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Financial Crisis 
Forecasting via 
Coupled Market 
State Analysis
Wei Cao and Longbing Cao, University of Technology, Sydney

Coupled market state 

analysis assumes 

market observations 

are governed by a 

collection of intra- 

and intercoupled 

hidden market states.

US and global financial markets, before 
moving on to other sectors.

But effectively detecting a possible financial 
crisis isn’t a trivial task: a financial crisis is a 
rare and complex problem, and it’s hard to 
determine which observed indicators are more 
sensitive than others. Moreover, financial 
markets are always coupled with each other, 
so any crisis has a strong transfer effect as it 
moves from one market to another.1

Many researchers and practitioners have 
recognized the need for and challenges of 
crisis forecasting, with most current ap-
proaches enabling prediction through direct 
observations of indicators. As shown in Fig-
ure 1a, for example, a crisis detector (such 
as a logistic regression classifier) forecasts a 
crisis for time t + 1 based on observations of 
all market indicators from time t − k + 1 to 
t, where k is the time window size. We ar-
gue that such approaches overlook the un-
derlying coupled relationships between mar-
kets that can’t be directly detected. When 
these couplings change, they affect direct 
observations.

To represent the hidden couplings between 
various markets, we propose a new forecast-
ing framework based on coupled market 
state analysis (CMSA), where coupled mar-
ket state (CMS) refers to a set of dynamic 
hidden states that represent the transition in-
duced by the constant interactions between 
markets. Our proposal works on the assump-
tion that market indicators are governed by a 
collection of CMSs, which are better features 
for capturing a financial crisis.

Accordingly, we insert a coupled state-
space model (CSSM) between observations 
and the crisis detector, as Figure 1b shows, to 
conduct a CMSA over all markets. Our ap-
proach comprises the following steps: learn 
the CMSs behind the observations using the 
CSSM, feed the CMSs into a detector as fea-
tures, and have the detector forecast whether 
a financial crisis exists. In so doing, we avoid 
the data vulnerability found in traditional 
observation-based approaches. Empirical  
evaluations on real-world financial data dem-
onstrate the superiority of our approach com-
pared to observation-based methods.

The impact of a financial crisis is often disruptive from multiple 

perspectives, including the local economy, daily life, society in general, 

and globalization. For example, the subprime mortgage crisis that started in 

the US in 2007 triggered a chain of destructive effects on instruments in the 
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Background
The approaches related to finan-
cial crisis forecasting can be roughly 
categorized into the following three 
types. The signal approach2 uses fi-
nancial variables (such as the ex-
change rate or stock market index) as 
indicators to identify the difference 
in economic behaviors between the 
crisis and normal periods. The main 
drawback here is that the approach 
relies on the selection of variables,3 
often resulting in biased results. 
The second type is linear time-se-
ries analysis, represented by logistic 
and probit models4 that use histori-
cal data to infer a future crisis. How-
ever, this kind of approach suffers 
from a linear assumption, whereas  

most financial crises exhibit nonlinear 
behaviors.1 The last type uses machine 
learning, usually through an artificial 
neural network (ANN).5 This kind of 
approach6 pays more attention to the 
nonlinear correlations of variables, 
but many models predict financial 
crises directly from observations of 
variables, completely ignoring the un-
derlying complex coupled relations.7 
Consequently, the outcomes might be 
too sensitive to observations. To avoid 
such vulnerability, our model uses 
CMSs behind the observations. Be-
fore introducing it, let’s first go over 
our state-space model (SSM) and cou-
pled hidden Markov model (CHMM), 
which serve as the foundation of this 
article.

An SSM refers to a class of probabi-
listic graphical models that describes 
the probabilistic dependence between 
the latent variable and the observed 
measurement.8 The basic state-space 
equations are as follows:

Yt = HtUt + vt� (1) 

Ut = FtUt-1 + wt,� (2)

where Yt is the observation vector, Ut 
is the state vector, Ht links the state 
vector to the observations, Ft is a 
state transition matrix, and vt and wt 
are the control vectors.

The CHMM was proposed to 
model multiple processes with cou-
pling relationships.9 It consists of 
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Figure 1. Two types of forecasting: (a) observation based and (b) coupled market state analysis (CMSA) based. The latter 
forecasts include the underlying coupled relationships between markets that can’t be directly detected.
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more than one chain of HMMs rep-
resenting different processes in which 
the state of any chain of HMM at 
time t depends on not only the states 
of its own chain but also the states of 
other chains at time t - 1—namely, 
the interaction between the processes. 
Figure 2 is a standard CHMM with 
two chains.

