
A novel graph-based k-means for nonlinear manifold clustering
and representative selection

Enmei Tu a, Longbing Cao b, Jie Yang a,n, Nicola Kasabov c

a Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
b UTS Advanced Analytics Institute, University of Technology Sydney, Australia
c The Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, New Zealand

a r t i c l e i n f o

Article history:
Received 6 November 2013
Received in revised form
4 April 2014
Accepted 20 May 2014
Communicated by Liang Wang
Available online 20 June 2014

Keywords:
k-means
Manifold clustering
Random walk
Graph learning

a b s t r a c t

Many real-world applications expose the nonlinear manifold structure of the lower dimension rather
than its high-dimensional input space. This greatly challenges most existing clustering and representa-
tive selection algorithms which do not take the manifold characteristics into consideration. The
performance of the corresponding learning algorithms can be greatly improved if the manifold structure
is considered. In this paper, we propose a graph-based k-means algorithm, GKM, which bears the
simplicity of classic k-means while incorporating global information of data geometric distribution. GKM
fully exploits the intrinsic manifold structure for appropriate data clustering and representative
selection. GKM is evaluated on both synthetic and real-life data sets and achieves very impressive
results compared to the state-of-the-art approaches, including classic k-means, kernel k-means, spectral
clustering, and clustering through ranking and for representative selection. Given the widespread
appearance of manifold structures in real world problems, GKM shows promising potential for
partitioning manifold-distributed data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is aimed to divide a set of samples X ¼ fx1; x2;…; xng
into K disjointed subsets X1;X2;…;XK so that points in the same
subset share common properties while points which belong to
different subsets do not share these properties. There are many
algorithms available for performing this task, with k-means [1]
being the most popular because of its properties as follows: it can
effectively partition data with Gaussian-like distributions; it is
intuitive and easy to implement; its implementation is of linear
computational complexity, etc. However, k-means also exhibits
typical disadvantages for manifold distributed data sets and our
motivation for extending k-means to a manifold algorithm is based
on the following observations. (1) Recently, it was widely acknowl-
edged in the data analysis and machine learning communities that
many real world data sets, such as face images, voice spectrum,
hand-writing digital images and document contents, stringently
obey the low-rank rules, which means that they are distributed on
a manifold whose dimensionality is often much lower than the
ambient space [2,3]. The classic k-means algorithm, CKM, does not
take this important characteristic into account and thus performs

poorly when dealing with such data sets. (2) The cluster centers
(or prototypes) given by CKM are generally not members of a data
set and thus cannot be used directly for many applications, such as
video and text summarization [4,5], which aim to choose a small
subset of frames or sentences that best describe the overall
contents. Compared to CKM, the kernel k-means [6], KKM, in most
cases, yields better results by mapping samples to a possibly much
lower dimensional space than that in the input space, in which the
manifolds of different classes are separable. Unfortunately, such a
perfect mapping may not exist in practice, nor is it clear what
kinds of mapping exist for a given data set.

Inspired by the isometric feature mapping (isomap)-based
nonlinear dimension reduction algorithm [3] and the manifold
ranking algorithm [7], we propose a graph-based k-means algo-
rithm, GKM, to overcome the above disadvantages by taking the
geometric characteristics of data distribution into account. Parti-
cularly, GKM can fully exploit the underlying manifold structure of
a data set to produce better clustering results and, meanwhile,
identify a suitable data point representative (or centroid) for each
subset. GKM also retains the advantages of CKM, such as ease of
implementation, intuitive and low computational complexity.
Extensive experiments conducted on both synthetic and real-
world data sets validate that GKM is very effective for manifold
clustering with appropriate representative selection.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.05.067
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: jieyang@sjtu.edu.cn (J. Yang).

Neurocomputing 143 (2014) 109–122

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.05.067
http://dx.doi.org/10.1016/j.neucom.2014.05.067
http://dx.doi.org/10.1016/j.neucom.2014.05.067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.05.067&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.05.067&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.05.067&domain=pdf
mailto:jieyang@sjtu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2014.05.067


The remainder of this paper is organized as follows: Section 2
reviews the related works in nonlinear manifolds clustering and
representative selection and Section 3 briefly reviews the classic k-
means algorithm. Section 4 presents our graph-based k-means
algorithm. Finally, the simulations and comparisons are presented
in Section 5, followed by discussions and conclusions in Section 6.

2. Related works

Nonlinear manifold clustering and representative selection are
very challenging topics in machine learning. The work in [8,9]
extends mean shift to nonlinear manifold clustering and performs
well in motion segmentation, but it is restricted to analytic
manifolds. Goh and Vidal [10] only consider separated nonlinear
manifold clustering. In recent years, spectral clustering [11–15]
and manifold clustering algorithms [16–18] have been proposed to
handle general manifold-distributed data sets. These approaches
either do not present a meaningful subset of data points which can
mostly represent the data set or need a complicated optimization
process. Other algorithms have been specially designed for the
selection of representative data points [5,4] on the condition
of solving an unsmooth optimization problem, thus suffering
from high computational costs in dealing with large data sets.
In addition, they also do not present a clear description of data
clusters and thus cannot tell which points are best represented by
which representative. For other similar data-driven researches and
applications, we recommend the recent results in [19,20]. Very
limited work has been conducted on k-means for manifolds,
and as yet, this area has not been fully exploited. The work in
[21] is restricted to data on sphere and [22] aims to analyze the
reconstruction error and learning rate of k-means on manifolds
but does not provide a concrete algorithm for clustering.

There are also studies of k-means on graph. In [23] Euclidean
distance and centroid are replaced by graph edit distance and the
so-called mean graph respectively, but the computational cost of
computing both graph edit distance and mean graph are very high
and thus make the algorithm not suitable for large data sets. In
[24] the classic k-means is just utilized as a post-processing
method after thresholding the sequence of edge lengths that
added to the minimal spanning tree by Prims algorithm to obtain
the final clusters.

In contrast, in this paper we make two essential changes to the
classic k-means for dealing with nonlinear manifold data. Particu-
larly, we first extend the centroid concept of point cloud in
Euclidean geometry to the centroid of manifold in Riemannian
geometry. Then, borrowing from graph-based semi-supervised
learning method, a new random walk model, the tired random
walk model which is capable of describing the similarity between
points on nonlinear manifold, is proposed to determine the
centroid–member relationships on graph.

