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Abstract. Financial variables such as asset returns in the massive mar-
ket contain various hierarchical and horizontal relationships that form
complicated dependence structures. Modeling these structures is chal-
lenging due to the stylized facts of market data. Many research results
in recent decades showed that copula is an effective method to describe
relations among variables. Vine structures were introduced to represent
the decomposition of multivariate copula functions. However, the model
construction of vine structures is still a tough problem owing to the ge-
ometrical data, conditional independent assumptions and the stylized
facts. In this paper, we introduce a new bottom-up method to construct
regular vine structures and applies the model to 12 currencies over 16
years as a case study to analyze the asymmetric and fat-tail features.
The out-of-sample performance of our model is evaluated by Value at
Risk, a widely used industrial benchmark. The experimental results show
that our model and its intrinsic design significantly outperform industry
baselines, and provide financially interpretable knowledge and profound
insight into the dependence structures of multi-variables with complex
dependencies and characteristics.

1 Introduction

Modeling complex dependence structures of financial variables is a fundamental
research problem in the financial domain, useful for a wide range of applications
including economics prediction and risk management. Its extreme importance
has been partially demonstrated in the 2008 global financial crisis (GFC). Exist-
ing studies are usually concerned with the degree of dependencies rather than the
other important respects of dependencies – the dependence structure, especially
the asymmetric and tail dependence characteristics. However, as demonstrated
in GFC, it is useless when all stocks tend to fall as the market falls.

Asymmetric dependencies between different markets can be easily seen from
Fig. 1. Fig. 1(a) shows the correlation of daily returns between the United States
comprehensive index S&P500 and the index of Eurozone stocks STOXX50E,
which indicates the strong negative dependence and normal positive dependence
between them. The dependence between the United Kingdom comprehensive
index FTSE100 and the foreign exchange rate GBP against the USD is shown
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(a) S&P 500 and STOXX50E (b) FTSE100 and GBP

Fig. 1. Asymmetric Dependencies across Markets

in Fig. 1(b), which indicates strong dependence on both sides. These examples
show that financial markets are not only dependent but also asymmetric.

The challenge of modeling dependencies in financial markets lies in the three
major aspects concerning us in this paper. (1) As with any complex behavioral
and social system, the cross-market dependence structure is often embedded with
strong and complicated coupling relationships [7, 5, 6] on high dimensionality.
Flexible dependence structure without imposing any assumptions or restrictions
are desired. (2) Financial variables, such as daily return, have been shown to
follow non-normal distributions, which means dependence models should cover
a wide range of dependencies in order to capture both positive and negative
dependencies. (3) As discussed above, various lower and upper tail dependencies
also need to be considered.

The dependencies across markets have been studied by different communities,
including statistics and machine learning. The typical approaches in the statisti-
cal community are joint distributions with Gaussian assumption and conditional
correlation. The first method has been demonstrated that Gaussian assumption
is inappropriate when studying either stock markets or exchange rate markets.
The second one uses conditional correlation to calculate the covariance, which
is generally used in empirical studies. As the current correlation depends on the
previous one, the dependence structure is not flexible. The dependence studies
in the machine learning community consist of hidden Markov models and graph-
ical probability models [7]. The hidden Markov models, however, could have a
large number of hidden states when applied to a high dimensional case, which
invariably leads to computational intractability in the algorithms when inferring
the hidden states from observations. The graphical probability models, such as
Bayesian logic program [14], impose unrealistic assumptions in constructing de-
pendence structures.

In recent decades, a number of research methods based on regular vine model
capture the asymmetric dependencies in currency markets and show decent ef-
fects [8, 13, 9, 17]. A popular methodology is to combine the time series models
(e.g., ARMA, GARCH) and copula to observe the joint distribution on multi-
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variates. With this framework, we can simplify the problems about observing
joint distribution into two parts: the marginal distribution of each variable and
copula between variables. The multivariate Archimedean copula family has been
studied in [2, 15]. They show that Gaussian Copula models do not have lower
and upper tail dependence, while the multivariate t copula does not have flexible
tail dependence as the symmetric structure of t copula. Vine structures includ-
ing canonical vine and D vine copula models [1, 3] can implement a wide range
of dependencies by decomposing the multivariate copula into different bivariate
copulas. However, due to the structure assumptions, they do not have flexible
dependence structures. Due to the assumptions imposed on dependence struc-
tures, their dependence structures may not reflect the actual dependence in the
real world.

