database, e-NSP works on the following steps to discover NSP.

Step 1. All PSP are mined by GSP; All PSPs (in addition to 1− size PSPs) and their sid sets are stored

in an array. For example, a positive sequence < ab >, its sid sets is 1, 2, 3 means < ab > is contained in the

data sequence with Sid 1,2, and 3. The data structure of e-NSP is shown in Table 2.

Step 2. NSC are generated based on the identified PSP in terms of three constraints proposed in Section230

3.2;

Step 3. The generated NSC are converted to their corresponding PSP in terms of the negative conversion

strategy;

Step 4. The supports of NSC are calculated based on the supports of their corresponding PSPs;

Step 5. Finally, NSP are identified from the NSC to satisfy certain support criteria.235

4.2. Negative Containment

As a sub-sequence (e.g., s1 =< d >) may occur more than once in its super-sequence (e.g., s2 =<

a (bc) d (cde) >), we need to know the exact positions of s2 containing s1 from the left and right sides of s2.

For this, below we define Negative Containment and relevant concepts.

Definition 7. First Sub-sequence Ending Position/Last Sub-sequence Beginning Position. Given a data240

sequence ds =< d1d2 . . . dt > and a positive sequence α,

(1) if ∃p(1 < p ≤ t), α ⊆< d1 . . . dp > ∧α 6⊆< d1 . . . dp−1 >, then p is called the First Sub-sequence Ending

Position, denoted as FSE(α, ds); if α ⊆< d1 > then FSE(α, ds) = 1;

(2) if ∃q(1 ≤ q < t), α ⊆< dq . . . dt > ∧α 6⊆< dq+1 . . . dt >, then q is called the Last Sub-sequence Beginning

Position, denoted as LSB(α, ds); if α ⊆< dt > then LSB(α, ds) = t;245

(3) if α 6⊆ ds, then FSE(α, ds) = 0, LSB(α, ds) = 0.

For example, given ds =< a(bc)d(cde) >. FSE(< a >, ds) = 1, FSE(< c >, ds) = 2, FSE(< cd >, ds) = 3,

LSB(< a >, ds) = 1, LSB(< c >, ds) = 4, LSB(< cd >, ds) = 2, LSB(< (cd) >, ds) = 4.

The definition of a data sequence containing a negative sequence is as follows.

9

Definition 8. Negative Containment. Let ds =< d1d2 . . . dt > be a data sequence, ns =< s1s2 . . . sm >250

be an m− size and n-neg-size negative sequence, (1) if m > 2t+ 1, then ds does not contain ns; (2) if m = 1

and n = 1, then ds contains ns when p(ns) 6⊆ ds; (3) otherwise, ds contains ns if, ∀(si, id(si)) ∈ EidS−ns(1 ≤

i ≤ m), one of the following three cases holds:

(a) (lsb = 1) or (lsb > 1) ∧ p(s1) 6⊆< d1 . . . dlsb−1 >, when i = 1

(b) (fse = t) or (0 < fse < t) ∧ p(sm) 6⊆< dfse+1 . . . dt >, when i = m255

(c) (fse > 0 ∧ lsb = fse + 1) or (fse > 0 ∧ lsb > fse + 1) ∧ p(si) 6⊆< dfse+1 . . . dlsb−1 >, when 1 < i < m,

where fse = FSE(MPS(< s1s2 . . . si−1 >), ds), lsb = LSB(MPS(< si+1 . . . sm >), ds).

In the above definition, Case (a) indicates that the first element in ns is negative. “(lsb > 1) ∧ p(s1) 6⊆<

d1 . . . dlsb−1 >” means that < dlsb . . . dt > contains MPS(< s2 . . . sm >) but < d1 . . . dlsb−1 > does not

contain p(s1). “lsb = 1” means that the last sub-sequence’s beginning position is 1, so p(s1) cannot be260

contained by ds. Case (b) indicates that the last element in ns is negative. Case (c) indicates that the

negative element is between the first and last element in ns. “lsb > fse + 1” ensures there is at least one

element in “< dfse+1 . . . dlsb−1 >”. “fse > 0 ∧ lsb = fse + 1” means that dfse and dlsb are contiguous

elements, so p(si) cannot be contained between them.

4.3. Negative Conversion265

In order to solve the negative containment problem by using the corresponding positive sequences, we

define the 1-neg-size Maximum Sub-sequence as follows [7, 27].

Definition 9. 1-neg-size Maximum Sub-sequence. For a negative sequence ns, its sub-sequences that

include MPS(ns) and one negative element e is called a 1−neg−size maximum sub-sequences, denoted as 1−

negMS = OPS(EidS+
ns, e), where e ∈ EidS−ns. The sub-sequence set including all 1-neg-size maximum sub-270

sequences of ns is called 1-neg-size maximum sub-sequence set, denoted as 1−negMSSns , 1−negMSSns =

{OPS(EidS+
ns, e) | ∀ ∈ EidS−ns}. For example, 1) ns =< ¬(ab)c¬d >, 1 − negMSSns = {< ¬(ab)c >,<

c¬d >}; 2) ns′ =< ¬a(bc)d¬(cde) >, 1− negMSSns′ = {< ¬a(bc)d >,< (bc)d¬(cde) >}.

Corollary . Negative Conversion Strategy. Given a data sequence ds =< d1d2 . . . dt >, and ns =<

s1s2 . . . sm >, which is an m-size and n-neg-size negative sequence, the negative containment problem can275

be converted to the following problem: data sequence ds contains negative sequence ns if and only if the two

conditions hold: (1) MPS(ns) ⊆ ds; and (2) ∀1− negMS ∈ 1− negMSSns, p(1− negMS) 6⊆ ds.

For example, given ds =< a(bc)d(cde) >, 1) if ns =< a¬dd¬d >, 1 − negMSSns = {< a¬dd >,<

ad¬d >}, then ds does not contain ns because p(< a¬dd >) =< add >⊆ ds; 2) if ns′ =< a¬bb¬a(cde) >

, 1− negMSS′ns = {< a¬bb(cde) >,< ab¬a(cde) >}, then ds contains ns because MPS(ns) =< ab(cde) >⊆280

ds ∧ p(< a¬bb(cde) > 6⊆ ds ∧ p(< ab¬a(cde) >) 6⊆ ds.

This corollary converts the problem whether a negative sequence is contained in a data sequence to the

problem whether a data sequence does not contain some related positive sequences. It enables us to calculate

the support of negative sequences by only using the information of corresponding positive sequences.

10

4.4. NSC Generation285

In order to generate all non-redundant NSC from PSP, the key process of generating a NSC is to convert

non-contiguous elements in a positive pattern to their negative partners [7, 27]. In detail, for a k-size

PSP, its NSC are generated by changing any m non-contiguous element(s) to its (their) negative one(s),

m = 1, 2, . . . , dk/2e, where dk/2e is a minimum integer that is not less than k/2.

For example, the NSC based on < (xy)ab > include: (1) m = 1, < ¬(xy)ab >,< (xy)¬ab >, < (xy) a¬b >;290

and (2) m = 2, < ¬(xy)a¬b >.

