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ABSTRACT
This paper introduces a novel framework, namely SelectVC and its

instance POP, for learning selective value couplings (i.e., interactions
between the full value set and a set of outlying values) to identify

outliers in high-dimensional categorical data. Existing outlier de-

tection methods work on a full data space or feature subspaces that

are identified independently from subsequent outlier scoring. As a

result, they are significantly challenged by overwhelming irrelevant

features in high-dimensional data due to the noise brought by the

irrelevant features and its huge search space. In contrast, SelectVC

works on a clean and condensed data space spanned by selective

value couplings by jointly optimizing outlying value selection and

value outlierness scoring. Its instance POP defines a value outlierness
scoring function by modeling a partial outlierness propagation pro-

cess to capture the selective value couplings. POP further defines a

top-k outlying value selection method to ensure its scalability to the

huge search space. We show that POP (i) significantly outperforms

five state-of-the-art full space- or subspace-based outlier detectors

and their combinations with three feature selection methods on 12

real-world high-dimensional data sets with different levels of irrel-

evant features; and (ii) obtains good scalability, stable performance

w.r.t. k , and fast convergence rate.

KEYWORDS
Outlier Detection; High-Dimensional Data; Categorical Data; Fea-

ture Selection; Coupling Learning

1 INTRODUCTION
Outliers are rare objects, compared to themajority of normal objects.

Detecting outliers plays a vital role in numerous applications, such

as detecting network intrusion attacks, credit card frauds, rare
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diseases and social events etc. However, identifying outliers is a

challenging task, in particular for complex data.

This work focuses on the problem of detecting outliers in high-

dimensional categorical data. Such data poses the following two

major challenges: (i) It often contains a complex mixture of relevant

and irrelevant features. The irrelevant features are ‘noise’ to outlier

detection, since outliers are masked as normal objects by these

features. Moreover, the sophisticated couplings [9] (e.g., different
types and hierarchies of interactions) within irrelevant features and

between relevant and irrelevant features bring about substantially

more ‘noise’ that impedes the separability of outliers from normal

objects. (ii) It also presents a huge search space, i.e., 2
D
where D

is the number of features, resulting in great difficulty in exploring

the mixed couplings across the features.

Most outlier detection methods (e.g., [3, 4, 13, 22]) for categorical

data are subspace-based methods. These methods consist of two

successive independent modules - pattern/subspace discovery and

outlier scoring. In general, they first identify a set of patterns (i.e.,

value combinations) or subspaces, and then aggregate the outlier-
ness (i.e. outlier score) in the subspaces to obtain object outlierness.

Such modular design enables the application of state-of-the-art

subspace/pattern discovery methods into outlier detection. How-

ever, their pattern/subspace search works separately from outlier

scoring, and thus may be misled by irrelevant features and produce

faulty patterns/subspaces [20]. Also, such search is very costly on

high-dimensional data due to its huge search space.

In addition, there have been some full space-based methods (e.g.,

[5, 11, 16, 23]) using new outlier scoring functions (e.g., angles be-

tween distance vectors [16, 23]) to overcome the effect of irrelevant

features. However, they work on the full feature set and become in-

effective when outliers are only detectable in small feature subsets.

Feature selection has been an enabling technique for learning

methods to handle high-dimensional data. Therefore, the above

subspace- or full space-based methods may be empowered by fea-

ture selection to deal with irrelevant features. However, although

feature selection for classification and clustering tasks has been

intensively studied, only limited work [20, 21] has been done on

feature selection for outlier detection. Moreover, the methods in

[20, 21] perform feature selection independently from subsequent

outlier scoring and may retain features that are irrelevant to the

outlier scoring functions.
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The above analysis suggests that how to effectively and effi-

ciently identify and model on a clean and condensed space from the

original data space is the key to detecting high-dimensional outliers.

Accordingly, this paper proposes a novel high-dimensional outlier

detection framework for categorical data by modeling Selective
Value Couplings (the SelectVC framework for short), i.e., selective

feature value interactions that are positively related to outlier de-

tection. As shown in Figure 1, given an initial value outlierness

vector which contains outlier scores of all feature values, SelectVC

first defines a value subset evaluation functionψ to select a subset of

values that are the most likely outlying values. Outlying values are
infrequent values which are mainly contained by outliers. SelectVC

then defines an outlier scoring function ϕ to re-compute an outlier

score of every single value based on the couplings between this sin-

gle value and the selected outlying value set. The scoring function

ϕ models only selective value couplings in a condensed space in the

sense that it focuses on the couplings of the single value with the

outlying value set rather than the full value set. These two steps are

iteratively performed until the value outlierness vector converges.
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Figure 1: The SelectVCFramework for EstimatingValueOut-
lierness Based on Selective ValueCouplings. The outlierness
of data objects can then be obtained using value outlierness.
SVC is short for Selective Value Couplings.

Outliers often demonstrate multiple outlying behaviors (‘be-

haviors’ and ‘values’ are used interchangeably hereafter) in high-

dimensional data, i.e., outlying behaviors are often concurrent.

Moreover, outlying behaviors have very low individual frequency.

