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Abstract
The Mixed-Membership Stochastic Blockmodels
(MMSB) is a popular framework for modelling so-
cial relationships by fully exploiting each individ-
ual node’s participation (or membership) in a so-
cial network. Despite its powerful representations,
MMSB assumes that the membership indicators of
each pair of nodes (i.e., people) are distributed in-
dependently. However, such an assumption often
does not hold in real-life social networks, in which
certain known groups of people may correlate with
each other in terms of factors such as their mem-
bership categories. To expand MMSB’s ability to
model such dependent relationships, a new frame-
work - a Copula Mixed-Membership Stochastic
Blockmodel - is introduced in this paper for mod-
eling intra-group correlations, namely an individ-
ual Copula function jointly models the membership
pairs of those nodes within the group of interest.
This framework enables various Copula functions
to be used on demand, while maintaining the mem-
bership indicator’s marginal distribution needed for
modelling membership indicators with other nodes
outside of the group of interest. Sampling algo-
rithms for both the finite and infinite number of
groups are also detailed. Our experimental results
show its superior performance in capturing group
interactions when compared with the baseline mod-
els on both synthetic and real world datasets.

1 Introduction
Community modeling is an important but challenging topic
which has seen applications in various settings including
social-media recommendation [Tang and Liu, 2010][Li et al.,
2009], customer partitioning [Wang et al., 2015], discover-
ing social networks [Fan et al., 2015][Fan et al., 2016b], and
partitioning protein-protein interaction networks [Girvan and
Newman, 2002][Fortunato, 2010]. Quite a few models have
been proposed in the last few years to address these problems;
some earlier examples include stochastic blockmodel [Now-
icki and Snijders, 2001], and its infinite community case -
infinite relational model (IRM) [Kemp et al., 2006], both as-
sume that each node has one latent variable to directly indi-

cate its community membership, dictated by a single distri-
bution of communities. Their aim is to partition a network
of nodes into different communities based on the pair-wise,
directional binary observations.

A typical need and challenge in community modeling is to
capture the complex interactions amongst the nodes in dif-
ferent applications. Accordingly, several variants of IRM
were proposed, including the mixed membership stochastic
blockmodel (MMSB) [Airoldi et al., 2008], in which multi-
ple roles (membership indicators) can possibly be played by
one node. Each node has its own “membership distribution”,
and its relation with all other nodes is generated from it. For
any two nodes, having determined their corresponding mem-
bership indicator pair, their (directional) interactions are gen-
erated from a so-called, “role-compatibility matrix” with its
row and column indexed by this pair. One mentionable devel-
opment of MMSB is the nonparametric metadata dependent
relational model (NMDR) [Kim et al., 2012], which modifies
MMSB by incorporating each node’s metadata information
into the membership distribution.

However, all of the MMSB-typed models make the as-
sumption that, for each relation between two nodes, their
corresponding membership indicator pairs were determined
independently. This may limit the way membership indica-
tors can be distributed. In fact, under many social network
settings, certain known group members may have higher cor-
related interactions towards the ones within the same group.
For instance, in a company, IT support team members tend
to co-interact with each other more than with employees of
other departments. Another example is that teenagers may
have similar “likes” or “dislikes” on certain topics, com-
pared with the views they may hold towards people of other
age groups. MMSB-typed models overlook such interactions
within a group and thus cannot fully capture the intrinsic in-
teractions within a network.

In reality, within a social networking context, it is impor-
tant to incorporate group member interactions (here called
intra-group correlations) into the modeling of membership in-
dicators. After introducing these intra-group correlations, it is
important that at the same time, we do not alter membership
indicators’ distributions themselves, so that their interactions
to people outside of the known subgroups are unaffected.

