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Negative Sequence Analysis: A Review

WEI WANG, University of Technology Sydney
LONGBING CAO∗, University of Technology Sydney

Negative sequential patterns (NSPs) produced by negative sequence analysis (NSA) capture more informative
and actionable knowledge than classic positive sequential patterns (PSPs) due to involving both occurring and
non-occurring items, which appear in many applications. However, the research on NSA is still at an early stage
and NSP mining involves very high computational complexity and a very large search space, there is no widely
accepted problem statement on NSP mining, and different settings on constraints and negative containment
have been proposed in existing work. Among existing NSP mining algorithms, there are no general and
systemic evaluation criteria available to assess them comprehensively. This paper conducts a comprehensive
technical review of existing NSA research. We explore and formalize a generic problem statement of NSA,
investigate, compare and consolidate the definitions of constraints and negative containment, and compare the
working mechanisms and efficiency of existing NSP mining algorithms. The review is concluded by discussing
new research opportunities in NSA.
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A SUPPLEMENTARY MATERIALS
In this supplementary material, the representative NSP mining algorithms are evaluated on 35
synthetic sequence datasets, based on the evaluation criteria listed in Table 1, which are proposed
to evaluate NSP mining algorithms in terms of three evaluation aspects, NSP count, NSP runtime
and Total length of NSCs.

A.1 Synthetic Datasets for Evaluation
35 synthetic sequence datasets are used for this evaluation, which are generated by the IBM data
generator [1]. Table 2 describes these datasets in terms of different data factors. The base dataset is
C10_T 6_S8_I8_DB10k_N 0.1k . C is the average number of elements per sequence; T is the average
number of items per element; S is the average length of potentially maximal frequent positive
sequences; I is the average number of items per element in potentially maximal frequent positive
sequences; DB is the number of data sequences in a sequence dataset; N is the number of different
items.
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Table 1. NSP Evaluation Aspects and Description

Evaluation Aspect Notation Description

NSP count Nct The number of discovered NSPs
NSP runtime Nrt Runtime consumed to discover NSPs
Total length of NSCs Tlnc The total length of the generated NSCs

Table 2. Description of Synthetic Sequence Datasets w.r.t. Data Factor Adjustment

Data Factor Dataset Name Data Factor Adjustment

Base Dataset C10_T6_S8_I8_DB10k_N0.1k C = 10, T = 6, S = 8, I = 8, DB = 10k , N = 0.1k
C_1 C6_T6_S8_I8_DB10k_N0.1k C = 6, T = 6, S = 8, I = 8, DB = 10k , N = 0.1k
C_2 C8_T6_S8_I8_DB10k_N0.1k C = 8, T = 6, S = 8, I = 8, DB = 10k , N = 0.1k
C_3 C12_T6_S8_I8_DB10k_N0.1k C = 12, T = 6, S = 8, I = 8, DB = 10k , N = 0.1k
C_4 C14_T6_S8_I8_DB10k_N0.1k C = 14, T = 6, S = 8, I = 8, DB = 10k , N = 0.1k
T_1 C10_T4_S8_I8_DB10k_N0.1k C = 10, T = 4, S = 8, I = 8, DB = 10k , N = 0.1k
T_2 C10_T8_S8_I8_DB10k_N0.1k C = 10, T = 8, S = 8, I = 8, DB = 10k , N = 0.1k
T_3 C10_T10_S8_I8_DB10k_N0.1k C = 10, T = 10, S = 8, I = 8, DB = 10k , N = 0.1k
T_4 C10_T12_S8_I8_DB10k_N0.1k C = 10, T = 12, S = 8, I = 8, DB = 10k , N = 0.1k
S_1 C10_T6_S4_I8_DB10k_N0.1k C = 10, T = 6, S = 4, I = 8, DB = 10k , N = 0.1k
S_2 C10_T6_S6_I8_DB10k_N0.1k C = 10, T = 6, S = 6, I = 8, DB = 10k , N = 0.1k
S_3 C10_T6_S10_I8_DB10k_N0.1k C = 10, T = 6, S = 10, I = 8, DB = 10k , N = 0.1k
S_4 C10_T6_S12_I8_DB10k_N0.1k C = 10, T = 6, S = 12, I = 8, DB = 10k , N = 0.1k
I_1 C10_T6_S8_I4_DB10k_N0.1k C = 10, T = 6, S = 8, I = 4, DB = 10k , N = 0.1k
I_2 C10_T6_S8_I6_DB10k_N0.1k C = 10, T = 6, S = 8, I = 6, DB = 10k , N = 0.1k
I_3 C10_T6_S8_I10_DB10k_N0.1k C = 10, T = 6, S = 8, I = 10, DB = 10k , N = 0.1k
I_4 C10_T6_S8_I12_DB10k_N0.1k C = 10, T = 6, S = 8, I = 12, DB = 10k , N = 0.1k
DB_1 C10_T6_S8_I8_DB20k_N0.1k C = 10, T = 6, S = 8, I = 8, DB = 20k , N = 0.1k
DB_2 C10_T6_S8_I8_DB30k_N0.1k C = 10, T = 6, S = 8, I = 8, DB = 30k , N = 0.1k
DB_3 C10_T6_S8_I8_DB40k_N0.1k C = 10, T = 6, S = 8, I = 8, DB = 40k , N = 0.1k
DB_4 C10_T6_S8_I8_DB50k_N0.1k C = 10, T = 6, S = 8, I = 8, DB = 50k , N = 0.1k
N_1 C10_T6_S8_I8_DB10k_N0.2k C = 10, T = 6, S = 8, I = 8, DB = 10k , N = 0.2k
N_2 C10_T6_S8_I8_DB10k_N0.3k C = 10, T = 6, S = 8, I = 8, DB = 10k , N = 0.3k
N_3 C10_T6_S8_I8_DB10k_N0.4k C = 10, T = 6, S = 8, I = 8, DB = 10k , N = 0.4k
N_4 C10_T6_S8_I8_DB10k_N0.5k C = 10, T = 6, S = 8, I = 8, DB = 10k , N = 0.5k

