
Identifying Outliers in Complex Categorical Data
by Modelling the Feature Value Couplings

Guansong Pang† and Longbing Cao† and Ling Chen‡

†Advanced Analytics Institute, University of Technology Sydney, Australia
‡Quantum Computation and Intelligent Systems, University of Technology Sydney, Australia

guansong.pang@student.uts.edu.au, {longbing.cao;ling.chen}@uts.edu.au

Abstract

This paper introduces a novel unsupervised outlier
detection method, namely Coupled Biased Random
Walks (CBRW), for identifying outliers in categori-
cal data with diversified frequency distributions and
many noisy features. Existing pattern-based out-
lier detection methods are ineffective in handling
such complex scenarios, as they misfit such data.
CBRW estimates outlier scores of feature values
by modelling feature value level couplings, which
carry intrinsic data characteristics, via biased ran-
dom walks to handle this complex data. The outlier
scores of feature values can either measure the out-
lierness of an object or facilitate the existing meth-
ods as a feature weighting and selection indicator.
Substantial experiments show that CBRW can not
only detect outliers in complex data significantly
better than the state-of-the-art methods, but also
greatly improve the performance of existing meth-
ods on data sets with many noisy features.

1 Introduction
Outliers (or anomalies) are rare data objects, i.e., those ob-
jects with rare combinations of feature values, compared to
the majority of objects. Detecting outliers in categorical data
has wide applications in various domains, such as intrusion
detection, fraud detection, and early detection of diseases,
where categorical features are the only or indispensable fea-
tures for describing data objects [Chandola et al., 2009].

Many real-world categorical data sets own one or both of
the following key characteristics: (i) there are diversified fre-
quency distributions across different features (e.g., different
mode frequencies), resulting in different semantics of the fre-
quencies of different patterns (i.e., combinations of feature
values); (ii) they contain a large proportion of noisy fea-
tures - features in which normal objects contain infrequent
behaviours while outliers contain frequent behaviours.

Most unsupervised outlier detection methods for categor-
ical data (e.g., [He et al., 2005; Das and Schneider, 2007;
Akoglu et al., 2012]) are pattern-based methods, which
search for outlying/normal patterns and employ pattern fre-
quency as a direct outlierness measure to detect outliers (i.e.,

patterns have the same outlierness if they have the same fre-
quency). These methods are ineffective in handling data sets
with aforementioned characteristics, as the semantic of each
pattern and its frequency are different from one another and a
proportion of the patterns they obtain are misleading. We call
such data as complex data in the sense that outliers cannot be
easily identified by patterns.

In a fraud detection example shown in Table 1, the feature
values ‘bachelor’ and ‘divorced’ have the same outlierness in
pattern-based methods since they have the same frequency 1

6 ,
but the frequency can indicate different outlierness in the fea-
tures ‘Education’ and ‘Marriage’ (e.g., having different de-
viations from the mode frequencies 1

2 and 5
12 , respectively).

Also, by only examining the features ‘Marriage’ and ‘In-
come’, it is easy to derive some patterns (e.g., one is divorced
and has low income) to successfully spot the cheater, while
it is difficult to derive effective outlying/normal patterns with
the presence of the noisy features ‘Gender’ and ‘Education’.

Table 1: An example of fraud detection
ID Gender Education Marriage Income Cheat?

1 male master divorced low yes
2 female master married medium no
3 male master single high no
4 male bachelor married medium no
5 female master divorced high no
6 male PhD married high no
7 male master single high no
8 female PhD single medium no
9 male PhD married medium no

10 male bachelor single low no
11 female PhD married medium no
12 male master single low no

In this paper, we introduce a new unsupervised outlier
detection method, namely Coupled Biased Random Walk
(CBRW), to identify outliers in those complex data. CBRW
estimates the outlierness of each feature value by captur-
ing both intra- and inter-feature value couplings. By intra-
feature value couplings, we consider the within-feature fre-
quency distribution to manifest the outlierness semantic of a
value frequency in diversified frequency distributions. For
example, the resultant outlierness of ‘bachelor’ is 0.58 while
that of ‘divorced’ is 0.59, considering the two different fre-
quency distributions taken by the features ‘Education’ and
‘Marriage’, i.e., { 12 ,

1
3 ,

1
6} and { 5

12 ,
5
12 ,

1
6}, respectively.