4.5. Calculating the NSC Supports

In e-NSP, the supports of NSC are calculated as follows. Given a m-size and n-neg-size negative sequence

ns, for ∀1− negMSi ∈ 1− negMSSns(1 ≤ i ≤ n), the support of ns in sequence database D is:

sup(ns) = sup(MPS(ns))− | ∪ni=1{p(1− negMSi)} | (1)

If ns only contains a negative element, the support of ns is:

sup(ns) = sup(MPS(ns))− sup(p(ns)) (2)

In particular, for negative sequence < ¬e >,

sup(< ¬e >) =| D | −sup(< e >) (3)

From Equation (1), we can see that e-NSP ‘calculates’ sup(ns) only based on calculating the union sets

of {p(1− negMSi)} , without any additional database scans.295

4.6. The Data Structure of f-NSP

As discussed in Section 1, in order to ‘calculate’ the support of NSC based on the support of corresponding

PSPs, e-NSP uses an array to store the PSP’s ID (as shown in Table 2). From Equation (1), we can see

that the runtime of e-NSP is mainly in calculating ∪ni=1{p(1 − negMSi)}. This process will be very time-

consuming when the sets’ number in ∪ni=1{p(1− negMSi)} and the number of sequence IDs in the array are300

large (n and p(1−negMSi) are large). In order to overcome this deficiency, we propose a novel and efficient

data structure, bitmap, to store the PSP’s information.

f-NSP uses bitmap to represent the PSP data, and calculates NSC supports through bitwise operations.

f-NSP creates bitmaps for PSPs whose sizes are greater than 1. If a PSP appears in sequence i, then the

bitmap of this PSP is set to 1 in position i ; otherwise, the bit is set to 0. The length of each bitmap is equal305

to the number of sequences in the database.

The f-NSP data structure based on the dataset in Table 3 is illustrated in Table 2, its data structure

includes the first, second, fourth columns. The first column stores PSP, the second column holds its support,

and the fourth column encloses its bitmap. For example, the bitmap of ab is | 1 | 1 | 1 | 0 | 0 |. This means

that ab is contained in the first three data sequences.310

11

Table 2: f-NSP vs. e-NSP Data Structures

PSP Support {sid} for e-NSP {sid} for f-NSP

< ab > 3 {1,2,3} | 1 | 1 | 1 | 0 | 0 |

< abc > 2 {1,3} | 1 | 0 | 1 | 0 | 0 |

.

The process of generating f-NSP data structure is shown in Algorithm 1. In order to efficiently search

PSP from the PSPs’ list (the first column in table 2), we use a hash table to store this list. (1) For each

pattern in PSP, f-NSP creates a hash table to store its related information (Line 2). (2) If the pattern is

1-size PSP, we do not record its bitmap because the equations do not need to calculate the union bitmap

of those 1-size PSP (Lines 4-5). (3) We store the other PSP information into the hash table, including the315

PSP’s support and bitmap (Line 7).

Algorithm 1: f-NSP Data structure generation

INPUT: All PSP and their related information;320

OUTPUT: NSP;

(1)CreateHash(PSP){

(2)CREATE PSPHash;

(3) FOR (each pattern p in PSP)

(4) IF(p.size=1)325

(5) PSPHash.put(p,p.support count);

(6) ELSE

(7) PSPHash.put(p,p.support count,p.BitMap);

(8) //END IF

(9) //END FOR330

(9)}

4.7. Calculating the Supports of Negative Sequences in f-NSP

As shown in Equation (1), most of the runtime in e-NSP mining is consumed in calculating the union sets

∪ni=1{p(1 − negMSi)} by a hash method. This method is very time-consuming when n or p(1 − negMSi)335

is large. Based on the bitmap structure, f-NSP only uses OR bitwise operation on the bitmap of n or

p(1 − negMSi) (1 ≤ i ≤ n), instead of the hash method, to calculate ∪ni=1{p(1 − negMSi)}. That is, the

number of 1s in ORni=1{p(1− negMSi)} is the element number in ∪ni=1{p(1− negMSi)}.

12

Figure 2: The OR process in the bitwise operation

Formally, assume s is a PSP, its bitmap is denoted by B(s) and the number of 1s in B(s) is denoted by

N(B(s)). Given an m− size and n− neg − size negative sequence ns, Equation (1) is rewritten as:340

sup(ns) = sup(MPS(ns))−N(ORni=1{B(p(1− negMSi))})/ | D | (4)

We illustrate the above OR operation process by Figure 2. Suppose a PSP is < eacb > and sup c(ab)=5,

one of its NSC ns is < ¬ea¬cb >. Correspondingly, MPS(ns) =< ab >, P (1 − negMS1)=< eab >,

P (1 − negMS2)=< acb >. Suppose B(< eab >) = | 0 | 0 | 1 | 1 | 0 | and B(< acb >) = | 0 | 1 | 1 | 1 | 0 |.

The unionbitmap of B(< eab >) OR B(< acb >) is shown in Figure 2. Hence, we can easily obtain

N(unionbitmap)=3 and then have sup c(< ¬ea¬cb >)=2 by Equation (4).345

4.8. The f-NSP Algorithm

We here introduce our f-NSP algorithm in Algorithm 2 which mines for NSP based only on identifying

PSP. In the algorithm, we use support count instead of support for convenience when implementing the

algorithm.

350

Algorithm 2: f-NSP Algorithm

INPUT: Sequence dataset D and min sup;

OUTPUT: NSP;

(1)PSP = GSP(D);355

(2)CreateHash(PSP);

(3)FOR (each psp in PSP)

(4) NSC = NSC Generation(psp);

(5) FOR (each nsc in NSC)

(6) IF (nsc.size == 1 && nsc.neg size == 1)360

(7) Calculate sup by Equation (3) ;

(8) ELSE IF (nsc.size > 1 && nsc.neg size == 1)

(9) Calculate sup by Equation (2);

(10) ELSE

13

Table 3: Example: Data Set

Sid Data Sequence

1 < abc >

2 < a(ab) >

3 < (ae)(ab)c >

4 < aa >

5 < d >

(11) Calculate sup by Equation (1);365

(12) //END IF

(13) IF (nsc.support count/ | D |> min sup)

(14) NSP.add(nsc);

(15) //END IF

(16) //END OF LINE (5)370

(17)//END OF LINE (3)

(18)RETURN NSP;

The f-NSP algorithm consists of the following steps. (1) Line 1 finds all PSP from the sequence database

based on the GSP algorithm [2] (we use GSP as an example, any PSP algorithms can be used). All PSP and375

their bitmaps are saved in a hash table PSPHash (Line 2);

(2) Each PSP generates NSC(s) by using the NSC generation method in Section 4.4 (Line 4);

(3) The supports of nsc with 1− neg − size are calculated by Equation (2) and Equation (3) (Line 5-9).

The supports of other nsc are easily calculated by Equation (4) (Line 10-17). Specifically, we firstly obtain

each 1− negMS′s bitmap in the 1− negMSSnsc. Secondly, the union bitmap is obtained by using the OR380

operation. Thirdly, the supports of the nsc are calculated by Equation (4) (Lines 11-17). Finally, whether a

nsc is an NSP or not is determined by comparing its support with min sup (Line 18-19).

(4) Return the results and end the whole algorithm (Line 23).

4.9. An Example

The above sections introduce key concepts and components as well as the f-NSP algorithm. This section385

illustrates how to mine for NSP by using f-NSP. The sequence database is shown in Table 3 (adopted from

[9]). In the example, we set min sup = 40%.

The process is as follows.

(1) Mine all PSPs by GSP, and fill in the f-NSP data structures, which are shown in Table 4.

(2) Use the NSC generation method to generate all NSC.390

14

Table 4: Example: Results of Positive Patterns

PSP Support count Size Bitmap

< a > 4 1 -

< b > 3 1 -

< c > 2 1 -

< aa > 3 2 | 0 | 1 | 1 | 1 | 0 |

< ab > 3 2 | 1 | 1 | 1 | 0 | 0 |

< ac > 2 2 | 1 | 0 | 1 | 0 | 0 |

< bc > 2 2 | 1 | 0 | 1 | 0 | 0 |

< (ab) > 2 1 -

< abc > 2 3 | 1 | 0 | 1 | 0 | 0 |

< a(ab) > 2 2 | 0 | 1 | 1 | 0 | 0 |

(3) Use Equations (2)-(4) to calculate the supports of these NSC. The results are shown in Table 5, and

the resulting NSP are marked in bold.

From this example, we can see that < ac > and < a¬c >, < a(ab) > and < a¬(ab) > are frequent

patterns because their supports are higher than min sup.