Suppose there are C CHMMs, H 
is the number of states of the Markov 
chains, and {Z1, Z2, …, ZH} is a set of 
hidden states, where zt is the hidden 
state at time t. V is the number of ob-
servation symbols, {X1, X2, …, XV} is 
a set of observation symbols, {O1, O2, 
…, OT} is an observation sequence, and 
ot is the observation at time t. Given 
this, we can define the corresponding 
elements of a CHMM as follows:
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A Case Study
The 2008 global financial crisis 
showed that linkages exist in different 
financial markets. We can verify these 
coupling relations quantitatively by 
using typical market indexes of three 
major financial markets (commodity 
market: the price of gold and crude 
oil futures; equity market: the S&P 
500 index and Dow Jones Industrial 
Average (DJIA); and interest market: 
the TED and Baa spread), as shown 
in Figure 3 and Table 1.

The data for Figure 3 and Table 1  
spans January 2006 to December 

2012, including the 2008 global cri-
sis period. We can see from Figure 3 
that the relations between the three 
markets are complex: the couplings 
are stable in the noncrisis periods (be-
fore late 2007 and after 2009) but 
fluctuate sharply during the financial 
crisis interval (from 2007 to 2009). 
Table 1 uses the Pearson correlations 
to describe the relations between the 
indicators in the three markets, and 
we can see that the coefficients are 
very significant, namely, that there 
are strong correlations between the 
indexes. On the basis of this, we can 
conclude that there exist some hidden 
couplings between the three markets 
that can’t observe directly. In addi-
tion, the hidden couplings behave dif-
ferently during and around financial 
crisis periods.

We can formalize the forecasting 
problem as follows: f(⋅) is a function 
used to capture the complex coupled 
relationships between market states 
in different financial markets, and an 
objective function g(⋅) is built to fore-
cast the possibilities of crisis and non-
crisis. If at time t,

g c

f CMS g c f CMS

t
D

t k
t

t
D

t k
t

+

− + + − +

=( )
( ) ≥ =( )

1

1 1 1

1

0 (( ), 
� (3)

then time t + 1 is a crisis period; oth-
erwise, it’s a noncrisis period. Here, 
g c f CMSt
D

t k
t

+ − +=( ) ( )1 11 |  represents the 
possibility of a crisis by using a detec-
tor with the CMSs from time t - k + 1 
to time t (k denotes the window size). 
The key task of crisis forecasting, then, 
is to build a proper model to determine 
the specific function f(⋅) and the corre-
sponding objective function g(⋅).

Modeling Framework
On the basis of the case study and 
corresponding problem formaliza-
tion, we propose a CMSA-based 
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financial crisis forecasting framework 
as shown in Figure 4a. It comprises 
three major steps: CMSA, mapping, 
and forecasting.

Coupled Market State Analysis
CMS refers to the hidden states from 
multiple markets with inter- and intra
couplings. Suppose there are I mar-
kets {M1, M2, …, MI}, and a market 
Mi undertakes J market states {i1, 

i2, ..., iJ}. A market state behav-
ior feature matrix FM() is then de-
fined as follows:
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The intracouplings within each mar-
ket state are the relationships within 
one row of this matrix, whereas how 
the states interact between differ-
ent markets is embodied through the 
columns of FM(), indicated as 
intercouplings.

Definition 1. CMS refers to market 
states i1j1 and i2j2, which 
are coupled in terms of intra- and 
intercoupling:

f

i i i i I

Intra

i j i j

MS

MS MS

( )
= = ≤ ≤{ }1 1 2 2 1 2 1 21 | , ,

 � (4)

f

i i i i I

Inter

i j i j

MS

MS MS

( )
= ≤ ≤{ }≠

1 1 2 2 1 2 1 21 | , , , 
� (5)

where  means the interactions of 
MSi j1 1

 and MSi j2 2
.

Definition 2. CMSA builds the 
objective function g(⋅) under 
the condition that the hidden 
market states are coupled with 
each other by coupling function 

f(⋅) and satisfy the following 
conditions:

f(⋅):: = {fIntra (), fInter ()}� (6)

argmaxcg(c) | f(⋅),� (7)

where c ∈ {0,1}, where 0 represents 
the noncrisis set, and 1 denotes the 
crisis set.

Definition 3. CSSM refers to a type 
of graphic model that not only 

Table 1. Correlations between indicators in three types of markets.