Accordingly, in this paper, a Copula function [Nelsen,
2006][McNeil and Nešlehová, 2009] is introduced to MMSB,



forming a copula Mixed-Membership Stochastic Blockmodels
(cMMSB), for modeling the intra-group correlations. With
cMMSB, we can flexibly apply various Copula functions to-
wards different subsets of pairs of nodes while maintaining
the original marginal distribution of each of the membership
indicators. We develop ways in which a bivariate Copula can
be used for two distributions of indicators, enjoying infinitely
possible values. Under the framework, we can incorporate
different choices of Copula functions to suit the need of the
applications. With different Copula functions imposed on the
different groups of nodes, each of the Copula function’s pa-
rameters will be updated in accordance with the data. What
is more, we also give two analytical solutions to calculate the
conditional marginal density to the two indicator variables,
which plays a crucial role in our likelihood calculation and
also creates a new way of calculating a deterministic relation-
ship between multiple variables in a graphical model.

2 Preliminary knowledge on Copula Model
Here we describe very briefly a bivariate copula function
C(u, v), which is a Cumulative Distribution Function over
the interval [0, 1] × [0, 1] with the uniform marginal distri-
bution [Nelsen, 2006]. This correlation representation is ex-
tremely useful since we have the following theorem:
THEOREM 1. Sklar’s Theorem: Let X and Y be random
variables with distribution functions F and G respectively
and joint distribution function H . Then there exists a Cop-
ula C such that for all (x, y) ∈ R×R:

H(x, y) = C(F (x), G(y)) (1)

C is unique if F and G are continuous, then the joint proba-
bility density function is:

h(x, y) = c(F (x), G(y)) · f(x)g(y) (2)

Here c(u, v) = ∂2C(u, v)/∂u∂v is noted for the copula den-
sity function.

Sklar’s theorem ensures the uniqueness of copula function
C(F (x), G(y)) once the joint distribution h(x, y) and its two
marginal distributions f(x) and g(y) are known. The mod-
ification of a Copula function does not change the marginal
distributions, which serves the purpose of this paper.

The popularity of copula models from various applications
also meant the availability of different choices of copula func-
tions to suit various applications. The commonly used cop-
ula function includes Gaussian Copula, Archimedean Cop-
ula (Clayton, Gumbel, Frank, etc.). We have visualized the
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Figure 1: Clayton Copula (2) and Gaussian Copula (0.9) vi-
sualization.

probability density function for Clayton Copula and Gaussian
Copula in Figure 1. For a comprehensive survey of copula
functions, please refer to [Nelsen, 2006].

3 Copula Mixed Membership Stochastic
Blockmodel (cMMSB)

3.1 Notations
The notations and their meanings to be used in this paper are
presented in Table 1.

Table 1: Notations for cMMSB
n number of nodes
K number of discovered communities
eij directional, binary interactions
γ, α concentration parameters for HDP
sij sender’s (from i to j) membership indicator
rij receiver’s (from j to i) membership indicator

πi
mixed-membership distribution for node i,
it generates si1, · · · , sin, r1i, · · · , rni

πik the “significance” of community k for node i
B role-compatibility matrix
Bk,l compatibilities between communities k and l

mk,l
number of links from community k to l
i.e. mik = #{ij : sij = k, rij = l.}

m1
k,l

part of mk,l where the corresponding eij = 1
i.e. m1

k,l =
∑
sij=k,rij=l

eij

m0
k,l

part of mk,l where the corresponding eij = 0
m0
k,l = mk,l −m1

k,l

Nik

number of times that a node i has participated
in community k (either sending or receiving)
i.e. Nik = #{j : sij = k}+ #{j : rji = k}

θ parameter associated with any Copula function

3.2 Graphical Model Description

Figure 2: Graphical model of Copula MMSB

The generative process of graphical modeling is illustrated
below:

C1: β ∼ GEM(γ)

C2: {πi}ni=1 ∼ DP (α · β)



C3:
{

(uij , vij) ∼ Copula(θ), gij = 1;
uij , vij ∼ U(0, 1), gij = 0.

C4: sij = Π−1
i (uij), rij = Π−1

j (vij)

C5: Bk,l ∼ Beta(λ1, λ2),∀k, l;
C6: eij ∼ Bernoulli(Bsij ,rij ).

