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Abstract
Matrix Factorization (MF) is widely used in Rec-
ommender Systems (RSs) for estimating missing
ratings in the rating matrix. MF faces major chal-
lenges of handling very sparse and large data.
Poisson Factorization (PF) as an MF variant ad-
dresses these challenges with high efficiency by
only computing on those non-missing elements.
However, ignoring the missing elements in com-
putation makes PF weak or incapable for deal-
ing with columns or rows with very few obser-
vations (corresponding to sparse items or users).
In this work, Metadata-dependent Poisson Factor-
ization (MPF) is invented to address the user/item
sparsity by integrating user/item metadata into PF.
MPF adds the metadata-based observed entries to
the factorized PF matrices. In addition, similar to
MF, choosing the suitable number of latent com-
ponents for PF is very expensive on very large
datasets. Accordingly, we further extend MPF
to Metadata-dependent Infinite Poisson Factoriza-
tion (MIPF) that integrates Bayesian Nonparamet-
ric (BNP) technique to automatically tune the num-
ber of latent components. Our empirical results
show that, by integrating metadata, MPF/MIPF sig-
nificantly outperform the state-of-the-art PF mod-
els for sparse and large datasets. MIPF also effec-
tively estimates the number of latent components.

1 Introduction
Recommender Systems (RSs) estimate ratings that users may
give to corresponding items. One of the most popular classes
of RSs is Collaborative Filtering (CF), by which ratings are
estimated based on user’s past behaviors and similar decisions
made by other users. Based on such simple but effective intu-
ition, CF-based recommender systems appear in many busi-
ness systems e.g., Amazon. However, CF together with its
central technique, Matrix Factorization (MF) [Koren et al.,
2009], faces many real-life challenges. First, it is not efficient
to handle very large data, e.g., the Netflix data with millions
of ratings, since classic MF requires intensive mathematical
computation as discussed in [Mnih and Salakhutdinov, 2008;
Gopalan et al., 2015]. Second, real-life data is often very

sparse, e.g., the Netflix data has 98.8% of the matrix en-
tries missing; MF models fail to find the similar users since
their way of computing similarities assumes that two users
have rated at least some items in common. Lastly, choosing
the suitable number of latent components (i.e., K) for large
datasets in MF is a very expensive process as it requires test-
ing many models.

To address the first MF weakness, Probabilistic-based MF
models such as PMF [Mnih and Salakhutdinov, 2008] were
proposed to handle large datasets. The underlying assumption
of such models is that ratings are supposed to follow a spe-
cific distribution. However, they are still inefficient especially
for sparse data, since they perform the computation on all
data which usually consists of many missing (i.e., zero) rat-
ings. The work on Poisson Factorization (PF) [Canny, 2004;
Dunson and Herring, 2005; Gopalan et al., 2015; Basbug and
Engelhardt, 2016] shows that taking Poisson (with Gamma
conjugate priors) as a distribution for non-missing values in
sparse matrices leads to many advantages such as capturing
non-negative values or only iterating over non-missing val-
ues. PF can partly address the second MF weakness on sparse
data by ignoring the missing data in computation. Although
computation only on non-missing data makes PF extremely
fast for large and sparse datasets, it is inefficient when work-
ing with a column or row with very few observations (corre-
sponding to a sparse item or user) due to poor priors.

Building on the non-IID recommender system view [Cao,
2016] and metadata-based coupling learning for MF models
[Cao, 2015; Li et al., 2015], this work introduces user and
item metadata into PF and assume they follow the Gamma
distribution as the priors of PF. A novel model: Metadata-
dependent Poisson Factorization (MPF) is proposed to cap-
ture the couplings between user/item metadata and incorpo-
rate them into PF to capture both explicit and implicit rela-
tions in RS.

Further, to solve the third MF weakness, the BNP tech-
nique [Teh and Jordan, 2010] is integrated into MPF to form
Metadata-dependent Infinite Poisson Factorization (MIPF).
BNP allows for complex models to be learned without requir-
ing much parameter tuning at the beginning. Consequently,
we do not have to choose the number of latent components
K in advance. MIPF automatically determines the number
of latent components with an efficient variational inference
[Jordan et al., 1999] method to find the posterior.



Hence, our models make the following contributions.