A.2 Experimental Result and Analysis
Below, we evaluate the algorithms by adjusting the corresponding data factors. It is noted that
GA-NSP is implemented with the crossover rate at 100%, mutation rate at 10% and decay rate at
10%. In the following figures, the X-axis stands for the value of minimum support and the Y-axis
stands for the value of the evaluation criteria, the unit of NSP runtime (Nrt) is the millisecond,
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and the unit of NSP count (Nct) and total length of NSCs (Tlnc) is one. Finally, since difference
algorithms aim to discover NSP in divergent search space, their value of the evaluation criteria is
in different orders of magnitude. For the convenience of display, we select three thresholds, i.e.,
high, medium and low thresholds, to present the experimental results respectively.

A.2.1 Algorithm Efficiency Analysis w.r.t. C. The NSP count Nct for different NSP mining algo-
rithms on factor C under divergent thresholds are shown in Figures 1a, 1b and 1c. Here we set the
high threshold as 0.68, because all evaluation aspects of NegGSP experience an exponential rapid
on big C and will be in different orders of magnitude with those of other algorithms under lower
thresholds. Therefore, we show the evaluation results of NegGSP undermin_sup = 0.68 as high
threshold. In addition, we set medium threshold as 0.46 to show the results of PNSP-based variants
and NegGSPwithFC, and set low threshold as 0.20 to show those of other algorithms.
We can see that as factor C increases from 6 to 14, the NSP count Nct for most algorithms

increases under all thresholds. when threshold is relatively high, as illustrated in Figure 1a, these
algorithms discover similar number of NSP when factor C is less than 8, but when C is larger than
12, the Nct for most algorithms increases drastically while e-NSP maintains a relatively stable Nct.
Among these algorithms, the Nct for NegGSP experiences the fastest increase since it adopts a
loose FreC, IFC, and thus can discover much more number of NSP than other algorithms even when
threshold is as high as 0.68. Since adopting the same constraint and negative containment, EFC
and negative containment, PNSPwithCover and NegGSPwithFC have same Nct whenmin_sup =
0.46 and C is less than 12, however, when C get higher, Nct for NegGSPwithFC is a little less
than that of PNSPwithCover suffering from its joining-base NSC generation strategy. Comparing
PNSPwithCover with PNSPwithCoverESC and PNSP, it can be seen that both of the two latter
algorithms discover much less NSP since they adopt a stricter constraint, ESC, and a stricter
containment, N-containment, respectively. Relatively speaking, PNSP can mine only less than half
number of NSP compared with PNSPwithCoverESC, which means that the impact of N-containment
on the Nct for PNSP is much more than that of ESC. And PNSPwithESC which adopts ESC and
N-containment can only discover almost half number of NSP than PNSP. As is seen in Figure
1b, with C increasing from 8 to 10, the Nct for PNSPwithESC, PNSP and e-NSP decreases when
min_sup = 0.46, because adopting strict negative containment, such as N-containment and strictly-
negative containment, may break the positive correlation between Nct and factor C. when threshold
is low (min_sup = 0.20), MSISwithContain can discover more NSP than NSPM when C is less than
12, shown in Figure 1c, since more IPS can be generated when threshold is low and thus more
2-neg-size NPS can be found by MSISwithContain, which cannot be discovered by NSPM since
constraint CFC is adopted. However, when factor is larger than 14, the Nct for NSPM surpasses
that of MSISwithContain since more long-size NSP are discovered by NSPM.
The NSP runtime Nrt for different algorithms on factor C under divergent thresholds is shown