Here gij = 1 in C3 denotes that the node pair (i, j) belongs
to the sub-group of interest, i.e., sij , rij are implicitly corre-
lated, while gij = 0 means (sij , rij) are modelled using tra-
ditional MMSB. In C4, Π−1

i (uij) = {min k :
∑k
q=1 πiq ≥

uij} denotes the interval of πi that uij belongs into, and sim-
ilar notation is applied to Π−1

j (vij) = {min k :
∑k
q=1 πjq ≥

vij}.
For a simplified illustration, we divide the generative

model into three sub-models: (1) “mixed membership dis-
tribution modelling”, (2) “copula incorporated membership
indicator pair” and (3) “binary observation modelling”, with
their details elaborated in the following sections.

Mixed Membership Distribution Modeling
C1-C2 are for the generation of each node’s mixed member-
ship distribution. The number of communities, i.e., k is an
important factor in mixed membership distribution models.
Therefore, we consider two possibilities here. The first is
to use a fixed k. As the graphical model in Fig. 2 shows,
for all the mixed-membership distributions {πi}ni=1, there is
a common parent node β, where β typically has a “non-
informative” symmetric Dirichlet prior, i.e., (β1, . . . ,βk) ∼
Dir(γ, . . . , γ) [Airoldi et al., 2008]. The appropriate choice
of k is determined by the model selection method, such as the
BIC criterion [Schwarz, 1978], which is commonly used in
[Airoldi et al., 2008][Xing et al., 2010][Fan et al., 2016a].

The second solution is applicable for the uncertain number
of communities, which is often the case under many social
network settings. The usual approach is to use the Hierarchi-
cal Dirichlet Process (HDP) [Teh et al., 2006] prior with β
distributed from a GEM(γ), i.e., β is obtained via a stick-
breaking construction [Sethuraman, 1991] with each of its
components βk = uk

∏k−1
l=1 (1− ul), ul ∼ Beta(1, γ).

After obtaining their parent’s node β, we can sample
our mixed-membership distribution {πi} independently from
[Airoldi et al., 2008][Koutsourelakis and Eliassi-Rad, 2008]:

πi ∼
{
Dir(α · β), fixed k;
DP (α · β), uncertain k. For the notational clar-

ity, we concentrate our discussion on the uncertain k case
without delicately mentioning its finite counterpart, as the fi-
nite k case can be trivially derived.

Copula Incorporated Membership Indicator Pair
Our main work of c-MMSB is displayed in phases C3-C4. We
consider two cases in this paper for the intra-group correlation
modeling: full correlation and partial correlation.

Full correlation: i.e., intra-group correlation for all the
nodes. We assume each pair of nodes, i.e., all relations of the
entire population are using the same Copula function. As we
will see in the experimental section that, flexible modelling
can still be achieved under this assumption, as parameters of
a Copula can vary to support various form of relations.

Partial correlation: i.e., intra-group correlation are ap-
plied to only a subset of the nodes. With a definition of one
subgroup, we use the Copula function on this specific sub-
group and the others remain unchanged.

For traditional MMSB, the corresponding membership in-
dicators within one pair (sij , rij) are independently sampled
from their membership distributions, i.e., sij ∼ πi, rij ∼ πj .
Using the definition of {Π−1

i (·)}ni=1 from Section 3.2, this is
equivalently expressed as:

uij ∼ U(0, 1), vij ∼ U(0, 1);

sij = Π−1
i (uij), rij = Π−1

j (vij).
(3)

As discussed in the introduction, we are motivated by exam-
ples within social network settings, in which membership in-
dicators from a node may well be correlated with other mem-
bership indicators in an intra-group point of view. People’s
interactions with each other within the group may more likely
(or less likely) belong to the same category, i.e., (sij , rij) has
higher (or lower) density in some regions of the discrete space
(1, 2, . . . ,∞)2, which may not be well described by using
only the two independent marginal distributions.