By inter-feature value couplings, we score feature values
based on its interactions with values of other features. Mo-
tivated by examples in diffusion networks, e.g., if someone
has an overweight friend, his/her chance of becoming obese
increases by 57% [Christakis and Fowler, 2007], we employ
an iterative process to model outlierness propagation between
feature values: a feature value has high outlierness if it has
strong couplings (e.g., high conditional probabilities) with
many other outlying values. This enables CBRW to distinct
outlying values from noisy feature values, as noisy values are
supposed to have weak couplings with outlying values. For
example, compared to the noisy value ‘bachelor’, although
the outlying value ‘low’ has lower outlierness by only con-
sidering intra-feature value couplings, it has much higher out-
lierness when adding inter-feature value couplings, because it
has stronger couplings with the exceptional value ‘divorced’.

These two value-level couplings, which carry intrinsic data
characteristics, are data-driven factors and are fed into a
biased random walk model [Gómez-Gardeñes and Latora,
2008] to handle the complex data.

Note that CBRW is fundamentally different from another
method that computes the value outlier scores by using the
marginal probabilities of the feature values [Das and Schnei-
der, 2007], which ignores the interactions within and between
features. As a result, it fails to work on complex data sets.

Accordingly, two major contributions are made:

i. We propose a novel coupled unsupervised outlier detec-
tion method CBRW. It estimates the outlierness of each
feature value by modelling intra- and inter-feature value
couplings via biased random walks on an attribute graph
to tackle the two aforementioned issues.

ii. The estimated outlier scores of feature values can either
detect outliers directly or determine feature selection for
subsequent outlier detection. To the best of our knowl-
edge, this is the first work having such a characteristic.

Substantial experiments show that (1) our CBRW-based
outlier detection method significantly outperforms the state-
of-the-art methods on complex data sets; (2) without the
costly pattern searching, our method runs much faster than
the pattern-based methods; and (3) the CBRW-based feature
selection method greatly lifts the pattern-based outlier detec-
tors on data sets with many noisy features in terms of both
accuracy and efficiency.

The rest of this paper is organised as follows. We discuss
the related work in Section 2. CBRW is detailed in Section 3.
The use of CBRW for outlier detection is presented in Section
4. Experiments and evaluation are provided in Section 5. We
conclude this work in Section 6.

2 Related Work
Many unsupervised outlier detection methods were designed
for numeric data [Breunig et al., 2000; Ramaswamy et al.,
2000; Bay and Schwabacher, 2003]. By contrast, signifi-
cantly less research has been conducted on categorical data.
Existing methods on categorical data are mainly pattern-
based methods, which search for infrequent/frequent patterns
as outlying/normal patterns through different methods (e.g.,

frequent pattern mining [Ghoting et al., 2004; He et al., 2005;
Koufakou and Georgiopoulos, 2010; Smets and Vreeken,
2011], information-theoretic measures [Akoglu et al., 2012;
Wu and Wang, 2013], and probability tests [Das and Schnei-
der, 2007]) to build respective detection models. The objects
with infrequent behaviours are identified as outliers. How-
ever, for a data set with many noisy features, these methods
identify a large proportion of misleading patterns, leading to
high false positive error. Also, the resultant patterns are de-
rived from different feature combinations, which can have
very different frequency distributions. Therefore, the seman-
tic and importance of pattern frequency differ significantly for
different patterns, and thus pattern frequency-based methods
cannot appropriately capture the outlierness in data sets with
diversified frequency distributions.

In addition, the pattern searching has time and space com-
plexities that are exponential to the number of features. A
heuristic search is used in [Akoglu et al., 2012] to reduce the
complexities from exponential to quadratic, but the search is
still computationally intensive in high dimensional data.

Proper feature selection can remove noisy/irrelevant fea-
tures to improve the performance of outlier detection on com-
plex data. However, existing feature selection research fo-
cuses on regression, classification and clustering [Liu and Yu,
2005; Hesterberg et al., 2008]. Very limited feature selection
methods have been designed for outlier detection. The work
in [Azmandian et al., 2012] is an early attempt, but their pro-
posed method is supervised and it is for numeric data.

Coupling analysis has been successfully employed to
tackle complex problems in different domains, e.g., temporal
outlying behaviour detection [Cao et al., 2012] and similarity
analysis [Wang et al., 2015]. This work extends this method-
ology by integrating the coupling analysis via a graph-based
ranking model to identify outliers in categorical data.