in Figures 1d, 1e and 1f. When threshold is high (min_sup = 0.68), similar with its Nct, the Nrt
for NegGSP is similar with that of PNSPwithCover, PNSP, PNSPwithCoverESC and PNSPwithESC
when C is less than 10, but then increases much rapidly since search space get larger dramatically,
as illustrated in Figure 1d. When min_sup = 0.46, shown in Figure 1e, even though PNSP can
only discover a quarter of NSP than PNSPwithCover, the Nrt for PNSP is slightly more than
that of PNSPwithCover, since PNSP generates and tests same set of NSC as PNSPwithCover
and needs to compare data sequences with not only each NSC but also its maximum positive sub-
sequence because of adopting N-containment. Comparedwith PNSPwithCover, PNSPwithCoverESC
consumes much less runtime to mine NSP since adopting ESC shrinks the set of NSC and seeds and
less NSC need to be tested. As for NegGSPwithFC, its Nrt is less than the Nrt for PNSPwithCover
because joining-based strategy generates NSC length by length and avoids the generation of some
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(a) NSP Count (min_sup=0.68)
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(b) NSP Count (min_sup=0.46)
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(c) NSP Count (min_sup=0.20)
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(d) NSP Runtime (min_sup=0.68)
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(e) NSP Runtime (min_sup=0.46)
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(f) NSP Runtime (min_sup=0.20)
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(g) Total Length of NSC
(min_sup=0.68)
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(h) Total Length of NSC
(min_sup=0.46)

0

5000000

10000000

15000000

20000000

25000000

6 8 10 12 14

To
ta

l L
en

gt
h 

of
 N

SC

C

GA-NSP

e-NSP

NSPM

MSISwithCover

MSISwithContain
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(min_sup=0.20)

Fig. 1. Algorithm Efficiency Analysis w.r.t. C (X-axis stands for C, and Y-axis stands for algorithm efficiency)

invalid NSC. But compared with PNSPwithESC and PNSPwithCoverESC, NegGSPwithFC still has
a larger Nrt because it generates more NSC. In addition, whenmin_sup = 0.20, shown in Figure
1f, the increasing trend of NSPM is faster than that of MSISwithCover and MSISwithContain, and
NSPM consumes much more runtime when C gets higher, since NSPM can generate long-size NSC
and is required to conduct more comparison when testing NSC with the increase of C. It can be
seen that the number of generated NSC and comparison times are two major attributes impacting
Nrt, and thus to design a strategy which generates less NSC or can test the generated NSC by less
comparison is an effective path to improve the efficiency of NSP mining algorithms.
The total length of NSCs Tlnc for mining algorithms on factor C under different thresholds is

illustrated in Figures 1g, 1h and 1i. Whenmin_sup = 0.68, PNSPwithESC, PNSPwithCoverESC,
PNSP, PNSPwithCover, NegGSP and NegGSPwithFC consume similar memory space to save the
generated NSC and the Tlnc for these algorithms increases smoothly with factor C rising from 6
to 10, and then rises sharply as C gets increased. As shown in Figure 1g, PNSPwithESC has the
same Tlnc with PNSPwithCoverESC, which is much less than that of PNSP and PNSPwithCover
when C is high. That is because that adopting different negative containment cannot cause the
change of seeds and thus has no impact on the set of generated NSC, which can also be seen by
comparing MSISwithCover and MSISwithContain. And when cover pruning strategy is adopted,
some constraints can result in the decrease of the base-support of NSC and thus cause a smaller
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seed set, as a result fewer long-size NSC are generated and less memory usage is required. Similarly,
compared with NegGSP, NegGSPwithFC maintains a far less Tlnc when C is larger than 12, because
it adopts EFC and avoids generating amount of invalid NSC defying EFC, especially for less long-size
NSC. As shown in Figure 1h, as thresholdmin_sup get decreased to 0.46, the Tlnc difference of
PNSPwithESC and PNSP is get much larger, and when factor C gets larger than 12, PNSPwithESC
only requires less than half of the memory usage of PNSP. As shown in Figure 1i, although GA-NSP
tends to generate high potential NSC in a relatively smaller search, when threshold is low, it still
consumes much more memory compared with NSPM and MSIS. In addition, e-NSP consumes the
smallest memory and keeps a better scalability in all thresholds. It is clear that adopting effective
constraints and pruning strategy to reduce the number of generated NSC can efficiently decrease
the memory space required in the mining process, especially when threshold is low.

A.2.2 Algorithm Efficiency Analysis w.r.t. T. Here we characterize the efficiency of these algo-
rithms on T. We set the high threshold as 0.72 to show the evaluation of NegGSP, set the medium
threshold as 0.60 to show that of PNSP-based variants and NegGSPwithFC, and set the low threshold
as 0.34 to show the results of other algorithms.
Figures 2a, 2a and 2c show the number of NSP mined by algorithms under different thresholds