• First, to the best of our knowledge, MPF is the first PF
model that integrates user/item metadata into PF. MPF
inherits the PF strength of modelling large and sparse
datasets but provides richer priors for PF. Compared to
other PF models, MPF shows its efficiency when deal-
ing with the columns or rows with very few observations
(i.e., sparse items or users).

• Further, the proposed MIPF is the first PF-based model
that not only integrates the metadata but also can auto-
matically choose the number of latent components.

Extensive experiments show that MPF outperforms the
state-of-the-art models in the PF family for large datasets with
sparse users/items; and MIPF retains the good performance
as its finite version MPF while MPF has to fit many models
before finding the best number of latent components.

2 The MPF/MIPF Models
Here we introduce the MPF and MIPF design and details.

2.1 Integrating Metadata into PF - The MPF
Model

A recommendation problem usually consists of a rating ma-
trix, and user and item information (called metadata here,
e.g., the ‘age’, ‘location’ or ‘career’ of users and the ‘genre’
or ‘year of release’ of the movies in the Movielens dataset)
[Cao, 2016]. Assume Y represents the rating matrix, in which
each entry yui is the rating given by user u to item i, and an
entry with 0 indicates no rating. HU and HI represent the
user and item metadata respectively.

Poisson Factorization [Gopalan et al., 2015] assumes the
rating matrix Y follows the Poisson distribution and can be
factorized to a vector of K latent preferences for each user,
θuk, and a vector of K latent features, βik, for each item,
where θuk and βik follow the Gamma distribution.

Building on PF, we further assume the Gamma distribu-
tion of each user’s latent behavior, ξu, and each item’s la-
tent attractiveness, ηi. This hierarchical structure of Gamma-
Gamma-Poisson allows us to capture the diversity of users
and items. We capture the effects of user (item) metadata by
defining the product of appearance of user (item) attribute’s
value in the metadata as the second parameter of Gamma
distribution of user’s latent behavior (item’s latent attractive-
ness). We then apply the Gamma prior to the weight of each
user attribute’s value, hum, e.g., the ‘New York’ in ‘loca-
tion’ attribute of a user, as in Eq. (1). The weight of user
attribute hum only affects the behavior of a user ξu and fur-
ther affects the preference similarity of users θuk if and only
if fuu,m = 1, as in Eq. (3). hum measures the degree of
influence of each user attribute. For example, user ‘loca-
tion’ may have less influence than ‘age’ in Movielens. The
weight of an item attribute hin (e.g., ‘genre’ of a movie) is
also given a Gamma distribution as in Eq. (2). The weight of
item attribute hin only affects the item’s latent attractiveness
ηi when item i has the attribute n (i.e., fii,n = 1).

The graphical model of MPF is shown in Figure 1a and the
generative process of MPF is as follows.

(1) For the mth user attribute in the metadata, sample the
weight:

hum ∼ Gamma(α0, α1) (1)

(2) For the nth item attribute, sample the weight:

hin ∼ Gamma(γ0, γ1) (2)

(3) For each user u, sample latent behavior:

ξu ∼ Gamma(a′,

M∏
m=1

hufuu,m
m ) (3)

(4) For each item i, sample latent attractiveness:

ηi ∼ Gamma(c′,

N∏
n=1

hifii,nn ) (4)

(5) For each component k in the PF factorization:
(a) Sample user’s latent preference:

θuk ∼ Gamma(a, ξu) (5)

(b) Sample item’s latent feature:

βik ∼ Gamma(c, ηi) (6)

(6) Sample rating:

yui ∼ Poisson
(∑

k

θukβik

)
(7)

2.2 Taking the Infinite - The MIPF Model
The MIPF model extends MPF to handle infinite compo-
nents by BNP. In MIPF, the user’s latent preference θuk is
constructed through the stick-breaking proportion vuk, since
stick-breaking process is efficient and widely used in many
BNP models [Teh and Jordan, 2010; Liang et al., 2007;
Kurihara et al., 2007; Gopalan et al., 2014a]. After obtain-
ing the number of latent components for users through the
stick-breaking process, the distribution for items is given as
in MPF.

The graphical model of MIPF is shown in Figure 1b and its
generative process is below.