3. Review of the classic k-means clustering algorithm

Let X ¼ fx1; x2;…; xngARd be a sample set to be partitioned into
K groups and Y ¼ ðy1; y2;…; ynÞ; yiAf1;2;…;Kg be the label vector
in which each component gives the class label of the correspond-
ing sample in X . Clustering is aimed to partition X into K
disjointed subsets X1;X2;…;XK so that samples in the same
subset have same class labels, i.e. yi ¼ k; xiAXk; kAf1;…;Kg.
We denote by Ck ¼ fi1; i2;…; ijCk jg the index set of elements in
subset Xk.

In classic k-means (CKM), the algorithm updates iteratively the
cluster centroids fc1; c2;…; cKg and index sets Ck; k¼ 1‥K . For a
particular cluster, the centroid of the cluster is updated by simply

averaging the memberships over its members, and the member-
ship of a sample is determined by the nearest Euclidean distance
from it to all the centroids. Mathematically, the algorithm updates
the cluster centroid by

ck ¼
1
jCkj

∑
iACk

xi ð1Þ

After all centroids are updated, the algorithm re-computes the
Euclidean distance dEðx; yÞ ¼ ‖x�y‖2 between each sample and all
the cluster centroids and labels the sample as a member of the
cluster whose centroid achieves the smallest Euclidean distance

yi ¼ arg min
k ¼ 1…K

dEðxi; ckÞ ð2Þ

In the first iteration, the algorithm randomly chooses K points
fc1; c2;…; cKg to be the initial centroids. Thereafter, these two steps
iterate alternatively until the algorithm converges.

4. A graph k-means manifold clustering algorithm

In this section, we propose a graph-based k-means algorithm,
GKM, which takes the intrinsic manifold structure into account.
Similar to classic k-means, GKM also has two essential steps,
updating centroids and updating the samples membership, but
these steps differ in nature from their counterparts in the classic
k-means. We also present an initialization method to obtain a
group of high quality initial centroids. These are described in detail
as follows.

4.1. Updating centroids

In the classic k-means, the k-th centroid obtained by Eq. (1) is
the coordinates mean of the point cloud. This is the classic
centroid concept in Euclidean geometry. Here we extend this
concept to Riemannian geometry, i.e. computing the centroid of
a manifold. Note that the centroid in Eq. (1) is actually the optimal
solution of the following optimization problem:

ck ¼ arg min
xARd

1
2
∑

iACk
dEðx; xiÞ; k¼ 1…K ð3Þ

where dEðx; xiÞ ¼ ‖x�xi‖2 is the Euclidean distance. For data points
sampled frommanifolds, this optimization has two defects: (a) the
centroid may move off the manifold and thus it cannot represent
the underlying data distribution well; (b) the Euclidean distance
cannot reflect the true relationships between samples in Rieman-
nian geometry because it does not fully capture the data geometric
feature and thus it is not a proper measure of similarity.

To capture the intrinsic geometric feature, we generalize
problem (3) by (a) restricting the centroid on the manifold1; and
(b) using geodesic distance as a measurement between two points.
Combining these two we extend the classic centroid in Euclidean
geometry to the manifold centroid in Riemannian geometry by
solving the following optimization problem:

ck ¼ arg min
xj ;jACk

1
2
∑

iACk
dgðxj; xiÞ; k¼ 1…K ð4Þ

where dgðxi; xjÞ is the geodesic distance between two samples xi
and xj. However, in clustering settings, the exact geodesic distance
between two samples xi and xj usually cannot be obtained directly,
because we have no prior information about the underlying

1 To restrict centroid on manifold, it is also possible to adopt other method to
choose the class centroid, such as the medium point. But our optimization method
has at least two benefits: first, the formulation is straightway to classic k-means
practitioners and easy to be understood; second, it is of computational efficiency, as
will be demonstrated.

E. Tu et al. / Neurocomputing 143 (2014) 109–122110



manifolds. However, as pointed out in [3], if a data set has
sufficient points sampled from the manifold, then the graph
distance will be a good approximation of the geodesic distance.

Given a graph, the graph distance between two vertices xi and
xj is defined as the shortest path of all paths connecting
them. Therefore, if we construct a graph on data set X , we can
alternatively optimize the following problem to determine the
centroids:

ck ¼ arg min
xj ;jACk

1
2
∑

iACk
dGðxj; xiÞ; k¼ 1…K ð5Þ

where dGðxi; xjÞ denotes the graph distance between vertices xi and
xj. As the centroids are members of the vertex set, the optimization
problem can be easily solved with the graph distance matrix given.
Specifically, given the pairwise graph distance matrix DG ¼
fdGðxi; xjÞjxi; xjAXg, the graph distance matrix corresponding
to cluster Xk is simply the principal submatrix of DG, i.e.
Dk
G ¼ fdGðxi; xjÞji; jACkg. The solution to problem (5) is the vertex

corresponding to the minimal row sum of

ck ¼ xj; j¼ arg min
i ¼ 1…jCk j

½Dk
Ge�i; jACk ð6Þ

where e¼ ð1;1;…;1ÞT . DG
ke computes the row sum of submatrix DG

k

and j is the optimal index corresponding to the minimal row sum.
Now we simply compute the graph distance matrix and repeatedly
compare its principal submatrix row sum to determine the
clusters centroids. The method for obtaining DG will be presented
in Section 4.4.

To illustrate the difference between results of Eqs. (1) and (6),
let us consider an example of two one-dimension manifolds
in Fig. 1(a), the outer arch manifold and the inner reflected S
manifold. The triangles on outer manifold belong to class one and
the squares on inner manifold belong to class two.

The red triangle and green square in Fig. 1(b) are the classic
centroids of class one and class two, respectively, obtained with
Eq. (1). The color shapes in Fig. 1(c) are the respective manifold
centroids obtained with Eq. (6). From Fig. 1(b) we can see that the
classic centroids provide us little useful information about the
manifold distribution, because one can hardly make correct judg-
ment which manifold the samples belong to by comparing their
distances to the two centroids. But in Fig. 1(c) the centroids are
located correctly on their own manifold and thus can represent
the underlying data distribution very well. It is also interesting to
note that for symmetrical manifold (i.e., the reflected S), there is
little difference between classic centroid and manifold centroid.
But for unsymmetrical manifold (i.e., the outside arch), manifold
centroid is more effective to describe the distribution. Moreover,
by choosing a proper similarity measure, the samples on different
manifolds can be expected to be distinguished easily. In the

following section, we will describe a new random walk model
that can better describe the similarity on manifold.