and T. We can see from Figure 2a that four global mining algorithms with MPS-based negative
containment, PNSPwithCoverESC, PNSPwithCover, NegGSP and NegGSPwithFC, experience a
trend towards higher Nct as T increases. Though this increasing trend looks similar with that
in Figure 1a, but it is achieved in a much higher threshold and the Nct for NegGSP grows much
more rapidly when T gets to 12, because as each element in data sequences has more items a
NSC may be contained by more data sequences and further have a higher support. From Figure
2b indicating algorithms’ Nct under medium threshold, we note that NegGSPwithFC loses more
NSPs when T gets to 12 compared with PNSPwithCover, because as T grows dataset gets more
denser and NSCs involving the elements larger in size have potentially higher support, but they
may not be generated by NegGSP suffering from the adoption of Cover Pruning Strategy and
joining-based NSC generation . In addition, even if Nct for PNSPwithCoverESC is still lower than
that of PNSPwithCover, it obtains a greater proportion of NSP compared with that on C, since
an increasing T does not lead to the rising in size of NSP and ESC mainly works in filtering
long-size NSC. Different from that in Figures 1a, 1b and 1c, two N-containment-based variants of
PNSP, PNSPwithESC and PNSP discover no NSP in relatively medium threshold suffering from
the mechanism requiring the maximum positive sub-sequence of a NSP not supported by any data
sequence negative supporting it. Furthermore, Figure 2c demonstrates that under low threshold
(min_sup = 0.34), two variants of MSIS, MSISwithCover and MSISwithContain, have a much less
difference in Nct and both of them can discover much more NSP than NSPM, because with dataset
getting denser MSIS can generate more NSC from IPS. In contrast to other algorithms having a
clearly increasing Nct w.r.t T, e-NSP maintains a stable but low Nct in most situation.

Figures 2d, 2e and 2f show the algorithm Nrt on T. As seen from Figure 2d, the Nrt for NegGSP
is much higher than that of others and rises exponentially as T increases even under a threshold
as high as 0.72. Figure 2e illustrates that even though NegGSPwithFC keeps almost same Nct as
PNSPwithCover, it consumes nearly half runtime when T is 12. Different from the cases on C,
NegGSPwithFC takes less runtime than that of all the PNSP-based variants with ESC, because
the growth of T does not cause PNSP generating long-size NSC and ESC leaves less influence on
reducing NSC on large T. Another observation is that Figure 1e shows Nrt for NSPM increases
gradually as C increases and NSPM takes less Nrt than e-NSP under big C, while Figure 2e shows
NSPM has a rapidly increasing Nrt with T growing and takes approximately twice the runtime
consumed by e-NSP when T is greater than 10. That is because as average size of elements in
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(a) NSP Count (min_sup=0.72)
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(b) NSP Count (min_sup=0.60)
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(c) NSP Count (min_sup=0.34)
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(d) NSP Runtime (min_sup=0.72)
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(e) NSP Runtime (min_sup=0.60)
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(f) NSP Runtime (min_sup=0.34)
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(g) Total Length of NSC
(min_sup=0.72)
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(h) Total Length of NSC
(min_sup=0.60)
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Fig. 2. Algorithm Efficiency Analysis w.r.t. T (X-axis stands for T, and Y-axis stands for algorithm efficiency)

data sequences grows NSPM generates more long-length NSC and thus takes more runtime. This
phenomenon is much more obvious in Figure 2f, which indicates under low threshold NSPM
consumes much more runtime than two MSIS-based variants, even if it obtains much less NSP.
Figures 2g, 2h and 2i reveal the total length of NSCs of algorithms on T. Similar with the cases

of Tlnc on C, the Tlnc for each algorithm shows a clear growing trend as T is increased, and
NegGSP maintains the Tlnc most drastically, followed by two variants of PNSP, PNSPwithCover
and PNSP, followed by another two PNSP-based variants with ESC, PNSPwithCoverESC as well
as PNSPwithESC, and followed by NegGSPwithFC. Among the algorithms targeting at mining
a subset of NSP, two MSIS-based variants, MSISwithContain and MSISwithCover, consume the
maximum amount of memory space, and followed by NSPM and e-NSP. In addition, we note that
the increasing trend of Tlnc on T is much rapidly than that on C.

A.2.3 Algorithm Efficiency Analysis w.r.t. S. Here we analyse the algorithms efficiency on S. The
high threshold is set as 0.56 to show the evaluation of NegGSP, medium threshold is set as 0.32 to
show that of PNSP-based variants and NegGSPwithFC, and low threshold is set as 0.22 to show the
results of other algorithms.

Figures 3a, 3b and 3c shows the Nct for these algorithms on S, which illustrates a non-monotonic
and relatively gentle trend of most algorithms. The reason is that since NSP do not satisfy downward
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property and the length of NSC can be far much greater than that of PSP, the increasing S will
not lead to a monotonic growth in the maximum length of NSP. We can note from Figure 3a that
compared with other algorithms, NegGSP always discovers a far greater number of NSP because it
adopts a loose ISC constraint and is required to generate NSC in a much larger search space than
others. Figure 3b shows when threshold is 0.56, NegGSPwithFC and PNSPwithCover obtain almost
the same and maximum number of NSP, followed by PNSP, and two PNSP-based variants with
ESC discovers only nearly half number of NSP as that of PNSPwithCover, and that is because a
given S and I leaves a restriction on the size of data sequence and the adoption of ESC filters many
long-size NSC. Among other algorithms, GA-NSP can always find more NSP than two MSIS-based
algorithms, both of which mine more than NSPM. And e-NSP discovers minimum NSP and is the
least sensitive to the changing of S. The same trend of Nct can be also illustrated in Figure 3c.
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Fig. 3. Algorithm Efficiency Analysis w.r.t. S (X-axis stands for S, and Y-axis stands for algorithm efficiency)