(1) For the mth user attribute, sample the weight:

hum ∼ Gamma(α0, α1) (8)

(2) For the nth item attribute, sample the weight:

hin ∼ Gamma(γ0, γ1) (9)

(3) For each user u(= 1, . . . ,M):
(a) Draw the user’s latent behavior:

ξu ∼ Gamma(a′,

M∏
m=1

hufuu,m
m ) (10)

(b) For k(= 1..∞), draw stick-breaking proportion:

vuk ∼ Beta(1, a′) (11)

(c) For k(= 1..∞), set the user’s latent preference:



θuk = ξu.vuk

k−1∏
l=1

(1− vul) (12)

(4) For each item i(= 1...N):
(a) Draw the item’s latent attractiveness:

ηi ∼ Gamma(c′,

N∏
n=1

hifii,nn ) (13)

(b) For k = (1...∞), set the item’s latent feature:

βik ∼ Gamma(c, ηi) (14)

(5) For u(= 1...M) and i(= 1...N), draw

yui ∼ Poisson
( ∞∑
k=1

θukβik

)
(15)

3 Inference
Applying MPF/MIPF to recommender systems has to solve
the posterior inference problem. For this, the mean-field
variational inference (VI) is incorporated into our models
as it is more efficient for large-scale probabilistic models
[Wainwright et al., 2008] than other sampling approaches
like Markov Chain Monte Carlo. With VI, we find the fam-
ily of distributions over the hidden variables and the mem-
bers of this family by tuning the parameters to minimize the
Kullback-Leibler divergence to the true posterior.

3.1 Variational Inference for MPF
Given the rating table Y together with the user/item metadata
HU and HI , we compute the posterior distributions of the
weight of user attribute in metadata hum, the weight of item
attribute in metadata hin, the latent user preference θuk, the
item’s latent feature βik, the user’s latent behavior ξu, and the
item’s latent attractiveness ηi. Taking the same approach as
in [Gopalan et al., 2015; Dunson and Herring, 2005; Zhou et
al., 2012; Gopalan et al., 2014a], the rating yui is replaced
with auxiliary latent variable zui,k ∼ Poisson(θukβik). Due
to the additive property of Poisson distribution, the rating yui
is expressed as follows:

yui =
∑
k

zui,k (16)

Similar to [Gopalan et al., 2015], the inference only con-
siders yui 6= 0. The mean-field family assumes each distribu-
tion is independent of the others.

q(hu, hi,θ, β, ξ, η, z) =
∏
m

q(hum|ζm)
∏
n

q(hin|ρn)∏
u,k

q(θuk|νuk)
∏
i,k

q(βik|µik)
∏
u

q(ξu|κu)

∏
i

q(ηi|τi)
∏
u,i,k

q(zui,k|φui,k)

(17)

(a) MPF (b) MIPF

Figure 1: The graphical models of MPF and MIPF.

We use the class of conditionally conjugate priors for hum,
hin, θuk, βik, ξu, ηi and zui,k to update the variational pa-
rameters {ζ, ρ, ν, µ, κ, τ, φ}. For the Gamma distribution, we
update both hyper-parameters: shape and rate.

(1) Update shape and rate of ζm:

ζm,0 = α0 + ℵma′ (18)

ζm,1 = α1 +
∑
u

κu,0/κu,1 (19)

where ℵm is the number of users having attribute m.
(2) Update shape and rate of ρn:

ρn,0 = γ0 + χnc
′ (20)

ρn,1 = γ1 +
∑
i

τi,0/τi,1 (21)

where χn is the number of items that have attribute n.
(3) Update shape and rate of κu:

κu,0 = a′ +Ka (22)

κu,1 =

M∏
m=1

(ζm,0/ζm,1)fuu,m +
∑
k

νuk,0
νuk,1

(23)

where K is the number of latent components.
(4) Update shape and rate of τi:

τi,0 = c′ +Kc (24)

τi,1 =

N∏
n=1

(ρn,0/ρn,1)fii,n +
∑
k

µik,0
µik,1

(25)

(5) Update φui,k:

φui,k =exp{Ψ(νuk,0)− log(νuk,1)

+ Ψ(µik,0)− log(µik,1)} (26)

where Ψ(.) is the digamma function.
(6) Update shape and rate of νuk:

νuk,0 = a+
∑
i

yuiφui,k (27)



νuk,1 =
κu,0
κu,1

+
∑
i

µik,0
µik,1

(28)

(7) Update shape and rate of µik:

µik,0 = c+
∑
u

yuiφui,k (29)

µik,1 =
τi,0
τi,1

+
∑
u

νuk,0
νuk,1

(30)

Owing to the limited space, we only give the deviation of
integrating user/item metadata. The details of other devia-
tions are similar to PF and are ignored here.