In order to model the asymmetric dependencies in multivariate data with
various dependence structures, we propose a new weighted partial regular vine
copula model (WPRV) with asymmetric dependencies. WPRV is more power-
ful, because: (1) A new partial correlation-based algorithm constructs the reg-
ular vine structure. Our WPRV can uniquely determine the correlation matrix
and is algebraically independent without any strong restriction on the depen-
dence structure. The dependence structure is more flexible, since the current
tree structure is independent of the established tree structure and bivariate cop-
ulas selection. (2) The bivariate copula with different types of tail dependencies
(e.g., BB1, survival BB1, BB7 and survival BB7) are implemented to capture
various tail dependencies between financial variables. (3) The moving trends of
lower and upper tail dependence with the multivariate data structures and also
the trends of lower and upper tail dependence during the dynamic period are
analyzed.

The rest of paper is structured as follows. Section 2 introduces the related
definitions of copula and different tail dependencies. Section 3 discusses how to
construct our weighted partial regular vine copula model, copula family selec-
tion, and the parameter estimation in partial regular vine copula and marginal
distribution. The case study results are shown in Section 7. Finally, Section 8
concludes the paper.

2 Preliminaries

2.1 Vine Copula

Vine theory was introduced in [4], which is one kind of graphical models. Let
V , T , E and N represent vine structure, trees, edges, nodes respectively. The
regular vine and its related definitions are given below.

Definition 1. (Regular Vine) V is a regular vine on n variables if

(1) T1 is a tree with nodes N1 = 1, ..., n and a set of edges denoted by E1;
(2) For j = 2, ..., n− 1, Tj is a tree with nodes Nj = Ej−1 and edge set Ej;
(3) (proximity condition) For j = 2, ..., n− 1 and a, b ∈ Ej, #(a4 b) = 2, where
4 denotes the symmetric difference operator and # denotes the cardinality.
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Definition 2. (Complete Union, Conditioning and Conditioned Sets
of an Edge) The complete union of an edge ei ∈ Ei is the set Uei = {n1 ∈
N1 | ∃ej ∈ Ej , j = 1, 2, . . . , i− 1 with n1 ∈ e1 ∈ e2 ∈ . . . ∈ ei−1 ∈ ei} ⊂ N1. For
ei = {a, b} ∈ Ei, a, b ∈ Ni, i = 1, 2, . . . , n−1, the conditioning set of an edge ei is
Dei = Ua∩Ub, and the conditioned sets of an edge ei are Cei,a = Ua\Dei , Cei,b =
Ub \ Dei and Cei = Cei,a ∪ Cei,b = Ua4Ub, where A4B := (A \ B) ∪ (B \ A)
denotes the symmetric difference of two sets.

Hence, Uei is a set of all nodes in Ni that are connected by the edges ei. By
definition, Uei(1) = ei. The constraint set is defined below.

Definition 3. (Constraint Set) The constraint set for V is a set:
CV = {({Cea , Ceb}, De) | e ∈ Ei, e = {a, b}, i = 1, . . . , n− 1}

The edge e can be written as {Ce | De}, or {Ce(a), Ce(b)|De, e = {a, b}}, where
the conditioning set De is shown to the right of “|”, and the conditioned set Ce
to the left. {Ua \ De} is the set which includes all variables in the set Ua, but
excludes the variables in the set De.

2.2 Tail Dependencies

One important copula-based dependence measurement is tail dependence co-
efficient, which indicates the dependencies between extreme events. The ex-
treme dependence of a multivariate distribution F can be described by vari-
ous tail dependence parameters of its copula C. Suppose that random vector
(U1, ..., Un) := (F1(x1), ..., Fn(Xn)) with standard uniform marginal distribu-
tion. The lower and upper tail dependence coefficients are defined as follows.