4.2. Updating memberships

The classic k-means updates memberships according to the
shortest Euclidean distance rule, which is not a proper measure on
manifold. Here we introduce a tired random walk model to
describe the centroid–member relationship between points on a
manifold. While the matrix expression of the tired random walk
model appeared in [25,26], we have not seen a model in the
literature that endows it with a clear physical meaning and
interprets it for the purpose of similarity measure on manifolds.
Our model works as follows.

Recall that the randomwalk transition matrix is P ¼D�1W and
the t-step transition matrix is Pt , where W is the graph adjacency
matrix and D is a diagonal matrix with entries Dii ¼∑n

j ¼ 1Wij,
which is the degree of vertex xi. Imagine that a tired random
walker, who walks continuously through edges in a graph,
becomes more tired after each walk and finally stops after all
energy is exhausted. Mathematically, the transition probability of
strength reduces after each walk and finally reaches 0. Assume
that the rate of strength reduction is αA ð0;1Þ, then after t-steps,
the transition matrix becomes ðαPÞt . Now suppose that the
random walker starts from vertex xi and its destination is vertex
xj, then it may walk through any path that connects xi and xj with
arbitrary steps. As a result, the accumulated transition probability
for all possible paths is Pij ¼ ½∑1

t ¼ 0ðαPÞt �ij. This accumulated
transition probability measures the ability of a random walk
starting from xi being able to reach xj before its strength is used
up. It takes all the possible paths into consideration and thus
captures the global geometry of the underlying manifolds. In a
matrix form, the corresponding accumulated transition probability
matrix is P ¼∑1

t ¼ 0ðαPÞt . As the eigenvalue of P is in ½�1; 1�
and αAð0;1Þ, the series converges to P ¼ ðI�αPÞ�1, where I is
the identity matrix. Moreover, the manifoldranking matrix is
R¼ ðI�αSÞ�1 [7], where S¼D�1=2WD�1=2 ¼D1=2PD�1=2 is the
normalized adjacency matrix. Therefore

P ¼D�1=2RD1=2 ð7Þ
or entry-wise

Pij ¼
ffiffiffiffiffiffi
Djj

Dii

s
Rij ð8Þ

Columns of the ranking matrix encode the information spreading
from a seeding vertex to all other vertices in graph through edges,
so α can also be interpreted as information loss on the edges
during spreading. The ranking matrix R is symmetric, so any two
vertices are equal to each other and one has no priority over the

Fig. 1. A toy example data set. (a) The data set contains two one-dimension manifolds, an arch outside labeled by triangles and a reflected S inside labeled by squares. (b) The
classic centroids found by Eq. (1). (c) The manifold centroids found by Eq. (6). (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

E. Tu et al. / Neurocomputing 143 (2014) 109–122 111



other. By contrast, from Eq. (7) or (8) we know that if the degree of
vertex xj is larger than the degree of vertex xi (i.e. vertex xj is in a
denser region2 than vertex xi), Pij will be larger than Pji. This
means that the probability of a randomwalker moving from vertex
xi to vertex xj (i.e. from lower density region to higher density
region) is larger than moving from vertex xj to vertex xi (i.e. from
higher density region to lower density region). As a result, the
memberships, and thus the centroids, tend to move to high
density regions during iterations. This is the key reason we use P
but not R. Note that for a constructed graph, matrix P keeps
constant during iterations and thus it only needs to be computed
once during iterations.

Finally, given centroids xi1 ; xi2 ;…; xiK , we choose the columns of
P that correspond to the centroids to form a matrix P̂ARn�K . The
membership of xi is determined by

k¼ arg max
j ¼ 1‥K

P̂ ij ð9Þ

The whole algorithm procedure is described in Table 1.

4.3. Removal of bridging points

In real world applications, the gap between different manifolds
is usually not very clear due to noise contamination or closeness of
classes. Here we propose a simple but effective method, message
routing, to remove the bridging points between manifolds. Sup-
pose a message can be transferred on the graph from one vertex to
another through edges connecting them. Let qi; i¼ 1;2;…;n
denote the message amount processed by each vertex i. We first
randomly choose two vertices and send a message from one (any
one, since this is a undirect graph) to the other via the graph
distance path. If vertex i is in the path, qi increases 1. These steps
repeat Q times, where Q is a user set value. After this, we compute
qi ¼ qi=

ffiffiffiffiffiffi
Dii

p
; i¼ 1;2;…;n and sort qi in a descend order. The

vertices corresponding to the first Nb values are identified as the
bridging points. Because graph distance path has been obtained
simultaneously with little efforts while computing graph distance
matrix, this process is very time efficient. Fig. 2 shows the results
with Q¼1000 and Nb¼30 on a noisy two-circle data set.

4.4. Large data set considerations

The computational cost for updating centroids and member-
ships is low because these steps only compare elements of
submatrix entries. In addition, experiments show that the algo-
rithm generally converges after very few steps. For large data sets,
the main computational cost lies in computing DG and P .
A straightforward computation needs Oðn3Þ operations for each
of them. However, both of the two matrices can be computed
approximately with sufficient accuracy in a very efficient way.
Specifically, we compute DG by adopting the Dijkstra's algorithm
[27] because manifold-distributed data points often form a very
sparse graph. The sparsity of the neighborhood graph in comput-
ing the shortest path can be fully exploited by the Dijkstra's
algorithm. For matrix P , we first obtain matrix R using the
Nyström method [28] and then use Eq. (7) or (8) to obtain P .
Particularly, if the graph adjacency matrix is positive semi-definite,
we can apply the Nyström method to S directly; otherwise, a
jittering factor can be added to S to keep it positive semi-definite.
Note that matrix R can be written as R¼ ðð1�αÞIþαLÞ�1, where
L¼ I�S is the normalized graph Laplacian and it is always positive

semi-definite, thus we can alternatively apply the Nyström
method to L. After this, the Woodbury formula is used to compute
the inversion efficiently. The time complexity of Dijkstra's algo-
rithm is OðNnþn log nÞ, where N is the number of the nearest
neighbors in a k NN graph. The complexity of both the Nyström
method and the Woodbury formula is Oðm3þmnÞ, where m5n is
the number of rows/columns used to approximate the positive
semi-definite. For large data sets, n log n becomes dominated and
thus GKM scales linearithmically in terms of data set size n.