We propose a general framework by employing a Copula
function to depict the correlation within the membership in-
dicator pair. This is accomplished by the joint sampling of
uniform variables (uij , vij) (in Eq. (3).) from the Copula
function, instead of from two independent uniform distribu-
tions. More precisely, the membership indicator pair is ob-
tained using:

∀gij = 1 : (uij , vij) ∼ Copula(u, v|θ);
sij = Π−1

i (uij), rij = Π−1
j (vij).

(4)

Using various Copula priors over the pair (uij , vij), we are
able to more appropriately express the way in which the mem-
bership indicator pair {sij , rij} is distributed, given the dif-
ferent scenarios we are facing. Taking the Gumbel Copula
(with larger parameter values) [Nelsen, 2006] as an instance,
for certain membership indicator pairs (gij = 1), it generates
(uij , vij) values that more likely have positive correlation,
i.e., within [0, 1]2 space, which promotes sij = rij . Also, the
Gaussian Copula (θ = −1) encourages the (sij , rij) pair to
be different.

Binary Observation Modeling
C5-C6 model the binary observation, which directly follows
the previous work [Nowicki and Snijders, 2001][Kemp et al.,
2006] etc. Due to the beta-bernoulli conjugacy, B can be
marginalized out and the likelihood of binary observation be-
comes as follows:

Pr(e|z, λ1, λ2) =
∏
k,l

beta(m1
k,l + λ1,m

0
k,l + λ2)

beta(λ1, λ2)
(5)

here beta(λ1, λ2) denotes the beta function with parameters
λ1 and λ2, m1

k,l and m0
k,l are defined in Table 1.

4 Inference & Further Discussion
Let K be the discovered number of communities, a formal
and concise representation of Eq. (4), i.e. the probability of



(sij , rij), is:

Pr(sij , rij) =

∫
∑K+1
d=1 πjd=1

∫
∑K+1
d=1 πid=1

∫
(uij ,vij)

· 1
(
sij = Π−1

i (uij), rij = Π−1
j (vij)

)
· dC(uij , vij)dF (πi1, · · · , πiK+1)dF (πj1, · · · , πjK+1)

(6)

Unfortunately, we cannot bring Pr(sij , rij) to an analytical
form without any integrals present. However, with some
mathematical design, we found that, conditioning on the ex-
plicit sample of either (uij , vij) or (πi, πj), it is possible to
obtain a marginalised conditional density in which sij , rij
is conditioned on either (uij , vij) or (πi, πj), but not both.
Additionally, having a set of variables “collapsed” from the
Gibbs sampling, it results in a faster mixing on Markov chains
[Liu, 1994]. Therefore, two corresponding inference schemes
are needed. To be more concentrated, we present the key parts
of these two inference algorithms here (the rest follows the
standard procedures as in [Fox et al., 2008]), and name them
Marginal conditional on π only method and the Marginal
conditional on u, v only respectively:

4.1 Marginal Conditional on π only: cMMSBπ
In the Marginal conditional on π only (cMMSBπ for short)
method, the variables of interest include {πi}, {sij , rij},β.
As mentioned before, we describe the formulation using the
infinite communities (uncertain k) case only, its counterpart
in the finite communities (fixed k) case can be trivially de-
rived.

Sampling πi
When a Copula is introduced, p(πi) and Pr(sij |πi) are no
longer a conjugate pair. Therefore, we resort to the use of
Metropolis-Hastings (M-H) Sampling in each (τ)-th MCMC
iteration.

For each node i, πi’s posterior distribution is formed as Eq.
(7), where psijrijij (πi, πj) is defined in Eq. (4).

p(πi|α,β, {sij , rij}i,j)

∝
K+1∏
k=1

π
αβk−1
ik ·

n∏
j=1

[
p
sijrij
ij (πi, πj)p

sjirji
ji (πj , πi)

] (7)

The Corresponding proposal distribution of πi for the above
M-H is a posterior Dirichlet distribution in the form of (i.e.,
πi’s posterior distribution under the MMSB framework):

q(π∗
i |α,β, {sij , rij}i,j) ∝

K+1∏
k=1

[π∗
ik]αβk+Nik−1 (8)

Then the acceptance ratio becomes:

A(π∗
i , π

(τ)
i ) = min(1, a) (9)

a =

∏n
j=1

[
p
sijrij
ij (π∗

i , πj)p
sjirji
ji (πj , π

∗
i )
]

∏n
j=1

[
p
sijrij
ij (π

(τ)
i , πj)p

sjirji
ji (πj , π

(τ)
i )
]

·

∏K+1
k=1

[
π
(τ)
ik

]Nik
∏K+1
k=1 [π∗

ik]
Nik

(10)

Sampling sij and rij
As eij is dependent on both {sij , rij}, a joint sampling of
{sij , rij} is implemented as:

Pr(sij , rij |eij , λ1, λ2, θ, πi, πj ,m−eij
sij ,rij )

∝ Pr(sij , rij |πi, πj , θ) · Pr(eij |sij , rij , λ1, λ2,m−eij
sij ,rij )

(11)

On the likelihood, we have

Pr(eij |sij , rij , λ1, λ2,m
−eij
sij ,rij ) =

{
m

1,−eij
sij ,rij + λ1, eij = 1;

m
0,−eij
sij ,rij + λ2, eij = 0.

(12)
where mk,l =

∑
i′j′ 1(si′j′ = k, ri′j′ = l), m1

k,l =∑
si′j′=k,ri′j′=l

ei′j′ , and m0
k,l = mk,l −m1

k,l.
On the first term of the r.h.s. in Eq. (11), we define

pklij (πi, πj) ≡ Pr(sij = k, rij = l|πi, πj , θ),∀gij = 1, and
let C(uij , vij |θ) be the chosen Copula cumulative distribu-
tion function (c.d.f.) with parameter θ. Given the explicit
values of πi, πj , we can integrate over all uij , vij to compute
the probability mass of the indicator pair (sij = k, rij =
l), k, l ∈ {1, · · · ,K + 1}:

pklij (πi, πj) =

∫ π̂ki

π̂k−1
i

∫ π̂lj

π̂l−1
j

dC(u, v|θ)

=C(π̂ki , π̂
l
j) + C(π̂k−1

i , π̂l−1
j )− C(π̂ki , π̂

l−1
j )− C(π̂k−1

i , π̂lj)
(13)

Here π̂ki =

{
0, k = 0;∑k

q=1 πiq, k > 0
.

Since {πi}ni=1 are piecewise functions, we can easily cal-
culate the probability mass in this “rectangular” area. In other
cases of {gij = 0}, i.e., interaction data eij falls outside of
the correlated relation group, we have pklij (πi, πj) = πikπjl.

It is noted that, using the properties of a Copula function,
the marginal distributions of Pr(sij = k, rij = l|πi, πj , θ)
remain πi and πj respectively, which becomes that of:

K+1∑
l=1

Pr(sij = k, rij = l|πi, πj , θ) = πik;

K+1∑
k=1

Pr(sij = k, rij = l|πi, πj , θ) = πjl.

(14)

4.2 Marginal Conditional on u and v only:
cMMSBuv

In Marginal conditional on u, v only method (
cMMSBuv for short), the variables of interest include
{uij , vij}, {sij , rij},β, and an auxiliary variablem.

Sampling uij and vij
We have used the M-H Sampling for (uij , vij),∀i, j ∈
{1, . . . , n}, due to the nonconjugacy issue. The Copula func-
tion is used as its proposal, and therefore, its corresponding
acceptance ratio becomes that of:

A
(

(u
(τ)
ij , v

(τ)
ij ), (u∗ij , v

∗
ij)
)

= min(1, a) (15)



a =
Iu∗ij (h

k−1
i , ĥk−1

i )− Iu∗ij (h
k
i , ĥ

k
i )

I
u
(τ)
ij

(hk−1
i , ĥk−1

i )− I
u
(τ)
ij

(hki , ĥ
k
i )

·
Iv∗ij (h

l−1
j , ĥl−1

j )− Iv∗ij (h
l
j , ĥ

l
j)

I
v
(τ)
ij

(hl−1
j , ĥl−1

j )− I
v
(τ)
ij

(hlj , ĥ
l
j)

(16)

Here hki , ĥ
k
i ’s definitions are the same as in Eq. (7), assuming

sij = k, rij = l.