This results in strong mutual couplings between outlying behav-

iors. On the other hand, although outlying behaviors also co-occur

with non-outlying behaviors (including normal behaviors and noisy
behaviors - frequent and infrequent values which are mainly con-

tained by normal objects, respectively), non-outlying behaviors are

distributed very differently from outlying behaviors since they are

manifested by respective normal objects and outliers. This results

in weak couplings between non-outlying behaviors and outlying

behaviors. The strength of couplings between outlying behaviors is

therefore contrasting to that between non-outlying behaviors and

outlying behaviors. SelectVC essentially models such contrasting

couplings to iteratively assign substantially larger outlierness to out-

lying values than normal/noisy values. The efficiency of SelectVC

is mainly determined by the value selection function (ψ ).
We further instantiate the SelectVC framework to a Partial Out-

lierness Propagation-based method, called POP. POP specifies the

scoring function ϕ by simulating partial outlierness propagation

from the value subset to the full value set. POP further specifiesψ
by a top-k outlying value selection function to simplify the value

selection and ensure its scalability to very high-dimensional data.

This work makes the following two major contributions:

• The proposed SelectVC framework for outlier detection is

novel for high-dimensional categorical data. Different from

existing approaches that primarily work on the original full

space and/or feature subsets identified independently from

outlier scoring, SelectVC works on a clean and condensed

data space composed by the couplings between the outlying

value set and the full value set, by jointly optimizing outlying

value selection and value outlierness scoring. This enables

SelectVC to have a more reliable outlierness estimation on

data with overwhelming irrelevant features.

• The performance of SelectVC is verified by its instance POP.

POP models the contrasting couplings between outlying-to-

outlying values and normal/noisy-to-outlying values by par-

tial outlierness propagation. Our theoretical analysis shows

that such outlierness propagation biases towards outlying

behaviors, which assists POP to assign larger outlierness to

outlying behaviors than non-outlying behaviors.

Extensive experiments show that POP (i) significantly outper-

forms five state-of-the-art full space- or subspace-based outlier

detectors and their combinations with three feature selection meth-

ods (5%-39% AUC improvement) on 12 real-world high-dimensional

data sets with different levels of irrelevant features; (ii) obtains good

scalability w.r.t. data size and dimensionality; (iii) performs stably

w.r.t. its only parameter k ; and (iv) obtains fast convergence rate.

In the rest of this paper, we discuss the related work in Section

2. SelectVC is detailed in Section 3. POP is introduced in Section

4, followed by a theoretical analysis in Section 5. Empirical results

are provided in Section 6. We conclude this work in Section 7.

2 RELATEDWORK
Existing high-dimensional outlier detection methods can be gener-

ally categorized as deterministic and non-deterministic subspace-

based methods, full space-based methods and feature selection-

based methods.

Deterministic Subspace-basedMethods.These subspacemeth-

ods includes local pattern-basedmethods [2, 4, 13], feature partition-

based methods [3] and statistical dependence-based methods [15].

They are deterministic in the sense that they produce exactly the

same subspaces/patterns that satisfy a given criterion. They nor-

mally first search occurrence frequency/local density, minimum

description length or statistical dependence tests-based outlying

subspaces/patterns, and then computes outlier scores in subspaces

to avoid the inclusion of irrelevant features. However, their sub-

space/pattern search has prohibitive computational time and/or

storage requirement in high-dimensional data. Also, the presence

of irrelevant features may mislead the search to produce irrelevant

subspaces/patterns, leading to false positive errors [20].

Non-deterministic Subspace-based Methods. In contrast to

deterministic methods, non-deterministic methods [17, 19, 22, 24]

work on randomly generated subspaces. These methods generally

have substantially better efficiency than deterministic methods,

since they do not require the costly subspace search and their

random subspace generation is very fast. However, the random

subspace generation may include many irrelevant features into

subspaces while omit relevant features in high-dimensional data,

where irrelevant features dominant over relevant features.



Full Space-based Methods. Traditional outlier detection meth-

ods like LOF, kNN and their numerous variants [8] rely on pairwise

distances on the full data space to define outliers and they fail

in high-dimensional data due to the curse of dimensionality [26].

Some methods [5, 11, 16, 23] attempt to address this problem by

designing new outlier definitions for high-dimensional data. Al-

though they sucessfully avoid to directly use pairwise distance in

outlier scoreing, their premises are dependent on the proximity

concept in the original full space, and thus they are still biased

by irrelevant features [26]. Also, these methods often require an

input for the neighborhood size, which is heavily dependent on

data size and data distribution and is difficult to be tuned as class

labels are unavailable [22]. Different from the above methods, the

methods reported in [10, 20] avoid the distance computation by

using value interactions to estimate the outlierness of values/value

pairs. These two methods are good at capturing complex value

interactions while obtain quite good efficiency, but its performance

can be considerably biased by irrelevant features, since they work

on original full space and the overwhelming irrelevant features

downgrade their outlierness estimation.

Feature Selection-basedMethods. Feature selection has shown
effective in enabling clustering and (imbalanced) classification on

high-dimensional data [6, 18], but there exists limited work on

outlier detection. Building on coupling learning of outliers, the

methods in [20, 21] attempt to estimate the outlierness of values

by learning the underlying value interactions, and use the value

outlier scores to infer the relevance of features to outlier detection.

However, these methods work independently from subsequent out-

lier detection methods and use the full value couplings to compute

the outlier scores, and thus the feature selection may be biased by

irrelevant value couplings, resulting in suboptimal feature subsets.

3 THE SelectVC FRAMEWORK
SelectVC jointly optimizes value selection and value outlierness

scoring, which is described as follows. Let X = {x1,x2, · · · ,xN }
be a set of data objects with size N , described by D features F =

{ f1, f2, · · · , fD }; dom(f ) = {v1,v2, · · · } be the domain of a feature

f andV be the whole set of feature values in F :V = ∪f ∈Fdom(f ),
where dom(f )∩dom(f ′) = ∅,∀f , f ′. As shown in Figure 1, given

an initial value outlierness vector q ∈ R |V | , SelectVC first defines

a value selection function ψ (q) to select a set of outlying values,

S ⊂ V . SelectVC further defines a value scoring function ϕ(S)
that computes an outlier score for every single value in the full

value setV by modeling the couplings between the single value

and the values in the value subset S. These two functions are

iteratively reinforced until a stationary q is found. After obtaining

value outlierness, given an object x, we can integrate the outlierness
of values contained by x to compute the object outlierness.

