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Abstract
Recommender systems (RS) have become an in-
tegral part of our daily life. However, most cur-
rent RS often repeatedly recommend items to users
with similar profiles. We argue that recommen-
dation should be diversified by leveraging session
contexts with personalized user profiles. For this,
current session-based RS (SBRS) often assume a
rigidly ordered sequence over data which does not
fit in many real-world cases. Moreover, personal-
ization is often omitted in current SBRS. Accord-
ingly, a personalized SBRS over relaxedly ordered
user-session contexts is more pragmatic. In do-
ing so, deep-structured models tend to be too com-
plex to serve for online SBRS owing to the large
number of users and items. Therefore, we design
an efficient SBRS with shallow wide-in-wide-out
networks, inspired by the successful experience in
modern language modelings. The experiments on a
real-world e-commerce dataset show the superior-
ity of our model over the state-of-the-art methods.

1 Introduction
Nowadays, the ways we make choices in our daily life are
highly influenced by recommender systems (RS). Thanks to
the suggestions from e-commerce websites and smartphone
apps, we spend much less time browsing and deciding what to
eat from a huge number of options. The RS behind these web-
sites and apps can be extremely helpful when one is making
a choice. However, items which are similar to those we have
previously purchased are often repeatedly recommended. In
fact, one may prefer more diversified options than those we
have had before. For example, it is unlikely that a consumer
will purchase another a loaf of bread if they have recently pur-
chased one, whereas butter or ham may be a more appealing
recommendation. This indicates that RS would make more
sensible and relevant recommendations if the session context
was taken into consideration. In this paper, a session can refer
to a transaction with clear boundaries, e.g., a purchase record
consisting of multiple items or it can also refer to a period
within a designated time window, e.g., a day or a week.

Factor models, such as matrix factorization (MF) [Koren
et al., 2009], and neighborhood methods, such as item-based

collaborative filtering [Sarwar et al., 2001], are the two most
prevalent approaches in RS. However, these two approaches
are not immediately applicable to session-based RS (SBRS)
because they cannot capture the intra-session relevance over
items and the inter-session similarity between users. As a
result, these RS tend to produce homogeneous recommenda-
tions as the historical profile is largely built on the principle of
“similarity”. In practice, users tend to have different require-
ments in the context of changing sessions; therefore homo-
geneous recommendation may greatly degrade user satisfac-
tion and business benefits. To diversify the recommendation
results for different sessions, a RS needs to learn the “rele-
vance” between candidate items and a given context instead
of pure “similarity”.

Sequential pattern mining (SPM) is a method at hand
to capture the relevance between items [Han et al., 2000].
SPM extracts a set of association rules according to the co-
occurrence frequency in the historical data. However, a ses-
sion context may consist of an arbitrary set of items in the
recommendation problem so it probably fails to match any
pattern from the extracted association rule space. Markov
chain (MC) is another straightforward way to model sequen-
tial data [Gu et al., 2014]. However, MC only captures the
first-order dependency, i.e. it predicts the transition between a
pair of items instead of that between an item and a contextual
item set. Deep learning has achieved tremendous success in
a number of tasks, including RS [Salakhutdinov et al., 2007].
Recently, Hidasi et al. [2015] applied recurrent neural net-
works (RNN) for SBRS. Both MC and RNN are originally
applied on time series data with a natural order. However, the
choices of items in a session may not follow a “rigidly or-
dered sequence”, for example, the order in which toast, milk
and ham are put into a shopping cart makes no difference to
the transaction. Moreover, most real-world datasets do not
provide precise timestamps on items purchased. As a result,
MC and RNN may produce misleading outputs.

Language modeling is the probability distribution over se-
quences of words in natural language processing (NLP). Both
the number of items in RS and the size of vocabulary in lan-
guage modeling are large, usually 105-107, thereby it is too
time-consuming to train a deep structure with a large num-
ber of input and output units. If we think of words as items,
predicting a relevant word based on context is equivalent to
recommending a relevant item according to the current ses-



sion. This observation inspires us to incorporate language
modeling ideas into SBRS. Word2vec [Mikolov et al., 2013a;
2013b], which originated from neutral probabilistic language
modeling [Bengio et al., 2003], is a highly successful word
embedding model in recent years. Although word2vec is
regarded as a deep learning model due to its origin, it ig-
nores all hidden layers but directly links the input and out-
put layers with bilinear connections. Thus, word2vec is not
deep, instead it is a shallow and wide network [Goth, 2016]
which makes learning more efficient over this wide-in-wide-
out (WIWO) structure. However, word2vec is not ready for
SBRS due to the lack of an essential element for RS, that is,
users. In this work, we propose to model user-session con-
texts with both users and items.

