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Abstract—In this paper, a multiobjective evolutionary algorithm 
based soft subspace clustering, MOSSC, is proposed to 
simultaneously optimize the weighting within-cluster 
compactness and weighting between-cluster separation 
incorporated within two different clustering validi ty criteria. The 
main advantage of MOSSC lies in the fact that it effectively 
integrates the merits of soft subspace clustering and the good 
properties of the multiobjective optimization-based approach for 
fuzzy clustering. This makes it possible to avoid trapping in local 
minima and thus obtain more stable clustering results. 
Substantial experimental results on both synthetic and real data 
sets demonstrate that MOSSC is generally effective in subspace 
clustering and can achieve superior performance over existing 
state-of-the-art soft subspace clustering algorithms. 

Keywords-subspace clustering; multiobjective optimization; 
fuzzy clustering; clustering validity criteria; evolutionary 
computing;  

I. INTRODUCTION 

As an important data processing technique, clustering has 
long been a hot research topic in various disciplines. It has 
been widely utilized as a fundamental tool for data analysis 
and visualization in areas such as machine learning and data 
mining [1]. Clustering aims to categorize the unlabeled input 
vectors into different groups, called clusters, such that data 
points within a cluster are more similar to each other than they 
are to those belonging to different clusters, i.e., by maximizing 
the intra-cluster similarity while minimizing the inter-class 
similarity [2]. However, clustering high dimensional data is an 
emerging research field, because dimensions might have 
locally varying relevance for different groups of objects in 
high dimensional spaces [3].  

The difficulty that traditional clustering algorithms 
encounter in dealing with high dimensional data sets inspired 
the invention of subspace clustering, or projected clustering, 
which has been studied extensively in recent years. The goal of 
subspace clustering is to locate clusters embedded in different 
subspaces of the original data space with their own associated 
dimensions [4]. Based on the ways that the subspaces of 
clusters are determined, subspace clustering algorithms can be 
generally classified into two main categories: hard subspace 
clustering and soft subspace clustering [4-6]. In this paper, we 
focus on soft subspace clustering, which measures the 
importance of each dimensionality to a particular cluster in the 

clustering process by automatically assigning different 
weightings to different dimensions of clusters embedded in 
subspaces. Soft subspace clustering algorithms can be grouped 
into two main categories: fuzzy weighting subspace clustering 
(FWSC) [7] and entropy weighting subspace clustering (EWSC) 
[6]. Both of them solve the constrained optimization problems 
with Lagrange multipliers, which can provide good 
convergence speed to their iterative process. When the 
algorithms employ local search strategies to optimize their 
objective function with constraints, however, they may 
converge to a local minimum, leading to false solutions. To 
address this problem, computational intelligence-based soft 
subspace clustering was first introduced by Lu et al. in [8]. 
They developed a PSO-based algorithm, called PSOVW, 
which makes full use of a particle swarm optimizer to 
minimize a new transformed objective weighting function. 

Although many soft subspace clustering algorithms have 
been developed and applied to different areas, all these 
methods use only a single cluster validity criterion as the 
objective function to be optimized. To optimize within-cluster 
compactness and the between-cluster separation 
simultaneously, Deng et al. developed a new optimization 
objective function and proposed a novel clustering technique 
called enhanced soft subspace clustering (ESSC) [5]. However, 
it is difficult to determine the relative importance of different 
clustering criteria for the ESSC algorithm, since ESSC simply 
combines them into a single objective function. Therefore, it is 
better to independently optimize compactness and separation 
criteria. During the last few years, multiobjective clustering 
methods [9-12], based on different multiobjective elitist 
techniques, have been developed to simultaneously optimize 
several validity indexes that can capture the different data 
characteristics. Voronoi initialized evolutionary nearest 
neighbor (VIENNA) algorithm [11] and multiobjective 
clustering with automatic k-determination (MOCK)  
algorithm [12] were introduced by Handl et al. to optimize two 
objectives and find an approximation to the Pareto front (the 
set of optimal trade-off), instead of a single solution. Motivated 
by these idea, we propose a multi-objective evolutionary 
algorithm-based soft subspace clustering, MOSSC, to optimize 
the weighting within-cluster compactness and weighting 
between-cluster separation separately. To achieve this, a 
popular multiobjective genetic algorithm, Nondominated 
Sorting GA-II (NSGA-II) [13], is used to evolve a set of 



near-Pareto-optimal non-degenerate solutions. The final cluster 
label vector of MOSSC can be chosen by integrating all the 
nondominated solutions through a clustering ensemble strategy 
Hybrid Bipartite Graph Formulation algorithm (HBGF) [14]. 