5. Theoretical Analysis of f-NSP Time and Space Efficiency395

In order to obtain a theoretical conclusion of the time and space efficiency of f-NSP, in this section we

compare it with e-NSP.

5.1. Runtime Analysis of f-NSP vs. e-NSP

As discussed above, the runtime of e-NSP is mainly consumed in calculating the union set of {p(1 −

negMSi)} , i.e., comparing the Sids stored in arrays by using a hash method. The number of comparing400

times determines the algorithm’s runtime. Therefore, the runtime analysis of e-NSP is converted to the

analysis of comparison times. From Equation (1) we can see that e-NSP is very sensitive to the number of

sets in {p(1 − negMSi)} and the number of sequence IDs in the arrays, while f-NSP almost has nothing to

do with them per Equatoin (4).

5.1.1. Analysis of Comparison Times in e-NSP405

The runtime analysis of e-NSP comparing with PNSP and NegGSP has already been done in [27]. So

we introduce the relevant analysis methods and equations in this section. To understand the comparison

times in e-NSP, we first need to know the comparison times of calculating a k − size and m − neg − size

NSC, denoted by CTk,m; then we need to know the number of NSCs generated from a PSP, | NSCk,∀m |.

Accordingly, we can obtain the total comparison times in e-NSP by
∑k
i=3 |PSPi| ∗ (|NSCi,∀m(m≥2)| ∗CTk,m),410

15

Table 5: Example: Results of NSC and Supports (min sup = 40%)

PSP NSC Related PSP Sup

< a > < ¬a > < a > 1

< b > < ¬b > < b > 2

< c > < ¬c > < c > 3

< aa > < ¬aa > < a >,< aa > 1

< a¬a > < a >,< aa > 1

< ab > < ¬ab > < b >,< ab > 0

< a¬b > < a >,< ab > 1

< ac > < ¬ac > < c >,< ac > 0

< a¬c > < a >,< ac > 2

< bc > < ¬bc > < c >,< bc > 0

< b¬c > < b >,< bc > 1

< (ab) > < ¬(ab) > < (ab) > 3

< a(ab) > < ¬a(ab) > < (ab) >,< a(ab) > 0

< a¬(ab) > < a >,< a(ab) > 2

< abc > < ¬abc > < bc >,< abc > 0

< a¬bc > < ac >,< abc > 0

< ab¬c > < ab >,< abc > 1

< ¬ab¬c > < b >,< ab >,< bc > 0

16

where | PSPi | is the number of i− size PSPs. Below, we just present the mainly analysis equations. Please

find details in [27] if necessary.

CTk,m =

m∑
i=1

|{p(1− negMSi)}| =
m∑
i=1

sup(p(1− negMSi)), (5)

where |{p(1− negMSi)}| is the number of sids in {p(1− negMSi)}, i.e., the support of p(1− negMSi).

Then Equation (5) can be rewritten as:

CTk,m =

m∑
i=1

sup(p(1− negMSi))

= m ∗ sup(p(1− negMSi))

= m ∗ sup(PSPk−m+1),

(6)

where sup(p(1− negMSi)) is the average support of {p(1− negMSi)}.415

|NSCk,m| and |NSCk,∀m| indicate the number of m − neg − size NSCs generated from a k − size PSP

and the number of NSCs generated from a k − size PSP, respectively. Then,

|NSCk,m| = Cmk−m+1 =
(k −m+ 1)!

m! ∗ (k − 2m+ 1)!
(1 ≤ m ≤ dk/2e) (7)

|NSCk,∀m| =
dk/2e∑
m=1

|NSCk,m| (8)

|PSPk| indicates the number of all k − size PSPs. The total number of NSCs generated from all PSPs

by e-NSP, |NSC|e−NSP , is

|NSC|e−NSP =

k∑
i=1

|PSPi| ∗ |NSCi,∀m| (9)

And the comparison times of all union set operations in e-NSP, CT e−NSP , is420

CT e−NSP =

k∑
i=3

|PSPi| ∗ (|NSCi,∀m(m≥2)| ∗ CTk,m)

=

k∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

|NSCi,m| ∗ CTk,m)

=

k∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

(i−m+ 1)!

m! ∗ (i− 2m+ 1)!
∗m ∗ sup(PSPi−m+1))

(10)

17

te−NSP denotes the time of a comparison in e-NSP. Finally, the total time to calculate the whole union

sets in e-NSP, T e−NSP , is

T e−NSP = te−NSP ∗ CT e−NSP

=

k∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

(i−m+ 1)!

m! ∗ (i− 2m+ 1)!
∗m ∗ sup(PSPi−m+1) ∗ te−NSP)

(11)

5.1.2. Analysis of Comparison Times in f-NSP

From Equation (4) we can see that the runtime of f-NSP is mainly consumed in calculating the union

sets {B(p(1 − negMSi))} by the OR operation and it is a bit difficult to represent its comparison times in425

the way same as e-NSP. We simply use tOR to represent the runtime of OR two bitmaps, then the runtime

of f-NSP is:

T f−NSP =

k∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

(i−m+ 1)!

m! ∗ (i− 2m+ 1)!
∗m ∗ tOR) (12)

5.1.3. Runtime Comparison between f-NSP and e-NSP against Data Factors

We further assess the runtime of e-NSP, T e−NSP and f-NSP, T f−NSP in terms of the data factors [27]

describing the characteristics of a dataset. A data factor describes the characteristic of underlying data430

from a particular perspective. We specify the following data factors: C, T , S, I, DB and N to describe

characteristics of sequential data [27].

• C: Average number of elements per sequence;

• T : Average number of items per element;

• S: Average length of maximal potentially large sequences;435

• I: Average size of items per element in potentially maximally large sequences;

• DB: Number of sequences in a database; and

• N : Number of items.

We further derive T e?NSP in Equation (11) and T f−NSP in Equation (12) in terms of the above data

factors. The size of sequence k can be represented by S/I. Accordingly, T e?NSP in Equation (11) and440

T f−NSP in Equation (12) are converted to:

T f−NSP =

S/I∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

(i−m+ 1)!

m! ∗ (i− 2m+ 1)!
∗m ∗ sup(PSPi−m+1) ∗ te−NSP) (13)

18

T f−NSP =

S/I∑
i=3

|PSPi| ∗ (

di/2e∑
m=2

(i−m+ 1)!

m! ∗ (i− 2m+ 1)!
∗m ∗ tOR) (14)

Further, we observe the effect on runtime by changing one data factor while the others are fixed.

1) C is changed, T , S, I, DB and N are fixed. Although C does not directly appear in the above two

equations, increasing C will result in the increase of m and sup(PSPi−m+1) to some degree. Hence,

T e−NSP will increase too. Since tOR is almost nothing to with C, T e−NSP − T f−NSP will become445

greater when C increases.

2) T is changed, C, S, I, DB and N are fixed. The effect of changing T is similar to that of adjusting C.

Increasing T will result in the increase of m and sup(PSPi−m+1) to some degree. Hence, T e−NSP will

increase too. Since tOR is almost nothing to with T , T e−NSP − T f−NSP will become greater when T

increases.450

3) S is changed, C, T , I, DB and N are fixed. Increasing S will increase m and the total number of PSP.

It will affect both f-NSP and e-NSP. Generally, m ∗ tOR is far less than m ∗ (PSPi−m+1) ∗ te−NSP , thus

T e−NSP − T f−NSP will become bigger when S increases.

4) I is changed, C, T , S, DB and N are fixed. Increasing I will affect both e-NSP and F-NSP. Both of

them will increase, while e-NSP increases proportionally faster than f-NSP when I increases, and the455

gap thus increases too.

5) DB is changed, C, T , S, I and N are fixed. The effect of factor DB will be seen in section 7.6.

6) N is changed, C, T , S, I and DB are fixed. Increasing N will decrease sup(PSPi−m+1). But T f−NSP

has nothing to with DB. Therefore, T f−NSP − T e−NSP will become smaller when N increases.