λL = lim
u→0

Pr{U1 ≤ u, ..., Un ≤ u | Un ≤ u}

= lim
u→0

C(u, ..., u)

u

λU = lim
u→0

Pr{U1 > 1− u, ..., Un > 1− u | Un > 1− u}

= lim
u→0

C(1− u, ..., 1− u)

u

(1)

where C is the survival function of C. If λU exists and λU ∈ (0, 1], then copula C
has an upper tail dependence coefficient, but there is no upper tail dependence
coefficient when λU = 0. Similarly, if λL exists and λL ∈ (0, 1], then copula C has
an upper tail dependence coefficient, but no upper tail dependence coefficient
when λL = 0.

Frahm et al. [10] proposed a non-parametric method to obtain the nonpara-
metric estimator of lower and upper tail dependence by using Pickand’s depen-
dence function [16]. One simple nonparametric estimator of tail dependence is
the log estimator, which is denoted by :

λ̂L = 2− lim
u∗→0

log
(

1− 2(1− u∗) + T−1

∑T
t=1 1{U1 ≤ 1− u∗, ..., Un ≤ 1− u∗}

)
log(1− u∗)

λ̂U = 2− lim
u∗→0

log
(
T−1

∑T
t=1 1{U1 ≤ 1− u∗, ..., Un ≤ 1− u∗}

)
log(1− u∗)

(2)
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In this work, the above nonparametric method is implemented for roughly ana-
lyzing the tail dependence coefficient before the regular vine model construction.

3 Our Weighted Partial Regular Vine Model

As highlighted in the introduction, our WPRV is centered on the bottom-to-top
regular vine structure. According to the method proposed by Bedford and Cooke
[4] for building vine structure by using partial correlation, for elliptical distribu-
tions, partial correlation is equal to the corresponding conditional correlation.
We can thus use partial correlation instead of conditional correlation to measure
the correlations on each node and every tree does not depend on the structure
of the previous tree, which is more flexible.

3.1 Partial Regular Vine Construction

The regular vine on n variables shares several important properties (see details
in [11]):

(1) There are (j−1) and (j+1) variables in the conditioning sets and constraint
sets of an edge of the jth tree respectively;

(2) If two or more nodes have the same constraint sets, they are the same node;
(3) If variable i is a member of the conditioned set of an edge e in a regular vine,

then i is a member of the conditioned set of exactly one of the m-child of e,
and the conditioning set of an m-child is a subset of De.

(4) If two or more nodes have the same constraint sets, they are the same node;
(5) If variable i is a member of the conditioned set of an edge e in a regular vine,

then i is a member of the conditioned set of exactly one of the m-child of e,
and the conditioning set of an m-child is a subset of De.

According to the above properties, we derive two lemmas, which are important
for constructing the partial regular vine tree structure. The two lemmas are
given as follows.

Lemma 1. Let I ∈ {1, ..., n}, x1, x2, y1, y2 ∈ I and x1 6= x2, the nodes of Tj be
N1 = {x1, y1 ; I\{x1, x2, y1}} and N2 = {x2, y2 ; I\{x1, x2, y2}}. For a regular
vine on n variables, nodes N1 and N2 have a common m-child. If y1 6= y2, the
common m-child is {y1, y2 ; I\{x1, x2, y1, y2}}.

Proof. According to Definition 1, each node has two m-children. For N1, the con-
straint set CVx1

of its m-children are {x1, I\{x1, x2, y1}} and {y1, I\{x1, x2, y1}}.
For N2, the constraint set CVx2

of its m-children are {x2, I\{x1, x2, y2}} and
{y2, I\{x1, x2, y2}}. We can see that {y1, I\{x1, x2, y1}} and {y2, I\{x1, x2, y2}}
are equal, but indexed by different variables in a conditioned set. According to
Property (4), N1 and N2 have a common m-child. If y1 6= y2, y1 and y2 should
be in the conditioned set of the m-child.
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Algorithm 1 Tree Structure Construction via A Bottom-to-Top Strategy