Sampling sij and rij
An alternative “collapsed” sampling method is to integrate
over {πi}ni=1 while we explicitly sample the values of
{(uij , vij)}i,j .

Similar as Eq. (11), we obtain:
Pr(sij = k, rij = l|
eij , λ1, λ2,mk,l, uij , vij , {hki }k, {ĥki }k, {hkj }k, {ĥkj }k)

∝Pr(sij = k|uij , , {hki }k, {ĥki }k)

· Pr(rij = l|vij , {hkj }k, {ĥkj }k) · Pr(eij |λ1, λ2,mk,l)

∝(Iuij (h
k−1
i , ĥk−1

i )− Iuij (hki , ĥki ))

· (Ivij (hl−1
j , ĥl−1

j )− Ivij (hlj , ĥlj)) · Pr(eij |λ1, λ2,mk,l)

(17)
From Eq. (4), given {(uij , vij)}i,j’s values, the proba-

bilities sij = k and rij = l can be computed indepen-
dently. The Copula function leaves marginal distributions
of sij and rij invariant, which remains the same as the
classical MMSB, i.e., πi|α, β, {N−ij

ik }Kk=1 ∼ Dir(αβ1 +

N−ij
i1 , · · · , αβK + N−ij

iK , αβK+1). Therefore, having the
knowledge of F (πi|α, β, {N−ij

ik }Kk=1), given uij , our calcu-
lation of Pr(sij = k) is equal to computing the probability
of uij falling in πi’s kth interval, i.e. Pr(

∑k−1
d=1 πid ≤ uij <∑k

d=1 πid) (similar case with vij to πjl). This can be obtained
from the fact that the set {uij ∈ [0, 1]|

∑k−1
d=1 πid ≤ uij} can

be decomposed into two disjoint sets:

{uij ∈ [0, 1]|
k−1∑
d=1

πid ≤ uij}

={uij ∈ [0, 1]|
k−1∑
d=1

πid ≤ uij <
k∑
d=1

πid}

∪ {uij ∈ [0, 1]|
k∑
d=1

πid ≤ uij}

(18)

where
∑k
d=1 πid ∼ Beta(

∑k
d=1 αβd+Nid,

∑K+1
d=k+1 αβd+

Nid). (A similar result was also found in page 10 of [Teh
et al., 2006]). Therefore, we have:

Pr(

k−1∑
d=1

πid ≤ uij <
k∑
d=1

πid)

= Pr(

k−1∑
d=1

πid ≤ uij)− Pr(

k∑
d=1

πid ≤ uij)

=Iuij (h
k−1
i , ĥk−1

i )− Iuij (hki , ĥki )

(19)

Here hki =
∑k
d=1 αβd + Nid, ĥ

k
i =

∑K+1
d=k+1 αβd +

Nid; Iu(a, b) denotes the Beta c.d.f. value with pa-
rameter a, b on u. The existence and non-negativity of
Iuij (uk−1, ûk−1) − Iuij (uk, ûk) is guaranteed by the fact
that {uij ∈ [0, 1]|

∑k
d=1 πid ≤ uij} ⊆ {uij ∈

[0, 1]|
∑k−1
d=1 πid ≤ uij} on the same πi.

4.3 Computational Complexity Analysis
We estimate the computational complexity for each graphical
model and present the result in Table 2. Compared to the clas-
sical models (especially the MMSB), our cMMSBπ involves
an additional O(Kn) term which refers to the sampling of
the mixed membership distributions. Note that the computa-
tional time varies for different Copulas. cMMSBuv requires
an extra O(n2) term for the u, v’s sampling for each mem-
bership indicator. Each operation requires a Beta c.d.f. in a
tractable form. In the experimental part, we have observed
that our model runs slower (in a linear way) than the original
MMSB. The reason might be the additional calculation of the
Copula function or the Beta c.d.f.