Considering the large number of items and users, we de-
sign a shallow network with double wide-in vectors, in which
one indicates items and the other indicates users, and a wide-
out vector to indicate the items relevant to the user-session
context. This structure makes it more efficient to learn per-
sonalized preferences from users’ session profiles. The main
contributions of this paper include:
• We propose to diversify personalized recommendation

results according to user-session contexts.
• Session-based WIWO (SWIWO) networks are designed

to efficiently learn session profiles over the large number
of users and items.
• We conducted empirical evaluations on a real-world data

set. The results demonstrate the superiority of our ap-
proach in comparison with state-of-the-art methods.

2 Related Work
First, it needs to be noted that both time-aware RS [Cam-
pos et al., 2014] and session-based RS are context-aware RS
(CARS) but they target different goals. Time-aware RS con-
sider temporal factors when making recommendations, for
example, how time information (e.g. weekday vs. weekend)
affects the recommendation [Baltrunas and Amatriain, 2009].
Temporal effects are another research area of time-aware RS.
Koren [2009] studied the evolution of users and movies over
time. In comparison, session-based RS do not need precise
timestamps, as they focus on learning the relevance between
items in a session scope.

Markov models are a straightforward way to model se-
quential data. Markov decision processes (MDP) [Shani et
al., 2005] are an early approach to provide recommendations
in a session-based manner. Gu et al. [2014] introduce pur-
chase sequence prediction based on the hidden Markov model
(HMM) and purchase intervals. Since the number of items is
large, an issue to apply MDP and HMM is that the state space
quickly becomes unmanageable when evaluating all possible
sequences over all items. Chen et al. [2012] model playlists
as an MC, and propose to represent songs by logistic Markov
embedding (LME). Personalized metric embedding (PME)
[Wu et al., 2013] and personalized ranking metric embedding
(PRME) [Feng et al., 2015] extend LME by adding person-
alization. LME, PME and PRME are first-order MC models
built on rigid sequential data to model the transition between
consequent choices.

Classic neighborhood methods and factor models do not
consider session context, but researchers have developed ex-
tensions to incorporate with session information. Session-
based collaborative filtering [Park et al., 2011] firstly finds
the k-nearest neighbors (knn) for the current session and then
calculates the score for each potential item to generate the
rank. The number of historical sessions is huge so finding
the k-nearest sessions online is infeasible for real RS. Fac-
torized personalized Markov chains (FPMC) [Rendle et al.,
2010] combine the power of MF and MC to model person-
alized sequential behavior. The same as MF, FPMC easily
suffers from the data sparsity issue.

In recent years, RS have begun to embrace the deep learn-
ing technology [Salakhutdinov et al., 2007]. RNN have been
devised to model variable-length sequence data, where the in-
ternal state of the network allows it to exhibit dynamic tempo-
ral behavior. Hidasi et al. [2015] applied RNN consisting of
gated recurrent units as session-based RS, namely GRU4Rec.
Twardowski [2016] used a similar RNN for ad click predic-
tion. Although language modeling in NLP is not literally re-
lated to session-based RS, we find that they share common
underlying problem, that is, learning the probability distribu-
tion over sequences of words is similar to learning that over
sequences of items. Word embedding models [Mnih and Teh,
2012; Mnih and Kavukcuoglu, 2013], especially word2vec
[Mikolov et al., 2013a; 2013b], have achieved great success
in NLP. Moreover, due to the large vocabulary size, word em-
bedding models do not evolve to a deep structure; on the con-
trary, they become shallow and wide [Goth, 2016] to more
efficiently adapt large-class data. In view of the large number
of items and users in SBRS, we incorporate some success-
ful ideas from word embedding models and propose SWIWO
networks to learn and infer personalized preferences with
user-session contexts.

3 Problem Formulation
Before introducing the specificities of our model, we first for-
mulate the problem and clarify basic concepts in this section.