In summary, the proposed MOSSC algorithm not only 
inherits the merits of soft subspace clustering, but also receives 
the beneficial properties of the multiobjective 
optimization-based approach for fuzzy clustering. Our 
experiment results demonstrate that MOSSC is generally 
effective in subspace clustering and almost always achieves 
superior performance over existing state-of-the-art soft 
subspace clustering algorithms, such as PSOVW, ESSC, 
EWSC and FWSC. The rest of this paper is organized as 
follows. In Section II, a brief overview of existing algorithms 
for soft subspace clustering is provided. Section III describes 
the basic concepts of the multiobjective evolutionary 
algorithm-based fuzzy clustering algorithm. The proposed 
NSGA-II based multiobjective soft subspace clustering 
technique, MOSSC, is presented in Section IV. In Section V, 
the clustering performances of MOSSC, as compared with 
other algorithms, on artificial and UCI data sets are reported. 
Finally, conclusions and future work are discussed in Section 
VI. 

II. SOFT SUBSPACE CLUSTERING 

Soft clustering aims to group a set of given data points 

1 2{ , , } D
NX x x x R= Ì�  into a set of clustering centers 

{ ,  1 }iV v i C= £ £ . Let iju  denote the membership degree of 

jx  belonging to iv , then we can define the fuzzy c-partition 

matrix U of the given data set, i.e., 
{ |1 ,  1 }ijU u i C j N= £ £ £ £ . To discover clusters from 

different subspaces, it is important that a soft clustering 
algorithm has the capability of clustering data points in a 
subspace by automatically weighting features in the clustering 
process. Based on the importance of the k-th dimension on the 
formation of i-th cluster, a weighting ikw  is assigned to each 
dimension in soft subspace clustering. The subspaces of 
different clusters can be identified by the weighting matrix 

{ |1 ,  1 }ikW i C k Dw= £ £ £ £  after clustering [6, 7]. 

A. Fuzzy Weighting Subspace Clustering 
Fuzzy weighting subspace clustering (FWSC) [7] seeks to 

find clusters from fuzzy weighting subspaces. In all the fuzzy 
weighting subspace clustering algorithms, a fuzzy weighting 

ikwt  is assigned to the features of different clusters with a 
fuzzy weighting index t . The objective function of FWSC is 
generally formulated as: 
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By minimizing (1) using Lagrange multipliers, the updating 
equation for estimating center iv , fuzzy weighting ikw  and 

membership degree iju  can be derived. 

B. Entropy Weighting Subspace Clustering 
The entropy concept, which is used to represent the 

certainty of dimensions in the identification of a cluster, is 
introduced into soft subspace clustering. Because the 
weightings in extended subspace clustering algorithms are 
controllable by entropy, these types of algorithms are referred 
to as entropy weighting subspace clustering (EWSC) [6]. In 
general, the objective function of EWSC can be defined as: 
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The Lagrange multiplier is also applied to minimize the 
objective function in Equation (2). It can result in the equations 
for updating the estimations of center iv , entropy weighting 

ikw  and membership degree iju  

C. Particle Swarm Optimizer for Soft Subspace Clustering 
Both fuzzy weighting and entropy weighting subspace 

clustering algorithms solve the constrained optimization 
clustering problems with Lagrange multipliers and may 
converge to a local minimum leading to false solutions. In 
considering this problem, Lu et al. in [8], first introduced 
computational intelligence-based soft subspace clustering, which 
can make full use of a particle swarm optimizer to minimize a 
new transformed objective weighting function in Equation (3). 
Furthmore, they developed a PSO-based algorithm, called 
PSOVW, for solving the optimal variable weighting problem in 
soft subspace clustering. 
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By observing the existing soft subspace clustering 
algorithms, we find that all these methods use only a single 
cluster validity criterion as the objective function to be 
optimized, which is not appropriate for different kinds of data 
sets with different characteristics such as high dimensional 
sparse data or a mixture of categorical and numerical data. To 
enable the simultaneous optimization of within-cluster 
compactness and the between-cluster separation in the 
weighting subspace, a novel clustering technique called 
enhanced soft subspace clustering (ESSC) is proposed by Deng 
et al [5], which is developed based on a new optimization 
objective function that integrates the weighting within-cluster 
compactness and the weighting between-cluster separation. 
However, it is difficult to determine the relative importance of 
different clustering criteria for the ESSC algorithm, since 
ESSC only combined them into a single objective function. 
Alternatively, we can independently optimize the compactness 
and separation criteria to generate an effective subspace 
clustering algorithm which will obtain superior performance in 
complex and overlapping datasets. 

