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Abstract—In this paper, a multiobjective evolutionary algorithm

based soft subspace clustering, MOSSC, is proposetb
simultaneously  optimize  the  weighting  within-cluste
compactness and weighting between-cluster separatio

incorporated within two different clustering validity criteria. The
main advantage of MOSSC lies in the fact that it ééctively
integrates the merits of soft subspace clusteringnd the good
properties of the multiobjective optimization-basedapproach for
fuzzy clustering. This makes it possible to avoid &pping in local
minima and thus obtain more stable clustering resus.
Substantial experimental results on both syntheti@and real data
sets demonstrate that MOSSC is generally effectivia subspace
clustering and can achieve superior performance oveexisting
state-of-the-art soft subspace clustering algorithim
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|I. INTRODUCTION

As an important data processing technique, clugienias
long been a hot research topic in various disogslinit has
been widely utilized as a fundamental tool for datelysis
and visualization in areas such as machine learaimydata
mining [1]. Clustering aims to categorize the uelall input
vectors into different groups, called clusters,hsticat data
points within a cluster are more similar to eadieothan they
are to those belonging to different clusters, bg.maximizing
the intra-cluster similarity while minimizing thenter-class
similarity [2]. However, clustering high dimensidmkata is an
emerging research field, because dimensions mighe h
locally varying relevance for different groups odbjects in
high dimensional spaces [3].

The difficulty that traditional clustering algoritts
encounter in dealing with high dimensional datas sespired
the invention of subspace clustering, or projeatktstering,
which has been studied extensively in recent y8drs.goal of
subspace clustering is to locate clusters embeitdddferent
subspaces of the original data space with their aggociated
dimensions [4]. Based on the ways that the subspace
clusters are determined, subspace clustering gigwwican be
generally classified into two main categories: haubspace
clustering and soft subspace clustering [4-6].his paper, we
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clustering process by automatically assigning diffe
weightings to different dimensions of clusters eddss in
subspaces. Soft subspace clustering algorithmbeamouped
into two main categorieguzzy weighting subspaceclustering
(FWSC) [7] andentropyweightingsubspacelustering (EWSC)
[6]. Both of them solve the constrained optimizatfwroblems
with  Lagrange multipliers, which can provide good
convergence speed to their iterative process. Wtien
algorithms employ local search strategies to optimiheir
objective function with constraints, however, theyay
converge to a local minimum, leading to false sohg. To
address this problem, computational intelligencseda soft
subspace clustering was first introduced by Luleira[8].

They developed a PSO-based algorithm, called PSOVW,

which makes full use of a particle swarm optimizer
minimize a new transformed objective weighting fimc.

Although many soft subspace clustering algorithrageh
been developed and applied to different areas, tteke
methods use only a single cluster validity critarias the
objective function to be optimized o optimize within-cluster
compactness and the between-cluster
simultaneously, Deng et al. developed a new opétitn
objective function and proposed a novel clustetighnique
calledenhancedsoft subspacelustering (ESSC) [5]. However,
it is difficult to determine the relative importanof different
clustering criteria for the ESSC algorithm, sinceSE simply
combines them into a single objective function. refare, it is
better to independently optimize compactness aparagon
criteria. During the last few years, multiobjecticiistering
methods [9-12], based on different multiobjectivétist
techniques, have been developed to simultaneoystiyniae
several validity indexes that can capture the difie data
characteristics. Voronoi initialized evolutionary earest
neighbor (VIENNA) algorithm [11] and multiobjective
clustering with automatic k-determination (MOCK)
algorithm [12] were introduced by Handl et al. fatimize two
objectives and find an approximation to the Pafatat (the
set of optimal trade-off), instead of a single solu Motivated
by these idea, we propose raulti-objective evolutionary
algorithm-basedoft subspaceclustering, MOSSC, to optimize
the weighting within-cluster compactness and wanght
between-cluster separation separately. To achidig &

focus on soft subspace clustering, which measutes tpopular multiobjective genetic algorithm, Nondominated

importance of each dimensionality to a particulaster in the

Sorting GA-lIl (NSGA-II) [13], is used to evolve atsof

separation



near-Pareto-optimal non-degenerate solutions. ifla¢ d¢luster
label vector of MOSSC can be chosen by integragithghe
nondominated solutions through a clustering ensersioategy
Hybrid Bipartite Graph Formulation algorithm (HBGR}].