3 CBRW for Estimating Outlier Scores of
Feature Values

The proposed method CBRW first maps the categorical data
into a value-value attribute graph. The topological structure
of the graph is built on inter-feature value couplings, while the
node property is obtained based on intra-feature value cou-
plings. The task of estimating the value outlierness is then
transformed to solve a graph-based ranking problem (i.e., to
rank the nodes). We finally build biased random walks on the
graph to obtain outlier scores of feature values.

3.1 Preliminaries
Let X = {x1, x2, · · · , xN} be a set of data objects with
size N , described by a set of D categorical features F =
{f1, f2, · · · , fD}. Each feature f ∈ F has a domain
dom(f) = {v1, v2, · · · }, which consists of a finite set of pos-
sible feature values. The value of an object x in a feature f is
denoted by gf (x). Each feature f is associated with a cate-
gorical distribution, where f takes on one of the possible val-
ues v ∈ dom(f) with a frequency p(v) = |{x∈X|gf (x)=v}|

N .
The domains between features are distinct, i.e., dom(fi) ∩

dom(fj) = ∅,∀i 6= j, and the whole set of feature values V
is the union of all the feature domains: V = ∪f∈F dom(f).



Let G =< V,E > be a directed and weighted graph, each
node v ∈ V in G represents a feature value, and entries in
the out-degree adjacent matrix A of G represent weights as-
signed to edges. Since G is a value-value graph, the terms
‘feature value’ and ‘node’ are used interchangeably hereafter.

3.2 Node Property Based on Intra-feature Value
Couplings

In the constructed graph, each node is associated with a node
property, which is defined based on the value frequency and
the frequency of the mode within a feature.
Definition 1. A mode of a categorical distribution of a fea-
ture f ∈ F , denoted as m, is defined as a feature value
vi ∈ dom(f) such that p(vi) = max(p(v1), · · · , p(vK)),
where K is the number of possible values in f .
Proposition 1. Given any two modes mi and mj of features
fi and fj , and their frequencies p(mi) and p(mj), if p(mi) 6=
p(mj), then p(u) is not directly comparable to p(v) in terms
of their outlierness, ∀u ∈ dom(fi), v ∈ dom(fj).

It is assumed that outliers are rare objects compared to the
majority of objects. In the same spirit, the rarity of a feature
value should be evaluated against the frequencies of other val-
ues. The modes are the central tendency of the features, and
their frequencies represent the majority. p(mi) 6= p(mj) in-
dicates that fi and fj have different rarity evaluation bench-
marks, and thus p(u) and p(v) are not directly comparable.
Definition 2. The intra-feature outlierness of a feature value
v ∈ dom(f) is defined by the sum of the deviation of the
value frequency from the mode frequency, dev(v), and the
outlierness of the feature mode m, base(m):

δ(v) =
1

2
(dev(v) + base(m)) (1)

where dev(v) = p(m)−p(v)
p(m) and base(m) = 1− p(m).

The intra-feature outlierness δ is in the range (0, 1) 1. It is
defined to make values from different frequency distributions
semantically comparable. In this measure, the outlierness of
the feature mode is employed as a base, and the more the fre-
quency of a feature value deviates from the mode frequency,
the more outlying the value is. Any function that guarantees
a monotonic decreasing relation between base(m) and p(m)
can be used to compute the outlierness of m. Our empirical
results show that base(m) = 1− p(m) performs more stably
than other functions, so we use this specification.

3.3 Graph Topological Structure Based on
Inter-feature Value Couplings

We extract information from the inter-feature value couplings
to examine whether the values of a feature are coupled with
the outlying behaviours of the rest of features.
Definition 3. The entry A(u, v) is a weight assigned to the
edge from node u to node v and is defined as:

A(u, v) = p(u|v) = p(u, v)

p(v)
(2)

1We neglect features which have p(m) = 1, as those features
contain no information for outlier detection.

where p(u, v) denotes the co-occurrence frequency of the val-
ues u and v, ∀u, v ∈ V .

The entry A(u, v) can be interpreted as that outlierness is
propagated from u to v at the rate of p(u|v). In other words,
if u, v has a strong coupling and u has high outlierness, the
outlierness propagating from u to v would be high; and v has
high outlierness if and only if there are many nodes having
a similar relation as u to v. In this sense, the outlierness of
v is also dependent on the behaviours of its co-occurred val-
ues. This makes our method less sensitive to noisy features.
Note that if u and v are values of the same feature, we have
A(u, v) = 0 due to p(u, v) = 0. Thus, A can be regarded as
a matrix of inter-feature outlierness.