SelectVC is fundamentally different from existing frameworks

in that: (i) SelectVC models the interactions with only the outlying

behaviors. This avoids the interference from irrelevant couplings

between irrelevant features, which significantly challenge full space-

based approaches; and (ii) SelectVC unifies the two dependent

tasks, value selection and outlier scoring, to optimize its outlier

scoring, while existing subspace/feature selection-based approaches

separate subspace/feature selection from outlier scoring and thus

the subspaces/features retained by subspace/feature selection may

be irrelevant to subsequent outlier detectors.

3.1 Value Subset Evaluation Functionψ
Since SelectVC aims to capture interactions of a value with only

outlying values, function ψ is required to select a value subset S

that consists of the most likely outlying values to facilitate the value

outlier scoring in the next stage.

Definition 3.1 (Value Selection). Value subset evaluation func-
tion ψ is to select a value subset S that contains the most likely
outlying values from all the possible

( |V |
|S |

)
subsets.

The value selection here is similar as feature selection, but we

work on the value level. Nevertheless, subset search methods for

feature selection, such as sequential search, random search and

complete search [18], can be used to select a proper value subset.

3.2 Selective Value Coupling-based Scoring
Function ϕ

Outlying behaviors are often strongly bond together while they

are weakly coupled with other behaviors [20]. For example, the

abnormal symptoms of diseases (e.g., the suspected signs like fre-

quent urination, tiredness, and excessive thirsty for diabetes) are

often concurrent, whereas they have weak association with normal

symptoms or misdiagnosed abnormal symptoms.

SelectVC exploits such contrasting couplings to compute value

outlierness by modeling the selective value couplings with only the

outlying value set S.

Definition 3.2 (Value Scoring). The value scoring function
ϕ : V 7→ R exploits the couplings of a given value v ∈ V with the
value subset S to compute the outlierness of the value v :

q(v) = ϕv (S) = ⊙s ∈Sη(v, s), (1)

where η(·, ·) captures the relation between the two values v and s , e.g.,
joint probability and conditional probability, and ⊙ denotes one type
of integration over η, e.g., first-order linear (or polynomial non-linear)
summation and multiplication.

By working on the selective value couplings, SelectVCminimizes

the interference from irrelevant features while captures the suffi-

cient relevant information to assign larger outlierness to outlying

values than normal/noisy values.

3.3 Stationary Criterion
The total number of possible value subsets is huge and different

value subsets will result in very different value outlierness vectors.

SelectVC aims to produce a stationary value outlierness vector to

facilitate stable outier detection performance. Since we evaluate

the convergence w.r.t. a vector, widely-used vector norms can be

used. Let t be the iteration number, then a p-norm-based stationary

criterion can be defined as follow.

lim

t→∞
| |qt+1 − qt | |p ≤ ϵ, (2)

where p ≥ 1 and ϵ is a small constant.



4 THE SelectVC INSTANCE: POP
The SelectVC framework can be instantiated by specifying its three

components: value scoring function ϕ, value subset evaluation func-
tionψ , and the stationary criterion. The POP instance specifies these
three components as follows. POP first specifies the functions ψ
and ϕ by a top-k value selection function and a partial outlierness

propagation-based value scoring function, respectively. POP then

defines a stationary criterion using ℓ1-norm.

4.1 Specifyingψ Using Top-k Outlying Value
Selection

Given a value outlierness vector q, POP defines a top-k outlying

value selection function to select a value subset S containing a k
proportion of the most outlying values from the full value setV .

Definition 4.1 (Top-k Outlying Value Selection). The top-k
outlying value selection selects a value subset S with the cardinality
k |V| from the full value setV as follows.

ψ (q) = argmax

S⊂V and |S |=k |V |

∑
s ∈S

q(s). (3)

Since q contains the outlierness of all feature values, after using

the entries in q to sort the values in a descending order, Equation

(3) is equivalent to selecting the top-ranked k |V| values. This value
selection can be done in linear time, which well guarantees the

scalability of POP to very high-dimensional data.

Note that outlying value selection is nontrivial due to the pres-

ence of noisy values and the huge search space. Simply selecting

the most infrequent values may include the noisy values and con-

sequently downgrade the quality of value outlierness estimation.

Therefore, in the next section, POP initializes the value selection

based on the frequencies of individual values but jointly optimizes

the value selection and value scoring to obtain reliable outlying

value sets and value outlierness.

4.2 Specifying ϕ by Partial Outlierness
Propagation

POP defines a partial outlierness propagation-based function ϕ to

leverage the contrasting couplings between outlying values to the

selected subset S and normal/noisy values to the subset S.

POP first builds a |V| × |S| matrix to capture the selective cou-

plings of the values in the full value set V with the values in S

using conditional probability.

Definition 4.2 (Selective Coupling Matrix). The relation
between the values in V and the values in S is captured by the
selective coupling matrixM ∈ R |V |×|S | which is defined as:

M =


η(v1, s1) . . . η(v1, s |S |)
...

. . .
...

η(v |V | , s1) . . . η(v |V | , s |S |)

 , vi ∈ V, sj ∈ S, (4)

where η(vi , sj ) = P(sj |vi ) =
freq(vi ,sj )
freq(vi )

∈ [0, 1] and freq denotes a
frequency counting function.