In summary, f-NSP performs generally more efficiently than e-NSP in terms of the various data factors.460

f-NSP is especially suitable for datasets with a large number of elements in a sequence, a small number of

itemsets, high support of PSP, or a large number of PSP. The above empirical theoretical analysis from the

data factor perspective is further verified by the corresponding experiments in Sections 7.4 and 7.5.

5.2. Space Analysis between f-NSP and e-NSP

We assume that all data in the f-NSP data structure are stored in main memory. Let | PSP1 | denote465

the number of 1-size PSP, | PSP>1 | denote the total number of PSP whose size are more than 1. We only

record their support values in integer (cost 32 bit, defined as v = 32 bit). Both e-NSP and f-NSP just need to

store the support of 1-size PSP because we do not need their union set of sid or bitmap when calculating the

19

support of NSC. Let Sf−NSP and Se−NSP denote the space consumption of f-NSP and e-NSP respectively,

we have:470

Sf−NSP = |PSP1| ∗ v + |D| ∗ |PSP>1| (bit) (15)

In e-NSP, each PSP owns a sid set which contains its corresponding PSPs (as shown in Table 2), and

each sid is stored as an integer. The space consumption of e-NSP is:

Se−NSP = |PSP1| ∗ v +

|PSP>1|∑
i=1

sup c(PSPi) ∗ v (bit) (16)

Therefore, in the best case, if each sup c(psp) = min sup ∗ |D|, the minimum Se−NSP min is achieved.

Se−NSP min = |PSP1| ∗ v +min sup ∗ |D| ∗ |PSP>1| ∗ v (bit) (17)

Equation (17) minus Equation (15) generates:

Se−NSP min − Sf−NSP = min sup ∗ |D| ∗ |PSP>1| ∗ v − |D| ∗ |PSP>1|

= |D| ∗ |PSP>1| ∗ (min sup ∗ v − 1) (bit)
(18)

f-NSP and e-NSP have the same data space consumption when:475

Se−NSP min − Sf−NSP = |D| ∗ |PSP>1| ∗ (min sup ∗ v − 1) = 0

min sup ∗ v − 1 = 0

min sup = 1/v

min sup = 0.03125

Ideally, min sup= 0.03125 is a space division support, denoted as sdsup. Hence f-NSP should be more

space-efficient than e-NSP when min sup > sdsup.

In addition, for each pattern of PSP>1, its data space consumption in f-NSP is |D| bits, which is denoted

as S1, and the space consumption in e-NSP is |D| ∗ sup(ps) ∗ v bits, which is denoted as S2. Obviously, when

sup(ps) < sdsup, it turns out to be S2 < S1. Thus, we can utilize this property to improve the algorithm480

space-efficiency. As a result, a self-adaptive data storage strategy is proposed in the following section.

6. f-NSP+: f-NSP with Space Optimization

The above space analysis reveals that f-NSP may consume more space than e-NSP when min sup is

less than sdsup. In order to overcome this deficiency, we propose a self-adaptive storage strategy and a

corresponding edition of f-NSP: f-NSP+.485

20

Table 6: The self-adaptive storage strategy in f-NSP+

PSP Support Bitmap/{sid} note

< ab > 0.32 |1|1|1|0|0|...|0|1|1| sup() >= sdsup

< abc > 0.1 {1, 3, 7, 8, 9, 10, 20, 21, 22, 30} sup() < sdsup

.

6.1. Self-adaptive Storage Strategy and f-NSP+

f-NSP+ can automatically choose the bitmap or array method to store PSP information according to

PSP supports. That is, when a PSP’s support is more than or equal to sdsup, f-NSP+ selects the bitmap

structure as in f-NSP; otherwise, f-NSP+ uses array as in e-NSP and automatically converts array to bitmap

such that f-NSP+ can use bitwise operations to fast calculate the support of NSC as in f-NSP.490

The f-NSP+ self-adaptive storage strategy is shown in Table 6. The pseudo code of f-NSP+ is shown in

Algorithm 3.

Algorithm 3: f-NSP+ algorithm

495

INPUT: All PSP, |D|, sdsup;

OUTPUT: PSP’s hash table;

(1)CreateHashPlus(PSP){

(2)CREATE PSPHash;

(3) FOR (each pattern p in PSP)500

(4) IF(p.size=1)

(5) PSPHash.put(p,p.support);

(6) ELSE IF (p.support>=sdsup)

(7) PSPHash.put(p,p.support,p.bitMap);

(8) ELSE505

(9) PSPHash.put(p,p.support,p.sidSet);

(11) END FOR

(11)RETURN PSPHash;

(12)}

510

f-NSP+ works as follows. (1) For each pattern in PSP, f-NSP+ creates a hash table to store its related

information (Line 2). (2) For 1− sizePSP , we do not record its bitmap because we do not need to calculate

the its bitmap (Lines 4-5). (3) For k− size PSP (k > 1), f-NSP+ utilizes bitmap to store PSP’s information

when the PSP’s support is greater than sdsup; otherwise, f-NSP+ utilizes array to store PSP’s information

(Lines 6-10).515

21

Figure 3: The bitmap conversion process in f-NSP+

6.2. Calculating the Support of Negative Sequences in f-NSP+

In order to use bitwise operations to fast calculate the supports of NSC in f-NSP+, we need to convert the

array structure to the bitmap structure. We first read each sid from an array, then we set its corresponding

position in bitmap with ‘1’. For simplicity, we usually use the sequence order number as its sid. This

conversion process is illustrated in Figure 3 (assume a dataset D contains 100 data sequences).520

The process of the conversion from array to bitmap structure is summarized in Algorithm 4.

Algorithm 4: Bitmap Conversion Method in f-NSP+

INPUT: PSPHash, PSP ;525

OUTPUT: The bitmap of this PSP;

(1)GetBitmap(PSPHash, PSP){

(2) IF(the type of PSPHash.get(PSP) is not bitmap)

(3) FOR (int i: PSPHash.get(PSP));

(4) thisBitmap.set(i);530

(5) END IF

(6) RETURN thisBitmap;

(7)}

6.3. Theoretical Space Analysis between f-NSP+ and f-NSP535

We now theoretically analyze the space consumption between f-NSP+ and f-NSP.

Let |PSP<sdsup| be the total number of PSP whose support is less than sdsup, sup(PSP<sdsup) be the

average support of PSP<sdsup, and |PSP≥sdsup| be the total number of PSP whose support is greater than

or equal to sdsup. The minimum space consumption of f-NSP+, Sf−NSP+, is:

Sf−NSP+ = |PSP1| ∗ v + |D| ∗ sup(PSP<sdsup) ∗ |PSP<sdsup| ∗ v + |D| ∗ |PSP≥sdsup| (bit) (19)

22

The minimum space consumption of f-NSP, i.e., Equation 15, is rewritten as:540

Sf−NSP+ = |PSP1| ∗ v + |D| ∗ |PSP<sdsup|+ |D| ∗ |PSP≥sdsup| (bit) (20)

Equation 20 minus equation 19 is:

Sf−NSP − Sf−NSP+ = |D| ∗ |PSP<sdsup| − |D| ∗ sup(PSP<sdsup) ∗ |PSP<sdsup| ∗ v

= |D| ∗ |PSP<sdsup|(1− sup(PSP<sdsup ∗ v)) (bit)
(21)

When min sup ≥ sdsup, |PSP < sdsup|=0, thus Sf−NSP = Sf−NSP+; when min sup < sdsup,

if |PSP<sdsup| 6= 0, sup(PSP<sdsup) should be between min sup and sdsup, so (1 − supavg ∗ v) > 0,

Sf−NSP > Sf−NSP+. Meanwhile, with min sup decreasing, |PSP<sdsup| will increase and sup(PSP<sdsup)

will decrease, and Sf−NSP − Sf−NSP+ will become large. Therefore, f-NSP+ can consume less space than545

f-NSP when min sup is very small.