The adjacent matrix A is built on conditional probabilities
between every two nodes. This is different from the conven-
tional adjacent matrix construction that fills the matrix based
on similarities between the nodes. Our way is because the
conditional probabilities are simple and they fully capture the
desired co-occurrence behaviours, while the similarities be-
tween two values in different features are not well defined.

3.4 Biased Random Walks on the Attribute Graph
In building unbiased random walks (URWs), after obtaining
A, we can then obtain transition matrix W as:

W = AD−1 (3)

where D is the diagonal matrix of A with its u-th diagonal
entry d(u) =

∑
v∈V A(u, v). The entry W(u, v) = A(u,v)

d(u) ,
which represents the probability of the transition from node u
to node v, and it satisfies that

∑
v∈V W(u, v) = 1. This tran-

sition matrix neglects the intra-feature outlierness, i.e., the
node property.

Here we build biased random walks (BRWs) to introduce
a bias into the random walking process, and define the entry
of the transition matrix as follows:

Wb(u, v) =
δ(v)A(u, v)∑

v∈V δ(v)A(u, v)
(4)

Wb(u, v) indicates that the transition from node u to node
v has a probability proportional to δ(v)A(u, v). Therefore,
every random move is biased by the values of δ associated
with the nodes.

Let the column vector πt ∈ R|V | denote the probability
distribution of the biased random walk at time step t, i.e., the
probability of a random walker visiting any given node at the
t-th step. Then we have:

πt+1 = Wᵀ
bπt (5)

where [·]ᵀ is the matrix transpose operation, that is,
πt+1(v) =

∑
u∈V Wb(u, v)πt(u).

Corollary 1. If G is irreducible and aperiodic, π converges
to a unique stationary probability π∗ s.t. π∗ = Wᵀ

bπ
∗.

Proof. It is easy to see that BRWs using Wb is equivalent to
URWs on a graph Ge with an adjacent matrix Ae, where the
entry Ae(u, v) = δ(u)A(u, v)δ(v), as the transition matrix
We of Ge satisfies: We ≡Wb.



Since δ is always positive, Ae and A have the same ir-
reducibility and aperiodicity [Aldous and Fill, 2002]. If G
is irreducible and aperiodic, so does Ge. Based on the Per-
ron–Frobenius Theorem [Aldous and Fill, 2002], we have
π∗ = Wᵀ

eπ
∗ = Wᵀ

bπ
∗. �

This states that the stationary probabilities of nodes are in-
dependent of initialisations of π, and they are proportional
to the in-degree weights of the nodes. Motivated by this, we
define the outlier score of a feature value as follows.

Definition 4. The outlier score of node v is defined by its
stationary probability:

value score(v) = π∗(v) (6)

where 0 < π∗(v) < 1 and
∑

v∈V π∗(v) = 1.

The value v has a large outlier score if and only if it demon-
strates outlying behaviour within the feature as well as co-
occurs with many outlying values, since π∗(v) is proportional
to Wb(u, v), which is determined by δ(v) and A(u, v).

3.5 The Algorithm of CBRW
Algorithm 1 presents the procedures of the coupled biased
random walk model (CBRW). Steps (1-8) are performed to
obtain the information of the intra- and inter-feature value
couplings. The matrix Wb is then generated based on Equa-
tions (2) and (4).

Algorithm 1 Estimate Value Outlierness (X , α)
Input: X - data objects, α - damping factor
Output: π∗ - the stationary probability distribution

1: for i = 1 to D do
2: Compute p(v) for each v ∈ dom(fi)
3: Find the mode of fi
4: Compute δ(v)
5: for j = i+ 1 to D do
6: Compute p(u, v), ∀u ∈ dom(fj)
7: end for
8: end for
9: Generate the matrix Wb

10: Initialise π∗ as a uniform distribution
11: repeat
12: π∗ ← (1− α) 1

|V |1+ αWᵀ
bπ
∗

13: until Convergence, i.e., ||π∗t−π∗t−1||∞ ≤ 0.001 or reach
the maximum iteration Imax = 100

14: return π∗

Note that our constructed graph could be reducible (e.g., if
there are isolated groups of nodes) or periodic (e.g., G is a
bipartite graph if a data set has two features only). In Step
(12), following [Page et al., 1998], a damping factor α, is
introduced into Equation (5) to guarantee the convergence:

πt+1 = (1− α) 1

|V |
1+ αWᵀ

bπt (7)

We employ α = 0.95 in our experiments, but our empirical
results show that CBRW performs stably with the varying of
α, e.g., α ∈ [0.85, 0.99].