Figures 3d, 3e and 3f show the Nrt for mining algorithms on S under thresholds. Once again
NegGSP is the most time-consuming NSP mining algorithm, suffering from its exponentially
increasing search space. Similar with the previous ranks, PNSPwithCover and NegGSPwithFC
consume similar runtime, which is a little less than those of PNSP and PNSPwithESC and slightly
more than that of PNSPwithCoverESC. In contrast with the increasing trend in high thresholds, we
note that the Nrt for NSPM and two MSIS-based variants keeps decreasing with S growing, and the
Nrt for these algorithms on S = 12 is almost half of that on S = 4. From Figure 3e we can see that
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quite different from the Nrt performance under high threshold, when threshold gets to 0.32, the Nrt
for NegGSPwithFC only occupies two thirds of that of PNSPwithCover, which is no less than that
of PNSP. Another similar observation is that PNSPwithCoverESC takes a quite similar Nrt as that of
PNSPwithESC, which are both clearly less than those of previous two PNSP-based variants without
ESC and means the adoption of negative containment leaves a much less impact on Nrt compared
with that of ESC on large S. Another interesting observation is that, different from the phenomenon
on C and T, NegGSPwithFC consumes a dramatically higher runtime than those of PNSPwithESC
and PNSPwithCoverESC. Figure 3f shows that, on the contrary to the monotonically increasing
trend, all the four algorithms targeting at discovering particular subset of NSP experience a rough
decrease as S goes down, and the Nrt for e-NSP is significantly less than those of other algorithms.
Figures 3g, 3h and 3i illustrate the total length of NSC of algorithms on S. As shown in Figure

3g, Tlnc ranks on S under high threshold (min_sup = 0.56) are similar with those on T, and
NegGSP achieves a highest Tlnc, followed by four PNSP-based variantsm, and also followed by
NegGSPwithFC, which consumes only one third of memory usage of two PNSP-based variants
with ESC and one fifth of PNSP and PNSPwithCover. Compared with the high Tlnc for NegGSP
and PNSP-based variants, GA-NSP has a much lower Tlnc. Different from the dramatic changes
of Tlnc, e-NSP, NSPM and two MSIS-based variants keep a relatively stable scalability on Tlnc.
Figure 3h demonstrates that, when threshold gets to 0.32, Tlnc for PNSP and PNSPwithCover
is far more than that of PNSPwithESC and PNSPwithCoverESC. Comparatively speaking, the
PNSP-based algorithms with ESC can discover more than half number of NSP mined by PNSP and
PNSPwithCover, but can reduce almost 80% memory usage and computation runtime, which shows
that the adoption of ESC can be regarded as an effective design to save resource consumption when
mining NSP on datasets with big S. Compared with the obvious growth on Tlnc, e-NSP, NSPM
and two MSIS-based variants keep relatively stable Tlnc on all S. In addition, we note that when S
is 12, e-NSP has a slightly more Tlnc than NSPM, because with the average length of potentially
maximum PSP getting increased much more long-length NSC can be generated by e-NSP and
thus more memory usage is required. Figure 3i shows that under low threshold (min_sup = 0.22)
e-NSP has a far less Tlnc than NSPM, since the potentially maximum size of frequent negative
itemsets gets increased as threshold decreases and thus NSPM generates more long-neg-size NSC
and consume more memory usage.

A.2.4 Algorithm Efficiency Analysis w.r.t. I. Here we characterize the efficiency of these algo-
rithms on I. The high threshold is set as 0.64 to illustrate the evaluation of NegGSP, medium
threshold is set as 0.42 to show that of PNSP-based variants and NegGSPwithFC, and low threshold
is set as 0.24 to show the results of other algorithms.
Figures 4a, 4b and 4c illustrate the number of NSP mined by different algorithms on I. Figure