7. Experiments and Results

We conduct experiments on 17 synthetic and real datasets to compare f-NSP with three available NSP

mining methods, e-NSP [7, 27], NegGSP [8] and PNSP [9]. To compare their performance, we make PNSP

and NegGSP to follow the same constraints and definitions in e-NSP. However, due to the huge gap between550

two mining strategies, one is to re-scan the database (i.e. NegGSP and PNSP) and the other is to calculate

NSC supports by equations (i.e. f-NSP, f-NSP+ and e-NSP). We just compare f-NSP with e-NSP, NegGSP

and PNSP in two datasets, DS1 and DS3, as shown in Figure 4.

In the following experiments, all positive patterns are identified by GSP. NSP are further mined by

baselines, f-NSP and f-NSP+ respectively. We carry out intensive experiments to compare the difference555

between these NSP mining algorithms in terms of computational cost and space cost in terms of different

data factors. All algorithms are implemented in Java on a PC with Intel Core i5 CPU of 3.2GHz, 32GB

memory and Windows 7 Professional.

7.1. Data Sets

Four source datasets are used for the experiments. They include both real datasets and synthetic datasets560

generated by IBM data generator [1]. By partitioning the data, we obtain 17 datasets in total.

Dataset 1 (DS1), C8 T4 S6 I6 DB100k N100. We further adjust DS1 to generate 10 additional datasets,

labelled as DS1.x (x = 1, . . . , 10).

Dataset 2 (DS2), C15 T8 S20 I10 DB10k N0.2k.

Dataset 3 (DS3) is from UCI and consists of MSNBC.com anonymous web data about web page visits.565

Visits are recorded at the page category and are recorded in a temporal order. There are 989,818 records in

23

the dataset. The average number of elements in a sequence is 4, and each element only has one item. Its file

size is 12M, which is relatively small since the dataset is shown in a special format without sequence IDs and

element IDs.

Dataset 4 (DS4) is real application dataset about health insurance claim sequences. The data set contains570

5,269 customers/sequences. The average number of elements in a sequence is 21. The minimum number of

elements in a sequence is 1, and the maximum number is 144. The file size is around 5M.

Dataset 5 (DS5) is C8 T4 S6 I6 DB10k N800 10times, which means we grow the dataset C8 T4 S6 I6 DB10k N800

tenfold. DS5 is a special dataset, it has a large number of itemsets, and all of the PSPs (expect 1-size PSPs)

mined from DS5 have the support value less than sdsup. Then we use this dataset to thoroughly compare575

the space consumption between f-NSP and f-NSP+.

Dataset 6 (DS6) is another KDD-CUP 2000 dataset and contains 59,601 sequences of click-stream data

from an e-commerce. It contains 497 distinct items. The average length of sequences is 2.42 items with

a standard deviation of 3.22. In this dataset, there are some long sequences. For example, 318 sequences

contains more than 20 items.580

Dataset 7 (DS7) is a dataset of 20,450 sequences of click stream data from the website of FIFA World

Cup 98. It has 2,990 distinct items (webpages). The average sequence length is 34.74 items with a standard

deviation of 24.08 items. This dataset was created by processing a part of the web logs of the world cup.

7.2. Computational Cost

Figure 4 obviously reveals that PNSP and NegGSP are extremely Inefficient. If we embed these five results585

into one figure, the runtimes of f-NSP, f-NSP+ and e-NSP are almost overlapped. And we do not compare

our methods with PNSP and NegGSP in the following experiments since (1) very substantial experimental

outcomes are available in [27] which compared e-NSP with such baseline approaches, and (2) experiments in

[27] showed that e-NSP is tens to thousands of times faster than NegGSP and PNSP.

The runtime of three approaches (f-NSP, f-NSP+ and e-NSP) is shown in Figure 5. The efficiency of590

f-NSP is much higher than e-NSP likewise that of f-NSP+, which is extremely close to f-NSP on DS1 − 4.

For example, f-NSP consumes 10.9% to 12.3% runtime of e-NSP on DS1 when min sup decreases from 0.05

to 0.03. When min sup is high, such as the experiment on DS2, f-NSP takes less than 2% of the runtime of

e-NSP. But when min sup is very low, the runtime gap between f-NSP and e-NSP will be smaller.

7.3. Space Cost595

After comparing the minimum data consumption of three algorithms e-NSP, f-NSP and f-NSP+, we carry

out experiments in terms of the following three cases: (1) min sup is greater than sdsup; (2) min sup is less

than sdsup; and (3) min sup is on both sides of sdsup.

As shown in Figure 6, we can find that both f-NSP and f-NSP+ consume less data space than e-NSP

when min sup is greater than sdsup. In the first case, the memory consumption of f-NSP and f-NSP+ are600

close, such as shown in the experiments on DS2, and f-NSP takes at least 8.1% data space consumption of

24

min-sup
0.040.060.080.10.12

R
un

tim
e(

m
s)

×106

0

1

2

3

4
Runtime Comparision on DS1

f-NSP
e-NSP
f-NSP+
Neg-GSP
PNSP

a

min-sup
0.0060.0080.010.0120.014

R
un

tim
e(

m
s)

×106

0

1

2

3

4
Runtime Comparision on DS3

f-NSP
e-NSP
f-NSP+
Neg-GSP
PNSP

b

Figure 4: Runtime Comparison with three baselines

0.03sdsup0.0350.040.045
0

2000

4000

6000

8000
Runtime Comparision on DS1

min−sup

R
un

tim
e(

m
s)

f−NSP
e−NSP
f−NSP+

a

0.280.290.30.310.32
0

500

1000

1500

2000

2500

3000
Runtime Comparision on DS2

min−sup

R
un

tim
e(

m
s)

f−NSP
e−NSP
f−NSP+

b

0.010.0120.0140.0160.018
0

0.5

1

1.5

2

2.5

3
x 10

5 Runtime Comparision on DS3

min−sup

R
un

tim
e(

m
s)

f−NSP
e−NSP
f−NSP+

c

0.0280.03sdsup0.0340.036
0

2

4

6

8

10

12

14
x 10

4 Runtime Comparision on DS4

min−sup

R
un

tim
e(

m
s)

f−NSP
e−NSP
f−NSP+

d

Figure 5: Runtime Comparison

25

e-NSP. In the second case, f-NSP may cost more data space than e-NSP and f-NSP+ is more space-efficient

than f-NSP and e-NSP, such as shown in the experimental results on DS3, and this phenomenon has been

proved in Section 5.2. In the last case, an inflection point is detected, which means f-NSP+ will cost less

data space than f-NSP when minsup is less than sdsup, such as the experiments on DS1 and DS4.605

0.03sdsup0.0350.040.045
0

50

100

150

200

250

300
Data Space on DS1

min−sup is on both sides of sdsup

D
at

a
S

pa
ce

 (
M

B
)

f−NSP
e−NSP
f−NSP+

a

min-sup is greater than sdsup
0.280.290.30.310.32

D
at

a
S

pa
ce

 (
M

B
)

0

50

100

150

200
Data Space on DS2

f-NSP
e-NSP
f-NSP+

b

0.0120.0140.0160.0180.02
50

100

150

200
Data Space on DS3

min−sup is less than sdsup

D
at

a
S

pa
ce

 (
M

B
)

f−NSP
e−NSP
f−NSP+

c

min-sup is on both sides of sdsup
0.0260.028sdsup0.0340.036

D
at

a
S

pa
ce

 (
M

B
)

50

100

150

200

250
Data Space on DS4

f-NSP
e-NSP
f-NSP+

d

Figure 6: Data Space Consumption Comparison

7.4. Experiments on DS5

We further compare the efficiency of three approaches. All of the PSPs (expect 1-size PSPs) mined from

DS5 have the support values less than sdsup. Figure 7 indicates that the runtime of f-NSP is similar to

e-NSP, but f-NSP+ costs much more time than the first two approaches. Moreover, e-NSP has the same

data space as f-NSP+ in terms of their use of the same data structure when min sup is less than sdsup,610

while f-NSP consumes the most. Experiments show that e-NSP has its advantage of performing on datasets

with a large number of itemsets, such as DS5. In order to compare the e-NSP, f-NSP and f-NSP+ more

comprehensively, we test the impact of data characteristics in Section 7.5.