During the last few years, multiobjective optimization, 
which can separately optimize multiple and often conflicting 



objectives, has been gaining popularity. Based on different 
multiobjective elitist techniques, a series of researches on 
multiobjective clustering have been proposed [9-12]. Inspired 
by this idea, an effective way to overcome the shortcoming of 
ESSC is to integrate the strength of the multiobjective 
evolutionary techniques into soft subspace clustering, to 
optimize the weighting within-cluster compactness and 
weighting between-cluster separation separately rather than 
combining them into a single objective function to be 
optimized.  

III.  MULTIOBJECTIVE FUZZY CLUSTERING ALGORITHM 

The application of evolution computing-based clustering 
analysis, which can search for appropriate clustering 
optimization results, has been studied extensively in recent 
years. However, most algorithms use only a single cluster 
validity criterion as the fitness function. Partition-based 
clustering algorithms can be seen as a combinatorial 
optimization problem that attempt to organize the given data 
points into clusters or “natural groups” such that the clustering 
results maximize the intra-cluster similarity while minimizing 
the inter-class similarity [2, 5]. Hence, it is necessary to 
separately optimize several validity criteria that can lead to 
improved performance. To achieve this, a series of 
multiobjective evolutionary algorithm-based clustering 
algorithms are proposed, which are briefly reviewed below. 

A. Multiobjective Optimization 
Multiobjective optimization (MOO) [13, 15-23] is the 

process of simultaneously optimizing two or more conflicting 
objectives subject to certain constraints, as in Definition 1. 

Definition 1. Multiobjective Optimization: The 
multiobjective optimization aims to find the objective vector 

* * * *
1 2[ , , ]T

Dx x x x= �  of D decision variables which optimizes 

M objective functions 1 2( ) [ ( ), ( ), ( )]T
Mf x f x f x f x= �  in a 

feasible region X containing all the admissible solutions. 

*
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M
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Î Î
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No single optimum solution exists, but a possibly infinite 
set of solutions called Pareto set comes in handy in the domain 
of multiobjective optimization. The criterion of Pareto 
optimality utilizes the domination relation to trade off among 
objective functions. A Pareto set is also called non-dominated 
solutions, as in Definition 2. 

Definition 2. Pareto Set: For M objective functions

1 2( ) [ ( ), ( ), ( )]T
Mf x f x f x f x= �  in a feasible region X 

containing all the admissible solutions. A solution x  in 
objective space is termed Pareto optimal from the viewpoint of 
a minimization problem if and only if no other feasible solution 

'x exists, which can dominates x , i.e., 

{1,2, , }, ( ') ( )i ii M f x f x" Î £� , and 

{1,2, , }, ( ') ( )i ii M f x f x$ Î <� . 

Pareto optimal admits a set of solutions called a Pareto set.  �  

Multiobjective optimization aims to find the Pareto Set by 
quantifying the balances to satisfy the different objectives. In 
recent decades, a wide range of evolutionary algorithms have 
successfully been developed as robust and effective methods 
for finding such nondominated solutions for multiobjective 
optimizations, both theoretical and practical. Genetic 
algorithms such as the VEGA [23], MOGA [21], NPGA [18] 
and NSGA [15] are some algorithms under the Pareto-based 
non-elitist approaches. SPEA [16], PAES [22], SPEA2 [20] 
and NSGA-II [13] are some algorithms recently developed by 
the incorporation of elitism. Some schemes based on simulated 
annealing and particle swarm optimization can also constitute 
significant techniques, such as Simulated Annealing-based 
Multiobjective Optimization Algorithm (AMOSA) [19] and 
Time Variant Multiobjective Particle Swarm Optimization 
(TV-MOPSO) [17]. 