4a shows that under high threshold (min_sup = 0.64), Nct for NegGSP increases substantially
with I growing from 4 to 10, and then gets rising relatively gently. In addition, compared with
NegGSPwithFC and PNSPwithCover, GA-NSP keeps a similar Nct on all I, especially when I is
greater than 10 GA-NSP discovers same number of NSP. Figure 4b indicates that under medium
threshold, NegGSPwithFC fails to generatemoreNSP than PNSPwithCover as I grows, becausewith I
increasing the potential size of elements in long-length NSP get increased and thus NegGSPwithFC
lose more NSP on big I. Moreover, different from the case on C and S, compared with PNSP,
PNSPwithCoverESC has a higher Nct when I is less than 8 but a much lower Nct then. For example,
Nct for PNSPwithCoverESC is three times as that of PNSP when I = 4 while is only less than half
of that of PNSP when I = 12. The reason is that when S is fixed, the average size of potentially
maximum PSP gets declined with I increasing, and when I is small, PSP potentially have a large
average size and ESC will prune less NSC and thus PNSPwithCoverESC has a higher Nct. When
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I is large, the N-containment support count of a NSC is potentially larger and thus PNSP has a
higher Nct. These phenomenons show that the adoption of ESC can lose more NSP on small I while
N-containment filter more NSP on big I. Another observation is that on contrary to the monotonous
growth of Nct as I increase, Nct for e-NSP experiences a stable status with I rising from 6 to 10 and
then gets increased, since with I growing PSP have a potentially smaller average size but consisting
of more long-size elements and thus e-NSP may derives no more NSC from obtained PSP when I is
small. Furthermore, Nct for NSPM and two MSIS-based variants gets rising much more rapidly as I
grows. Figure 4c demonstrates that, under low threshold, Nct for e-NSP, NSPM and MSIS-based
variants grows monotonically with I rising. But different from that on C and T, Nct for MSIS-based
variants get increased more and more dramatically as I grows and is more than 3 times of that
of NSPM. That is because MSIS only focus on obtaining 2-size NSP and less sensitive to the size
decline of data sequences, and much more NSC can be derived from IPS and supported by sequence
when I is high. Among these algorithms, e-NSP keeps a gently growing and lowest Nct on all I.
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Fig. 4. Algorithm Efficiency Analysis w.r.t. I (X-axis stands for I, and Y-axis stands for algorithm efficiency)

Figures 4d, 4e and 4f illustrate the Nrt for mining algorithms on I. We note from Figure 4d that,
under high threshold as 0.64, on contrary to the monotonically rising Nrt on C and T, Nrt for
NegGSP experiments a fluctuation and has a similar maximum Nrt with MSISwithContain. And
opposite to its design goal of discovering NSP efficiently, GA-NSP even consumes more runtime
than NegGSPwithFC when I is larger than 10. Furthermore, Nrt for NSPM keeps the most stable

ACM Computing Surveys, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:10 W. Wang et al.

among these algorithms and is apparently lower than that of e-NSP on big I. Figure 4e indicates that
when threshold gets to 0.42, Nrt for NegGSPwithFC and four PNSP-based variants gets decreasing
at first and then increased with I growing, among which PNSPwithCover and PNSP consume the
most runtime, followed by NegGSPwithFC, and then followed by the PNSP-based variants with ESC.
In addition, Nrt for NSPM is the lowest when I is less than 10 but then gets growing drastically, and
e-NSP has a stable Nrt but consumes slightly more time than GA-NSP on big I. Figure 4f indicates
that, under low threshold, two MSIS-based variants maintain an increasing and highest Nrt on all
I, followed by NSPM. Comparatively speaking, e-NSP keeps a fluctuating but lowest Nrt for all
algorithms.
Here we analyse the Tlnc for mining algorithms on I, which is shown in Figures 4g, 4h and 4i.

Figure 4g illustrates that under high threshold, in contrast to the phenomenons on C and T, NegGSP
shares a similar Tlnc with PNSPwithCover and PNSP and even has a lower Tlnc when I is less than 8.
That is because PNSP generates NSC by appending a seed sequence with a frequent itemset, and as
I grows much more itemsets become frequent and their average size gets larger, as a result of which
enormous long-length NSC are generated and thus Tlnc for PNSP-based variants without ESC gets
much higher. Comparatively speaking, Tlnc for GA-NSP shows a clear rising trend as I is increased
and even exceeds that of NegGSPwithFC when I is more than 10, which demonstrates that it is less
competitive for NSP mining on big I under high threshold. Figure 4i indicates that under medium
threshold, Tlnc for most algorithms experiences a slow growth with I rising from 4 to 8 and then
gets increased substantially, since they adopts EFC as a FreC constraint and increasing I enlarges
search space dramatically. Compared with other algorithms, e-NSP maintain a stable and lowest
Tlnc since SFreC is adopted and it is less sensitive to the growth of I. Figure 4i shows that under
low threshold, Tlnc for NSPM and MSIS-based variants shows an increasing trend rapidly with I
rising and the difference between them gets larger continuously. NPSM consumes three quarters of
the Tlnc used by MSIS-based variants when I = 4 while only occupies less than one third.

A.2.5 Algorithm Efficiency Analysis w.r.t. DB. The number of NSP discovered by algorithms on
DB are shown in Figures 5a, 5b and 5c. The high threshold is set as 0.60 to illustrate the evaluation of
NegGSP, medium threshold is set as 0.40 to show that of PNSP-based variants and NegGSPwithFC,
and low threshold is set as 0.30 to show the results of other algorithms.