Indicators Metrics S&P 500 Dow Jones Industrial Average (DJIA) Gold Oil futures TED Baa

S&P 500 Pearson correlation
sig. (2-tailed) 1 .976**

.000
.010
.843

.425**

.000
-.092

.081
-.739**

.000

DJIA Pearson correlation
sig. (2-tailed)

.976**

.000 1 .194**
.000

.517**

.000
-.100

.057
-.635**

.000

Gold Pearson correlation
sig. (2-tailed)

.010

.843
.194**
.000 1 .470**

.000
-.383**
.000

.248**

.000

Oil futures Pearson correlation
sig. (2-tailed)

.425**

.000
.517**
.000

.470**

.000 1 .033
.534

-.108*
.041

TED Pearson correlation
sig. (2-tailed)

-.092
.081

-.100
.057

-.383**
.000

.033

.534 1 .384**
.000

Baa Pearson correlation
sig. (2-tailed)

-.739**
.000

-.635**
.000

.248**

.000
-.108*

.041
.384**
.000 1

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).

Figure 3. Indexes series in three markets. The relations between the three markets are 
complex: the couplings are stable in the noncrisis periods (before late 2007 and after 
2009) but fluctuate sharply during the financial crisis interval (from 2007 to 2009).
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describes the latent variable and 
the observed measurement but also 
captures the coupled relationships 
between latent variables across 
different SSMs. Suppose there 
are C SSMs; the basic state-space 
equations are then

Y H U vt
c

t t
c

t= + � (8)

U F f U f Ut
c

intra t
c

inter t
c= ( ) ( )( )− −
′

1 1,     ,� (9)

where U U U Ut t t t
C= [ , , , ]1 2

 . Here, (1 ≤ 
c ′, c ≤ C) ∧ (c ≠ c′), F is a transition 
function, and fintra(⋅) is built to capture 
the intra relations in the same SSM, 
whereas finter(⋅) encodes the couplings 
between different SSMs.

We use CHMM as a concrete 
implementation of CSSM to learn 
coupled states between markets because 
CHMM is a probabilistic state-space 
model to capture the nonlinear coupling 
relationship in multiple processes and 
the transitional effect from one hidden 
state to another.10

Modeling Process
In CHMM, we use one Markov chain 
to represent one financial market, so 
in this article, we select one indicator 
for each market that has higher 
correlations with other markets:
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The indicator correlation CIi j1 1
 refers 

to the correlations of indicator Ii j1 1
 

with indicators in other markets Ii j2 2
,  

where m is the number of markets, 
and each market owns n indicators  
(i1 ≠ i2) ∧ (1 ≤ i1, i2 ≤ m) ∧ (1 ≤ j1, j2 ≤ n).  
Here, corr(⋅) is the Pearson correlation 
coefficient of the two indicators.

There are two mapping processes: 
one from CMSA to CSSM, namely, 
from a formalized issue to an 
abstracting model, and the other from 
CSSM to CHMM, which resolves the 
issue with a specific toolCHMM.

As we mentioned earlier, there are 
three market state sequences: F(E) 
encloses the equity market state se-
quence, and F(C) and F(I) represent 

Figure 4. CMSA overview. (a) Our proposed financial crisis forecasting framework, (b) the mapping process, and (c) the forecasting process.
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commodity and interest market state 
sequences, separately. {Z1, Z2, …, 
ZH} is a set of hidden states, where 
zt is the hidden state at time t. {X1, 
X2, …, XV} is a set of observation 
symbols, O = {O1, O2, …, OT} is an 
observation sequence, and ot is the 
observation at time t. Figure 4b illus-
trates the specific mapping relations.

Forecasting Process
Figure 4c shows the general frame-
work of the proposed forecasting pro-
cess. For each observation interval Ot-

k+1:t (k is the time window), the first 
step is to train the CHMM using the 
k observations (Ot-k+1:t) in the three 
markets to obtain corresponding 
market states Zt-k+1:t. Then, on the 
basis of the coupled states, the trained 
detector gives the probabilities of 
crisis P c Zt

D
T
t
T t k( ) ( )( | )+ = − +=1 11  and non-

crisis P c Zt
D

T T t k
t

( )( | )+ = − += { }1 1
0 . After 

comparing the two probabilities, we  
can find whether time t + 1 is in a fi-
nancial crisis set.

Evaluation and Discussion
We selected one indicator from each 
market according to Equation 10: 
the DJIA, the crude oil price futures, 
and the Baa spread. The dataset in-
cludes weekly closing prices from 
January 1990 to December 2010, ob-
tained from the Federal Bank of St. 
Louis (http://research.stlouisfed.org); 
we decoded the prices into returns as 
symbols that can be calculated by RIt 
= (PIt - PIt-1/PIt-1 × 100%), where 
RIt and PIt are, respectively, the re-
turn and closing price at time t.