In general, user set U =
{
u1, u2, · · · , u|U|

}
and item set

V =
{
v1, v2, · · · , v|V|

}
are two basic elements in RS. As to

SBRS, S =
{
s1, s2, · · · , s|S|

}
denotes session set containing

all observed sessions, where each session consists of a subset
of items, si ⊂ V. Our SWIWO networks are constructed
and trained as probabilistic classifiers that learn to predict a
conditional probability distribution P (vt|c) where c ⊆ s \ vt
is the context of a session s ∈ S w.r.t. the relevant item vt.

Similar to our problem, neural language models train
a classifier to predict a conditional probability distribution
P (wt|ct) where ct is the context of the given word wt. In
word2vec models [Mikolov et al., 2013a], a context window
is used to include the words before and after wt as the con-
text, ct = {wt−k, · · · , wt−1, wt+1, · · · , wt+k}. As stated at
the beginning, a session could be generated by a moving time
window s = {vt−k, · · · , vt+k}, and then the corresponding
context is c = {vt−k, · · · , vt−1, vt+1, · · · , vt+k} as that in
word2vec. If sessions are split transactions, then the session
context is c = s \ vt w.r.t. each relevant item vt ∈ s (leave-
one-out), therefore, we can construct |s| possible training ex-



Figure 1: The architecture of SWIWO networks. This model pre-
dicts the relevant item based on the user-session context.

amples for each session s ∈ S.
Since we are designing a personalized SBRS, we add user

as a part of the context, cu ≡ 〈u, c〉. Finally our SWIWO
networks are refined to train the classifier over the conditional
distribution P (vt|u, c) when this user-session context 〈u, c〉
is given. Correspondingly, the personalized recommendation
problem is reduced to generate the ranking over all candidate
items given the online user-session context 〈u′, c′〉. Thus, we
can do it by sorting {P (v|u′, c′)|∀v ∈ V} when the SWIWO
networks are trained.

4 Modeling and Learning
In this section, we first demonstrate the model architecture
of SWIWO networks, and then we discuss the details of pa-
rameter learning. Finally, we briefly present how to generate
recommendation using the trained model.

4.1 SWIWO Architecture
Figure 1 illustrates the architecture of our SWIWO networks,
which learn and train a probabilistic classifier to predict the
most relevant item for a given user-session context. In brief,
SWIWO is a three-layer network where the input layer en-
codes the raw user-session context, the hidden layer is the
low-dimension embedding representation of the raw user-
session context, and the output layer indicates the most rel-
evant item based on the user-session context embeddings.

More specifically, we first illustrate how to encode a raw
user-session context for the input layer. Given the user-
session context 〈u, c〉, the input units in the bottom-left cor-
ner of Figure 1 are a one-hot encoded vector, which means
only the unit at position u is set 1 and all other units are 0.
Moreover, there are |c| items in the session context c, for
each v ∈ c, it is encoded by a one-hot vector as depicted in
the bottom-right corner of Figure 1. Thus, the input layer for
each training example consists of a user vector with a length
|U|, and |c| item vectors with a length |V|.

In RS, users and items are indexed by meaningless IDs,
which is similar to the words in NLP systems. Word em-
bedding models map per word from an ID space to a contin-
uous lower-dimension vector space so as to work with this
more informative representation of words instead of IDs. In
fact, the latent-factor vector representation for users and items
in MF is the counterpart of embedding in neural models al-
though they have different names. In SWIWO, we create an
embedding layer to map those sparse one-hot user and item
vectors to an informative representation. In the hidden layer,

we use K-dimension vector hu ∈ [0, 1]K to represent the
user embeddings. The weight matrix W1 ∈ RK×|U| is fully
connected between input-layer units and hidden-layer units,
where the u-th column W1

:,u encodes the one-hot vector w.r.t.
user u to the embeddings hu in terms of logistic function σ(·).

hu = σ
(
W1

:,u

)
(1)

Different from word2vec, we use nonlinear embeddings in-
stead of linear ones. This is because the nonlinear embed-
dings are bounded in [0, 1] which makes the training and pre-
diction more stable. Furthermore, nonlinear representation is
generally more expressive than linear one, but it may involve
a little more computational overhead.