Let u and u ′ be outlying and normal values, respectively. Given

an outlying values s ∈ S, since outlying values are often concur-

rent and the co-occurrence frequency is upper bounded by the

frequency of s , we often have freq(u, s) ⪆ freq(u ′, s). Moreover, per

definition of outliers, freq(u) ≪ freq(u ′). Therefore, we normally

obtain η(u, s) > η(u ′, s) or η(u, s) ≫ η(u ′, s).
Let u ′′ be a noisy value. We may assume freq(u) ≈ freq(u ′′)

as both u and u ′′ are infrequent. Since noisy values and outlying

values are mainly contained by normal objects and outliers, respec-

tively, u ′′ is presumed to have lower joint probabilities with the

outlying values in S, compared to the outlying value u. Thus, we
also obtain η(u, s) > η(u ′′, s). This demonstrates that the inherent

asymmetrical property of conditional probability enables POP to

effectively capture the aforementioned contrasting couplings.

POP further defines a partial outlierness propagation-based value

scoring functionϕ by usingM to propagate the outlierness of values

in S to influence the scoring of values inV .

Definition 4.3 (Partial Outlierness Propagation-based

Value Scoring). The partial outlierness propagation-based value
scoring function ϕ is defined as follows.

qt+1(v) = ϕv (St ) =
∑
s ∈St

M̃(v, s)qt (s), (5)

where M̃ denotes a column-wise normalization ofM, qt is normalized
into a ℓ1-norm unit, and t ∈ Z+ is a positive integer.

Equation (5) models the selective value couplings by simulat-

ing to partially propagating the t-th step value outlierness to the

outlierness scoring in the (t + 1)-th step. Such partial outlierness

propagation assits POP to iteratively enlarge the outlierness gap be-

tween the top-ranked values and the rest of values in the outlierness

vector q.
We initialize the vector q as follows.

q1(v) =
freq(m) − freq(v)

freq(m)
+
freq(b) − freq(m)

freq(b)
, v ∈ V, (6)

wherem is the mode (i.e., the value occurs most frequently in a fea-

ture) of the feature containing the value v , and b is the benchmark

value that has the largest frequency over all the values inV .

This initialization is essentially built on the frequencies of indi-

vidual values. Taking account of the location parameter (i.e., the

mode) of the frequency distributions in Equation (6) is to produce

a good initialization when the frequency distributions are very

skewed across the features.

4.3 ℓ1-Norm Stationary Criterion
A ℓ1-norm-based stationary criterion is used in POP.

Definition 4.4 (ℓ1-Norm Stationary Criterion). A value out-
lierness vector q is stationary when satisfying:

∆ = | |qt+1 − qt | |1 =
∑
v ∈V

|qt+1(v) − qt (v)| ≤ ϵ, (7)

where ϵ = 10
−4 is used.

Actually, since the matrix M is fixed, POP obtains the stationary

status when the values and their ranks in S do not change.

4.4 The Algorithm and Its Time Complexity
Algorithm 1 presents the procedures of detecting outliers using

POP. Steps (1-6) are performed to obtain a |V| × |V| full value



coupling matrix M′. Since the conditional probabilities are fixed
for all value pairs, we generateM′ to facilitate quick access to the

selective coupling matrix M, which avoids re-scanning the data

in the later iteration. Steps (7-11) performs the joint value selec-

tion and value scoring process to obtain the stationary q. After
obtaining the value outlierness, we compute the outlierness of data

objects in Steps (13-15). In Step (14), following [20], we compute the

outlierness of an object x as the weighted outlierness summation

of its values, in which xf denotes the value of x in feature f and

ωf =
∑
v ∈dom(f ) q(v). Such weighted outlierness integration high-

lights relevant features and facilitates a proper object outlierness

estimation. An object outlierness ranking R is finally returned in

Step (17). The top-ranked objects in R are the most likely outliers.

Algorithm 1 POP-based Outlier Detection

Input: X - data objects, k - a proportion of the full value set

Output: R - an outlier ranking

1: Initialize a |V| × |V| matrixM′ for full value couplings
2: for v inV do
3: for v ′ inV do
4: M′(v,v ′) ← freq(v,v ′)

freq(v)
5: end for
6: end for
7: Initialize q ∈ R |V | using Equation (6)

8: repeat
9: S ← argmax

S⊂V and |S |=k |V |

∑
s ∈S q(s)

10: q← M̃ |V |×|S | × q |S |×1(S)
11: until Converge or reach the maximum iteration 200

12: Initialize r ∈ R |X | as an outlierness vector for data objects

13: for x in X do
14: r(x) ←

∑
f ∈F q∗(xf )ωf

15: end for
16: R ← Sort X w.r.t. r in descending order

17: return R

POP requires one scanning over the data objects to obtain M′

in Steps (1-6), which has O(|X||V|2). The iterations in Steps (8-11)

haveO(|V||S|) time complexity. The object outlierness scoring and

sorting take O(|X||V|) in Steps (12-16). Therefore, the overall time

complexity of POP is linear w.r.t. the data size and quadratic w.r.t.

the total number of values. Since the average number of values

per feature is normally very small, POP also has quadratic time

complexity w.r.t. the number of features.

5 THEORETICAL ANALYSIS OF POP
This section analyzes the quality of the vector q∗, the capability of

POP in handling high-dimensional data and the setting of k .

5.1 Quality of the Stationary Vector q∗

We show below that q becomes stable when the values in the se-

lected subset S have the largest total pointwise mutual information.