5. Experimental evaluation

5.1. Baseline algorithms

As the proposed algorithm is based on a graph, we call it Graph
k-means (GKM),3 which is compared to the classic k-means (CKM)
[1] and kernel k-means (KKM) [6]. The recently proposed Cluster-
ing Through Ranking (CTR) algorithm [16] and Locally Consistent
Concept Factorization (LCCF) [29] algorithm have been demon-
strated to achieve state-of-art results for manifold clustering,
thus we also choose them as baseline algorithms. Since spectral
clustering algorithms achieve stable performance in most situa-
tions, we also include its normalized cut (NCut) edition [11] in the
experiments for comparison. So the baseline algorithms are classic
k-means (CKM),4 kernel k-means (KKM),5 Clustering Through
Ranking (CTR),6 Locally Consistent Concept Factorization (LCCF)7

and normalized cut (NCut). The last three algorithms and the
proposed GKM are all based on graph.

5.2. Experimental settings and parameters selection

For all graph-based algorithms (i.e. NCut, CTR, LCCF and GKM),
we construct k NN graphs (in a k NN graph, a vertex only connects
to its N nearest neighbors, and here N is chosen empirically from
integers between 5 and 10 to produce good results since small N
tends to performwell [30]), because k NN graph has been reported
to produce better results for manifold-distributed data [31,2,3].
Moreover, adjacency matrix of a k NN graph is usually highly
sparse and thus can be computed and stored in a very efficient
way. The graph edges are weighted by Gaussian kernel function.
Instead of tuning and choosing a fixed kernel width σ for the
Gaussian kernel function, we treat σ as a independent variable and
change it gradually from 0.01r to 100r with equally logarithmical
interval to investigate the stability of clustering performance
because σ is a key parameter in many algorithms that affects the

Table 1
Algorithm procedure.

Steps

1 Input data set X and parameters: K ;N; σ
2 Initialize cluster centroids c1 ; c2 ;…; cK
3 Calculate graph distance matrix DG

4 Calculate accumulated transition probability matrix P
5 While centroids change
6 Update membership with Eq. (9)
7 Update centroids with Eq. (6)
8 End while
9 Output centroids c1 ; c2 ;…; cK and label vector.

2 Here by using denser region we mean that sample number in a unit volume is
larger. In a k NN graph, a large vertex degree indicates that the neighbors of that
vertex are very close to it, and thus the samples distribute densely in the region
around the vertex.

3 Software is available upon request.
4 We use the function kmeans in MATLAB 2013a.
5 Software:http://www.kernel-methods.net/matlab_tools.html.
6 Software:http://markus-breitenbach.com/machine_learning_code.php.
7 Software:http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html.

E. Tu et al. / Neurocomputing 143 (2014) 109–122112

http://www.kernel-methods.net/matlab_tools.html
http://markus-breitenbach.com/machine_learning_code.php
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html


performance, where r is the mean distance from each sample to its
N neighbors. For kernel k-means we also use Gaussian kernel to
construct the kernel matrix and the kernel width is changed in the
same way as in k NN graph. For NCut, we choose the bottom K (K is
the class number of a data set) eigenvectors of L and perform a
standard k-means on rows of the eigenvector matrix. For LCCF we
use the default parameter values in the code (i.e. max iteration
number 200, regularization parameter α 100, linear kernel and
using NWC type weight), since according to the paper the
performance are rather stable to these parameters. For GKM and
CTR, the learning rate α is set to its typical value 0.99, as suggested
by [25,16]. For GKM the neighborhood size parameter N for graph
construction is also used in graph distance computation. Through-
out all experiments, we use the original data directly and no
special pre-processing technique or priori information about the
databases are utilized. The cluster number is manually set for all
the algorithms.

5.3. An initialization method

Given different initial conditions, the performance of k-means
and its variants may vary greatly. Existing initialization methods
include randomly sampling, uniformly sampling and subset pre-
clustering. These methods do not take the whole data distribution
geometry into consideration. Here we introduce a simple but
effective initialization method. We first randomly choose K groups
of centroids fcj1; cj2;…; cjK g; j¼ 1…K . For each group, we then deter-
mine the corresponding sample label vector Yi ¼ ðyj1; yj2;…; yjnÞ;
yjiAf1;2;…;Kg; j¼ 1‥K ; i¼ 1…n using the method described in
Section 4.2. Thus for the K groups, we obtain K different initial
label vectors Y1;Y2;…;YK and each label vector gives a initial
partitioning of the data set. We rank the K initial groups of
centroid according to its maximal normalized associations (knas-
soc) [32] value and choose the group which has the largest knassoc
value as the initial centroids. Since the graph adjacency matrix and
the class indicator vector, which can be obtained from the label
vector Yk by setting the entries with one class label to 1 and all
other entries to 0, are sparse, the knassoc can be evaluated with
very little efforts.

5.4. Clustering performance

5.4.1. Assessment of clustering performance
We evaluate the clustering performance using two criteria. The

first one, maximum bipartite matching, measures the clustering

error rate. Specifically, assuming the clustering results are yτ1 ; yτ2 ;
yτ1 ;…; yτn ; yτk Af1;2;…;Kg and the ground truth labels are
y1; y2;…; yn; ykAf1;2;…;Kg (where τ is an index permutation),
then the matching degree of a permutation function τ is defined as

Mτ ¼ ∑
n

k ¼ 1
Iðyk; yτk Þ ð10Þ

where Iðx; yÞ equals 1 if x¼y, otherwise 0. Given a manifold-
distributed data set, the ability of clustering algorithm A to detect
the ground truth manifolds is measured by the maximum match-
ing degree that can attain among all permutation functions.
Thus, we define the associated error of clustering algorithm A as
follows:

assoerr ¼max
P

errðτÞ ¼max
P

1�1
n
Mτ

� �
ð11Þ

where P ¼ fτjτ’Ag contains all the permutation produced by
algorithm A. In practice, enumerating all permutation functions to
find the optimal one of Eq. (11) is almost impossible, but we can
compare a T-suboptimal set and choose the best suboptimal one to
approximate the optimal permutation function. A T-suboptimal set
contains T suboptimal results given by clustering algorithm A. As T
approaches infinity, the best T-suboptimal set approaches a global
optimal solution. In our experiments, we choose T¼20 for each
algorithm.