Table 2: Computational Complexity for Different Models
Models Computational Complexity

IRM lO(K2n) [Palla et al., 2012]
LFRM O(K2n2) [Palla et al., 2012]
MMSB O(Kn2) [Kim et al., 2012]

cMMSBπ O(Kn2 +Kn) = O(Kn2)
cMMSBuv O(Kn2 + n2) = O(Kn2)

5 Experiments
Here, our cMMSB’s performance is compared with the clas-
sical Mixed-Membership Stochastic Blockmodels (MMSB)-
type methods, including the original MMSB [Airoldi et al.,
2008] and the infinite mixed-membership model (iMMM)
[Koutsourelakis and Eliassi-Rad, 2008]. Additionally, we
also compare it with other non-MMSB approaches including
the infinite relational model (IRM) [Kemp et al., 2006], the
latent feature relational model (LFRM) [Miller et al., 2009]
and the nonparametric metadata dependent relational model
(NMDR) [Kim et al., 2012].

We independently implement the above benchmark algo-
rithms to the best of our understanding. In order to provide
a common ground for all comparisons, we make the follow-
ing small variations to these algorithms: (1) In iMMM, in-
stead of having an individual αi value for each πi as used
in the original work, we use a common α value for all
the mixed-membership distributions {πi}ni=1; (2) In LFRM
[Miller et al., 2009]’s implementation, we do not incorporate
the metadata information into the interaction data’s genera-
tion, but use only the binary interaction information.

5.1 Real-world Datasets for Link Prediction
We analyse three real-world datasets: the NIPS Co-
authorship dataset, the MIT Reality Mining dataset [Eagle
and (Sandy) Pentland, 2006] and the Lazega-lawfirm dataset
[Lazega, 2001].



Table 3: Model Performance (Mean ∓ Standard Deviation) on Real-world Datasets.
Dataset Train error Test error Test log likelihood AUC

IRM 0.0317∓ 0.0004 0.0423∓ 0.0014 −135.0467∓ 7.3816 0.8901∓ 0.0162
LFRM 0.0473∓ 0.0794 0.0540∓ 0.0735 −105.2166∓ 179.5505 0.9348∓ 0.1667

NIPS MMSB 0.0132∓ 0.0042 0.0301∓ 0.0064 −86.2134∓ 10.1258 0.9524∓ 0.0215
co-author iMMM 0.0061 ∓ 0.0019 0.0253∓ 0.0035 −83.4264∓ 9.4293 0.9574∓ 0.0155

cMMSBπ 0.0066∓ 0.0038 0.0231 ∓ 0.0043 −83.4261∓ 9.4280 0.9569∓ 0.0159
cMMSBuv 0.0097∓ 0.0047 0.0240∓ 0.0065 −83.4257 ∓ 9.4292 0.9581 ∓ 0.0153

IRM 0.0627∓ 0.0002 0.0665∓ 0.0004 −133.8037∓ 1.1269 0.8261∓ 0.0047
LFRM 0.0397∓ 0.0017 0.0629∓ 0.0037 −143.6067∓ 10.0592 0.8529∓ 0.0179

MIT MMSB 0.0263∓ 0.0105 0.0716∓ 0.0043 −129.4354∓ 7.6549 0.8561∓ 0.0176
reality iMMM 0.0297∓ 0.0055 0.0625∓ 0.0015 −126.7876∓ 3.4774 0.8617∓ 0.0124

NMDR 0.0386∓ 0.0040 0.0668∓ 0.0013 −139.5227∓ 2.9371 0.8569∓ 0.0138
cMMSBπ 0.0246 ∓ 0.0016 0.0489∓ 0.0016 −125.3876∓ 3.2689 0.8794 ∓ 0.0159
cMMSBuv 0.0283∓ 0.0035 0.0438 ∓ 0.0015 −123.3876 ∓ 3.1254 0.8738∓ 0.0364