B. Entropy Weighting Subspace Clustering

The entropy concept, which is used to represent the
certainty of dimensions in the identification ofchuster, is
introduced into soft subspace clustering. Becaube t

In summary, the proposed MOSSC algorithm not On|yweightings in extended subspace clustering algosthare
inherits the merits of soft subspace clustering,atsp receives _controllable by entropy, these types of algorithams referred

the  beneficial  properties of the
optimization-based approach for fuzzy clustering.ur O

experiment results demonstrate that MOSSC is giyera

effective in subspace clustering and almost alwagisieves
superior performance over existing state-of-the-auft

subspace clustering algorithms, such as PSOVW, ESSC

EWSC and FWSC. The rest of this paper is organasd
follows. In Section Il, a brief overview of existjralgorithms
for soft subspace clustering is provided. Sectibrdéscribes
the basic concepts of the multiobjective evolutigna
algorithm-based fuzzy clustering algorithm. The pamsed
NSGA-Il based multiobjective soft subspace clustgri
technique, MOSSC, is presented in Section IV. Inotie V,
the clustering performances of MOSSC, as comparigd w
other algorithms, on artificial and UCI data sets eeported.
Finally, conclusions and future work are discusse&ection
VI.

Il. SOFT SUBSPACECLUSTERING

Soft clustering aims to group a set of given dadints
X={x % x}I R into a set of clustering centers

multiobjective t0 as entropy weighting subspace clustering (EWEC)In

general, the objective function of EWSC can berdefias:
C N D CcC D
Wi ( X - Vi)’ + g
k=1

wlog w,

i=l1k=1
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The Lagrange multiplier is also applied to minimitte
objective function in Equation (2). It can resultthe equations
for updating the estimations of center, entropy weighting

w, and membership degree,

C. Particle Swarm Optimizer for Soft Subspace Clusteri

Both fuzzy weighting and entropy weighting subspace
clustering algorithms solve the constrained optatian
clustering problems withLagrange multipliers and may
converge to a local minimum leading to false sohsi In
considering this problemlu et al. in [8] first introduced
computational intelligence-bassdft subspace clusteringhich
can make full use of a particle swarm optimizemioimize a
new transformed objectiweeighting function in Equation (3)

V={v, 1£i£C}. Let u; denote the membership degree ofyrthmore, theydeveloped a PSO-based algorithm, called
x, belonging tov;, then we can define the fuzzy c-partition PSOVW, for solving the optimal variable weightingblem in

matrix U of the given data set, ie.,
U={y|1£i£C, 1£j£N} . To discover clusters from

different subspaces, it is important that a softstring
algorithm has the capability of clustering datang®iin a
subspace by automatically weighting features indhstering
process. Based on the importance ofkitle dimension on the

formation ofi-th cluster, a weightingw, is assigned to each
dimension in soft subspace clustering. The subspaife
different clusters can be identified by the weigbtimatrix
W={w, |[1Ei£C, LEKE D} after clustering [6, 7].

A. Fuzzy Weighting Subspace Clustering

Fuzzy weighting subspace clustering (FWSC) [7] setek
find clusters from fuzzy weighting subspaces. Intta¢ fuzzy
weighting subspace clustering algorithms, a fuzaighting

W, is assigned to the features of different clusteith a

fuzzy weighting indext . The objective function of FWSC is
generally formulated as:

T Wi (X - Vi) @)

k=1

Jewse = uj;
i=1 j=1

N C —_— . D —_—
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By minimizing (1) using Lagrange multipliers, thpdating
equation for estimating center,, fuzzy weighting w, and
membership degreey; can be derived.

soft subspace clustering.
b

c N D
Jpsovw = uj o (X vi)? (3)
i=1 j=1 k=1 k:lvvik
stul{l =~ y=LE w1l

By observing the existing soft subspace clustering
algorithms, we find that all these methods use anlgingle
cluster validity criterion as the objective functicto be
optimized, which is not appropriate for differerinds of data
sets with different characteristics such as higimedisional
sparse data or a mixture of categorical and numilediata. To
enable the simultaneous optimization of within-tdus
compactness and the between-cluster separationhén t
weighting subspace, a novel clustering techniqudecca
enhanced soft subspace clustering (ESSC) is prdmsBeng
et al [5], which is developed based on a new opation
objective function that integrates the weightinghivi-cluster
compactness and the weighting between-cluster atmar
However, it is difficult to determine the relatiiportance of
different clustering criteria for the ESSC algonmith since
ESSC only combined them into a single objectivectiom.
Alternatively, we can independently optimize thenpactness
and separation criteria to generate an effectivbsgace
clustering algorithm which will obtain superior fEnmancein
complex and overlapping datasets.