We divided the data into two parts: 
a training set from January 1990 to 
December 2006, and a testing set from 
January 2007 to December 2010. Ac-
cording to the National Bureau of 
Economic Research (NBER) Business 
Cycle Dating Committee (www.nber.
org/cycles.html), there are two crisis 
periods in the training dataset (July 

1990 to March 1991, led by the Gulf 
War, and March 2001 to November 
2001, triggered by the dot-com bub-
ble), and one crisis period in the test-
ing dataset (December 2007 to June 
2009, caused by the subprime mort-
gage crisis). Because indicators in dif-
ferent markets could appear on dif-
ferent trading days, we deleted those 
days on which some market data is 
missing and only chose the days with 
trading data from all markets. Here 
are the methods we used:

•	 Signal-crisis. The basic idea of this 
method is that variables behave 
differently in a financial crisis pe-
riod when compared with a normal 
period.2 We used it as a baseline 
method.

•	Logistic-crisis. We used this ap-
proach with indicators from the 
three different markets; the param-
eters can be obtained through maxi-
mum likelihood estimation.

•	ANN-crisis. We used a back-prop-
agation algorithm5 with indicators 
from the three different markets to 
train the model.

We based our technical perfor-
mance evaluation on the following 
metrics:

Accuracy
TN TP

TP FP FN TN
= +

+ + +

Precision
TP

TP FP
=

+

Recall =
+
TP

TP FN
,

where TP, TN, FP, and FN represent 
true positive, true negative, false pos-
itive, and false negative, respectively. 
We treat the financial crisis cases as 
the positive class here.

We also compared the technical 
performance of our approach against 
other approaches on the testing data 
with a different window size k, calcu-
lating accuracy, precision, and recall. 
Table 2 and Figure 5 show the results.

Table 2 shows the accuracy perfor-
mance of the five approaches over the 
whole testing period. We can see that 
the baseline method of signal doesn’t 
achieve a good performance; this is 
because signal relies on the selection 
of indicators and pays no attention to 
hidden couplings between indicators. 
For a similar reason, the logistic and 
ANN approaches don’t perform very 
well either. Note that ANN outper-
forms the logistic approach, primar-
ily because the latter is under a linear 
assumption, but the financial crisis re-
veals nonlinear characteristics. Our 
CHMM-based approaches have bet-
ter performance than the comparative 
methods with all window sizes. For in-
stance, the CHMM-logistic has about 
14 percent improvement over the lo-
gistic approach when the time window 
equals 3, and CHMM-ANN has a 
roughly 9 percent gain over the ANN 
method when the time window equals 
4. The main reason can be interpreted 
as follows: unlike those methods that 
predict financial crisis directly from 
data, our approach uses a framework 
of CMSA to learn the hidden CMSs 
over different markets, which removes 

Table 2. Accuracy of various approaches. Boldface indicates the best performance 
with each k.

Approach

Accuracy

k = 2 k = 3 k = 4

Signal-crisis 0.5604

Logistic-crisis 0.6926 0.6953 0.7137

Artificial neural network (ANN)-crisis 0.7471 0.7617 0.7294

Coupled hidden Markov model (CHMM)-logistic 0.8132 0.8320 0.7647

CHMM-ANN 0.8016 0.8281 0.8157
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the vulnerabilities in the data; in addi-
tion, CHMM has been demonstrated 
to be a useful model to characterize 
the CMSs.

Figure 5 shows the technical perfor-
mance of precision and recall by setting 
three different window sizes, where 
the horizontal axis (P-Num) stands for 

the number of predicted trading weeks 
in the financial crisis, and the vertical 
axis represents the values of the tech-
nical measures. We can see that the 
CHMM-based approaches outper-
form the other approaches at any 
window size. For instance, in Figure 
5c, when P-Num = 45, the precision of 

CHMM-logistic is 90 percent, which is 
40 percent better than logistic. In ad-
dition, recall represents the probabil-
ity that a crisis is retrieved. Figures 5b, 
5d, and 5f show the CHMM-based 
approach achieves higher recall than 
observation-based models with any  
P-Nums. 
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Figure 5. Technical performance of various approaches on predicting a crisis: (a) precision (k = 2), (b) recall (k = 2), (c) precision 
(k = 3), (d) recall (k = 3), (e) precision (k = 4), and (f) recall (k = 4), where k denotes window size. The CHMM-based approaches 
outperform the other approaches at any window size.
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