The second performance evaluation criterion is Normalized
Mutual Information (NMI). The NMI is defined as

NMIðX;YÞ ¼ MIðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞHðYÞ

p ð12Þ

where MIðX;YÞ is the mutual information between two random
variables X and Y, and HðnÞ is the random variable entropy. Given
ground-truth label vector and clustering result, the NMI measures
how good the clustering results is, with respect to ground-truth.
NMI¼1 means the clustering result is perfect and NMI¼0 means
the clustering result is useless. Other value between 1 and
0 measures the quality of the clustering result.

5.4.2. Results of clustering synthetic data sets
To demonstrate the superiority of the proposed GKM over CKM

and KKM for manifold distributed data clustering, we generate
four synthetic data sets, shown in Fig. 3. The first two data sets are
the two-moon and the two-circle data sets, which are widely used
in semi-supervised learning researches to test the performance
of manifold learning [25,33]. The third data set contains a ring of

Fig. 2. Removal of bridging by message routing. Left: k NN graph before removing the bridging. Yellow squares are the bridging points identified by message routing
method; Right: k NN graph after removing the bridging points. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

E. Tu et al. / Neurocomputing 143 (2014) 109–122 113



radius 0.8 and a cylinder of radius 0.2, and the fourth data set
includes two knotted rings of radius 0.8. Both data sets are
contaminated by Gaussian noise with variance 0.1. For KKM, the
only parameter σ is searched over the range ½0:01r;100r� and the
value which yields the lowest error rate is chosen. For GKM we use
N¼5 and σ ¼ 0:2r. From these results we can see that CKM always
partitions the data sets into half and half parts, regardless of the
manifold structure. KKM can achieve better results than CKM on
the first two data sets by mapping the input space to feature space,
but it can hardly find out a good mapping for the last two data sets
to achieve content results. For these four manifold distributed data
sets, GKM can incorporate the information of the manifold
structure and thus produces very good results. It is worth noting
that these synthetic data sets are rather noisier than those in
[16,34], and thus more challenging to be classified correctly.

We also conduct experiments to investigate the influence of
data noise and kernel width upon the clustering performance. We
run the algorithms with different kernel width and noise level and
record the error rate for each run. The results are shown in Fig. 4.
In each error rate map, the horizontal axis is the Gaussian kernel
width σ, varying from 0.01r on the left to 100r on the right; the

vertical axis is variance of Gaussian noise, varying from 0 at the
top to 0.3 at the bottom. The color represents the clustering error
rate, where dark blue equals 0 and dark red equals 0.5, as indicated
by the color bar on the right of each map.

From these results, we can see that (a) CKM is not affected by
kernel width8 but its error rate is always around 0.2. (b) KKM has a
very limited Error Free Region (EFR) (i.e. dark blue region) for small
noise variance, which indicates that KKM is very sensitive to the
kernel width. Even a small change in kernel width can cause the
error rate increase very quickly. (c) LCCF is not so sensitive to σ but
its EFR is very small. (d) CTR, NCut and GKM have very large and
stable EFRs, but GKM has the smoothest and largest one among
them, which indicates that GKM can endure a larger range of
parameter change and noise contamination.

Fig. 3. Results of clustering synthetic manifold data sets. Note that unlike the toy data sets used in [16,34] where the data sets are fairly clean, the data sets used in this
experiment are contaminated by a considerable level of noise and thus it is more difficult to cluster them correctly. (a) CKM, (b) KKM, and (c) GKM.

8 Actually, the performance of CKM does not have any relationship with the
kernel width because CKM does not use Gaussian kernel. But to be fair, we also run
CKM at each time and record its performance and plot its error rate map for
comparison.

E. Tu et al. / Neurocomputing 143 (2014) 109–122114



5.4.3. Results of clustering real-world data sets
In this section we conduct experiments on three types of real-

world data sets: face image, document content and other real
world data sets from the widely used UC Irvine repository.

(1) Face image clustering
We carry out experiments on two widely used face image

databases: the CMU PIE database9 and the ORL database10. The PIE
database contains 41,368 face images of 68 people. The size of each
image is 64�64 pixels. For each person there are 13 different
poses, 43 different illumination conditions and 4 different expres-
sions. Because the whole database is very large, performing all the
baseline algorithms on the whole database is very time and
resource consumption. We conduct experiments on the Pose C07
subset.11 The ORL database contains 400 face images from 40
persons, taken at different times and varying the lighting, facial
expressions and facial details. The size of each image is 92�112
pixels. For the ORL we use the whole database. Fig. 5 displays some
sample images of the two database.

Experimental results on the two face image databases are
shown in Fig. 6. From these results we can see that CKM and
KKM are generally perform worse than the four graph-based
algorithms because they do not take the manifold structure into
consideration. Among the four graph-based algorithms, the CTR
tend to be more sensitive to kernel width than other three
algorithms and GKM achieves the stablest and best results under
both two performance evaluation criteria.

We also show in Fig. 7 the cluster centroid of the first two
persons in each database found by GKM. Note how the centroids
given by GKM represent the illumination and face position in each
clusters. It is worth mentioning that this outcome is only given by

GKM and other baseline algorithms cannot produce this result
directly after clustering.

(2) Text clustering
Two popular text data sets are used to test the performance of

the proposed GKM and the baseline algorithms: 20 newsgroups
(version 2) and RCV1.12 The 20 newsgroups data set contains
18,846 newsgroup documents with 26,214 features, partitioned
(nearly) evenly across 20 different newsgroups. RCV1 data set
contains 9625 documents from four categories with 29,992
distinct words. Again, because running the algorithms on these
large data sets with large feature number is rather time and
resource consumption, we use the 5% Training subset, which
contains 10 randomly selected subsets. For RCV1 we randomly
divided the data set into subsets of size 500. Final results are
averaged over the subsets.

Fig. 8 shows the experimental results. It is interesting that
from these results we can see a similar “behavior” of CTR,
NCut and LCCF, i.e. the similar trend of the performance curves
against kernel width. The common point behind these three
algorithms is that they all compute a low rank embedding
using (or partially using) the graph Laplacian. So any local changes
of graph weight matrix, hence the graph Laplacian, will exert a
more or less similar impact on the embedding results and thus
on the final performance. In contrast, GKM dose not have this
similar behavior because it dose not depend on the eigen-
spectrum of graph Laplacian. GKM uses the new tired random
walk model, which takes all the possible path into consideration
and thus can reflect more globally and stably the similarity on
manifold, to determine the memberships and can achieve a better
result.