Similarly, we use the weight matrix W2 ∈ RL×|V| to en-
code a one-hot item vector to the embeddings hv ∈ [0, 1]L.

hv = σ
(
W2

:,v

)
(2)

Then, we can obtain the embeddings of session context,
hc ∈ [0, 1]L, by combining all the embeddings of items in
this context. As illustrated in Eq. 3, we construct the context
embeddings hv as a mixture of {hv|v ∈ c}.

hc =
∑
v∈c

wvhv ≡
∑
v∈c

wvσ
(
W2

:,v

)
(3)

where
∑

v∈c wv = 1. These mixture weightswv are often as-
signed different values according to specific applications. For
the experiments in this paper, we use the exponential decay:

wv ∝ exp[−λ(|v − t| − 1)] (4)

where |v − t| is the span between a context item vv and the
target item vt in a session s (cf. Section 3). Obviously, the
context items previous and next to the target item vt, i.e. vt−1

and vt+1, have the largest unnormalized weight 1, and those
context items farther from vt are assigned smaller weights.
We find that it produces good results in our experiments by
setting λ = 0.75.

The weight matrices W3 ∈ R|V|×K and W4 ∈ R|V|×L
fully connect the embedding layer to the output layer as de-
picted in the top of Figure 1. Then, we can compute the score
Svt of a target item vt w.r.t. the user-session context 〈u, c〉 in
terms of the context embeddings 〈hu,hc〉

Svt(u, c) = W3
t,:hu + W4

t,:hc (5)

where Wt,: denotes the t-th row of W. This score func-
tion quantifies the compatibility of the target item vt with the
user-session context. As a result, the conditional distribution
PΘ(vt|u, c) can be defined in terms of a softmax function

PΘ(vt|u, c) =
exp(Svt

(u, c))

Z(u, c)
(6)

where Z(u, c) =
∑

v∈V exp(Svt(u, c)) is the normalizing
constant and Θ =

{
W1,W2,W3,W4

}
defines the model

parameter set. So far, we obtain a probabilistic classifier mod-
eled by the SWIWO networks.



4.2 Learning and Inference
In the previous subsection, we describe the construction of a
probabilistic classifier over the user session data d = 〈cu, vc〉,
where cu ≡ 〈uc, c〉 is the input, namely user-session context,
and vc is the observed output, namely a relevant item to this
context. Given a training dataset D = {〈cu, vc〉}, we easily
obtain the joint probability distribution over it

PΘ(D) ∝
∏
d∈D

PΘ(vc|uc, c) (7)

Therefore, we can learn the model parameters Θ by maximiz-
ing the conditional log-likelihood (cf. Eq. 6)

LΘ =
∑
d∈D

logPΘ(vc|uc, c) =
∑
d∈D

Svc(uc, c)− logZ(uc, c)

(8)
Both evaluating LΘ and computing the corresponding log-

likelihood gradient involves the normalizing term Z(uc, c),
which needs to sum exp(Svc(uc, c) over the entire item set
for each training example. This means that training this
model needs to take time |V| × |D| to compute the normaliz-
ing constants over all the training examples for each iteration.
Unfortunately, |V| and |D| are always large in real RS, which
makes the training process intractable.

Softmax Approximation
The vocabulary size in NLP systems is also large so language
modeling runs into the same challenge as our problem [Mnih
and Teh, 2012; Mikolov et al., 2013b]. In this paper, we
adopt a subsampling approach to do away with the softmax
layer, namely noise-contrastive estimation (NCE) [Gutmann
and Hyvärinen, 2012] which was proposed for training unnor-
malized probabilistic models. This approach avoids approx-
imating the normalization of the softmax, instead it works
with some other objective that is much cheaper to compute.

The basic idea of NCE is to apply a binary classifier to
discriminate between samples from the data distribution and
samples from a known noise distribution Q. Given a training
example 〈cu, vc〉, we can represent the probability of sam-
pling from either a positive example or K noise examples as
a mixture of those two distributions [Mnih and Teh, 2012]:

PΘ(y|vc, cu) =
1

K + 1
PΘ(vc|cu) +

K

K + 1
Q(vc)

Then the posterior probability that sample vc came from the
data distribution, namely a positive example, is

PΘ(y = 1|vc, cu) =
PΘ(vc|cu)

PΘ(vc|cu) +KQ(vc)