Figure 5a shows that, under a high threshold, NegGSP has amuch higher but slightly decliningNct
as DB grows, while NegGSPwithFC, all PNSP-based variants with MPS-based negative containment
and MSISwithCover maintain almost constant Nct. This phenomenon shows that NSP which
dissatisfy EFC and are mined on small DB may have lower support than NSP in a dataset with
big DB, and are less representative. Figure 5b shows that, when min_sup = 0.40, the Nct for
NegGSPwithFC and PNSP-based variants reduces slightly, while that of e-NSP, NSPM and MSIS-
based variants remains relatively stable w.r.t. DB. Figure 5c shows that, under low threshold, the
algorithms targeting particular types of NSP discover a far smaller number of patterns than GA-NSP
on large DB, which reveals that these algorithms are not suitable for mining datasets containing
enormous data sequences.
Next we compare the runtime consumed by algorithms in mining NSP on different sizes of

DB, as illustrated in Figures 5d, 5e and 5f. Figure 5d reveals that, under high threshold, the Nrt
for NegGSP is quite sensitive to the size of DB. There is a fast linear growing trend when the
size of DB increases. In addition, PNSPwithCoverESC consumes less runtime consumed than
PNSPwithCover and NegGSPwithFC on larger DB. Since they discover roughly same number
of NSP, PNSPwithCoverESC outperforms PNSPwithCover and NegGSPwithFC in terms of time
efficiency under high threshold. Moreover, NSPM and GA-NSP have a much lower Nrt than others
on large DB, which is four fifths and five eighths respectively of the Nrt for e-NSP. Furthermore,
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Fig. 5. Algorithm Efficiency Analysis w.r.t. DB (X-axis stands for DB, and Y-axis stands for algorithm efficiency)

compared with MSISwithContain, MSISwithCover consumes similar Nrt but discovers much more
NSP, and similar phenomenon can be also seen in the comparison of PNSPwithCover and PNSP,
which shows that MPS-based negative containment is more suitable for mining on large DB under
high threshold. Figure 5e shows that, under medium threshold, the PNSP-based variants with ESC
take less than half the runtime of NegGSPwithFC, PNSP and PNSPwithCover, which reveals that
ESC can prune a significant number of data sequences in testing the generated NSC. In addition,
the Nrt for e-NSP and NSPM is much lower and more stable than that of GA-NSP and MSIS-based
variants. Figure 5f shows that, when the threshold is 0.30, NSPM retains a relatively stable and low
Nrt, which is different from the rapid growth on other factors, and is only slightly higher than the
Nrt for e-NSP. Based on the above analysis, NSPM and e-NSP are more time-efficient on large DB.

Figures 5g, 5h and 5i show the Tlnc w.r.t. DB change under differentmin_sup thresholds. Figure
5g indicates that the memory usage of most algorithms remains almost unaltered when the DB size
changes, and the difference between the Tlnc for PNSP and PNSPwithESC becomes slightly larger as
DB grows. Figure 5h shows that, when the threshold is 0.40, the Tlnc for PNSPwithCover and PNSP
shows a gently declining trend compared to the relatively stable outcomes for others. It is noted that,
PNSPwithESC takes roughly one third of Tlnc for PNSP for any size of DB, which shows that the
Tlnc for PNSP-based variants is insensitive to DB size change under medium threshold. In addition,
This indicates that the adoption of ESC can reduce memory usage to a great extent. Of all the
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algorithms, e-NSP has a clearly lower Tlnc, which is less than one tenth of that of NSPM for any DB
and is quite space-efficient. Furthermore, Figure 5i indicates e-NSP, NSPM and MSIS-based variants
retain a stable and much lower Tlnc under low threshold than GA-NSP, with e-NSP consuming
only a tiny proportion of the memory usage of NSPM.

A.2.6 Algorithm Efficiency Analysis w.r.t. N. Here we analyse the efficiency of these NSP mining
algorithms on N. The high threshold is set as 0.40 to illustrate the evaluation of NegGSP, medium
threshold is set as 0.32 to show that of PNSP-based variants and NegGSPwithFC, and low threshold
is set as 0.16 to show the results of other algorithms.

Figures 6a, 6b and 6c illustrate these algorithms’ Nct under three thresholds on N, and we can see
that different from the Nct shown in previous factors, their Nct on N gets decreased dramatically
with N rising. From Figure 6a we note that when threshold is 0.40, NegGSP has a obviously higher
Nct on small N but maintains a similar Nct with others when N gets larger than 0.3k, because as
more number of different items occur in dataset the average support of each entity declines and
number of long-length NSP gets decreased rapidly. In addition, compared with NegGSPwithFC and
PNSPwithCover, PNSPwithCoverESC can discover most of NSP while PNSPwithESC and PNSP
only obtain roughly half number of patterns when N is larger than 0.2k, which demonstrates that
N-containment can filter large number of NSP under relatively high threshold. Furthermore, we note
that Nct for GA-NSP maintains relatively high on each N and even equals to that of PNSPwithCover,
because as N goes up fewer items gets frequent and its GA-based NSC generation strategy can
derive enough valid NSC. Moreover, MSISwithCover keeps a high Nct on small N but obtain no
pattern when N is more than 0.3k, and it shows that MSIS-based variants are not suitable on big
N. Figure 6b indicates that undermin_sup = 0.32, all of these algorithms discover far less number
of NSP when N is larger than 0.2k, which demonstrates that algorithm’s Nct is quite sensitive
to N. And it can be seen that NegGSPwithFC has a slightly lower Nct than PNSPwithCover on
N = 0.1k while maintains a same Nct on big N. Comparatively speaking, PNSP keeps a much
higher proportion of Nct than PNSPwithCoverESC and PNSPwithESC on small N and it shows that
ESC leads to the lost of many NSP. In contrast to the high Nct under high threshold, GA-NSP has a
much lower Nct when N is less than 0.3k but then keeps a same Nct with PNSPwithCover, which
shows that it is less competent for NSP mining on small N under low threshold. Compared with
e-NSP, NSPM and MSIS-based variants discover much larger number of NSP on small N but finds
no pattern when N is more than 0.4k, which shows they cannot work on big N. From Figure 6c we
note that under low threshold, as N grows Nct for e-NSP, NSPM and MSIS-based variants declines
quickly at first and then get decreased gently, and NSPM discovers much less proportion of NSP on
big N than MSISwithContain. Nct for NSPM is over half of that of MSISwithContain on N = 0.1k
while becomes less than one third on N ⩾ 0.3k .