During the last few years, multiobjective optiminat
which can separately optimize multiple and oftemflicting



objectives, has been gaining popularity. Based ifferent

multiobjective elitist techniques, a series of ezshes on
multiobjective clustering have been proposed [2-123pired

by this idea, an effective way to overcome the tsiooning of

ESSC is to integrate the strength of the multidbjec
evolutionary techniques into soft subspace clusgerito

optimize the weighting within-cluster compactnessd a
weighting between-cluster separation separatellierathan

combining them into a single objective function tme

optimized.

The application of evolution computing-based clriste
analysis, which can search for appropriate clusgeri
optimization results, has been studied extensivelyecent
years. However, most algorithms use only a sindleter
validity criterion as the fitness function. Paditibased

MULTIOBJECTIVE FUZZY CLUSTERINGALGORITHM

clustering algorithms can be seen as a combinatoria

optimization problem that attempt to organize theeg data
points into clusters or “natural groups” such ttiet clustering
results maximize the intra-cluster similarity whitgnimizing
the inter-class similarity [2, 5]. Hence, it is esesary to
separately optimize several validity criteria tltain lead to
improved performance. To achieve this, a series
multiobjective  evolutionary  algorithm-based  clusigr
algorithms are proposed, which are briefly reviewetbw.

A. Multiobjective Optimization

Multiobjective optimization (MOO) [13, 15-23] is ¢h
process of simultaneously optimizing two or moraftioting
objectives subject to certain constraints, as ifilden 1.

Definiton 1.  Multiobjective  Optimization: The
multiobjective optimization aims to find the objieet vector
X =[X, %, %] of D decision variables which optimizes
M objective functionsf (x) =[f(X), f,(®, f,(X]" in a
feasible regiorX containing all the admissible solutions.

X =arg minf(¥) = arg mih £(3, H(3, {3’

X X & X

(4)

No single optimum solution exists, but a possibifinite
set of solutions called Pareto set comes in hamdlgeg domain
of multiobjective optimization. The criterion of R#0
optimality utilizes the domination relation to te@ff among
objective functions. A Pareto set is also called-dominated
solutions, as in Definition 2.

Definition 2. Pareto Set: For M objective functions
fO)=[f(®, (X, (R in a feasible regionX
containing all the admissible solutions. A solutiocn in
objective space is termed Pareto optimal from iba/point of
a minimization problem if and only if no other féade solution
X' exists, which can dominateg, i.e.,

{1!2! !M}’ fi(xa
$ilT{L,2, M} f(xx f(x.

Pareto optimal admits a set of solutions called® set.

" f.(x) ,and

Multiobjective optimization aims to find the PareSet by
guantifying the balances to satisfy the differehjectives. In
recent decades, a wide range of evolutionary dlgos have
successfully been developed as robust and effeatiethods
for finding such nondominated solutions for muljexdiive
optimizations, both theoretical and practical. Giene
algorithms such as the VEGA [23], MOGA [21], NPGA28]
and NSGA [15] are some algorithms under the Parated
non-elitist approaches. SPEA [16], PAES [22], SPH2AQ]
and NSGA-II [13] are some algorithms recently depeld by
the incorporation of elitism. Some schemes basesiranlated
annealing and particle swarm optimization can alsostitute
significant techniques, such as Simulated Annediaged
Multiobjective Optimization Algorithm (AMOSA) [19]and
Time Variant Multiobjective Particle Swarm Optimiican
(TV-MOPSO) [17].

B. Multiobjective Optimization-based Fuzzy Clustering

Based on the above different multiobjective elitist
techniques, a range of works on multiobjective teltisg has
been proposed in recent years. Bandyopadhyay ef{9hl.
presented aulti-objective evolutionary algorithm-based fuzzy
clustering (MOC), which simultaneously optimized the

oKie-Beni (XB) index [2] and J..,, measure [24] as objective
functions. The two validity criteria are descrikasifollows.