7.5. Sensitivity of Data Factors

We analyze the performance f-NSP and f-NSP+, compared to e-NSP, in terms of the above defined615

data factors to observe the impact of the data factors (see Section 5.1) on their performance. We generate

various types of synthetic datasets with different distributions. Dataset DS1 is extended to ten different

datasets by tuning each factor, as shown in Table 7. For example, dataset DS1.1 (C4T4S6I6.DB10k.N100) is

26

0.0080.010.0120.0140.016
0

50

100

150

200

250
Runtime Comparison on DS5

min−sup

R
un

tim
e(

m
s)

e−NSP
f−NSP
f−NSP+

a

0.0080.010.0120.0140.016
0

50

100

150

200
Data Space on DS5

min−sup

D
at

a
S

pa
ce

(M
B

)

e−NSP
f−NSP
f−NSP+

b

Figure 7: Comparison on DS5

Table 7: Sensitivity of Data Factors on e-NSP, f-NSP and f-NSP+

Dataset ID Data Factors min sup te−NSP (ms) tf−NSP (ms) tf−NSP+(ms) tf−NSP /te−NSP tf−NSP /tfNSP+

0.03 7254 889 1089 12.3% 81.6%

DS1 C8T4S6I6.DB10k.N100 0.04 3260 374 429 11.5% 87.2%

0.05 1716 187 187 10.9% 100.0%

0.006 500 452 577 90.4% 78.3%

DS1.1 C4T4S6I6.DB10k.N100 0.008 280 245 296 87.5% 82.7%

0.01 156 140 187 89.7% 74.9%

0.1 12543 312 328 2.5% 95.1%

DS1.2 C12T4S6I6.DB10k.N100 0.12 6458 188 203 2.9% 92.6%

0.14 3401 109 109 3.2% 100%

0.2 4634 62 62 1.3% 100.0%

DS1.3 C8T8S6I6.DB10k.N100 0.22 2885 31 32 1.1% 96.9%

0.24 1950 31 31 1.6% 100%

0.3 40779 187 187 0.5% 100.0%

DS1.4 C8T12S6I6.DB10k.N100 0.35 14882 73 78 0.5% 93.6%

0.4 5429 41 47 0.8% 87.2%

0.03 5350 780 827 14.6% 94.3%

DS1.5 C8T4S12I6.DB10k.N100 0.04 2387 343 347 14.4% 98.8%

0.05 1248 172 172 13.8% 100.0%

0.03 1326 281 296 21.2% 94.9%

DS1.6 C8T4S18I6.DB10k.N100 0.04 624 125 141 20.0% 88.7%

0.05 327 78 79 23.9% 98.7%

0.03 5273 858 862 16.3% 99.5%

DS1.7 C8T4S6I10.DB10k.N100 0.04 2667 421 426 15.8% 98.8%

0.05 1498 218 218 14.6% 100.0%

0.06 5101 874 877 17.1% 99.6%

DS1.8 C8T4S6I14.DB10k.N100 0.07 3073 468 484 15.2% 96.7%

0.08 1919 312 317 16.2% 98.4%

0.02 359 156 218 43.5% 71.6%

DS1.9 C8T4S6I6.DB10k.N200 0.025 203 109 109 53.7% 100.0%

0.03 39.5 23.3 0.06 0.3% %

0.015 75 62 73 82.7% 84.9%

DS1.10 C8T4S6I6.DB10k.N400 0.02 46 31 41 67.4% 75.6%

0.025 35 31 31 88.6% 100.0%

27

different from DS1 (C8T4S6I6.DB10k.N100) on C factor, which means they have different average numbers

of elements in a sequence. We mark the difference by underlining the distinct factor for each dataset in Table620

7, and Figure 8 further illustrates the comparison of f-NSP with e-NSP on different data factor combinations

in terms of various minimum supports.

We use tf−NSP /te−NSP to show f-NSP’s performance compared with e-NSP, and tf−NSP /tf−NSP+ to

show f-NSP+’s performance compared with f-NSP. From the results, we can see that factors C, T and N

seriously affect the runtime of f-NSP and f-NSP+, while factors S and I do not. When factor C is high,625

such as DS1.2, f-NSP and f-NSP+ work better than that on datasets with small C. Similar results hold for

T , such as DS1.3 and DS1.4 with big T , compared with DS1 with small T , and f-NSP takes 0.5% of the

runtime of e-NSP in DS1.4. On the contrary, When N is small, such as in DS1, f-NSP and f-NSP+ work

better than that with big N , such as in DS1.9 and DS1.10.

Furthermore, the runtime of f-NSP+ may be slightly higher than f-NSP when min sup is less than sdsup,630

because f-NSP+ has better space consumption by using a self-adaptive data structure strategy.

7.6. Scalability Test

f-NSP calculates supports based on the bitmaps of corresponding positive patterns, thus its performance

is sensitive to the size of datasets. If a dataset is huge, it produces large bitmaps. The scalability test is

conducted to evaluate the f-NSP performance on large datasets. Figure 9 shows the results of f-NSP on635

datasets DS 6 and DS 7, in terms of different data sizes: from 10 (i.e., 8M) to 50 (40M and 2, 980, 050

sequences) times of DS6, and from 5 (13M) to 25 (65M and 511, 250 sequences) times of DS7, with various

low minimum supports min sup 0.0022, 0.0024, 0.0026 and 0.0028 on DS 6, and 0.18, 0.20, 0.22 and 0.24 on

DS 7, respectively.

Both results on DS 6 and DS 7 in Figure 9 show that the growth of runtime of f-NSP on large scale data640

follows a roughly linear relationship with the data size increase on different minimum supports. The results

in this scalability test show that f-NSP works particularly well on very large datasets.

7.7. Experimental Result Summary

In summary, the experiments show that:

(1) Compared with e-NSP, f-NSP not only significantly speeds up e-NSP but also reduces the data space645

consumption when min sup is more than sdsup.

(2) f-NSP+ overcomes the data structure shortcoming of f-NSP and it has better space-efficiency than

f-NSP when min sup is less than sdsup. However, the runtime of f-NSP+ will be slightly higher than f-NSP.

(3) f-NSP and f-NSP+ do not perform perfectly on datasets with a large number of itemsets, such as

DS5, but they work very well on the datasets with a big number of elements in a sequence, a big number of650

items in an element, and a small number of itemsets.

28

C=6 C=8 C=10 C=12
0

5000

10000

15000
Factor C (min−sup=0.1)

R
un

tim
e(

m
s)

f−NSP
e−NSP

a

C=6 C=8 C=10 C=12
0

0.5

1

1.5

2

2.5

3
x 10

4 Factor C (min−sup=0.08)

R
un

tim
e(

m
s)

f−NSP
e−NSP

b

T=4 T=8 T=12 T=16
0

2

4

6

8
x 10

4 Factor T (min−sup=0.45)

R
un

tim
e(

m
s)

f−NSP
e−NSP

c

T=4 T=8 T=12 T=16
0

1000

2000

3000

4000

5000

6000
Factor T (min−sup=0.4)

R
un

tim
e(

m
s)

f−NSP
e−NSP

d

S=6 S=8 S=10 S=12
0

1000

2000

3000

4000

Factor S (min−sup=0.04)