With the Gamma distribution in Eqs. (1) and (3),
p(hum|α0, α1) ∝ huα0−1

m exp{−α1hum} (31)

p(ξu|a′, hum) ∝( M∏
m=1

hufuu,ma
′

m

)
exp{−(

M∏
m=1

hufuu,m
m )ξu}

(32)

The posterior probability of weight hum becomes:

p(hum|α0, α1, ξu) ∝ p(hum|α0, α1)
∏
u

p(ξu|a′, hum)

∝ huα0+ℵma′−1
m exp{−(α1 +

∑
u

ξu)hum}

(33)

where ℵm is the number of users having attribute m. The
posterior Gamma distribution of hum is

hum ∼ Gamma(α0 + ℵma′, α1 +
∑
u

ξu) (34)

hum is affected by ℵm and the user’s latent behavior (i.e.,
ξu). Similarly, the posterior distribution for the weight of item
attribute, hin, is

hin ∼ Gamma(γ0 + χnc
′, γ1 +

∑
i

ηi) (35)

where χn is the number of items that have attribute n.
By the mean-field variational inference, the coordinate as-

cent is used to iteratively optimize each variational parameter
while holding the others fixed [Jordan et al., 1999]. The vari-
ational inference of MPF is listed in Algorithm 1. We have to
give the number of latent components at the beginning of the
algorithm as in line 2.

3.2 Variational Inference for MIPF
Using the auxiliary variable as in Eq. (16), the completely
factorized variational distribution in MIPF can be written as

q(hu, hi,v, β, ξ, η, z) =
∏
m

q(hum|ζm)
∏
n

q(hin|ρn)

∞∏
k=1

∏
u

q(vuk|σuk)

∞∏
k=1

∏
i

q(βik|µik)
∏
u

q(ξu|κu)

∏
i

q(ηi|τi)
∞∏
k=1

∏
u,i

q(zui,k|φui,k)

(36)

Algorithm 1 Variational Inference for MPF

1: Initialize the variational parameters {ζ, ρ, ν, µ, κ, τ, φ}.
2: Set the number of components K.
3: Sample shape of user’s latent behavior, and shape of

item’s latent attractiveness, as in Eqs. (22) and (24).
4: Sample shape of the weight of user’s attribute (in meta-

data), and shape of the weight of item’s attribute (in
metadata), as in Eqs. (18) and (20).

5: repeat
6: for each rating of user u to item i that yui 6= 0 do
7: Update the multinominal as in Eq. (26).
8: end for
9: for each user do

10: Update the latent preference as in Eqs. (27) and (28)
11: Update rate of latent behavior as in Eq. (23).
12: for each user attribute in metadata do
13: Update rate of the weight as in Eq. (19)
14: end for
15: end for
16: for each item do
17: Update the latent feature as in Eqs. (29) and (30).
18: Update rate of latent attractiveness as in Eq. (25).
19: for each item attribute do
20: Update rate of the weight as in Eq. (21).
21: end for
22: end for
23: until convergence

We update the variational parameters {ζ, ρ, µ, τ} similar
to MPF. The new parameters needed to be updated are user’s
latent behavior κ, stick-breaking proportion σ and multinom-
inal distribution φ. Again, owning to the limitation of space,
we do not give the details of deviations of κ, σ and φ, which
can be found at [Teh and Jordan, 2010; Liang et al., 2007;
Kurihara et al., 2007; Gopalan et al., 2014a].

(1) Update shape and rate of κu:

κu,0 = a′ +
∏
u

yui (37)

κu,1 =

M∏
m=1

(ζm,0/ζm,1)fuu,m

+E

[ T∑
k=1

vuk

( k−1∏
j=1

(1− vuj)
)∑

i

βik

]

+

T∏
k=1

(1− σuk)
∑
i

E[βi(T+1)]

(38)

whereE[·] is the expectation with respect to the distribution q.
T is the truncate level which is the upper bound of number of
latent components K as described in [Kurihara et al., 2007].

(2) Update the stick-breaking proportion σuk by solving
the quadratic equation Aukσ2

uk +Bukσuk + Cuk = 0:

σuk =
−Buk ±

√
B2
uk − 4AukCuk

2A2
uk

(39)



where the details of Auk, Buk and Cuk can be found in
[Gopalan et al., 2014a].