Fig. 4. Clustering error rate for different noise and kernel width on two-moon data set. (a) CKM, (b) KKM, (c) LCCF, (d) CTR, (e) NCut, and (f) GKM. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

9 http://www.ri.cmu.edu/projects/project_418.html.
10 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
11 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

12 Both can be downloaded from:http://www.cad.zju.edu.cn/home/dengcai/
Data/TextData.html.

E. Tu et al. / Neurocomputing 143 (2014) 109–122 115

http://www.ri.cmu.edu/projects/project_418.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html


(3) UC Irvine repository
UC Irvine repository13 contains real-world data sets collected

from various research fields. We conduct experiments on 4 numerical
and no missing-value data sets from the repository: breasttissue

(d:9, N:106, K:6)14, vehicle (d:18, N:846, K:4), control data (d:6,
N:600, K:6) and statlog (d:19, N:2310, K:7).

Fig. 9 displays the experimental results of the 4 data sets.

Fig. 5. Sample face images of CMU PIE database (left) and ORL database (right).

Fig. 6. Experimental results of (a) CMU PIE database and (b) ORL database.

13 http://archive.ics.uci.edu/ml/. 14 d:feature dimension, N:sample number, K:class number.

E. Tu et al. / Neurocomputing 143 (2014) 109–122116

http://archive.ics.uci.edu/ml/


Fig. 7. Centroid of the first two persons' face images found by GKM. The images in white boxes are the centroid image. Top: CMU PIE database; Bottom: ORL database. Note
that this is a unique property not shared by other baseline algorithms.

Fig. 8. Experimental results of (a) 20 newsgroups database and (b) RCV1 database.

E. Tu et al. / Neurocomputing 143 (2014) 109–122 117



Fig. 9. Experimental results of four real world data sets from UCI repository. (a) breasttissue; (b) vehicle; (c) control data; and (d) statlog.

E. Tu et al. / Neurocomputing 143 (2014) 109–122118



The results show (1) by taking the manifold structure into
account, GKM can greatly improve the performance of the classic
k-means; and (2) the error curve of GKM decreases earlier and
faster than that of the baseline algorithms, indicating that GKM
can endure a wider range of parameter changes.

5.5. Results of representative selection

We compare the results given by GKM with the results of the very
recently proposed Sparse Model Representation Selection algorithm
(SMRS)15 [4] to demonstrate the power of GKM in selecting repre-
sentative samples. Fig. 10 shows the experimental results of the
synthetic data sets and Fig. 11 shows the results of real-world data
sets. The results show that GKM differs from SMRS in the following
aspects: (1) SMRS finds the vertices of the convex hull of the data
cloud but pays little attention to the clouds inner structure, while GKM
extracts representatives with respect to the density of regions in the
clouds, i.e. the representatives are those that have compact and dense
supporters around. SMRS is advantageous while the data set poses a
solid convex shape. But manifold-distributed data sets present in
various forms and inner structures, which convey important informa-
tion about data characteristics. (2) SMRS automatically determines the
number of representatives, while GKM can be set flexibly to any
number less than the data set size. Often, one may prefer to manually
set the number of representatives. For example, in a public contest,
one may want to choose the top three of all contestants that can best
meet the assessment criteria. (3) SMRS solves an unsmooth optimiza-
tion problem and thus scales badly for large data set, while GKM costs
little in iterations, given the distance matrix and accumulated transi-
tion probability matrix. As a comparison, we also apply classic k-
means CKM to the third data set and the result is shown in Fig. 10(g).
As previously mentioned, the centroids given by CKM are generally
not on the manifold.

5.6. Time complexity comparison

We carry out experiments on USPS data set16 to examine the time
complexity of GKM implemented by straightforward method (i.e.,

using full matrix inversion and Floyd's algorithm to compute P and DG,
respectively) and efficient method (i.e., using Nyström approximation
and Dijkstra algorithm to exploit sparsity of k NN graph to compute P
and DG, respectively). The USPS data set contains 9298 images of
handwritten digits from 0 to 9. All images are normalized to 16�16.
The feature vector of each image is formed by concatenating all the
columns of the image intensity. We compare the time and error rate of
the straightforward and the efficient implementations. We randomly
choose subsets with different sizes from the USPS data set and run
straightforward and efficient GKM on these subsets, fixing the kernel
width parameter σ to 9.5r. For each subset, the parameter N is set to 10
in constructing k NN graph and the parameter m in Nyström method
is set to 5% of the subset size. Experimental results are shown in
Fig. 12. From these results we can see that the efficient implementa-
tion scales well in terms of data set size. It can achieve a comparable
performance with the straightforward implementation while its
computational complexity is much lower.

We also conduct experiments on the 5% Training subset of 20
newsgroups database to compare the time complexity of GKM and
other baseline algorithms. All the algorithms are run on a computer
with 4 GB RAM and 2.67 GHZ CPU. Time cost is shown in Table 2.
While the straightforward GKM has a relative high time cost, the
efficient GKM has the lowest time cost among all the algorithms.

5.7. Effects of graph construction and distance calculation

In this section we conduct three experiments to investigate the
effects of graph construction and distance calculation upon GKM
clustering performance. There are two parameters of graph con-
struction, the edge weight kernel width σ and the neighborhood
size N for k NN graph construction. For graph distance calculation,
there is also a neighborhood size parameter for constructing the
Euclidean distance neighborhood graph. In order to distinguish
one from another, we denote NW the neighborhood size for graph
construction and ND the neighborhood size for graph distance
matrix computation. In the first experiment, we change NW from
2 to 20 and set σ¼0.5r, ND¼6 to observe the trend of clustering
performance. In the second experiment, contrarily we let ND

change from 2 to 20 and set σ ¼ 0:5r, NW¼6. In the third
experiment we set both NW and ND to 6, and change σ from
0.01r to 100r. Experimental results are shown in Fig. 13.