R
un

tim
e(

m
s)

f−NSP
e−NSP

e

S=6 S=8 S=10 S=12
0

2000

4000

6000

8000

10000
Factor S (min−sup=0.03)

R
un

tim
e(

m
s)

f−NSP
e−NSP

f

I=6 I=8 I=10 I=12
0

500

1000

1500

2000

2500

3000
Factor I (min−sup=0.06)

R
un

tim
e(

m
s)

f−NSP
e−NSP

g

I=6 I=8 I=10 I=12
0

1000

2000

3000

4000

5000
Factor I (min−sup=0.05)

R
un

tim
e(

m
s)

f−NSP
e−NSP

h

N=100 N=150 N=200 N=250
0

2000

4000

6000

8000

10000
Factor N (min−sup=0.03)

R
un

tim
e(

m
s)

f−NSP
e−NSP

i

N=100 N=150 N=200 N=250
0

1

2

3

4
x 10

4 Factor N (min−sup=0.02)

R
un

tim
e(

m
s)

f−NSP
e−NSP

j

Figure 8: Runtime Comparison on Various Factors
29

Number of Data Sequences
X10 X20 X30 X40 X50

R
un

tim
e(

m
s)

0

50

100

150

200

250

300
Scalability Test on DS6

min-sup 0.0028
min-sup 0.0026
min-sup 0.0024
min-sup 0.0022

a

Number of Data Sequences
X05 X10 X15 X20 X25

R
un

tim
e(

m
s)

0

50

100

150
Scalability Test on DS7

min-sup 0.24
min-sup 0.22
min-sup 0.2
min-sup 0.18

b

Figure 9: Scalability Test on Data Factor DB on DS6 and DS7

8. Conclusions and Future Work

Mining NSP is very challenging due to the large search space of negative candidates. Very few NSP

mining algorithms are available and most of them are very inefficient since they obtain the support of NSC

by scanning database repeatedly. Instead, e-NSP only uses PSP’s information stored in an array structure655

to ‘calculate’ the support of NSC without database re-scanning. e-NSP is probably the best method for NSP

mining. While e-NSP is good at handling sparse datasets, when datasets becomes dense, the key process

to obtain supports of NSC in e-NSP becomes time-consuming. Therefore, this paper proposes an improved

algorithm f-NSP which uses a novel and efficient data structure, bitmap, to store the PSP’s information and

then obtain the support of NSC only by bitwise operations, which is much faster than the hash method660

in e-NSP. f-NSP, however, will consume more storage space than e-NSP when PSP’s support is less than

sdsup. Thus, we also propose a self-adaptive storage strategy to be incorporated into f-NSP, forming another

algorithm f-NSP+. f-NSP+ can not only automatically choose bitmap or array to store PSP’s information

according to the PSP’s support, but also can use bitwise operations to fast calculate the support of NSC as

in f-NSP.665

The experimental results and comparisons on real and synthetic datasets clearly show that f-NSP and

f-NSP+ far better than PNSP and NegGSP and substantially improve the efficiency of e-NSP both in runtime

and space cost. f-NSP+ has better space efficiency but slightly longer runtime when min sup is very low.

e-NSP also has its advantage of performing on datasets with a large number of itemsets. Hence, the choice

between f-NSP, f-NSP+ and e-NSP is obvious a space-time tradeoff, and users can select suitable method670

according to their own data characteristics.

Through the experiments we can find that f-NSP and f-NSP+ cannot perform perfectly on datasets with

a large number of itemsets. Accordingly, we are working on finding a method to overcome this shortcoming.

Moreover, from this paper, there are three constraints to restrict the characteristics of NSP, which are detailed

in Section 3.2. These constraints may hide some useful NSP to be mined. Our other efforts are to release the675

element negative constraint and research on how to find certain items that can be negative in an element.

30

9. Acknowledgement

This work was partially supported by National Natural Science Foundation of China (71271125), and

Natural Science Foundation of Shandong Province, China (ZR2011FM028), and Australian Research Council

Linkage grant (DP130102691).680

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE’95, pp.3-14, 1995.

[2] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improve-

ments,In EDBT 96: Proc. of the 5th International Conference on Extending Database Technology,

London, UK, 1996, pp. 1-7.685

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap representation,In

KDD 02: Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, New York, NY, USA, 2002. pp. 429-435.

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. Freespan: frequent pattern-

projected sequential pattern mining, In KDD 00: Proc. Of the 6th ACM SIGKDD international confer-690

ence on Knowledge discovery and data mining. New York, NY, USA. 2000, pp.355-359.

[5] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences, Machine Learning, 2001, 42(1-

2), pp.31-60.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Prefixspan: Mining

sequential patterns efficiently by prefix-projected pattern growth, In ICDE 01: Proc. of the 17th Inter-695

national Conference on Data Engineering, Washington, DC, USA, 2001. pp.215-226.

[7] X.J. Dong , Z.G. Zheng, L.B. Cao, Y.C. Zhao, C.Q. Zhang, J.J. Li, W. Wei, Y.M. Ou. E-NSP: Efficient

negative sequential pattern mining based on identified positive patterns without database rescanning.

International Conference on Information and Knowledge Management, Proceedings, 2011, pp. 825-830.

[8] Z. Zheng, Y. Zhao, Z. Zuo, L. Cao: Negative-GSP: An Efficient Method for Mining Negative Sequential700

Patterns. The 8th Australian Data Mining Conference. AusDM 09. Data Mining and Analytics, vol.101.

pp. 63-67.

[9] S.C. Hsueh, M.Y. Lin, C.L. Chen.: Mining Negative Sequential Patterns for E-commerce Recommenda-

tions. Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference.2008, pp.1213-1218.

[10] N.P. Lin, H.J. Chen, and W.H. Hao. Mining negative sequential patterns. In Proc. of the 6th WSEAS705

International Conference on Applied Computer Science, Hangzhou, China, 2007, pp. 654-658.

31

[11] X. Wu, C. Zhang, and S. Zhang. Efficient mining of both positive and negative association rules. ACM

Trans. Inf. Syst., 2004, pp.381 - 405.

[12] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao. An efficient ga-based algorithm for mining negative sequential

patterns. In PAKDD 10, 2010, pp. 262 -273.710

[13] N.P. Lin, H.J. Chen, and W.-H. Hao. Mining Negative Fuzzy Sequential Patterns. Proceedings of the

7th WSEAS International Conference on Simulation, Modeling and Optimization, Beijing, China, 2007,

pp 52-57.

[14] N.P. Lin, H.J. Chen, and W.-H. Hao. Mining Strong Positive and Negative Sequential Patterns. WSEAS

TRANSACTIONS on COMPUTERS. Issue 3, Volume7, 2008, pp. 119-124.715

[15] W.M. Ouyang and Q.H. Huang. Mining negative sequential patterns in transaction databases. In Proc.

Of 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 2007, pp.

830-834.

[16] W.M. Ouyang, Q.H. Huang, and S. Luo. Mining positive and negative fuzzy sequential patterns in large

transaction databases. Proceedings - 5th International Conference on Fuzzy Systems and Knowledge720

Discovery, FSKD 2008, v 5, pp. 18-23.

[17] W.M. Ouyang and Q.H. Huang. Mining positive and negative fuzzy multiple level sequential patterns

in large transaction databases. Proceedings of the 2009 WRI Global Congress on Intelligent Systems,

GCIS 2009, v1,pp. 500-504.

[18] W.M. Ouyang and Q.H. Huang. Mining positive and negative sequential patterns with multiple minimum725

supports in large transaction databases. Proceedings - 2010 2nd WRI Global Congress on Intelligent

Systems, GCIS 2010, v2, pp. 190-193.

[19] V.Rastogi and V.K. Khare. Apriori Based: Mining Positive and Negative Frequent Sequential Patterns.

International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 1 Issue 3 Septem-

ber 2012, pp. 24 -33.730

[20] V.K. Khare and V. Rastogi. Mining Positive and Negative Sequential Pattern in Incremental Transaction

Databases. International Journal of Computer Applications (0975 - 8887), Vol 71 - No.1, 2013, pp. 18-22.