B. Multiobjective Optimization-based Fuzzy Clustering 
Based on the above different multiobjective elitist 

techniques, a range of works on multiobjective clustering has 
been proposed in recent years. Bandyopadhyay et al. [9] 
presented a multi-objective evolutionary algorithm-based fuzzy 
clustering (MOC), which simultaneously optimized the 
Xie-Beni (XB) index [2] and FCMJ  measure [24] as objective 
functions. The two validity criteria are described as follows. 

The XB index takes into account the compactness and 
separation of the clusters. It is defined as a function of the ratio 
of the fuzzy intra-cluster compactness _F COMPJ  and minimum 

inter-cluster distance _F SEPJ , i.e., 
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The FCM objective function measure FCMJ , which also 
needs to be minimized, is defined as: 
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FCM ij j ii j
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Note that XB index and FCMJ  measure are to be 
minimized when both the between-cluster separation and the 
fuzzy within-class compactness are to be optimized. Hence, 
MOC can evolve a set of nondominated Pareto optimal fuzzy 
partition matrices by using the NSGA-II algorithm and provide 
the final cluster label vector by selecting from the set of 
nondominated solutions. 

IV.  MULTIOBJECTIVE EVOLUTIONARY ALGORITHM-BASED SOFT 

SUBSPACE CLUSTERING 

In this section, we propose a multi-objective evolutionary 
algorithm-based soft subspace clustering, MOSSC, to 
simultaneously optimize the weighting within-cluster 
compactness and weighting between-cluster separation 
incorporated within two different objective functions. To 
achieve this, a popular elitist multiobjective genetic algorithm, 
Nondominated Sorting GA-II (NSGA-II), is used to evolve a 
set of near-Pareto-optimal non-degenerate solutions. 



A. Chromosome Representation & Population Initialization 
In the MOSSC algorithm, each chromosome represents the 

weighting matrix
 

{ |1 ,  1 }ikW i C k Dw= £ £ £ £ . For C clusters, 

if each cluster weighting iw  has D attributes 

1 1{ |1 }, , ,i i i iD i Cw w w w= £ £� , the length of a chromosome 
will be C D´ , where the first D genes represent the 
D-dimensions of the first cluster weighting 1w , the next D 
genes represent that of the second cluster, and so on. 

The initial weightings 1 ,  1 ),(ik i C k Dw £ £ £ £  encoded 
in each chromosome, are set to random numbers which are 
uniformly distributed and must meet the equality constraints 

1
=1

D

ikk
w

=� , 1 i C£ £ . The initial cluster centers  (1 )iv i C£ £
 

are C different data objects randomly chosen out of all the data 
points. 

B. Computation of Objective Functions and Partitioning of 
Data Objects 

Motivated by the advances of MOC, the Soft Subspace 
Xie-Beni (SSXB) index and '

FWSCJ  measure are taken as the 
two objectives which need to be simultaneously optimized in 
MOSSC. The SSXB index is extended from the Xie-Beni index 
and defined as the ratio of the weighting within-cluster 
compactness _FW COMPJ  to the minimum weighting 

between-cluster separation _FW SEPJ , i.e., 
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As defined in (1), {0,1}iju Î  is used in the K-means 

framework-based FWSC. In order to cater for the fuzzy 
partition, we specify 0 1iju£ £ , and define the '

FWSCJ  

measure as follows: 

' 2

1 1 1

( )
C N D

m
FWSC ij ik jk ik
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J u w x vt

= = =
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For computing the above objective functions, the weighting 
matrix encoded in a chromosome is first extracted. Given the 
weighting matrix { |1 ,  1 }ikW i C k Dw= £ £ £ £  and the set of 

cluster centers { ,  1 }iV v i C= £ £ , the cluster membership 

degree iju
 
can be computed by the following formula. 
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Both the fuzziness exponent m and the fuzzy weighting 
index t  are user-defined parameters. In our experiments, the 
values of m and t  are set as 2 and 4, respectively. For a 
detailed discussion on the m and t values, readers may refer to 
[7, 25]. 

Once the cluster membership degree iju  is obtained, the 

cluster centers ikv  can be calculated as follows: 
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u
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 (10) 

Note that while computing ikv  using (10), if the variance 

of the cluster centers { ,  1 }iV v i C= £ £  is very small (less 

than 310- ), we reinitialize the cluster centers by randomly 
selecting C different data points in our implementation. 