IRM 0.0987∓ 0.0003 0.1046∓ 0.0012 −201.7912∓ 3.3500 0.7056∓ 0.0167
LFRM 0.0566∓ 0.0024 0.1051∓ 0.0064 −222.5924∓ 16.1985 0.8170∓ 0.0197

Lazega MMSB 0.0391∓ 0.0071 0.0913∓ 0.0030 −212.1256∓ 3.2145 0.7989∓ 0.0102
lawfirm iMMM 0.0487∓ 0.0068 0.1096∓ 0.0026 −202.7148∓ 5.3076 0.8074∓ 0.0141

NMDR 0.0640∓ 0.0055 0.1133∓ 0.0018 −207.7188∓ 3.4754 0.8285∓ 0.0114
cMMSBπ 0.0246 ∓ 0.0050 0.1023 ∓ 0.0056 −201.0154 ∓ 5.2167 0.8273 ∓ 0.0148
cMMSBuv 0.0276∓ 0.0043 0.1143∓ 0.0019 −204.0289∓ 9.5460 0.8215∓ 0.0167

NIPS Co-authorship Dataset
We use the co-authorship as a relation from the proceeding
of the Neural Information Processing Systems (NIPS) con-
ference for the years 2000-2012. Due to the sparse nature of
the co-authorships, we observe the authors’ activities in all
the 13 years (i.e. regardless of the time factor) and set the
relational data to 1 if the two corresponding authors have co-
authored for no less than 2 papers, which remove some of
the “by chance” co-authorships. Further, the author with less
than 4 relationships with others are considered “inactive” and
hence have been manually removed. Thus, a 92 × 92 sym-
metric and binary matrix is obtained.

On this dataset, no pre-defined group information is ob-
tained in advance. Thus, we consider it as full-correlation
case and use one Gumbel Copula function to model all the
interactions.

MIT Reality Dataset
From the MIT Reality Mining [Eagle and (Sandy) Pent-
land, 2006], we use the subjects’ proximity dataset, where
weighted links indicate the average proximity from one sub-
ject to another at work. We then “binarize” the data, in which
we set the proximity value larger than 10 minutes per day as
1, and 0 otherwise. Therefore, a 94 × 94 asymmetric and
binary matrix is obtained.

The dataset are roughly divided into four groups: Sloan
Business School students (Sloan), lab faculty, senior students
with more than 1 year in the lab and junior students. In our
experiment, we only apply the Gumbel Copula function to
the Sloan portion of the students to encourage similar mixture
membership indicators.

Lazega Law Dataset
The lazega-lawfirm dataset [Lazega, 2001] is obtained from a
social network study of corporate located in the north-eastern

part of U.S. in 1988 - 1991. The dataset contains three differ-
ent types of relations: co-work network, basic advice network
and friendship network, among the 71 attorneys, of which the
element are labeled as 1 (exist) or 0 (absent).

Since no group information is obtained in this dataset, we
use the same setting as in NIPS co-authorship dataset as one
Gumbel Copula function is used for all the interactions.

General Performance
From these reported statistics as shown in Table 3, we can
see that our methods (cMMSBπ , cMMSBuv) obtain the best
performance in these 3 datasets, amongst all other models.
Although iMMM can achieve smallest train error in the NIPS
co-author dataset, our cMMSB’s predictability is better than
iMMM and the others. On the MIT reality and Lazega-
lawfirm datasets, our cMMSB can achieve at least 1% im-
provement on the AUC score. On the performance compar-
ison of our two different sampling schemes cMMSBπ and
cMMSBuv , we find they achieve similar results, which is
within our expectation. Our cMMSBπ , cMMSBuv beat both
MMSB-liked models and non-MMSB models since a hidden
intra-group correlation has been adaptively utilized here.

6 Conclusions

The principal contribution of our proposed model is the intro-
duction of the Copula function into MMSB, which represents
the correlation between the pair of membership indicators,
while keeping the membership indicators’ marginal distribu-
tion invariant. The results show that, using both synthetic and
real data, our Copula-incorporated MMSB, i.e., cMMSB, is
effective in learning the community structure and predicting
the missing links.
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