Fig. 10. Results of representative selection on toy data sets (red circles are representatives). (a) (b) (e) are the results of SMRS; (c) (d) (f) are the results of GKM; (g) is the
result of CKM. Note the difference between representatives defined, thus found, by SMRS and GKM: for SMRS, the representatives are the vertices of the convex hull of the
data set, ignoring the inner structure of the data sets; for GKM, the representatives are the points that minimize the total sum of geodesic distances between representatives
and their supporters. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

15 Software:http://www.cis.jhu.edu/ehsan/code.htm.
16 http://www-stat.stanford.edu/�tibs/ElemStatLearn/.

E. Tu et al. / Neurocomputing 143 (2014) 109–122 119

http://www.cis.jhu.edu/ehsan/code.htm
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/


From these results we can make the following conclusions:
(1) GKM clustering performance is very stable to NW and ND.
Because the tired randomwalk model takes all the possible pathes
between any two vertices into consideration, it is much stable to a
local change in the graph. So the clustering performance is also
stable to the local change. (2) The kernel width has a big effect on
clustering performance while it is small. But as the kernel width
gets large, the error rate decreases rapidly and becomes stable. The
reason is that in a k NN graph, the edge weight will be very weak
(almost 0 because of the rapid decay of exponential function)

while the kernel width is very small. These weak connections
usually are not enough to reflect the tightness between the
neighboring samples and the manifold structure information,

Fig. 11. Results of representative selection on real-world data sets. (a) The results of SMRS; (b) and (c) The results of GKM for different numbers of representatives. Left-hand
data sets: apple1 and cup6 in ETH-80 database; right-hand data sets: the first 100 samples of digits 2 and 3 from MNIST data set.

Fig. 12. Results of time complexity comparison experiment. (a) CPU time for computing geodesic distance matrix; (b) CPU time for computing accumulated transition
probability matrix; and (c) error rate of straightforward and efficient ways.

Table 2
Time cost of the algorithms (s). S, straightforward; E, efficient.

Algorithm CKM KKM NCut CTR LCCF GKM(S) GKM(E)

Time cost 14.81 16.30 26.09 70.84 49.69 61.58 11.05

E. Tu et al. / Neurocomputing 143 (2014) 109–122120



and thus the performance can be very poor. While the kernel
width gets large, the connection weight of the graph will increases
quickly. Neighboring samples are thus connected more tightly
than far away samples and the performance gets better. As the
kernel width increase continuously, the connections in the graph
become strong and strong. The limit case is that all the connection
weights between neighboring samples are finally become 1 as the
kernel width approaches to infinity. In this case the weighted k NN
graph becomes a regular unweighted k NN graph. Nevertheless,
this unweighted k NN graph still encodes the manifold informa-
tion [31,30] and guarantees the performance to be stable.

6. Conclusions and future work

In order to overcome the drawbacks of classic k-means in dealing
with manifold-distributed data structure, we have demonstrated a
graph-based k-means (GKM) which can effectively perform mani-
fold clustering and representative selection while remaining a
similarly simple iterative process as the classic k-means. Substantial
experiments have been carried out on both synthetic and real-world
data sets with very promising results. GKM has the advantage of the
popularity of the k-means type of clustering and also effectively
caters for the manifold-distributed data structure widely existing in
practice. This makes GKM very promising for handling real-life
applications. However, similar to the classic k-means and kernel
k-means, GKM also suffers from the initial conditions which have a
significant influence on the final results. Although the initialization
method in Section 5.3 can improve the performance stability, this is
still an open problem that is worth further study. We are now
working on theoretical analysis of the proposed tired random walk
model and designing more appropriate settings for initial conditions
to reduce the impact and extending GKM to a pair-wise constrained
learning framework. Our future work will also cover how GKM could
effectively cluster overlapping manifolds, since clustering overlap-
ping manifold is one of the most challenging problems for many
manifold clustering algorithms.

Acknowledgments

This research is partly supported by NSFC China (No. 61273258)
and Ph.D. Programs Foundation of Ministry of Education of China
(No. 20120073110018).

References

[1] J. MacQueen, Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathema-
tical Statistics and Probability, vol. 1, California, USA, 1967, pp. 281–297.

[2] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[3] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework
for nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323.

[4] E. Elhamifar, G. Sapiro, R. Vidal, See all by looking at a few: sparse modeling for
finding representative objects, in: CVPR, IEEE, 2012, pp. 1600–1607.

[5] E. Elhamifar, G. Sapiro, R. Vidal, Finding exemplars from pairwise dissimila-
rities via simultaneous sparse recovery, in: NIPS, vol. 2, 2012, pp. 1–9.

[6] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge
University Press, Cambridge, UK, 2004.

[7] D. Zhou, J. Weston, A. Gretton, O. Bousquet, B. Schölkopf, Ranking on data
manifolds., in: NIPS, vol. 3, 2003.

[8] R. Subbarao, P. Meer, Nonlinear mean shift for clustering over analytic
manifolds, in: CVPR, vol. 1, IEEE, 2006, pp. 1168-1175.

[9] R. Subbarao, P. Meer, Nonlinear mean shift over Riemannian manifolds, Int. J.
Comput. Vis. 84 (1) (2009) 1–20.

[10] A. Goh, R. Vidal, Segmenting motions of different types by unsupervised
manifold clustering, in: CVPR, IEEE, 2007, pp. 1–6.

[11] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. 22 (8) (2000) 888–905.

[12] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering1 analysis and an
algorithm, NIPS 14 (2001) 849–856.

[13] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embed-
ding and clustering., in: NIPS, vol. 14, 2001, pp. 585–591.

[14] P. Li, J. Bu, B. Xu, B. Wang, C. Chen, Locally discriminative spectral clustering
with composite manifold, Neurocomputing 119 (2013) 243–252.

[15] S. Wu, X. Feng, W. Zhou, Spectral clustering of high-dimensional data exploiting
sparse representation vectors, Neurocomputing 135 (2014) 229–239.

[16] M. Breitenbach, G. Z. Grudic, Clustering through ranking on manifolds, in:
ICML, ACM, 2005, pp. 73–80.

[17] R. Souvenir, R. Pless, Manifold clustering, in: ICCV, vol. 1, IEEE, 2005, pp. 648–653.
[18] E. Elhamifar, R. Vidal, Sparse manifold clustering and embedding, in: NIPS,

2011, pp. 55–63.
[19] S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic

data-driven fault diagnosis and process monitoring methods on the bench-
mark tennessee eastman process, J. Process Control 22 (9) (2012) 1567–1581.

[20] S. Yin, H. Luo, S.X. Ding, Real-time implementation of fault-tolerant control
systems with performance optimization, IEEE Transactions on Industrial
Electronics 61 (5) (2014) 2402–2411.

[21] R. Maitra, I.P. Ramler, A k-mean-directions algorithm for fast clustering of data
on the sphere, J. Comput. Graph. Stat. 19 (2) (2010) 377–396.