CBRW requires only one scanning over the data objects to
obtain the value couplings information in Steps (1-8). The
random walks in Steps (11-13) has O(|E|Imax). The data
size N is often far larger than |E|Imax, so the runtime is de-
termined byN , which is linear to the data size. Theoretically,
our method has O(D2), as two loops are required in order
to obtain the value co-occurrence information. However, the
computation within the inner loop (i.e., Step (6)) is just a sim-
ple counting, leading to a nearly linear time complexity to the
number of features in practice.

4 Outlier Detection using CBRW
Two basic applications of outlier scores of feature values are
the vertical and horizontal summation.

4.1 Feature Weighting and Selection for Outlier
Detection

Vertically, the sum of the outlier scores of the values in a fea-
ture can be utilised to weight and select features.

In outlier detection, relevant features are the features where
the outliers demonstrate outlying behaviours and are distin-
guishable from normal objects. Thus, the feature relevance
can be measured by the sum of outlierness carried by each
value of the feature.

Definition 5. The relevance of a feature f is defined as:

rel(f) =
∑

v∈dom(f)

value score(v) (8)

Large rel(·) indicates high relevance of the feature to out-
lier detection. Top-ranked features are the most relevant fea-
tures, while the bottom-ranked are noisy/irrelevant features.

Our CBRW-based feature selection method (denoted as
CBRW FS) selects top-ranked features for each data set. Out-
lier detectors can then work on the newly obtained data sets
with the selected features for enhancing their robustness to
noisy features and/or reducing their computation time on high
dimensional data. These relevance weights can also be em-
bedded in the outlier scoring function of an outlier detector as
a feature weighting.

4.2 Direct Outlier Detection
Horizontally, the outlier scores of feature values can measure
the outlierness of an object as follows.

Definition 6. The outlier score of an object x is defined as:

object score(x) =
∑
f∈F

wf × value score(gf (x)) (9)

where wf = rel(f)∑
f∈F rel(f) is a feature weighting component.

The outlier score of an object is the weighted sum of the
outlier scores of the values contained by the object, with
a relevance weighting factor to highlight the importance of
value score(·) in highly relevant features.

Our CBRW-based outlier detection method (denoted as
CBRW OD) employs Equation (9) to rank the data objects.
Outliers are data objects having large outlier scores.



The component value score(·) has taken account of the
diversified frequency distributions and noisy feature issues.
The feature weighting in Equation (9) can further enhance the
robustness of our outlier detection method to noisy features.

5 Experiments
5.1 Outlier Detectors and Its Parameter Settings
Our method CBRW was evaluated against three state-of-the-
art outlier detectors: the frequent pattern-based FPOF [He
et al., 2005], the information-theoretic-based CompreX (de-
noted as COMP) [Akoglu et al., 2012], and the probability
test-based MarP [Das and Schneider, 2007].

CBRW used α = 0.95 by default. Following [He et al.,
2005], FPOF was used with the minimum support threshold
min sup = 0.1 and the maximum pattern length l = 5. Both
COMP and MarP are parameter-free.

CBRW, FPOF and MarP were implemented in JAVA in
WEKA [Hall et al., 2009]. COMP was obtained from the
authors of [Akoglu et al., 2012] in MATLAB. All the experi-
ments were performed at a node in a 3.4GHz Phoenix Cluster
with 32GB memory.

5.2 Performance Evaluation Method
All the outlier detectors produce a ranking based on their out-
lier scores, i.e., top ranked objects are the most likely outliers.
The area under ROC curve (AUC) was derived based on the
ranking [Hand and Till, 2001]. Higher AUC indicates better
accuracy. We compare the efficiency in our scale-up test.

A commonly used evaluation method for unsupervised
learning was taken here, namely, detectors were trained and
evaluated on the same data set, but it was assumed that the
ground truth is unavailable in the training. The ground truth
was only involved in computing the AUC in the evaluation.