Nrt for these algorithms on N is illustrated in Figures 6d, 6e and 6f. Figure 6d indicates that
when threshold is 0.40, NegGSP consumes far more time in mining NSP when N is less than
0.2k, however, its Nrt is even slightly lower than that of PNSP-based variants, since on big N few
frequent items are derived to generate long-length NSC. In addition, we note that NSPM has the
fastest declining Nrt and only consumes half of the runtime taken by e-NSP, because much less
NSC can be generated by NSPM benefit of its strict LFC on big N. Figure 6e shows that when
threshold gets to 0.32, PNSPwithCoverESC and PNSPwithESC consume almost same runtime on
N = 0.1k , which is roughly one third of that of NegGSPwithFC and less than one fifth of that of
PNSPwithCover and PNSP. However, as N grows to 0.2k, PNSPwithESC consumes a much higher
Nrt than PNSPwithCoverESC, which is almost same as that of NegGSPwithFC and over six sevenths
of that of PNSP. That demonstrates that N-containment increases NSP mining runtime to a high
extent on a higher N while ESC can reduce Nrt much more obviously on a small N. In addition,
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Fig. 6. Algorithm Efficiency Analysis w.r.t. N (X-axis stands for N, and Y-axis stands for algorithm efficiency)

e-NSP has a much lower Nrt on N = 0.1k while consumes similar runtime with GA-NSP and NSPM
on big N, because many invalid NSC are derived from obtained PSP by set-theory-based mining
algorithms on big N. Figure 6f illustrates that under low threshold, Nrt for GA-NSP is much higher
than that of e-NSP, NSPM and MSIS-based variants when N ⩽ 0.4k but is only less than half of
that of MSIS-based variants on N = 0.5k . In addition, e-NSP keeps a relatively stable and low Nrt,
which is much lower than others on N = 0.1k but almost same as that of NSPM on big N. As can
be seen from these figures, e-NSP and NSPM has a clear superiority on NSP runtime only on big N
under a quite low threshold.

Figures 6g, 6h and 6i illustrate the Tlnc for these algorithms on N correspondingly. From Figure
6g we note that when threshold is 0.40, Tlnc for NegGSP is much higher than others on N = 0.2k
but then declines rapidly. Tlnc for NegGSP is over eight times as that of PNSPwithCover when
N is 0.2k while are roughly half of those of PNSP-based variants when N is larger than 0.3k.
That is because on big N less long-length seeds can be derived and thus less long-length NSC
can be generated by NegGSP, which shows joining-based NegGSP is quite memory-efficient and
has a smaller research space on big N even though it has a large Tlnc on small N. In addition, it
can be seen that compared with PNSP-based and NegGSP-based variants, GA-NSP has relatively
lower Tlnc on small N, but keeps much higher Tlnc when N ⩾ 0.3k , which shows that GA-based
NSC generation strategy contributes less to the reduction of number of NSC and save memory
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space on big N. Furthermore, we notice that MSIS-based variants consume over twice memory
space compared with NSPM on small N but get no NSC on big N, and it demonstrates that the
derivation-based NSC generation strategy adopted by MSIS becomes invalid on big N. It can be
noted from Figure 6h that when threshold declines to 0.32, PNSPwithCover and PNSP maintain
a far higher Tlnc than PNSPwithCoverESC and PNSPwithESC on N = 0.1k . Compared with
PNSPwithCoverESC and PNSPwithESC on N = 0.1k , PNSPwithCover and PNSP has a roughly
twice Tlnc whenmin_sup = 0.40 while occupies an over seven times Tlnc whenmin_sup = 0.32.
However, on big N, their Tlnc is only slightly higher than those of PNSP-based variants with ESC
under both thresholds. This reason is that as N grows, far less long-length NSC are generated
and thus ESC helps less on filtering NSCs. Figure 6i indicates that under low threshold, GA-NSP
maintains much higher Tlnc than e-NSP, NSPM and MSIS-based variants. When N is 0.3k, compared
with MSISwithCover, GA-NSP has about twice Tlnc undermin_sup = 0.32 while holds an over 28
times Tlnc undermin_sup = 0.16, which shows that GA-NSP generates enormous number of NSC
and is much more memory-consuming under low threshold on relatively big N.
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