Subsequently, the cluster weighting ikw
 
encoded in a 

chromosome is recomputed using the following equation (11): 
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To a certain extent, the choice of different clustering 
validity criteria has a major effect on the final performance of 
MOSSC. In our proposed MOSSC, two basic criteria SSXB 
index and  '

FWSCJ  measure inspired by MOC are chosen to 
establish the effectiveness of the basic principle of MOSSC. In 
addition, a theoretical study involving effective criteria will be 
conducted in the immediate future, which will be of great 
importance in providing useful and convenient guiding 
principles for MOSSC. 

C. Genetic Operators: Selection, Crossover And Mutation  

In our approach, an excellent multiobjective optimization 
method, NSGA-II, is used to evolve a set of 
near-Pareto-optimal non-degenerate solutions for MOSSC. At 
each NSGA-II iteration, two values are assigned to each 
chromosome after calculating the multiobjective fitness 
function [13]. The first corresponds to the rank of the 
population using the dominance criteria, which is sorted based 
on non-domination into each front. The second, the crowding 
distance, is a measure of estimating the density of individuals 
surrounding their neighbors of the objective space, and 
represents the quality of the solution in terms of diversity. A 
chromosome (solution) is said to be better than another if it 
has a best rank value, or in case of equality, if it has the best 
crowding distance.  

Parents are selected from the population by using a binary 
tournament selection with crowed comparison operator based 
on the two above values. After selection, the selected 
chromosomes generate the new offspring solutions from the 
Simulated Binary Crossover operator for crossover [26] and 
polynomial mutation [13]. The population with the current 
generation and current offspring is sorted again based on 
non-domination to set the chromosomes of the next 
population. The most characteristic part of NSGA-II is its 
elitism operation, since all the previous and current best 
individuals are added in the next population. 

A detailed illustration on NSGA-II processes can be found 
in [13]. After a few iterations, the set of near-Pareto-optimal 



non-degenerate solutions in the final population provide the 
nondominated cluster weighting values ikw

 
and the 

corresponding cluster membership degree iju  for MOSSC. 

D. Selecting A Solution from Nondominated Set by HBGF 
Having obtained the nondominated cluster weighting 

values ikw
 
and the corresponding cluster membership degree 

iju , a critical problem in multiobjective clustering research is 

how to combine the set of near-Pareto-optimal non-degenerate 
solutions to yield a final superior clustering result. The 
problem addressed in this paper is solved by introducing 
cluster ensemble or consensus clustering techniques. In our 
approach, the clustering ensemble strategy Hybrid Bipartite 
Graph Formulation algorithm (HBGF) was adopted to retain 
all of the information and provide a particular solution from 
the obtained near-Pareto-optimal non-dominated set of 
solutions. HBGF simultaneously models both instances and 
clusters as vertices by constructing a bipartite graph and solves 
the cluster ensemble problem by reducing it to a graph 
partitioning technique. The procedure for implementing 
HBGF can be found in [14]. By using the HBGF algorithm for 
MOSSC, the final cluster label vector can be obtained from all 
the nondominated solutions. 

Based on the above description, the proposed 
multiobjective evolutionary algorithm-based soft subspace 
clustering algorithm can be summarized in Fig.1. The basic 
operations and their worst-case complexities can be analyzed 
as follows. Given the complexity of one iteration in the main 
loop procedure, computing the cluster membership degree, 
center and weighting need O(CND) operations for each 
chromosome. The complexity of one iteration of the NSGA-II 
algorithm is O(2M2), where M is the size of population [13]. 
Assuming that the MOSSC algorithm needs T iterations to 
converge, the total computational complexity of the MOSSC 
algorithm is O(CNDMT), which is governed by the cluster 
membership degree, center and weighting computing of the 
algorithm. The population size M is usually a constant set by 
the user. So, the computational complexity still increases 
linearly as the number of dimensions, the number of data 
objects or the number of clusters increases.  

 
Figure 1. Description of the proposed MOSSC algorithm. 

V. EXPERIMENTS AND EVALUATION 

Two sets of experiments are conducted to compare the 
clustering results of MOSSC with PSOVW [8], MOC [9], 
ESSC [5], EWSC [6] and FWSC [7]. Three evaluation indices, 
Clustering Accuracy (CA), Normalized Mutual Information 
(NMI) and Rand Index (RI) are used to evaluate the 
performance among the above six clustering algorithms. 
Details of these quality measures can be found in [27].  