5.3 Data Sets
Eleven publicly available real-world data sets were used,
which cover diverse domains, e.g., intrusion detection, text
classification and image object recognition, as shown in Table
2. Probe and U2R were derived from KDDCUP99 data sets
using probe and user-to-root attacks as outliers against the
normal class, respectively. Other data sets were transformed
from extremely imbalanced data, where the rare classes were
treated as outliers versus the rest of classes as normal class
[Lazarevic and Kumar, 2005; Chen et al., 2009]. The per-
centage of outliers in each data set ranges from 0.1% to 6.2%.

Data factor refers to underlying data characteristics of data
sets, which are associated with the detection performance of
outlier detectors. Two key data factors are presented below,
and their quantisation results are reported in Table 2.
• Feature noise level κnoise. We computed the AUC using

MarP for each individual feature. A feature is regarded
as a noisy feature if the AUC is less than 0.5. We report
the percentage of noisy features.
• Variation among the frequencies of modes κmode. The

modes of all the D features were sorted based on
their frequencies in descending order {mk1 , · · · ,mkD

}
where 1 ≤ k1 < kD ≤ D, and an average variation
extent is obtained as: 2

D(D−1)
∑

ki<kj

p(mki
)

p(mkj
) ∈ [1,∞).

5.4 Evaluation Results
The AUC results of CBRW OD, FPOF, COMP and MarP on 11
data sets with different κnoise and κmode are presented in Ta-
ble 2. The p-value results are based on paired two-tailed t-test
using the null hypothesis that the AUC results of CBRW and
another detector come from distributions with equal means.

Table 2: AUC Results of Four Detectors on 11 Data Sets.
SF, CT, R10 and Link are short for Solar Flare, CoverType,
Reuters10 and Linkage, respectively. CBRW is short for
CBRW OD. The horizontal line in the middle is a rough sepa-
ration between complex and simple data. FPOF runs out-of-
memory in high dimensional data sets aPascal and Reuters10.
The best performance for each data set is boldfaced.

Basic Data Info. Data Factors Outlier Detectors

Name N D κnoise κmode CBRW FPOF COMP MarP
aPascal 12,695 64 81% 1.19 0.82 NA 0.66 0.62
Census 299,285 33 58% 1.65 0.67 0.61 0.64 0.59
CelebA 202,599 39 49% 1.26 0.85 0.74 0.76 0.74
CMC 1,473 8 37% 1.58 0.63 0.56 0.57 0.54
Chess 28,056 6 33% 2.24 0.79 0.62 0.64 0.64
SF 1,066 12 8% 1.55 0.88 0.86 0.85 0.84
Probe 64,759 7 0% 1.31 0.99 0.99 0.98 0.98
Link 5,749,132 5 0% 1.39 1.00 1.00 1.00 1.00
R10 12,897 100 23% 1.03 0.99 NA 0.99 0.99
CT 581,012 44 34% 1.10 0.97 0.98 0.98 0.98
U2R 60,821 7 14% 1.27 0.97 0.92 0.99 0.88

p-value 0.027 0.034 0.007

Detection Performance Summary
CBRW OD achieves the best detection performance on seven
data sets, and performs equally well with all other detectors
on two data sets, with two close to the best (having the dif-
ference in AUC no more than 0.02). The significance test
results show that CBRW OD outperforms its three contenders
significantly at the 95% confidence level.

Handling Data Sets with High κnoise
CBRW OD performs substantially better than the other three
detectors in all the four data sets with high κnoise (e.g.,
κnoise > 35%) (i.e., aPascal, Census, CelebA and CMC).
On average, it obtains more than 12%, 13% and 19% AUC
improvement over FPOF, COMP and MarP, respectively.

We also evaluated our method in terms of handling
noisy features by using it to select features (e.g., removing
noisy/irrelevant features) for subsequent outlier detection.

Figure 1 shows that the AUC results of the four de-
tectors with or without using our feature selection method
(CRBW FS) on Census and aPascal, which have the largest
percentage of noisy features. All the four enhanced detectors
can obtain substantial AUC improvement by working on data
sets with selected top-ranked features over a wide range of
selection options.

To observe the effect of using CRBW FS on AUC perfor-
mance and runtime, we examined the results over a range of
feature selection options indicated by the inclusive areas of
vertical pink lines in Figure 1 and report the average results
in Table 3.