Require: Observations of n input variables
1: Calculate all values of partial correlation, and then allocate the smallest absolute

value of partial correlation to the node in Tn−1 (Tn−1 is the bottom tree).
2: for k = 1, . . . , n− 2 do
3: for i = n− 1, . . . , dn

2
e do

4: if Ti > Tk then
5: Find variable combinations for nodes on both sides in tree Ti which can

minimize the function |ρc:d|, where Ti indicates the ith tree and Tk is tree
inverse level tree;

6: else
7: Find variable combinations for nodes on both sides in tree Ti which can

minimize the function of
∑
ln(1− ρ2c:d)

8: end if
9: end for

10: end for
11: There will be n− 2 regular vines as k = 1, . . . , n− 2.
12: return A group of partial regular vine dependence structure candidatures.

Lemma 2. For a regular vine on n variables, j = 2, ..., n − 1, the edge e in Tj
has only two constraint sets of m-children in Tj−1, which are indexed by different
variables in a conditioned set.

Proof. Suppose there are three identical constraint sets indexed by different
variables in a conditioned set, according to Property (4), nodes with the same
constraint sets should be the same node. Based on Property (5), the variables
in the conditioned set will still be in the conditioned set of its m-children. This
means that the node will have three variables in its conditioned set, which vi-
olates Property (3) and the proximity condition in the regular vine definition.
Therefore, one edge has only two constraint sets which are indexed by different
variables in a conditioned set.

According to the above properties of regular vine and the two lemmas, we con-
struct the partial regular vine by using Algorithm 1.

3.2 Vine Structure Selection

After building the dn2 e candidate regular vines, the next step is to find the
‘Best’ regular vine among these candidates. In order to remove the bias by only
selecting the strongest correlation on the top, giving a weight to each tree can
enhance the influence of the trees on the top or at the bottom, and a balanced
structure can be selected. We assume each level is a unit height and the tree
inverse level k is the zero potential energy level. Hence, the weight of each level
will increase from level k to level n− 1 and level 1. Since the parameters m, g,
K and T are constant in a given environment, Equation (3) can be simplified
as:

W = e−m0h (3)
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where m0 is the parameter and h is the distance from the level of each tree to
the tree inverse level. To restrict the value of weight for each level in interval
[0, 1], we standardize the weight:

W (h) =


0.5× e−m0(k−h)∑k

i=1 e
−m0(k−i) , h ∈ [1, k];

0.5× e−m0(h−k)∑N−1
i=k+1 e

−m0(i−k) , h ∈ (k,N − 1].

(4)

where N is the number of variables, k is the tree inverse level, h is the level of
a tree and m0 is a parameter which falls in interval [0, 1].

The ‘Best’ regular vine structure maximizes the value of function −ln(D),
where D is the weighted determinant which is calculated as:

D =
∏
i,j

(1−Wiρ
2
i,j;d(i,j)) (5)

where Wi is the corresponding weight and d(i, j) is the conditioning set excluding
variables i and j. The corresponding conditioned set is i and j.

3.3 Bivariate Copula Selection

Once the partial regular vine tree structure is identified, the next step is to se-
lect bivariate copulas for each edge in all trees. As discussed above, the partial
correlation is equal to its corresponding conditional correlation for the elliptical
family. This means our partial regular vine tree structure is built based on an
elliptical copula family (i.e., Gaussian or t copulas). However, according to the
following theorem, the limitation of partial correlation can be removed by map-
ping the partial regular vine tree structure to typical regular vine via conditional
correlation.

Theorem 1. For any regular vine on n variables, there is one-to-one correspon-
dence between the set of n× n positive definite correlation matrices and the set
of partial correlation specification of the vine.

The proof of Theorem 1 can be referred to [4], which is omitted here. It
shows that there is a one-to-one relationship between the partial regular vine
specification and the correlation matrix, which ensures that we can map our
partial regular vine tree structure to the typical conditional correlation based-
regular vine tree structure. We can then choose bivariate copulas from a large
number of copula family candidates, rather than the elliptical copula family.
Hence, the limitation can be removed while selecting the bivariate copulas.