[21] Y. Zhao, H. Zhang, L. Cao, C. Zhang, and H. Bohlscheid. Efficient mining of event-oriented negative

sequential rules. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent

Technology, 2008, pp.336 - 342.735

[22] Y. Zhao, H. Zhang, L. Cao, C. Zhang, and H. Bohlscheid. Mining both positive and negative impact-

oriented sequential rules from transactional data. In PAKDD 09, volume 5476, 2009, pp. 656 - 663.

32

[23] Y.C. Zhao, H.F. Zhang, S.S. Wu, J. Pei, L.B. Cao, C.Q. Zhang and H. Bohlscheid. Debt detection in

social security by sequence classification using both positive and negative patterns. Lecture Notes in

Computer Science, v 5782, 2009, pp 648-663.740

[24] S. Mesbah and F. Taghiyareh. A new sequential classification to assist Ad auction agent in making

decisions. 2010 5th International Symposium on Telecommunications (IST), 2010, pp. 1006 - 1012.

[25] P. Kazienko. Filtering of web recommendation lists using positive and negative usage patterns. Proceed-

ings of the 11th international conference, KES 2007 and XVII Italian workshop on neural networks con-

ference on Knowledge-based intelligent information and engineering systems: Part III. Springer-Verlag,745

2007, pp.1016-1023.

[26] X. Dong, F. Sun, X. Han and R. Hou. Study of positive and negative association rules based on multi-

confidence and chi-squared test. Advanced Data Mining and Applications. ADMA06, Springer Lecture

Notes in Computer Science 4093, Springer Berlin Heidelberg, 2006, pp.100-109.

[27] L. Cao, X. Dong and Z. Zheng. e-NSP: Efficient Negative Sequential Pattern Mining, Artificial Intelli-750

gence, 235: 156-182, 2016.

[28] J. Pisharath, Y. Liu, B. Ozisikyilmaz, R. Narayanan, W.K. Liao, A. Choud-

hary, and G. Memik. NU-MineBench Version 2.0 Data Set and Technical Report,

http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html

[29] G. W. Schwartz,A. Shokoufandeh, Ontan S, et al. Using a novel clumpiness measure to unite data755

with metadata: finding common sequence patterns in immune receptor germline V genes[J]. Pattern

Recognition Letters, 2016, 74:24-29.

[30] J. Grim. Sequential pattern recognition by maximum conditional informativity. Pattern Recognition

Letters, 2014, 45(1):39-45.

[31] R. Willink. A sequential algorithm for recognition of a developing pattern with application in orthotic760

engineering. Pattern Recognition, 2008, 41(2):627-636.

[32] Song W, Yang B, Xu Z. Index-BitTableFI: An improved algorithm for mining frequent itemsets.

Knowledge-Based Systems, 2008, 21(6):507-513.

[33] Zaki M J, Gouda K. Fast vertical mining using diffsets. ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2003:326-335.765

[34] Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of

customer transactions. International Conference on Data Engineering, IEEE. 1998. pp.494-502.

[35] Hmlinen W. Kingfisher: an efficient algorithm for searching for both positive and negative dependency

rules with statistical significance measures. Knowledge and Information Systems, 2012, 32(2):383-414.

33

[36] Antonie M L, Zaane O R. An associative classifier based on positive and negative rules. Dmkd, 2004:6469.770

[37] Antonie M L, Zaane O R. Mining Positive and Negative Association Rules: An Approach for Confined

Rules. European Conference on Principles of Data Mining and Knowledge Discovery. Springer Berlin

Heidelberg, 2004:27-38.

[38] Pham T D. Spectral distortion measures for biological sequence comparisons and database searching.

Pattern Recognition, 2007, 40(2):516-529.775

[39] Yang C, Zhou J. Non-stationary data sequence classification using online class priors estimation. Pattern

Recognition, 2008, 41(8):2656-2664.

[40] Y. Gong, T. Xu, X. Dong, et al. e-NSPFI: Efficient Mining Negative Sequential Pattern from both

Frequent and Infrequent Positive Sequential Patterns. International Journal of Pattern Recognition and

Artificial Intelligence,2017, 31(2)780

[41] Bi C. Comparison of optimization techniques for sequence pattern discovery by maximum-likelihood.

Pattern Recognition Letters, 2010, 31(14):2147-2160.

[42] Abin A A, Beigy H. Active selection of clustering constraints: a sequential approach. Pattern Recogni-

tion. 2014,47(3):1443-1458.

[43] S. Zhang, Z. Du, J. Wang. New Techniques for Mining Frequent Patterns in Unordered Trees. Cyber-785

netics, IEEE Transactions on, Vol: 45(6), 2014, pp. 1113-1125.

[44] J. Luna, J. Romero, C. Romero, S. Ventura. On the Use of Genetic Programming for Mining Compre-

hensible Rules in Subgroup Discovery. Cybernetics, IEEE Transactions on, 2014, 44(12):2329-2341.

[45] Zhao Y, Yu J X, Wang G, et al. Maximal Subspace Coregulated Gene Clustering. IEEE Transactions

on Knowledge and Data Engineering, 2007, 20(1):2329-2341.790

[46] Li Y, Zhao Y, Wang G, et al. ELM-Based Large-Scale Genetic Association Study via Statistically

Significant Pattern. IEEE Transactions on Systems Man and Cybernetics Systems,2017, (99):1-14.

[47] Zhao Y, Wang G, Zhang X, et al. Learning Phenotype Structure Using Sequence Model. IEEE Trans-

actions on Knowledge and Data Engineering, 2014, 26(3):667-681.

[48] Fu K S, Chien Y T, Cardillo G P. A dynamic programming approach to sequential pattern recognition[J].795

IEEE transactions on pattern analysis and machine intelligence, 1986 (3): 313-326.

[49] Adhikari A, Rao P R. Mining conditional patterns in a database[J]. Pattern Recognition Letters, 2008,

29(10): 1515-1523.

[50] Adhikari A, Rao P R. Synthesizing heavy association rules from different real data sources[J]. Pattern

Recognition Letters, 2008, 29(1): 59-71.800

34

[51] Adhikari J, Rao P R. Measuring influence of an item in a database over time[J]. Pattern Recognition

Letters, 2010, 31(3): 179-187.

[52] Hu J, Mojsilovic A. High-utility pattern mining: A method for discovery of high-utility item sets[J].

Pattern Recognition, 2007, 40(11): 3317-3324.

[53] Rushing J A, Ranganath H S, Hinke T H, et al. Using association rules as texture features[J]. IEEE805

Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 845-858.

[54] Li K, Fu Y. Prediction of human activity by discovering temporal sequence patterns[J]. IEEE transactions

on pattern analysis and machine intelligence, 2014, 36(8): 1644-1657.

35

	Introduction
	Related Work
	Problem Statement
	Mining Positive Sequential Patterns
	Mining Negative Sequential Patterns

	f-NSP Algorithm
	The Framework of e-NSP
	Negative Containment
	Negative Conversion
	NSC Generation
	Calculating the NSC Supports
	The Data Structure of f-NSP
	Calculating the Supports of Negative Sequences in f-NSP
	The f-NSP Algorithm
	An Example

	Theoretical Analysis of f-NSP Time and Space Efficiency
	Runtime Analysis of f-NSP vs. e-NSP
	Analysis of Comparison Times in e-NSP
	Analysis of Comparison Times in f-NSP
	Runtime Comparison between f-NSP and e-NSP against Data Factors

	Space Analysis between f-NSP and e-NSP

	f-NSP+: f-NSP with Space Optimization
	Self-adaptive Storage Strategy and f-NSP+
	Calculating the Support of Negative Sequences in f-NSP+
	Theoretical Space Analysis between f-NSP+ and f-NSP

	Experiments and Results
	Data Sets
	Computational Cost
	Space Cost
	Experiments on DS5
	Sensitivity of Data Factors
	Scalability Test
	Experimental Result Summary

	Conclusions and Future Work
	Acknowledgement