Theorem 5.1 (Stationary Vector). Let pmi(U) be the total
pointwise mutual information among the values in a value setU, i.e.,
pmi(U) =

∑
u ∈U

∑
u′∈U log

P (u,u′)
P (u)P (u′) . Then, the value outlierness

vector q converges to a vector q∗ s.t. ∀U ⊆ V and |U| = |S∗ |,
pmi(S∗) ≥ pmi(U), where S∗ is the stationary value subset.

Proof. At each iteration of POP, the subset S is updated until

convergence, while the value conditional probability matrixM is

fixed. Therefore, q becomes stationary when S does not change,

i.e., | |qt+1 − qt | |1 ≤ ϵ if St ⊆ St+1 and St+1 ⊆ St .
Since q is updated using the conditional probabilities of a given

valuev ∈ V on the value subset S, q(v) is primarily determined by

the probabilities of the values in S given value v . Therefore, q(v) ∝∑
s ∈S P(s |v) and thus q(S) =

∑
s ′∈S q(s ′) ∝

∑
s ′∈S

∑
s ∈S P(s |s

′).

We have q(S) ∝
∑
s ′∈S

∑
s ∈S

P (s |s ′)
P (s) after taking account of the

way we initialize q. We will obtain a value subset S∗ which has the

largest pmi by maximizing q(S), and subsequently obtain q∗ based
on the subset S∗. S∗ remains unchanged since ψ (S∗) is already
maximized, and thus q∗ becomes stationary.

□

It is well known in natural language processing that pointwise

mutual information biases towards rare words [25], i.e., pointwise

mutual information between concurrent rare words are generally

much larger than commonly-used or frequent words. In our case,

this implies that the top-ranked values in the stationary vector q∗

are normally outlying values - values which are exceptionally rare

and have mutual interactions. In other words, POP can often obtain

a highly discriminate outlierness vector where outlying values have

larger outlierness than normal and noisy values.

5.2 Handling Distance Concentration Effect
The concentration of distances is a major issue in the curse of di-

mensionality. The distance concentration effect states that the dis-

crimination between the near and far neighbors of a data object

diminishes with increasing dimensions, in particular when the in-

creased dimensions are irrelevant features [26].

Since we focus on value outlierness estimation, in general, we

expect | |qt (u) − qt (v)| |p to be sufficiently large if u and v are re-

spective outlying values and normal/noisy values, and to be small

otherwise. Let v to be a normal value, without loss of generality,

there exists a normal value u as its nearest neighbor and an outly-

ing valuew as its farthest neighbor. For a given value setU ⊆ V ,

according to the concentration effect theory [26], however, we have

lim

|U |→∞

max_d −min_d
min_d

= 0, (8)

max_d = | |
∑
w ′∈U M̃′(v,w ′)q′t (w

′) −
∑
w ′∈U M̃′(w,w ′)q′t (w

′)| |p
andmin_d = | |

∑
w ′∈U M̃′(v,w ′)q′t (w

′)−
∑
w ′∈U M̃′(u,w ′)q′t (w

′)| |p
denote the largest and smallest distances to v , respectively.

As shown in [26], the concentration effect becomes more and

more severe as the number of irrelevant features increases. There-

fore, the larger the size of the value subsetU is, we would be likely

to have more severe concentration effect. The concentration effect

is maximal when we use the full value couplings, i.e., to setU = V .

POP substantially reduces such effect by working on a small value

subset. POP could well overcome the concentration effect when

setting k to be a sufficiently small value, but POP may lose relevant

value couplings when k is too small. We will provide a general

guideline for setting k in the next section.



5.3 Guidelines for Setting k
This section provides some guidelines for tuning the only parameter

k , in particular for high-dimensional and small-sized data, based

on three observations that (i) outliers typically account for only

a small proportion of a data set; (ii) outliers often demonstrate

their exceptional behaviors in only a small feature subset in high-

dimensional data; and (iii) large k may lead to more severe distance

concentration effect.

Theorem 5.2 (Maximum Number of Outlying Values). Let
O be the set of outlier objects in the data set X, I be the maximum
number of outlying values contained by an outlier o ∈ O, and H be
the total number of all possible outlying values in X. Then

H ≤ I |O|. (9)

Proof. When all outliers in O manifest different outlying values,

we have H = I |O|. If there exists at least one o ∈ O sharing the

same outlying values with other outliers, then H < I |O|. □

Corollary 5.2.1 (Upper Bound fork). LetS∗ be the value subset
containing exactly all the possible outlying values, i.e., |S∗ | = H and
k∗ = |S

∗ |

|V |
. In high-dimensional and small-size data, i.e., |V| > |F | >

|X|, we have

k∗ ≤
I |O|

|V|
<

I |O|

|X|
. (10)

According to Corollary 5.2.1, k∗ is upper bounded by the outlier

proportion
|O |

|X |
and the number of outlying values contained per

outlier I in a high-dimensional and small-size data set. In general,

k∗ < 0.5 is a good bound based on the above three observations.

Since our goal is to select a reliable outlying value subset and to

substantially reduce the concentration effect, k < k∗ is suggested.
We show in Section 6.8 that POP with k = 0.3 obtains stable perfor-

mance in data sets with diverse dimensions.

6 EXPERIMENTS AND EVALUATION
We perform experiments to answer the following six questions:

• Q1. Effectiveness in real-world data.Howaccurately does

POP detect outliers in real-world high-dimensional data with

different levels of irrelevant features?

• Q2. Significance of partial outlierness propagation.How
well does partial outlierness propagation perform compared

to full outlierness propagation?

• Q3. Significance of joint value selection and outlier
scoring. Can we replace POP with two independent suc-

cessive modules: feature selection and outlier detection?