≈ exp(Svc(cu))

exp(Svc(cu)) +KQ(vc)
(9)

where the normalizing term Z(cu) is dropped from
PΘ(vc|cu). We can do this because the NCE is an unnor-
malized estimator where the objective encourages PΘ(vc|cu)
the model to be approximately self-normalized [Gutmann and
Hyvärinen, 2012]. Then, the probability of vc coming from
the noise samples is simply PΘ(y = 0|vc, cu) = 1−PΘ(y =
1|vc, cu). As a result, we can maximize this log-likelihood

of the training example against K noise samples [Mnih and
Kavukcuoglu, 2013]:

JΘ(vc, cu)

= logPΘ(y = 1|vc, cu) +KEṽk∼Q[logPΘ(y = 0|vc, cu)]

≈ logPΘ(y = 1|vc, cu) +

K∑
k=1

logPΘ(y = 0|ṽk, cu) (10)

Substituting Eq. 9 into Eq.10, we can immediately ob-
tain the gradient of JΘ(vc, cu). This gradient approaches the
maximum log-likelihood gradient (cf. Eq. 8) with K increas-
ing [Mnih and Teh, 2012].

∇JΘ(vc, cu) =
KQ(vc)

exp(Svc(cu) +KQ(vc)
∇Svc(cu)

−
K∑

k=1

exp(Sṽk(cu))

exp(Sṽk(cu)) +KQ(ṽk)
∇Sṽk(cu) (11)

Note that the selection of noise distribution may depend on
the context. For example, users may click on some other simi-
lar items before they add a satisfying item to their cart. Then,
these items which have been clicked most can be assigned
lower probability as the noise samples against the item in the
cart since users also have shown some interest in them. In
this paper, we adopt a strategy that has often been used in RS
to construct the noise distribution [Hu et al., 2014b]

Q(v) ∝ f(#v) (12)

where #v denotes the frequency of v over all sessions and
f(·) is a function to scale #v , such as log or squared root
function. The assumption behind this is that the frequent
items, e.g. water, tend to be less dependent on other items
and users often intentionally choose them or not [Hu et al.,
2014b]. Similar strategy has been applied in word2vec to se-
lect negative words since high frequency words often provide
little information [Mikolov et al., 2013b].

Learning and Ranking
Given the gradient of JΘ(vc, cu) as illustrated in Eq. 11, we
can learn all the parameters Θ by backpropogation. The gra-
dient of Sv(cu) w.r.t. each W ∈ Θ is given below

∇W3
vo,:
Svo(cu) = h>u (13)

∇W4
vo,:
Svo(cu) = h>c (14)

∇W1
:,u
Svo(cu) = W3>

vo,: � hu � (1− hu) (15)

∇W2
:,vi
Svo(cu) = wviW

4>
vo,: � hu � (1− hu) (16)

where � denotes the element-wise product, vo is the output
item which includes the positive example vc and all noise ex-
amples {ṽk}, and vi ∈ c is the input item in the session con-
text and wvi is the corresponding mixture weight (cf. Eq. 3,
4). We thus can substitute these gradients into Eq. 11 and
obtain the gradient-based update equation for each parame-
ter. Considering the strong power of modern GPUs on ma-
trix multiplication, we design a GPU-based adaptive stochas-
tic gradient descent (SGD, actually ascent) optimizer over
mini-batches to speed up the training. Due to the limited



Algorithm 1 A GPU-based SGD Optimizer for SWIWO
1: M← getMinibatch();
2: Hu,Hc ← Rearrange all the embeddings {hu,hc} (cf.

Eq. 1, 3) ofM as two embedding matrices on GPUs;
3: ∇JW(M) ← Using Hu,Hc to perform matrix multi-

plication on GPUs to compute the gradient w.r.t. each
parameter W ∈ Θ, cf. Eq. 10 and Eq. 13-16;

4: W←W + Γ(∇JW(M)), for each W ∈ Θ;

space, a brief scheme of this procedure on a mini-batch is
demonstrated in Algorithm 1, where Γ(·) is a function to as-
sign adaptive learning rate, e.g. AdaGrad, RMSProp, Adam
[Ruder, 2016]. Our experimental results were obtained us-
ing Adam. The MATLAB implementation1 of Algorithm 1 is
provided online for more details.