(3) Update the multinominal distribution φui,k

φui,k =
exp{Rui,k}∑T

k=1 exp{Rui,k}+
∑∞
k=T+1 exp{Rui,k}

(40)

where

Rui,k = E[logθuk] + E[logβik] (41)

and

∞∑
k=T+1

exp{Rui,k} =
exp{Rui,T+1}

1− exp{log(1− vuT+1)} (42)

The variational inference for MIPF is nearly similar to
MPF with the exception in lines 2, 3, 7, 10 and 11. In line
2, instead of setting the number of latent components K, we
set the truncate level T . In line 7, we update the multinominal
as in Eq. (40). We update the stick-breaking proportion as in
Eq. (39) instead of updating the user’s preference as in line
10. In lines 3 and 11, we update the shape and rate of user’s
latent behavior as in Eqs. (37) and (38).

4 MPF/MIPF Properties and Related Work
We analyze the properties and performance of MPF/MIPF in
the context of the related work.

(1) MPF/MIPF improve precision when working with
large and sparse data by integrating user/item metadata.
Given the vector of user’s latent preferences θu and the vector
of the item’s latent features βi, the probability of the rating by
user u to item i, yui, based on Poisson distribution, is below.

p(yui|θu, βi) =
(θTu βi)

yuiexp{−θTu βi}
yui!

(43)

When yui = 0, it does not affect the probability. Similar
to PF, it does not require optimization techniques to reduce
the computational time as in the classical MF [Li et al., 2015;
Mairal et al., 2010]. The probability only depends on θu and
βi. We provide richer priors by integrating user metadata to
the user’s behaviors, ξu, as in Eq. (44). The user’s behaviors,
ξu, in turn provide richer prior to the user’s latent preferences
θuk, as in Eq. (5).

ξu|θ ∼ Gamma(a′ +Ka,

M∏
m=1

hufuu,m
m +

∑
k

θuk) (44)

Similarly, we integrate item metadata to PF.
Different from the way of integrating document-word ma-

trix into PF [Acharya et al., 2015; Gopalan et al., 2014b;
Zhang and Wang, 2015; Hu et al., 2016], MPF incorporates
the user metadata, which includes more general attributes,
e.g., categorical attributes, rather than just text. Recent work
in [Zhao et al., 2017; Fan et al., 2017] also integrates such

general attributes into probabilistic models for link predic-
tion, but works only on small data due to the limitation of
their inference.

Our models come with the variational inference, which has
proved to be efficient for probabilistic models with a large
amount of data. As MPF is built on the Gamma-Gamma-
Gamma-Poisson distribution, it is fully Bayesian and con-
jugate. As discussed in [Ghahramani and Beal, 2001], we
can easily build a variational algorithm for fully Bayesian
and conjugate models. Although the VI method for MIPF
is much more complicated since the distribution of MIPF is
not in a closed form, there are some techniques to overcome
this such as in [Liang et al., 2007; Kurihara et al., 2007;
Gopalan et al., 2014a].

(2) MIPF efficiently estimates the number of latent
components. We use the same technique as in such BNP
models as [Teh and Jordan, 2010; Liang et al., 2007; Kuri-
hara et al., 2007; Gopalan et al., 2014a] to estimate the
number of latent components at running time. Different
from the BNP MF, such as [Knowles and Ghahramani, 2011;
Hoffman et al., 2010], which requires to scan both miss-
ing and non-missing ratings, MIPF only computes on non-
missing data. This makes our inference procedure extremely
efficient for sparse matrices.

5 Experiments
5.1 Experimental Settings
Baseline Methods To the best of our knowledge, no existing
methods have incorporated user/item metadata into PF and
infinite PF. As [Gopalan et al., 2015] shows that the hierarchi-
cal PF (HPF) outperforms baselines including basic PF, Non-
negative Matrix Factorization (NMF) [Berry et al., 2007], La-
tent Dirichlet Allocation (LDA) [Blei et al., 2003], and Prob-
abilistic Matrix Factorization (PMF) [Mnih and Salakhutdi-
nov, 2008], we thus here only compare our models with HPF,
in addition to Bayesian Nonparametric PF (BNPPF) [Gopalan
et al., 2014a] and the latest PF: Hierarchical Compound PF
(HCPF) [Basbug and Engelhardt, 2016].