The XB index takes into account the compactness and
separation of the clusters. It is defined as atfanof the ratio
of the fuzzy intra-cluster compactness ., and minimum

inter-cluster distancel; o, i.€.,

c N,
u

XB= Je_cowr __ = = dez()g,y)
N J: sep N (ni]ijn{ d( v, )

®)

The FCM objective function measuré..,, , which also
needs to be minimized, is defined as:

(6)

Note that XB index and J.,, measure are to be

minimized when both the between-cluster separatiot the
fuzzy within-class compactness are to be optimizeence,
MOC can evolve a set of nondominated Pareto optfoedy
partition matrices by using the NSGA-II algorithmdaprovide
the final cluster label vector by selecting frone tket of
nondominated solutions.

‘]FCM: iczl ;\lzll‘lirjndz()?’y)

IV. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM-BASED SOFT

SUBSPACECLUSTERING

In this section, we propose a multi-objective etiohary
algorithm-based soft subspace clustering, MOSSC,
simultaneously optimize the weighting within-cluste
compactness and weighting between-cluster separatio
incorporated within two different objective funate To
achieve this, a popular elitist multiobjective génalgorithm,
Nondominated Sorting GA-lIl (NSGA-II), is used tooke a
set of near-Pareto-optimal non-degenerate solutions

to



A. Chromosome Representation & Population Initialiaati

In the MOSSC algorithm, each chromosome repregsbats
weighting matrix W ={w, |1£i£C, 1£ k£ D}. ForC clusters,
if each weighting w  has D
W ={w, W, W |1£i£C}, the length of a chromosome
will be C” D, where the firstD genes represent the
D-dimensions of the first cluster weighting;, , the nextD
genes represent that of the second cluster, aad.so

cluster attributes

The initial weightings w, (1£i £C, 1£k £ D), encoded

in each chromosome, are set to random numbers wvadreh
uniformly distributed and must meet the equalitynsteaints

|ilwikzl, 1£i £C. The initial cluster centers, (1£i£C)

areC different data objects randomly chosen out oftal data
points.

B. Computation of Objective Functions and Partitioniofg
Data Objects

Once the cluster membership degree is obtained, the
cluster centersv, can be calculated as follows:

N m
j=1 i e
N m

j=1 uij

Vie = (10)
Note that while computingv, using (10), if the variance
of the cluster centery ={v, 1£i£C} is very small (less
than 10°%), we reinitialize the cluster centers by randomly
selectingC different data points in our implementation.

Subsequently, the cluster weighting, encoded in a
chromosome is recomputed using the following equati1):

( :-\‘Zluijm(xjk - Yk)z)-j/t- !

\Nik = D Sy 1
( :-\lzlui;n(xjk - Vi )2)

(11)

k=1

Motivated by the advances of MOC, the Soft Subspace To a .certain extent, the choice of _different clratg
Xie-Beni (SSXB index and J.,.. Measure are taken as the validity criteria has a major effect on the fin@rformance of

two objectives which need to be simultaneouslyrojid in

MOSSC. In our proposed MOSSC, two basic critSBXB

MOSSC. TheSSXBindex is extended from the Xie-Beni index index and J.,s. measure inspired by MOC are chosen to

and defined as the ratio of the weighting withinstér
compactness J., cowe (0 the minimum  weighting

between-cluster separatiody,, g, i-€.,

c N oD ,
J U V\A(()Sk - ¥)
SSXB= __FW.COMP_ _ Fl F1 kel
" Jrw_ser N (min, { (v, v)

(v v)=( (- YO L Wy )12

As defined in (1), u 1{0,1} is used in the K-means
framework-based FWSC. In order to cater for thezjuz
partition, we specify 0£u £1, and define the J.s
measure as follows:

()

c N D ,
! —_ m
Jewsc = uj; Wi ( X = W)
i=1j=1 k=1

(8)

For computing the above objective functions, théhing
matrix encoded in a chromosome is first extrac@den the

weighting matrix W ={w, |[L£i£C, 1£ k£ D} and the set of
cluster centersV ={v, 1£i£C} , the cluster membership

degree u; can be computed by the following formula.
d-- -1/m 1
u =L i=1, C,j=14, N

i c “Um1’
-, (dy)

dij = E:lM()Sk - Yk)zr =1 C, =1, N

9)

establish the effectiveness of the basic prinal®1OSSC. In

addition, a theoretical study involving effectiviteria will be

conducted in the immediate future, which will be great

importance in providing useful and convenient guidi
principles for MOSSC.