There are a huge of copula families, which have various tail dependencies.
The details of tail dependence of copula families are listed in Table 1. To capture
the asymmetric characteristics, the BB1, S.BB1, BB7 and S.BB7 copulas are the
best choice since they have various lower and upper tail dependencies, which can
vary independently from 0 to 1.
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Table 1. The Tail Dependence of Copula Family

Lower Tail Dependence Upper Tail Dependence

Gaussian - -
t 2tν+1(µ(ν, φ)) 2tν+1(µ(ν, φ))

Gumbel - 2−1/φ

Frank - -

Clayton 2−1/φ -

Joe - 2− 21/φ

BB1 2−1/(φδ) 2− 21/δ

S.BB1 2− 21/δ 2−1/(φδ)

BB6 - 2− 21/(δφ)

BB7 2− 21/δ 2− 21/φ

S.BB7 2− 21/φ 2− 21/δ

BB8 - 2−1/φ when δ = 1

S.BB1 and S.BB7 are survival BB1 and BB7 copula respectively. φ and δ are parameters of the

corresponding copula family. For t copula, µ(ν, φ) =
(
−
√
ν + 1

√
1−φ
1+φ

)
.

3.4 Marginal Distribution Specification and Parameter Estimation

For the financial applications of the partial regular vine copula model, we use
volatility models (i.e., ARMA-GARCH models) as the margins. Typically, let
Xt(t = 0, 1, ...,T) be a time series of the prices of a financial asset, such as
the stock market index. The return of financial asset can be defined as rt =
log(Xt/Xt−1). If there are n assets with returns rt,1, ..., rt,n, we first select the
appropriate marginal distribution of individual variables (i.e., returns of finan-
cial variables), which is a univariate distribution. Due to the characteristics
of financial assets, such as volatility cluster, a common choice is ARMA(1,1)-
GARCH(1,1) with skewed student t innovations, which is defined as follows.

rt,j = cj + Φjrj,t−1 +Θjεj,t−1 + εj,t,

εj,t = σj,t · Zj,t

σ
2
j,t = ωj + αjε

2
j,t−1 + βjσ

2
j,t−1

(6)

where j = 1, ..., n, t = 1, ...,T and Zj,t is the innovations which follow skewed
student t distribution.

Let θmj = (cj , Φj , Θj , ωj , αj , βj) be the parameter set of marginal distribution,
θc be the parameters of multivariate copula functions, the multivariate joint log-
likelihood is given by:

L(θ
m
1 , ..., θ

m
n , θ

c
) =

T∑
t=1

logf(r1,t, ..., rn,t; θ
m
1 , ..., θ

m
n , θ

c
)

=
T∑
t=1

log c(F1(r1,t), ..., Fn(rn,t); θ
c
) +

T∑
t=1

n∑
j=1

log fj(rj,t; θ
m
j )

(7)

where the multivariate c(· ; θc) is denoted as the regular vine model.
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4 Case Study

4.1 Data and Marginal Distribution Specification

To evaluate the performance of our model, we use real-world data, involving
12 currency exchange rates against USD. These trading currencies are EUR,
GBP, CHF, SEK, CAD, BRL, AUD, NZD, JPY, HKD, SGD, and INR, which
are sequentially numbered from v1 to v12. They represent major currencies in
the global market and can be arranged into portfolios. The training data set
uses observations from 04/01/1999 to 27/08/2004, a total of 1298 daily returns.
Observations from 6/09/2004 to 21/06/2013, a total 1912 daily returns are used
for out-of-sample testing. All the data was downloaded from Yahoo Finance
(http://finance.yahoo.com/).

As discussed in the last section, the standardized residuals are transferred to
uniform data by using the empirical probability integral transformation, which
is actually the input of partial regular vine. The raw returns are fitted with
univariate ARMA(1, 1)−GARCH(1, 1) models with the skewed student-t error
distribution. The Ljung-Box (LB) test [12] is introduced to remove the autocor-
relation among these financial returns. In this experiment, the corresponding p
values of the LB test are all greater than the significant value 0.05.