Datasets MPF/MIPF are tested on four public datasets
available with massive ratings and some metadata.

(1) Movielens100K [Harper and Konstan, 2016] contains
100, 000 ratings (from 1 to 5); user demographic: ‘age’,
‘gender’, ‘occupation’ and ‘zip’ (‘age’ is partitioned into the
ranges: 1 : “Under 18”, 18 : “18− 24”, 25 : “25− 34”, 35 :
“35−44”, 45 : “45−49”, 50 : “50−55”, and 56 : “56+”);
and item metadata: the ‘genre’,‘release date’, and ‘video re-
lease date’ of movies.

(2) Movielens1M contains 1, 000, 209 anonymous ratings
and the same metadata as in Movielens100K.

(3) Movielens10M contains 10, 000, 054 ratings with the
metadata only containing the ‘genre’ of the movies.

(4) Book-Crossing [Ziegler et al., 2005] contains
1, 149, 780 ratings (from 1 to 10) with the user demographic:
‘location’ and ‘age’ (‘age’ is encoded in the same way as
in Movielens100K) and the book information: ‘book title’,
‘book author’, ‘year of publication’, and ‘publisher’.

Parameter Settings We set a = c = a′ = c′ = 0.3 in the
same way as in HPF. The metadata hyper parameters α0, α1,



γ0 and γ1 are set to a small value: 0.1, so that the user/item
attribute’s weight automatically grows over time.

5.2 Result Evaluation
We evaluate MPF/MIPF in terms of their performance of ad-
dressing the three PF challenges (Q1, Q2 and Q3 below) w.r.t.
the following metrics and convergence.

Evaluation Metrics We use 20% of the ratings for testing
and 80% for training by random splitting. The top-N recom-
mendations are obtained in training w.r.t. the highest predic-
tion score. In testing, we compute the precision-at-N , which
measures the fraction of relevant items in a user’s top-N rec-
ommendations, and recall-at-N , which is the fraction of the
testing items that present in the top-N recommendations.

Convergence We measure the convergence by computing
the prediction accuracy on the validation set that is extracted
by randomly selecting 1% of the ratings in the training set.

Q1: How do MPF/MIPF significantly outperform other
PF models? As shown in Figure 2, MPF/MIPF outperform
HPF, BNPPF and HCPF in all datasets for normalized mean
precision and normalized mean recall. The results on Movie-
lens10M are not as good as on the others due to only one
metadata attribute the ‘genre’ of the movies. MPF/MIPF
make the most improvement (up to 9%) on Book-Crossing
corresponding to the richest metadata available.

(a) Normalized Mean Precision (%)

(b) Normalized Mean Recall (%)

Figure 2: Top-20 recommendations compared with baselines.

Q2: How does MIPF effectively estimate the number of
unbounded latent components? The infinite model MIPF
is compared with the finite version MPF in Figure 3 in terms
of normalized mean precision. The results for the normalized
mean recall are consistent with normalized mean precision,
omitted here due to the limitation of space. We run MPF
w.r.t. K from 1 to 200 but MIPF for just once. For MIPF,
we set the truncate level T to 200. We can see that MIPF
can always achieve as good as the best results of MPF. This

Figure 3: Performance of top-20 recommendations made by finite
model MPF and infinite model MIPF.

Figure 4: Example of MIPF in handling sparse items in comparison
with HCPF.

shows MIPF is very efficient in selecting the suitable number
of latent components K.

Q3: How do MPF/MIPF deal with sparse items/users?
In this experiment, we choose 20 users who have the high-
est number of precisely recommended items. We calculate
the sparsity within each item (i.e., the fraction of the number
of users who gave ratings for that item in the total number of
users). Figure 4 shows the percentage of number of items that
have sparsity less than 1% in the total recommended items
for each user for MIPF and HCPF. It shows MIPF recom-
mends more sparse items than HCPF as the result of integrat-
ing metadata. The results for sparse users are similar to sparse
items, omitted here for the limitation of space.

6 Conclusions
Two novel and efficient Poisson factorization models MPF
and MIPF are proposed for sparse and large-scale recommen-
dation. They are the first to effectively integrate user/item
metadata into PF, and MIPF can effectively estimate the num-
ber of latent components in just one run. We are developing
even more efficient inference for MIPF to handle increasingly
bigger data.
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