C. Genetic Operators: Selection, Crossover And Mutatio

In our approach, an excellent multiobjective optation
method, NSGA-ll, is used to evolve a set
near-Pareto-optimal non-degenerate solutions folSMO. At
each NSGA-II iteration, two values are assignedetxh
chromosome after calculating the multiobjectivendis
function [13]. The first corresponds to the rank thfe
population using the dominance criteria, whichdgtedd based
on non-domination into each front. The second,dfwevding
distance, is a measure of estimating the densiipdifiduals
surrounding their neighbors of the objective spaeed
represents the quality of the solution in termgioersity. A
chromosome (solution) is said to be better tharthamoif it
has a best rank value, or in case of equality, fias the best
crowding distance.

of

Parents are selected from the population by usibmary
tournament selection with crowed comparison operbssed
on the two above values. After selection, the getbc
chromosomes generate the new offspring solutioos fthe
Simulated Binary Crossover operator for crossoa&] fand
polynomial mutation [13]. The population with therent
generation and current offspring is sorted agaisedaon
non-domination to set the chromosomes of the next
population. The most characteristic part of NSGAdI its

Both the fuzziness exponent and the fuzzy weighting elitism operation, since all the previous and auirréest
index ¢t are user-defined parameters. In our experimehgs, t individuals are added in the next population.

Va'”?s ofm and_ ¢ are set as 2 and 4, respectively. For a A detailed illustration on NSGA-II processes canfdend
detailed discussion on timeand ¢ values, readers may refer to ;, [13]. After a few iterations, the set of near&ta-optimal
[7, 25]. '



V. EXPERIMENTS AND EVALUATION

Two sets of experiments are conducted to compage th
clustering results of MOSSC with PSOVW [8], MOC ,[9]
ESSC [5], EWSC [6] and FWSC [7]. Three evaluatiodices,

D. Selecting A Solution from Nondominated Set by HBGF Clustering Accuracy (CA), Normalized Mutual Infortiza

Having obtained the nondominated cluster weightingNMI) and Rand Index (RI) are used to evaluate the
erformance among the above six clustering algmsth

non-degenerate solutions in the final populatioavjgte the
nondominated cluster weighting valuesy, and the

corresponding cluster membership degrge for MOSSC.

values w, and the corresponding cluster membership degre%
u,, a critical problem in multiobjective clusteringsearch is

etails of these quality measures can be foun@ii [

how to combine the set of near-Pareto-optimal negederate A. I_nvestlgate_d Data Sets ) )
solutions to yield a final superior clustering résuThe Six synthetic datasets acquired from the same géorr
problem addressed in this paper is solved by inogy algorithm in [8] are used initially to investigat¢he

cluster ensemble or consensus clustering technignesur

approach, the clustering ensemble strategy HybijzhiHte

Graph Formulation algorithm (HBGF) was adopted dtain

all of the information and provide a particular gan from

the obtained near-Pareto-optimal non-dominated skt
solutions. HBGF simultaneously models both instanaad

clusters as vertices by constructing a bipartisggrand solves
the cluster ensemble problem by reducing it to aphr
partitioning technique. The procedure for implenmemnt
HBGF can be found in [14]. By using the HBGF altjom for

MOSSC, the final cluster label vector can be olgdifrom all

the nondominated solutions.

Based on the above description, the propose&im

multiobjective evolutionary algorithm-based softbspace
clustering algorithm can be summarized in Fig.1e Hasic
operations and their worst-case complexities camrimyzed
as follows. Given the complexity of one iterationthe main
loop procedure, computing the cluster membershigrede
center and weighting nee®(CND) operations for each
chromosome. The complexity of one iteration of HeGA-II
algorithm isO(2MP), whereM is the size of population [13].
Assuming that the MOSSC algorithm nee€fisterations to
converge, the total computational complexity of M&SSC
algorithm is O(CNDMT) which is governed by the cluster
membership degree, center and weighting computinthe
algorithm. The population sizé is usually a constant set by
the user. So, the computational complexity stilcréases
linearly as the number of dimensions, the numberdata
objects or the number of clusters increases.