When the model has been trained, we can immediately use
it as a personalized SBRS. Given an arbitrary user-session
context cu, we can compute the scores over all candidate
items according to Eq. 5, and then rank them accordingly.

5 Experiments
We used the IJCAI-15 competition dataset2 for our experi-
ments. This real-world dataset was collected from Tmall.com
which is the largest online B2C platform in China, and it con-
tains anonymized users’ shopping logs for the six months be-
fore and on the “Double 11” day (November 11th).

People have realized the harmfulness of evaluating RS only
using accuracy metrics [Ge et al., 2010]. Recall that we pro-
pose to diversify recommendation for different user-session
context to replace similarity-based recommendation over his-
tory profile. Therefore, we respectively evaluated our model
and other comparison methods from the perspectives of accu-
racy and diversity, but they often cannot be optimized simul-
taneously [Zhou et al., 2010].

5.1 Comparison Methods
We used the following representative state-of-the-art methods
for the experiments, most of them being introduced in related
work, including our approach:
• POP: This recommender simply ranks items for recom-

mendation according to occurrence frequency.
• FPMC [Rendle et al., 2010]: This recommender is a

combination of MF and first-order MC, which uses per-
sonalized MC for sequential prediction.
• PRME [Feng et al., 2015]: This recommender learns

personalized transition probability in a MC model by
applying a pairwise embedding metric method to han-
dle data sparsity.
• GRU4Rec [Hidasi et al., 2015]: This recommender is a

deep RNN which consists of GRU units.
• SWIWO: This is the full model proposed in this paper.
• SWIWO-I: This a sub-model of SWIWO which only

models item-session contexts without considering users.
1https://github.com/rainmilk/ijcai17swiwo
2https://tianchi.shuju.aliyun.com/datalab/dataSet.htm?id=1

Table 1: Statistic of IJCAI-15 dataset for evaluation

#users: 50K
#items: 52K
avg. session length: 2.99
#training sessions: 0.20M
#training examples: 0.59M
#testing cases (LAST): 4.5K
#testing cases (LOO): 11.9K

5.2 Data Preparation
First, we removed those users who have less than three shop-
ping sessions and we removed all singleton sessions, i.e. only
containing one item, from the raw data. Note that this dataset
only provides buying date without a specific time, so we treat
a user’s shopping records in a natural day as a session. For
intra-day sequence, we retain the order given in the raw data.
From the six-month shopping logs, we randomly held out
20% of the sessions from the last 30 days for testing, and
the remaining data are used for training. In particular, we
constructed two testing sets: LAST means that the last item in
each testing sessions is used as ground truth, and LOO means
each item in a testing session is held out in turn to serve as
ground truth, i.e. leave-one-out. The statistics of this dataset
for evaluation are summarized in Table 1.

5.3 Accuracy Evaluation
We use the following widely used accuracy metrics for SBRS
to evaluate all the comparison methods.
• REC@K: This measures the recall from the top-K items

over all the testing samples.
• MRR: This measures the mean reciprocal rank of the

predictive positions over all the testing samples.

Results
Table 2 demonstrates the result of REC@10, REC@20 and
MRR over the testing sets Last and LOO. Here, we chose
K ∈ {10, 20} because most users are only interest in view-
ing the recommendation on the first page in the real-world
RS. In fact, finding exactly one true item from more than 105

items is a big challenge. POP achieves reasonable results,
which reflects common user behavior for online shopping,
that is, users tend to choose items with high sales volume,
i.e. popularity. We set the number of factors to 5 for train-
ing FPMC, and the results become worse when more factors
are used. This is because the dataset is too sparse for MF
methods where each row only contains less than two items
(cf. the avg. session length in Table 1, note that one of the
items needs to be used as the output) and the others are all
empty (cf. #items in Table 1). Furthermore, most users only
have three sessions although we have removed users with too
few sessions. Therefore, this constructs a too sparse matrix to
train the MF model. We trained PRME by setting the embed-
ding dimension to 50. PRME lags far behind GRU4Rec and
our models. This is because PRME is a first-order MC model,
which learns the transitions over successive items instead of
the whole context; moreover, the choice of items does not fol-
low a rigid sequence. Thanks to deep technology, GRU4Rec