[22] G.D. Canas, T. Poggio, L. Rosasco, Learning manifolds with k-means and k-flats,
in: NIPS, 2012, pp. 2474–2482.

[23] A. Schenker, Graph-Theoretic Techniques for Web Content Mining, vol. 62,
World Scientific, 5 Toh Tuck Link, Singapore, 2005.

[24] L. Galluccio, O. Michel, P. Comon, A.O. Hero III, Graph based k-means
clustering, Signal Process. 92 (9) (2012) 1970–1984.

[25] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Schölkopf, Learning with local and
global consistency, in: NIPS, vol. 16, 2003, pp. 321–328.

[26] X. Zhu, Z. Ghahramani, J. Lafferty, et al., Semi-supervised learning using
gaussian fields and harmonic functions, in: ICML, vol. 3, 2003, pp. 912–919.

[27] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM (JACM) 34 (3) (1987) 596–615.

[28] C. Williams, M. Seeger, Using the Nyström method to speed up kernel
machines, in: NIPS, 2001.

[29] D. Cai, X. He, J. Han, Locally consistent concept factorization for document
clustering, IEEE Trans. Knowl. Data Eng. 23 (6) (2011) 902–913.

[30] X. Zhu, A.B. Goldberg, Introduction to semi-supervised learning, Synthesis
Lectures on Artificial Intelligence and Machine Learning 3 (1) (2009) 1–130.

[31] X. Zhu, J. Lafferty, R. Rosenfeld, Semi-Supervised Learning with Graphs (Ph.D.
Thesis), Carnegie Mellon University, Language Technologies Institute, School
of Computer Science, 2005.

[32] S.X. Yu, J. Shi, Multiclass spectral clustering, in: ICCV, IEEE, 2003, pp. 313–319.
[33] F. Wang, C. Zhang, Label propagation through linear neighborhoods, IEEE

Trans. Knowl. Data Eng. 20 (1) (2008) 55–67.
[34] H. Valizadegan, R. Jin, Generalized maximum margin clustering and unsuper-

vised kernel learning, Adv. Neural Inf. Process. Syst. 19 (2007) 1417.

Fig. 13. Effect of graph construction and distance calculation upon clustering performance. (a) Error rate vs. NW; (b) Error rate vs. ND; and (c) Error rate vs. σ.

E. Tu et al. / Neurocomputing 143 (2014) 109–122 121

http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref2
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref2
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref9
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref9
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref11
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref11
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref9924
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref9924
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref14
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref14
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref919
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref919
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref19
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref19
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref19
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref924
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref924
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref924
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref8824
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref8824
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref24
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref24
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref27
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref29
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref29
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref30
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref30
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref33
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref33
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref34
http://refhub.elsevier.com/S0925-2312(14)00756-5/sbref34


Enmei Tu was born in Anhui, China. He received his B.
Sc. degree and M.Sc. degree from University of Electro-
nic Science and Technology of China (UESTC) in 2007
and 2010, respectively. He is now a PhD candidate in
the Institute of Image Processing and Pattern Recogni-
tion, Shanghai Jiao Tong University, China. His research
interests are machine learning, computer vision and
neural information processing.

Longbing Cao got one Ph.D. in Intelligent Sciences in
Chinese Academy of Sciences and another in Computing
Science from the University of Technology Sydney (UTS).
He is a professor of information technology at UTS, the
Founding Director of the University's Research Institute
Advanced Analytics Institute and a core member of the
Data Sciences and Knowledge Discovery Lab at the Centre
for Quantum Computation and Intelligent Systems at the
Faculty of Engineering and IT, UTS. He is also the Research
Leader of the Data Mining Program at the Australian
Capital Markets Cooperative Research Centre, the Chair
of IEEE Task Force on Behavior and Social Informatics
and of IEEE Task Force on Educational Data Mining. He is
a Senior Member of IEEE, SMC Society and Computer
Society.

Jie Yang was born in Shanghai, China, in August 1964.
He received a bachelor's degree and a master's degree
in Automatic Control in Shanghai Jiao Tong University
in 1985 and 1988, respectively. In 1994, he received Ph.
D. at Department of Computer Science, University of
Hamburg, Germany. Now he is the Professor and
Director of Institute of Image Processing and Pattern
Recognition in Shanghai Jiao Tong University. He is the
principal investigator of more than 30 nation and
ministry scientific research projects in image proces-
sing, pattern recognition, data mining, and artificial
intelligence, including two national 973 research plan
projects, three national 863 research plan projects,

three national nature fundation projects, five international cooperative projects
with France, Korea, Japan, New Zealand. He has published more than 500 of articles
in national or international academic journals and conferences.

Nikola Kasabov is a Fellow of the Royal Society of New
Zealand, the New Zealand Computer Society and the
Institute of Electrical and Electronic Engineers (IEEE).
He is the founding Director and the Chief Scientist of
the Knowledge Engineering and Discovery Research
Centre (KEDRI) and Personal Chair of Knowledge Engi-
neering in the School of Computing and Mathematical
Sciences at AUT. His main interests are in the areas of
computational intelligence, neuro-computing, bioinfor-
matics, neuroinformatics, speech and image processing,
novel methods for data mining and knowledge discov-
ery. He has published over 450 works, among them
journal papers, text books, edited research books and

monographs, conference papers, book chapters, edited conference proceedings,
patents and authorship certificates in the area of intelligent systems, connectionist
and hybrid connectionist systems, fuzzy systems, expert systems, speech recogni-
tion, bioinformatics, neurocomputing and neural networks.

E. Tu et al. / Neurocomputing 143 (2014) 109–122122


	A novel graph-based k-means for nonlinear manifold clustering and representative selection
	Introduction
	Related works
	Review of the classic k-means clustering algorithm
	A graph k-means manifold clustering algorithm
	Updating centroids
	Updating memberships
	Removal of bridging points
	Large data set considerations

	Experimental evaluation
	Baseline algorithms
	Experimental settings and parameters selection
	An initialization method
	Clustering performance
	Assessment of clustering performance
	Results of clustering synthetic data sets
	Results of clustering real-world data sets

	Results of representative selection
	Time complexity comparison
	Effects of graph construction and distance calculation

	Conclusions and future work
	Acknowledgments
	References