Procedures of MOSSC algorithm

Initialization:
Randomly initialize the weightings Wy, (1<i<C, 1<k < D) encoded in each chromosome;
Randomly select a set of C different data points as the cluster centers v, (1<i < C).
Repeat:
Extract the weight matrix 1V = {w, [1<i<C, 1<k <D} encoded in the chromosomes;
Partition the data objects and compute the cluster membership degree . by Eq. (9):
Update the cluster centers v, and the cluster weighting Wy, by Eq. (10) and Eq. (11). respectively;
Evaluate the multiobjective fitness function SSXB index and J| VF,,.SC measure by Eq. (7) and Eq. (8), respectively;

Rank the population using the dominance criteria and calculate the crowding distance:

Do selection using crowed comparison operator;

Do crossover and mutation to generate offspring population;

Generate the next population based on non-domination using the current generation and current offspring
Until: (the iterative index reaches the maximum threshold).
Output:

Obtain the final cluster label vector from all the nondominated solutions by HBGF and stop.

Figure 1. Description of the proposed MOS&gorithm.

performance of the proposed MOSSC algorithm. Eddine
synthetic datasets has 250 data points, 50 dimes)sib
clusters and 50 data points in a cluster. For ehaster, the
distribution of data points in the relevant dimemsiis
normally distributed, the corresponding means icjed in
the range [0, 100] and the corresponding variascei to 10;
and the distribution in the irrelevant dimensioasuniformly
distributed in the range [0, 100]. The cluster cntes are
controlled by three parameters in the generatoe. Siibspace
ratio e is set to 0.375, which is the average ratio of the
dimension of the subspace to that of the whole espabe
dimension overlap ratior is defined as the ratio of the

ension of the overlapping subspace. The datdayveatio
a is the overlapping rate between two GaussianaisisiWe
generated the 6 synthetic datasets with differahies of r

and different values ofa, with r setting a value from the

set {0.5, 0,8} anda setting a value from another set {0.2,
0.5, 2}. In addition to the synthetic data colleati six UCI
datasets [28] as shown in Table | are also employed

B. Parameter Settings for Algorithms

Like most computational intelligence optimization
algorithms, it is necessary to set the populatiaa and other
parameters for evaluation strategy. In our expemisiethe
MOSSC and MOC are run for 50 generations with pafjomh
size 20. The crossover and mutation probabilitresfixed at
0.8 and 1¢hromosome lengthThe fuzziness exponent and
the fuzzy weighting indext have been chosen to be 2 and 4,
respectively. The parameters in PSOVW are setéostme
values used in [8]. The maximum number of function
evaluations is set to 500, the swarm sizis set to 10, the
acceleration constamtl is set to 1.49445, and the values of
learning probabilityPc in PSOVW range from 0.05 to 0.5. For
three Lagrange multiplier-based algorithms, ESSQ/SE
and FWSC, lie maximum iteration number is set to 100. In
ESSC, the parametefr, which is used to maintain a balance
between the effect of within-cluster compactness #rat of
between-cluster separation, is set to 0.1, @andwhich is used to

control theinfluence of entropy, is chosen to be 1. We a&to s
the entropy weighting indexg in EWSC and the fuzzy

weighting index # in FWSC to 1 and 2 respectively [6, 7].
TABLE |. UCI DATA SETS USED IN THE EXPERIMENT

Data sets information

Breast-diagnostic  Balance-scale Iris  Wine Vehicle
569 625 351 150 178 846
30 4 33 4 13 18

Number of clusters 2 3 2 3 3 4

Ionosphere

Size of data set

Number of dimensions




C. Performance Evaluation on Synthetic Data Sets

In this subsection, the performance of the MOSSC 095

algorithm is compared with the other five clustgraigorithms
on the above six synthetic datasets. The clusterasylts
evaluated in terms of the means and standard émngaof the
CA, NMI and RI values, conducted by running eagoathm
20 times, are shown in Tables II-IV, respectivéiyom these
tables, we easily find that the proposed MOSSC siratways
attains the best clustering results, since it iraEg
multiobjective optimization into the soft subspadestering
process.

In order to compare the stability and sensitivitly tbe
proposed MOSSC algorithm, the averages of the meads
standard deviations of CA, NMI and RI obtained frivase six
algorithms are plotted in Fig. 2. It can be readiden that: (1)
the MOSSC can achieve better and more stable chgte
results than other clustering algorithms. (2) Midjective
evaluation algorithm-based clustering algorithme far less
sensitive to different dataset complexjtypecause the MOC
achieves the second lowest standard deviatioreinesults. (3)
Computational intelligence-based algorithms can edéud
improve the stability of the clustering results teetthan
Lagrange multipliebasedalgorithms.