• Q4. Scalability. Does POP have good scalability?

• Q5. Sensitivity. How sensitive is POP to k?
• Q6. Convergence. How fast does POP converge?

6.1 Experiment Environment
POP and its competitors are implemented in JAVA. The implemen-

tations of all the competitors are obtained from their authors or the

open-source platform ELKI [1]. All the experiments are executed

at a node in a 3.4GHz Titan Cluster with 96GB memory.

6.2 Performance Evaluation Methods
All the outlier detectors finally produce an object ranking based

on the outlier scores of the objects, i.e., the top-ranked objects

are the most likely outliers. We measure the quality of the rank-

ing by the area under ROC curve (AUC) which is computed by

Mann-Whitney-Wilcoxon test [12]. AUC is one of the most popular

performance evaluation methods and it inherently takes account

of the class-imbalance nature, making the AUC results comparable

across different data sets [8]. AUC ranges from zero to one. Higher

AUC indicates better accuracy. The AUC value would be close to 0.5

given a random ranking of data objects. The Wilcoxon signed rank

test is used to examine the significance of the AUC performance of

POP against its competitors.

Data indicator refers to measures that capture inherent charac-

teristics of data sets. These measures are strongly correlated with

the performance of outlier detectors. Two data indicators, coupling
strength (coup) and outlier separability (sep), are defined to assess

the complexity of the data sets. They are briefly introduced below,

and their quantization is reported in Table 1.

• coup represents the coupling strength between the outlier

class label and its associated values. We use the probability of

the outlier label given a single feature value to measure their

coupling strength. coupU is defined as the average condi-

tional probability of the outlier class label over all its values

in a value setU, i.e., coupU =
1

|U |

∑
u ∈U P(outlier |u). High

coupU indicates strong couplings between the outlier class

and the values inU.

• sep describes the difficulty in separating outliers from nor-

mal objects. Feature efficiency is a widely used indicator for

measuring class separability in classification [14], which is

referred to as the capability of a feature in enabling classi-

fiers to make correct classification. We define the efficiency

of a feature for outlier detection by the AUC performance

of using the value marginal probabilities to identify outliers

on the feature. sep is the maximum feature efficiency. A data

set having a high sep indicates that the data set contains at

least one highly relevant features.

6.3 Data Sets
Twelve publicly available real-world data sets

1
are used, which

cover diverse domains, e.g., Internet advertising, image object recog-

nition, web page classification and text classification, as shown in

Table 1. Following the literature (e.g., [3, 8, 19–21]), eight of these

data sets are directly transformed from highly imbalanced classifi-

cation data, where the smallest class is treated as outliers and the

largest class is normal; and we transform the other four balanced

data sets (PCMAC, BASE, WebKB, RELA) by randomly sampling

a small subset of the smallest class as outliers and keeping the

largest class as normal class, such that the newly created data sets

contain 2% outliers. The performance of these downsampled data

sets is taken average over 10 times sampling. These transformation

methods guarantee that the outlier class chosen is either a rare

1
The used data sets are available at http://archive.ics.uci.edu/ml,

http://featureselection.asu.edu, https://people.cs.umass.edu/∽marlin/data.shtml,

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, http://tunedit.org/repo/data/text-

wc, or https://www.csie.ntu.edu.tw/∽cjlin/libsvmtools/.



class or a class with outlying semantics. All data sets are used with

categorical features only. Features containing only one value are

removed as they contain no information for outlier detection.

6.4 Q1. Effectiveness in Real-world Data
6.4.1 Experimental Settings. POP is compared with five detec-

tors: CBRW [20], ZERO [22], iForest [19], ABOD [16] and LOF [7]

on the 12 real-world data sets to evaluate its effectiveness.

• Subspace-based Competitors: ZERO and iForest. Both ZERO

and iForest are state-of-the-art non-deterministic subspace

methods
2
. Their performance is taken average from 10 runs.

iForest and ZERO are used with the recommended settings

in [19, 22], respectively.

• Full Space-based Competitors: CBRW, ABOD and LOF. CBRW

is a state-of-the-art outlier detector for categorical data and

it is closely related to POP. ABOD is an angle-based method

which is specially designed for high-dimensional data. LOF

is one of the most popular methods that works on full di-

mensionality and it is used as a baseline competitor. As rec-

ommended in [20], α = 0.95 is used in CBRW. ABOD is

parameter-free. For LOF, small values are suggested for the

neighborhood size MinPts in [7]. We performed LOF with

a range of different MinPts, i.e., {1, 5, 10, 20, 40, 60, 80, 100},
and report the results withMinPts = 5 as LOF usingMinPts =
5 performs more stably across the data sets.

POP uses k = 0.3 by default. We will compare POP with feature

selection-enabled methods in Section 6.6. Note that categorical data

is transformed into numeric data to allow iForest, ABOD and LOF

to work on the same data. The data sets are transformed by using a

commonly used method 1-of-l (or one-hot) encoding [8, 22].

6.4.2 Findings - POP Performing Significantly Better Than Five
State-of-the-art Outlier Detectors on Real-world High-dimensional
Data. TheAUCperformance of POP and its five competitors: CBRW,

ZERO, iForest, ABOD and LOF is reported in Table 1. POP performs

better than all its five competitors on nine data sets, and significantly

outperforms them at the 95% confidence level. On average, POP

obtains more than 10%, 18%, 26%, 25% and 39% improvement over

CBRW, ZERO, iForest, ABOD and LOF, respectively.