4.2 Regular Vine Copula Structure Specification and Tail
Dependence Analysis

The next step is to build our weighted partial regular vine copula model. Fig. 2
shows the tree structure built by Algorithm 1. Due to space limitations, we only
show the last three trees of our vine structure.

Typically, the selection of m0 of the WPRV model is determined by the
characteristics of data and domain knowledge. According to the discussion in
Section 3.2, m0 is restricted to interval [0, 1]. Table 2 shows the performance
of the Log-likelihood of WPRV with parameter m0 from 0.1 to 1.0. The high
value of the Log-likelihood indicates good performance. According to Table 2,
the WPRV model with parameter m0 = 0.7 achieves the best performance.

Table 2. Log-likelihood Performance of WPRV with Parameter m0

m0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
LL 2767.23 2767.23 2929.91 2929.91 3031.56 3031.56 3031.56 2929.91 2929.91 2767.23

1 LL is short for Log-likelihood.

Once the structure is identified, the next step is to choose the copula for each
edge. As discussed above, the bivariate copula which can provide flexible lower
and upper tail dependencies is the most appropriate to build the partial vine
copula model with asymmetric dependencies. Based on Section 3.3, BB1, S.BB1,
BB7 and S.BB7 copulas can provide both lower and upper tail dependencies.
Therefore, the BB1, BB7, S.BB1 and S.BB7 copulas are used to build vine copula
model with asymmetric dependencies to capture the asymmetric characteristics.
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Fig. 2. Weighted Partial R vine Trees

The tail dependence in Tree 12 of Fig. 2 is shown in Table 3. The non-
parametric and t copula results are listed as reference. It shows lower tail de-
pendencies of pairs in Tree 1 are less than their corresponding upper tail de-
pendencies. Although various bivariate copulas provide different results, similar
conclusion can be drawn that lower tail dependencies are less than upper ones.

Table 3. Tail Dependence Analysis by Using Various Copulas

Non-para1 t BB1 S.BB12 BB7 S.BB72

λL λU λL λU λL λU λL λU λL λU λL λU
{v1, v2} 0.18 0.33 0.25 0.25 0.28 0.41 0.39 0.62 0.41 0.48 0.46 0.44
{v1, v3} 0.45 0.23 0.37 0.37 0.45 0.61 0.50 0.69 0.61 0.68 0.63 0.67
{v1, v4} 0.50 0.60 0.54 0.54 0.63 0.76 0.71 0.78 0.76 0.82 0.77 0.82
{v1, v5} 0.73 0.63 0.71 0.71 0.74 0.81 0.78 0.82 0.83 0.85 0.82 0.87
{v1, v6} 0.28 0.49 0.42 0.42 0.59 0.70 0.65 0.76 0.72 0.74 0.73 0.76
{v2, v7} 0.29 0.42 0.19 0.19 0.41 0.56 0.49 0.68 0.53 0.63 0.58 0.60
{v2, v10} 0.53 0.60 0.63 0.63 0.72 0.80 0.78 0.82 0.79 0.83 0.80 0.83
{v7, v8} 0.28 0.43 0.35 0.35 0.37 0.51 0.49 0.72 0.51 0.58 0.56 0.53
{v7, v9} 0.20 0.32 0.23 0.23 0.30 0.45 0.39 0.56 0.43 0.51 0.46 0.51
{v10, v11} 0.55 0.36 0.51 0.51 0.55 0.69 0.65 0.80 0.72 0.80 0.73 0.77
{v10, v12} 0.38 0.57 0.47 0.47 0.50 0.59 0.53 0.65 0.61 0.65 0.62 0.65

1 Non-para means that the tail dependence coefficient is calculated via the nonparametric method;
2 S.BB1 and S.BB7 are the survival BB1 and BB7 copula respectively.

In order to investigate the tail dependence and its movement trend, two
different fixed periods (24 months and 36 months) are used as the investigation
period of tail dependencies to show the relationship between the length of period
and the movement trend. Then, a moving window of 620 daily observations is
introduced, from 07/02/2011 to 21/06/2013. The result of pair {v1, v2} in tree
1 is shown in Fig. 3.