TABLE Il. CLUSTERING RESULTS IN TERMS OF CA
P« MOSSC__PSOVW__MOC __ESSC__EWSC _FWSC
Mean 09516  0.8908 09356 0.8184 0.8683 0.8076

Sd  0.0271  0.1354  0.0219 0.0288 0.1292 0.1375

Mean  0.9788 09672 09724 0.8289 0.8648  0.8404

Std  0.0396  0.0718 00107 0.0794 0.1351  0.1369

Mean 09720 09762 09324 0.8417 08597 09148

Std_ 0.0078  0.0297  0.0143 0.1400 0.1249  0.1241

Mean  0.9228 09190  0.8708 0.7919  0.8409  0.7207

Std  0.0142  0.0238 00228 0.0556 0.1051 0.1432

. Mean  0.8944 08500 08252 07431 0.7827 0.7565

05 0% G4 00211 0090 00703 00564 01365 01297
Mean 09760 09758 09556 0.7504 0.8265 0.8631

Std__ 0.0075 _ 0.0150 _ 0.0210 _0.1409 _ 0.1265 _ 0.1329

TABLE lll. CLUSTERING RESULTS IN TERMS OF NMI
P a MOSSC__PSOVW__MOC___ESSC__EWSC__FWSC
Mean  0.9069 08086 08508 0.7629 09062  0.8330

Std 00382 01312 0.0350 00114 0.0719  0.1405

Mean 09632 09372 09330 0.8417 09191 08770

Std  0.0447 00840  0.0232 00582 0.0710 0.1148

Mean 09306  0.9508  0.8673 0.9037 0.9033  0.9440

Std 00161 0.0349  0.0207 0.1410 _0.0805 _ 0.0837

Mean  0.8529  0.8460  0.7455 0.8052 0.8455  0.6928

Std 00232 0.0447 00288 00771 0.0622 0.1801

_ Mean 08258 07632 07038 0.7367 0.8176  0.7680

05 0% g4 00324 00872 00513 00457 01069 0.1286
Mean  0.9425 09419 09120 0.8933 0.8999  0.9055

Std 00152 0.0298  0.0299 0.1246__ 0.0771 _ 0.0966

TABLE IV. CLUSTERING RESULTS IN TERMS OF RI
P a MOSSC__PSOVW __MOC__ESSC__EWSC__FWSC
Mean 09647 09215 09516 0.6818 0.9452  0.9169
Std 00178  0.0985  0.0148 0.0207 0.0490  0.0599
Mean 09862 09746  0.9790 0.7543  0.9477 09320

02

05 03 Std 0.0226 0.0553 0.0079  0.0485  0.0500  0.0580
,  Mean 09787 0.9831 0.9520  0.9070  0.9435  0.9664

Std 0.0056 0.0176 0.0089  0.0737  0.0482  0.0486

02 Mean  0.9456 0.9422 0.9084 0.7058 0.9177  0.8700

Std 0.0106 0.0167 0.0145 0.0463  0.0423  0.0642

08 05 Mean  0.9262 0.9059 0.8882  0.6592  0.9024  0.8877

Std 0.0140 0.0450 0.0273  0.0440  0.0634  0.0568
Mean  0.9823 0.9805 0.9670  0.8414 0.9316  0.9420
Std 0.0057 0.0112 0.0147 0.0790  0.0502  0.0588
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Figure 2. The averages clustering results for yin¢hetic datasets.

D. Performance Evaluation on UCI Data Sets

We further compare the performance of the proposed
MOSSC against PSOVW, MOC, ESSC, EWSC and FWSC on
six UCI datasets as shown in Table I. Due to &tiwhs in
space, we only plot the Pareto-optimal fronts poeduby one
of the runs of the proposed MOSSC Breast-diagnostiand
Vehicledatasets in Fig. 3. Here, it can be noted thaS®BXB
index [10] and J,sc Measure may not attain their best values

for the same partitioning when the data have coxnpled
overlapping clusters. Therefore, considerBgXBand J..
simultaneously will provide a set of alternate iarts of the
datasets.

Breast Diagnostic Dataset
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4
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Figure 3. Pareto-optimal fronts produced by MOSSC.




Tables V-VII show the clustering results conducteith
the UCI datasets by executing each of the six dlgos 20
times. It is evident that among the six algorithf)SSC
performs better than all other algorithms in mosises.
However, even though MOC and ESSC are in genefeiidn
to MOSSC, they are able to achieve the best clogter
performances for the datas®tneandlonosphereaespectively,
and the performance of MOC and ESSC are compaxable
better than the other three clustering algorithsinsce both of
them are developed to optimize the within-clustenpactness
and the between-cluster separation simultaneously.