A. Investigated Data Sets 
Six synthetic datasets acquired from the same generation 

algorithm in [8] are used initially to investigate the 
performance of the proposed MOSSC algorithm. Each of the 
synthetic datasets has 250 data points, 50 dimensions, 5 
clusters and 50 data points in a cluster. For each cluster, the 
distribution of data points in the relevant dimension is 
normally distributed, the corresponding means is specified in 
the range [0, 100] and the corresponding variance is set to 10; 
and the distribution in the irrelevant dimensions is uniformly 
distributed in the range [0, 100]. The cluster structures are 
controlled by three parameters in the generator. The subspace 
ratio e  is set to 0.375, which is the average ratio of the 
dimension of the subspace to that of the whole space. The 
dimension overlap ratio r  is defined as the ratio of the 
dimension of the overlapping subspace. The data overlap ratio 
a  is the overlapping rate between two Gaussian clusters. We 
generated the 6 synthetic datasets with different values of r

 
and different values of a , with r  setting a value from the 
set {0.5, 0,8} and a

 
setting a value from another set {0.2, 

0.5, 2}. In addition to the synthetic data collection, six UCI 
datasets [28] as shown in Table I are also employed.  

B. Parameter Settings for Algorithms 
Like most computational intelligence optimization 

algorithms, it is necessary to set the population size and other 
parameters for evaluation strategy. In our experiments, the 
MOSSC and MOC are run for 50 generations with population 
size 20. The crossover and mutation probabilities are fixed at 
0.8 and 1/chromosome length. The fuzziness exponent m and 
the fuzzy weighting index t  have been chosen to be 2 and 4, 
respectively. The parameters in PSOVW are set to the same 
values used in [8]. The maximum number of function 
evaluations is set to 500, the swarm size s is set to 10, the 
acceleration constant c1 is set to 1.49445, and the values of 
learning probability Pc in PSOVW range from 0.05 to 0.5. For 
three Lagrange multiplier-based algorithms, ESSC, EWSC 
and FWSC, the maximum iteration number is set to 100. In 
ESSC, the parameter h , which is used to maintain a balance 
between the effect of within-cluster compactness and that of 
between-cluster separation, is set to 0.1, and g , which is used to 
control the influence of entropy, is chosen to be 1. We also set 
the entropy weighting index g  in EWSC and the fuzzy 
weighting index t  in FWSC to 1 and 2 respectively [6, 7]. 

TABLE I. UCI DATA SETS USED IN THE EXPERIMENT 

 



C. Performance Evaluation on Synthetic Data Sets 
In this subsection, the performance of the MOSSC 

algorithm is compared with the other five clustering algorithms 
on the above six synthetic datasets. The clustering results 
evaluated in terms of the means and standard deviations of the 
CA, NMI and RI values, conducted by running each algorithm 
20 times, are shown in Tables II-IV, respectively. From these 
tables, we easily find that the proposed MOSSC almost always 
attains the best clustering results, since it integrates 
multiobjective optimization into the soft subspace clustering 
process. 

In order to compare the stability and sensitivity of the 
proposed MOSSC algorithm, the averages of the means and 
standard deviations of CA, NMI and RI obtained from these six 
algorithms are plotted in Fig. 2. It can be readily seen that: (1) 
the MOSSC can achieve better and more stable clustering 
results than other clustering algorithms. (2) Multiobjective 
evaluation algorithm-based clustering algorithms are far less 
sensitive to different dataset complexity, because the MOC 
achieves the second lowest standard deviations in the results. (3) 
Computational intelligence-based algorithms can indeed 
improve the stability of the clustering results better than 
Lagrange multiplier-based algorithms. 

TABLE II. CLUSTERING RESULTS IN TERMS OF CA 

 
TABLE III. CLUSTERING RESULTS IN TERMS OF NMI 

 
TABLE IV. CLUSTERING RESULTS IN TERMS OF RI 

 

 

 
Figure 2. The averages clustering results for the synthetic datasets. 

D. Performance Evaluation on UCI Data Sets 
We further compare the performance of the proposed 

MOSSC against PSOVW, MOC, ESSC, EWSC and FWSC on 
six UCI datasets  as shown in Table I. Due to limitations in 
space, we only plot the Pareto-optimal fronts produced by one 
of the runs of the proposed MOSSC on Breast-diagnostic and 
Vehicle datasets in Fig. 3. Here, it can be noted that the SSXB 
index [10] and FWSCJ  measure may not attain their best values 
for the same partitioning when the data have complex and 
overlapping clusters. Therefore, considering SSXB and FWSCJ  
simultaneously will provide a set of alternate partitions of the 
datasets. 