The data indicators coupV and coupS describe the coupling

strength of the outlier class with the values inV and the values in

S, respectively. livc = coupS−coupV
coupV

therefore captures the level of

irrelevant value couplings composed by the intersection of irrelevant

value sets and the full value set. livc is a fine-grained value-level

indicator which also implies the amount of irrelevant features per

data. Higher livc indicates a larger percentage of irrelevant features
a data set may contain. livc is used below to further explore the

performance of these six detectors in data sets with different levels

of irrelevant value couplings (or irrelevant features).

(1) Handling Data Sets with High livc. POP obtains the best per-

formance on all the eight data sets with high livc (e.g. livc > 90%)

(i.e., w7a, wap.wc, R8, CAL16, AD, CAL28 , CelebA and PCMAC), and

2
The computational time of deterministic subspace methods like FPOF [13] and Com-

prex [3] is prohibitive for high-dimensional data, and they run out of memory or

cannot output the results for most of the used data sets within four weeks. Also, the

empirical results in [20] show that CBRW significantly outperforms these methods.

Thus, we focus on the comparison with CBRW and the other four competitors.

it averagely achieves substantial AUC improvement over its five

competitors CBRW, ZERO, iForest, ABOD, and LOF by more than

13%, 21%, 30%, 24%, and 66%, respectively.

The superiority of POP is mainly because POP computes the

outlier scores based on only selective (relevant) value interactions,

which substantially improves the resilience of POP to irrelevant

value couplings. LOF performs poorly on all these data sets due

to two major reasons: (i) the severe distance concentration effect

caused by the presence of a large amount of irrelevant features

and (ii) the heavy dependency on an optimal neighborhood size

MinPts, which varies substantially in data with different data sizes

and data distributions. Compared to LOF, the competitors ABOD,

ZERO and iForest are less sensitive to the irrelevant couplings, as

they use more robust measures to define outlierness (e.g., angle

between data objects) or work on feature subspaces. CBRW models

complex value couplings to enlarge the outlier score difference

between outlying values and other values, which enables CBRW

to obtain significant improvements over the other four competi-

tors. Nevertheless, CBRW still works on the full value couplings,

and its performance is significantly downgraded by the irrelevant

couplings compared to POP.

It is interesting that the methods like CBRW, ZERO, iForest and

ABOD can obtain very good AUC performance in some data sets

withmany irrelevant couplings, e.g.,CAL16 andCAL28. This may be

due to their high outlier separability, e.g., CAL16 with sep = 0.9613

and CAL28 with sep = 0.9780. In other words, these data sets

contain some highly relevant features which, to some extent, enable

these methods to address the noise brought by irrelevant features.

(2) Handling Data Sets with Low livc. As for the rest of the four
data sets with low livc, i.e., BASE, WebKB, RELA and Arrhy, POP
obtains the best performance on one data set, with two close to

the best (having the difference in AUC less than 0.02), which is

comparable to the best performer LOF. This is understandable since

POP may omit some relevant value couplings when data sets have

only limited irrelevant couplings, whereas LOF works on the full

value interactions and thus captures the relevant couplings better.

It is interesting that all outlier detectors obtain quite small AUC

values on these four data sets. This may be because all the four data

sets have rather low outlier separability, as shown by the indicator

sep in Table 1, and it is very challenging for learning methods to

perform well on data sets without highly relevant features.

6.5 Q2. Significance of Partial Outlierness
Propagation

6.5.1 Experimental Settings. POP is compared with its extreme

variant called POP
+
which simulates full outlierness propagation

by setting k = 1.0 to evaluate the significance of partial outlierness

propagation in POP. Specifically, POP
+
computes value outlierness

by qt+1(v) =
∑
u ∈V M̃′(v,u)qt (u), where M′ is a |V| × |V| full

value coupling matrix and M̃′ is its column-wise normalization.

Therefore, POP
+
is exactly the same as POP except that it uses the

full value setV rather than the value subset S in POP.

6.5.2 Findings - POP Using Partial Outlierness Propagation Sig-
nificantly Outperforming Its Counterpart Using Full Outlierness Prop-
agation. The AUC performance of POP and POP

+
is reported in



Table 1: A Summary of Data Sets Used, Indicator QuantizationResults andAUCPerformance of POP, POP+ and Their Competi-
tors: Five Full Space- or Subspace-based Outlier Detectors. livc = coupS−coupV

coupV
describes the level of irrelevant value couplings

per data. The middle horizontal line roughly separates data sets with high livc from that with low livc. CBRW runs out of
memory on high-dimensional data R8 andWebKB. ABOD runs out-of-memory on large data w7a and CelebA.

Data Summary Data Indicators Our Methods Competitors

Data Acronym |X| |F | coupV coupS livc sep POP POP
+

CBRW ZERO iForest ABOD LOF

w7a - 49749 300 0.1490 0.4440 197.99% 0.5927 0.8673 0.8054 0.6460 0.5375 0.4053 NA 0.4996

wap.wc - 346 4229 0.0306 0.0866 183.01% 0.9713 1.0000 0.9666 0.7900 0.6552 0.5558 0.5243 0.5161

Reuters8 R8 3974 9467 0.0358 0.0980 173.74% 0.9358 0.9479 0.9324 NA 0.8827 0.8443 0.7856 0.8916

Caltech-16 CAL16 829 253 0.1099 0.2961 169.43% 0.9613 0.9928 0.9930 0.9925 0.9878 0.9742 0.9766 0.3881

InternetAd AD 3279 1555 0.1923 0.4370 127.25% 0.6982 0.9290 0.8300 0.7348 0.7062 0.7084 0.7023 0.5507