TABLE V. CLUSTERING RESULTS IN TERMS OF CA

TABLE VI. CLUSTERING RESULTS IN TERMS OF NMI

TABLE VII. CLUSTERING RESULTS IN TERMS OF RI

UCI Datasets
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Figure 4. The averages clustering results for t8édatasets.

To test the stability of different algorithms, weepent the
average clustering result and the correspondingndata
deviation of each algorithm in Fig. 4. In the lgftaph, the
vertical axis represents the average value of thetaring
result for six UCI datasets, and in the right grapfepresents
the corresponding standard deviation. From Figwe,easily
find that the standard deviation of MOSSC resugltthe lowest
among the six algorithms, and MOSSC achieves better
more stable clustering results than other clusgeaigorithms.
As expected, ESSC, EWSC and FWSC achieve largdastan
deviations, since their iterative procedures aréeved from the
k-means and are very sensitive to the initial elusenters.

In addition to the three rigorous measures of ehirsy
results, we also calculated tRevaluethrought-test at the 5%
significance level, which is often used to illus#rathe
statistical significance. Table VIII reports tRevaluesfor RI
comparison of MOSSC and other algorithms at a tiAkea
null hypothesis, it is assumed that there are wgmifstant
differences between RI results of the two growgsereas
the alternative hypothesis is that there is a Higant
difference of the clustering solutions. From talfld we can
find that nearly all the®-valuereported in the table are less
than 0.05 (5% significance level), indicating tha better RI
produced by the proposed method is statisticaliyificant
and has not occurred by chance. Similar resultsobtained
for ACC and NMI comparisons, establishing the digant
superiority of the proposed MOSSC algorithm.

TABLE VIIl. P-VALUES PRODUCED BYt-TEST

Datasets P-values

PSOVW MOC ESSC EWSC FWSC
Breast-diagnostic ~ 4.9731e-011  3.7661e-018  1.0571e-010  4.3794e-013  2.3266e-015
Balance-scale same 2.6300e-004  1.7217e-004  7.5071e-007 same
lonosphere 8.8635¢-009  1.8182¢-006 1.4161e-007 0.0220 2.5606e-010
Iris 2.6107e-008  2.0599¢-013  1.6498e-018  1.5638e-014  1.3688e-008
Wine 6.1875e-005  9.3060e-010  1.2749¢-011  7.8912e-005  1.8057¢-006
Vehicle 6.2206e-018  3.2228e-016  1.0571e-010  2.9668e-015 0.0085




TABLE IX. 10 FEATURES DETECTED WITH THE WINE DATASE

The subspace detection results of different algprit
performed on the UCI Wine dataset are reportedabld IX,
which illustrates the 10 features detected cornedpo the top
10 weights of each cluster. We can see that diifecusters
are often correlated with different subsets of dezd by
different subspace clustering algorithms. Simiksults can be
obtained with other UCI datasets.

In summary, experimental results on both syntheatit real

(5]

(6]

[7]

(8]

9]

[20]

[11]

[12]

datasets demonstrate that MOSSC has the following3!

advantages. First, MOSSC outperforms the statbeshtt soft
subspace algorithms in most cases. Second, by iagply
computational intelligence-based optimization st§t
MOSSC is insensitive to the initialization of thiusters, and
can avoid trapping into the local minimum. ThirdD®8SC can
achieve the lowest standard deviations and obtaire ratable
clustering results because the multiobjective optiion and
clustering ensemble strategy are employed.

VI. CONCLUSION

To enhance the soft subspace clustering and adthess
clustering

shortcoming of Lagrange multiplier-based
algorithms, a multiobjective evolutionary algorithased soft

subspace clustering MOSSC is proposed by applyirg t

popular elitist multiobjective genetic algorithm &&-II.
MOSSC can simultaneously optimize
within-cluster compactness and weighting betweester
separation incorporated within two different cluistg validity
criteria. The proposed clustering algorithm notyanherits the
merits of soft subspace clustering, but also reseithe
beneficial properties of the multiobjective optietibn-based
approach for fuzzy clustering.

While MOSSC holds great potential for soft subspac

clustering, we are working to enhance it further,ifistance, to
improve the performance of MOSSC by involving efffe
cluster validity criteria and to reduce the timenxsomption by
using the latest multiobjective optimization tecjues. We
will attempt to address these issues in the neardu
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