Table 2: The evaluation results for accuracy metrics

LAST
Model REC@10 REC@20 MRR
POP 0.0185 0.0317 0.0104
FPMC 0.0023 0.0068 0.0021
PRME 0.0670 0.0821 0.0363
GRU4Rec 0.2283 0.2464 0.1586
SWIWO-I 0.3223 0.3797 0.1918
SWIWO 0.3131 0.3689 0.1896

LOO
Model REC@10 REC@20 MRR
POP 0.0234 0.0420 0.0123
FPMC 0.0064 0.0117 0.0044
PRME 0.0757 0.0976 0.0431
GRU4Rec 0.2242 0.2425 0.1574
SWIWO-I 0.3177 0.3810 0.1903
SWIWO 0.3082 0.3703 0.1885

achieves a qualitative leap. In both testing cases the REC@10
of GRU4Rec are above 20%, which can result in very accu-
rate recommendations in real-world systems.

We set 50 units for the context embeddings and 10 units for
the user embeddings when training SWIWO-I and SWIWO
models. Surprisingly, our models outperform GRU4Rec by
clear margins, where the REC@10 are above 30% and the
REC@20 are above 35% for both testing cases. The highest
MRR also proves that our models can accurately list users’
desired items on the first page. Most importantly, our models
have a very concise structure which can be easily trained (cf.
Algorithm 1). Furthermore, this shallow structure is efficient
to recompute the scores over all candidate items when many
session contexts keep updating in online SBRS. In compari-
son, GRU4Rec is a deep RNN consisting of GRU layers. As
a result, it is more time expensive than SWIWO to recompute
the scores for ranking in online SBRS. Moreover, SWIWO-I
and SWIWO achieve very close performance, where SWIWO
does not show improvement on accuracy by the incorporation
of users. However, our main aim of incorporating users is to
diversify personalized recommendations.

5.4 Diversity Evaluation
Since we aim to diversify recommendation with session con-
text, we consider the following metrics.
• DIV@K: This diversity measures the mean non-overlap

ratio between each pair of recommendations 〈Ri,Rj〉
over all N top-K recommendations (note that the num-
ber of all possible pairs is N(N − 1)/2).

DIV@K =
2

N(N − 1)

∑
i 6=j

(
1− |Ri

⋂
Rj |

|Ri

⋃
Rj |

)
• F1@K: The traditional F1 score is the harmonic mean

of recall and precision. Here, we replace precision with
diversity to jointly consider accuracy and diversity.

F1@K =
2(REC@K ×DIV@K)

REC@K +DIV@K
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Figure 2: DIV@10, F1@10 on LAST and LOO

Results
Figure 2 illustrates the results of the top-10 recommendations
over testing sets Last and LOO. POP always recommends the
same items for all sessions so it has zero diversity and F1.
FPMC does not learn its parameters well on this dataset, and
it outputs very similar recommendations. Accordingly, we
get low diversity and low F1 for FPMC. PRME is a first-order
MC model which makes recommendations only considering
the previous item in the session context, so it tends to gener-
ate low diversity results. The GRU units can accumulate the
influence of the sequential items. Consequently, GRU4Rec is
a good SBRS to generate high diversity recommendations.

Our models consider the whole session context so they
more easily provide diverse recommendation results. Since
the REC@10 scores of our models are also high as shown
in the previous experiment, we accordingly get high F1@10
scores, which validates the effectiveness of SWIWO net-
works based SBRS. In particular, from Figure 2, we find that
SWIWO generates more diverse recommendations than those
generated by SWIWO-I. This is because SWIWO takes users
into account, which makes personalized recommendations
with the user-session contexts. In comparison, SWIWO-I
does not model users, and ignores personalizing when mak-
ing recommendations. As a result, we conclude that SWIWO
is the best model to serve as real-world SBRS, jointly consid-
ering accuracy and diversity.

6 Conclusion
In this paper, we propose SWIWO networks to build a more
efficient personalized SBRS. The empirical evaluation on a
real-world e-commerce dataset proves the comprehensive su-
periority of our approach over other state-of-the-art methods.
With minor modification, we can immediately apply SWIWO
as a group-based RS [Hu et al., 2014a] where the context em-
beddings are the representation of a group of users. More-
over, SWIWO is a general architecture so it can be applied in
many other domains besides RS, for example the author-topic
model [Rosen-Zvi et al., 2004] in NLP.
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