The gap in a short investigation period with 24 months is larger than those
in a long investigation period with 36 months. It indicates that the difference
between lower and upper tail dependencies is more significant in a short inves-
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tigated period than in a long one. However, the difference decreases when the
length of investigation period increases.

(a) 24 months investigation period (b) 36 months investigation period

Fig. 3. Lower and Upper Tail Dependencies

4.3 Out-of-Sample Performance Analysis

The out-of-sample performance is evaluated by the Value at Risk (VaR), which a
widely used industrial benchmark. Typically, backtesting methods based on Log-
likelihood ratios and a null hypothesis consist of unconditional and conditional
coverage tests. A large p-value indicates that the VaR forecastings are accurate
and reliable. However, the p-value should at least be greater than 0.05. In this
experiment, we do not use any machine learning models since they do not directly
support forecasting VaR. Table 4 presents the backtesting results of WPRV,
canonical vine and D vine with various copula. The bivariate copula selection
is indicated in the second row. The results indicate the BB1 and S.BB1 copulas
have the best performance, followed by the BB7 and S.BB7 copulas. The model
with t copula is better than Clayton, Gumbel and BB6 copulas which have only
one tail dependencies.

In conclusion, the results of VaR forecasting indicate that the partial regular
vine copula with asymmetric dependencies is better than those with symmetric
lower and upper tail dependencies, and the models with two tail dependencies
are better than those with only one tail dependencies.

5 Conclusion and Future Work

Modeling the dependencies between multivariate variables in asymmetric and
tail-dependent data is very challenging in demanding applications related to
big data and financial business, and existing methods cannot handle it well.
This paper presents a weighted partial regular model to resolve the issue with-
out imposing restrictions on dependence structures. The model is demonstrated
through analyzing the complicated structures of portfolios in currency markets.
The out-of-sample performance evaluation results highly outperform other meth-
ods from statistic and risk evaluation perspectives. Our future work will explore
the performance of the regular vine with other high-dimensional time series data.
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Table 4. The Backtesting Results of Value at Risk Forecasting

Weighted Partial Regular Vine Canonical Vine D Vine
1− α BB1 S.BB1 BB7 S.BB7 t Clayton Gumbel BB1 BB7 BB1 BB7

LRuc

99%
0.002 0.002 0.100 0.100 0.048 0.354 3.74 0.048 0.248 0.100 0.100

(0.964) (0.964) (0.751) (0.751) (0.626) (0.552) (0.503) (0.826) (0.618) (0.751) (0.751)

95%
0.020 0.068 0.068 0.145 0.051 0.224 1.466 0.145 0.385 0.220 0.145

(0.899) (0.794) (0.794) (0.703) (0.621) (0.636) (0.264) (0.703) (0.309) (0.488) (0.225)

90%
0.473 0.919 0.023 0.175 1.101 1.101 0.258 0.357 0.385 0.423 0.175

(0.492) (0.338) (0.880) (0.676) (0.294) (0.294) (0.212) (0.550) (0.535) (0.338) (0.676)

LRcc

99%
0.282 0.282 0.341 0.341 0.369 0.859 0.934 0.369 0.569 0.641 0.541

(0.869) (0.869) (0.843) (0.843) (0.831) (0.651) (0.609) (0.831) (0.831) (0.467) (0.869)

95%
1.436 2.599 2.599 2.479 1.946 1.729 2.662 1.685 2.351 1.436 1.436

(0.488) (0.273) (0.273) (0.290) (0.378) (0.421) (0.264) (0.431) (0.309) (0.488) (0.488)

90%
1.467 2.316 0.862 0.837 1.613 1.997 1.023 1.633 1.374 2.316 1.387

(0.480) (0.314) (0.650) (0.658) (0.446) (0.369) (0.312) (0.442) (0.503) (0.394) (0.363)

1 LRuc and LRcc are short for the likelihood ratio of unconditional and conditional coverage re-
spectively. The first row shows the value, while the corresponding p value is given the parenthesis
in the following row. The critical value of LRuc and LRcc are 3.841 and 5.991.
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