Table 3 shows that, on average, FPOF, COMP and MarP
can obtain 5% to 36% AUC improvement. Since CBRW OD
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Figure 1: AUC Results of the Four Detectors on Census and
aPascal Using Our Feature Selection method CRBW FS. The
performance on the original data is used as baseline; Note that
FPOF runs out of memory in aPascal.

has the ability to handle noisy features without using fea-
ture selection, its AUC improvement is much smaller than
the other three detectors. Also, by working on data sets with
reduced number of features, some detectors might obtain sub-
stantial efficiency improvement, e.g., on average, FPOF can
run four orders of magnitude faster on Census with the top-
ranked features than that working on the full feature set.

Table 3: Improvement by Using CRBW FS in the Four Detec-
tors on Census and aPascal. CBRW is short for CBRW OD.

AUC Improvement Speedup Ratio

CBRW FPOF COMP MarP CBRW FPOF COMP MarP
Census 1% 10% 5% 7% 2.23 1485.73 1.24 2.35
aPascal 4% NA 27% 36% 2.74 NA 6.5 1.35

Handling Data Sets with High κmode

CBRW OD outperforms FPOF, COMP and MarP substantially
on all the four data sets with high κmode (e.g., κmode > 1.50)
(i.e., Census, CMC, Chess and Solar Flare). On average, it
obtains more than 13%, 11% and 14% AUC improvement
over FPOF, COMP and MarP, respectively.

Handling Simple Data Sets with Low κnoise and κmode

All the four detectors perform very well on data sets with
low κnoise and κmode. This is particularly true for data sets
with extremely low κnoise or κmode. For example, all the four
detectors, including the most simple detector MarP, obtain the
AUC of (or nearly) one on Linkage and Probe with κnoise =
0, and Reuters10 and CoverType with κmode ≤ 1.10.

Scalability Test
The scale-up test results are presented in Figure 2. The results
reported in the left panel show that all the four detectors have
runtime linear to data size. The runtime of COMP increases
by a factor of more than 3,000 when the data size increases
by a factor of 256; while that of CBRW OD increases by less
than 60. Therefore, though CBRW OD and COMP were imple-
mented in different programming languages, the difference in
runtime ratio indicates that CBRW OD runs much faster than
COMP by a factor of more than 50.

The results reported in the right panel in Figure 2 show that
CBRW OD runs more than five orders of magnitude faster than
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Figure 2: Scale-up Test Results of the Four Detectors w.r.t.
Data Size and Dimensionality. Note that FPOF runs out-of-
memory when the number of features reaches 80.

FPOF, and it runs slower than MarP by a factor of more than
30. As indicated by runtime ratio, CBRW OD runs much faster
than COMP by a factor of more than 500.

5.5 Discussions
Below, we briefly discuss the impact of feature weighting and
other data factors.

• Feature weighting. The outlier scoring function in
Equation (9) includes a feature weighting component.
The empirical results show that the unweighted version
performs slightly less effectively than the weighted ver-
sion on the four data sets with high feature noise level,
but it still substantially outperforms the three contenders
on these four data sets, and it has the same performance
as the weighted version on other data sets. Those results
are omitted due to the space limit.

• Other key data factors. There are some other key data
factors, e.g., the minimum length of outlying patterns.
That is, some outliers are detectable only by looking at
combinations of no less than k features. In data sets
where the pattern length factor is a dominant factor, e.g.,
U2R, our outlier detector performs less effective than the
pattern-based methods that search for patterns of all pos-
sible lengths (e.g., COMP).

6 Conclusions
This paper introduces a new unsupervised outlier detection
method CBRW for detecting outliers in complex categorical
data. Compared to the pattern-based methods, CBRW is data-
driven, which learns from low-level intra- and inter-feature
value couplings to estimate outlier scores of feature values.
Substantial experiments show that our CBRW-based outlier
detector (CBRW OD) can significantly outperform other detec-
tors including FPOF, COMP and MarP on complex data. Fur-
ther, our CBRW-based feature selection method (CRBW FS)
can greatly improve the performance of existing detectors on
data sets with many noisy features. CBRW OD runs more than
two to five orders of magnitude faster than COMP and FPOF.
We are further enhancing the efficiency of CBRW, and ex-
tending its applicability, e.g., by integrating the pattern length
factor.
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