 

 
Figure 3. Pareto-optimal fronts produced by MOSSC. 



Tables V-VII show the clustering results conducted with 
the UCI datasets by executing each of the six algorithms 20 
times. It is evident that among the six algorithms, MOSSC 
performs better than all other algorithms in most cases. 
However, even though MOC and ESSC are in general inferior 
to MOSSC, they are able to achieve the best clustering 
performances for the dataset Wine and Ionosphere respectively, 
and the performance of MOC and ESSC are comparable or 
better than the other three clustering algorithms, since both of 
them are developed to optimize the within-cluster compactness 
and the between-cluster separation simultaneously. 

TABLE V. CLUSTERING RESULTS IN TERMS OF CA 

 
TABLE VI. CLUSTERING RESULTS IN TERMS OF NMI 

 
TABLE VII. CLUSTERING RESULTS IN TERMS OF RI 

 

 

 
Figure 4. The averages clustering results for the UCI datasets. 

To test the stability of different algorithms, we present the 
average clustering result and the corresponding standard 
deviation of each algorithm in Fig. 4. In the left graph, the 
vertical axis represents the average value of the clustering 
result for six UCI datasets, and in the right graph it represents 
the corresponding standard deviation. From Fig. 4, we easily 
find that the standard deviation of MOSSC results is the lowest 
among the six algorithms, and MOSSC achieves better and 
more stable clustering results than other clustering algorithms. 
As expected, ESSC, EWSC and FWSC achieve large standard 
deviations, since their iterative procedures are derived from the 
k-means and are very sensitive to the initial cluster centers.  

In addition to the three rigorous measures of clustering 
results, we also calculated the P-value through t-test at the 5% 
significance level, which is often used to illustrate the 
statistical significance. Table VIII reports the P-values for RI 
comparison of MOSSC and other algorithms at a time. As a 
null hypothesis, it is assumed that there are no significant 
differences between RI results  of  the two groups, whereas 
the alternative hypothesis is that there is a significant 
difference of the clustering solutions. From table VIII we can 
find that nearly all the P-value reported in the table are less 
than 0.05 (5% significance level), indicating that the better RI 
produced by the proposed method is statistically significant 
and has not occurred by chance. Similar results are obtained 
for ACC and NMI comparisons, establishing the significant 
superiority of the proposed MOSSC algorithm. 

TABLE VIII. P-VALUES PRODUCED BY t-TEST 

 



TABLE IX. 10 FEATURES DETECTED WITH THE WINE DATASET. 

 
The subspace detection results of different algorithms 

performed on the UCI Wine dataset are reported in Table IX, 
which illustrates the 10 features detected correspond to the top 
10 weights of each cluster. We can see that different clusters 
are often correlated with different subsets of features by 
different subspace clustering algorithms. Similar results can be 
obtained with other UCI datasets. 

In summary, experimental results on both synthetic and real 
datasets demonstrate that MOSSC has the following 
advantages. First, MOSSC outperforms the state-of-the-art soft 
subspace algorithms in most cases. Second, by applying a 
computational intelligence-based optimization strategy, 
MOSSC is insensitive to the initialization of the clusters, and 
can avoid trapping into the local minimum. Third, MOSSC can 
achieve the lowest standard deviations and obtain more stable 
clustering results because the multiobjective optimization and 
clustering ensemble strategy are employed. 

VI. CONCLUSION 
To enhance the soft subspace clustering and address the 

shortcoming of Lagrange multiplier-based clustering 
algorithms, a multiobjective evolutionary algorithm-based soft 
subspace clustering MOSSC is proposed by applying the 
popular elitist multiobjective genetic algorithm NSGA-II. 
MOSSC can simultaneously optimize the weighting 
within-cluster compactness and weighting between-cluster 
separation incorporated within two different clustering validity 
criteria. The proposed clustering algorithm not only inherits the 
merits of soft subspace clustering, but also receives the 
beneficial properties of the multiobjective optimization-based 
approach for fuzzy clustering. 

While MOSSC holds great potential for soft subspace 
clustering, we are working to enhance it further, for instance, to 
improve the performance of MOSSC by involving effective 
cluster validity criteria and to reduce the time consumption by 
using the latest multiobjective optimization techniques. We 
will attempt to address these issues in the near future. 
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