Caltech-28 CAL28 829 727 0.0654 0.1465 124.01% 0.9780 0.9608 0.9616 0.9599 0.9538 0.9377 0.9268 0.4390

CelebA - 202599 39 0.0307 0.0665 116.61% 0.7961 0.8968 0.8981 0.8462 0.7595 0.6797 NA 0.4726

PCMAC - 1002 3039 0.0327 0.0638 95.11% 0.7721 0.6935 0.6617 0.6332 0.5266 0.4767 0.4903 0.6198

BASEHOCK BASE 1019 4320 0.0347 0.0613 76.66% 0.6292 0.6521 0.6329 0.6177 0.5287 0.4731 0.4883 0.6639
WebKB - 1658 6601 0.0303 0.0526 73.60% 0.7501 0.7306 0.7266 NA 0.6950 0.6773 0.6701 0.8250
RELATHE RELA 794 4080 0.0320 0.0554 73.13% 0.6365 0.7449 0.7173 0.7014 0.6047 0.5578 0.5685 0.7432

Arrhythmia Arrhy 452 64 0.2548 0.4287 68.25% 0.6293 0.6762 0.6890 0.6910 0.6644 0.6868 0.5948 0.6008

Average (Top-8) 0.9110 0.8811 0.8004 0.7512 0.6978 0.7343 0.5472

Average (All) 0.8410 0.8179 0.7613 0.7085 0.6648 0.6728 0.6009

P-value - 0.0269 0.0098 0.0005 0.0010 0.0020 0.0122

Table 1. Although POP uses more than two-thirds less informa-

tion than POP
+
, it obtains about 3% improvement over POP

+
and

significantly outperforms POP
+
at the 95% confidence level. POP

outperforms POP
+
on eight data sets, with the maximal improve-

ment up to 11%, and it performs very comparably to POP
+
on the

other four data sets.

POP
+
works on the original data space which contains much

more irrelevant value couplings than the clean data space that POP

works on, as indicated by the substantial difference between coupV
and coupS in Table 1. As a result, even though POP

+
is operated

on the data space that contains the condensed data space used by

POP, its performance is significantly degraded due to two major

reasons: (i) its distance concentration effect is more severe and (ii)

its full outlierness propagation amplifies irrelevant couplings and

makes negative propagation.

Note that although POP
+
underperforms POP, it substantially

outperforms all the five competitors in Table 1. This may explain

that the (either partial or full) outlierness propagation mechanism

well captures contrasting couplings between outlying-to-outlying

values and normal/noisy-to-outlying values and has better capabil-

ity in handling high-dimensional data than the five competitors.

6.6 Q3. Significance of Joint Value Selection
and Outlier Scoring

6.6.1 Experimental Settings. There are two major ways to re-

place POP with two independent successive modules: feature selec-

tion and outlier detection, which are described as follows.

• The value subset selected by POP can be used to perform

feature selection. That is, for each data set, we create a corre-

sponding new data set with a subset of features spanned by

the values in the selected value subset. We denote this fea-

ture selection method as POFS. The existing outlier detectors

can then be performed on the newly created data.

• Alternatively, existing outlier detectors can be combined

with previously proposed feature selection methods which

are designed for outlier detection. Two of the latest outlying

feature selection methods: CBRW_FS (denoted by CBFS)

[20] and DSFS [21] are used. CBFS only returns a feature

ranking. CBFS is aligned with POFS and selects the top-

ranked |F ′ | features, where F ′ denotes the feature subset

selected by POFS. DSFS outputs a feature subset F ′′ without

any parameters.

The five outlier detectors with the same settings described in

Section 6.4 are used with POFS, CBFS and DSFS to have a com-

prehensive comparison to POP. This enables us to examine how

critical it is for the joint process of value selection and outlier

scoring, compared to perform feature/value selection and outlier

detection independently.

6.6.2 Findings - Joint Value Selection and Outlier Scoring En-
abling POP to Obtain More Than 5% Improvement Over the Best
Performer Among All the Successive Combinations of Three Outlying
Feature/Value Selection Methods and Five State-of-the-art Outlier De-
tectors. The AUC performance of POP and all the 15 combinations

of the three feature selection methods POFS, CBFS and DSFS and

the five detectors CBRW, ZERO, iForest, ABOD and LOF is reported

in Table 2. The results show that POP significantly outperforms all

the 15 combinations and obtains over 5% to 50% improvements.

The POFS or CBFS-empowered CBRW, ZERO, iForest and ABOD

substantially improve the AUC performance over its original edi-

tions, but they still perform significantly less effectively than POP.

This is due to two major reasons: (i) POFS or CBFS selects features

independently from the these outlier detectors and thus the selected

features are not optimal to these detectors, in contrast to POP in

which value selection and value outlierness scoring function are

simultaneously optimized; and (ii) POP works on value subsets

whereas its competitors operates on feature subsets, so POP cap-

tures more fine-grained value interactions than its counterparts. All



Table 2: AUCResults of POP and the Combinations of the Five Competitors with Three Feature SelectionMethods POFS, CBFS
and DSFS on the 12 Data Sets. |F | denotes the number of original features, |F ′ | denotes the number of features retained by
POFS and CBFS, and |F ′′ | is the number of features retained by DSFS.

POP CBRW ZERO iForest ABOD LOF

Data |F | |F ′ | |F ′′ | - POFS CBFS DSFS POFS CBFS DSFS POFS CBFS DSFS POFS CBFS DSFS POFS CBFS DSFS

w7a 300 180 26 0.8673 0.8220 0.7738 0.5155 0.7701 0.7885 0.5155 0.5893 0.7674 0.5155 NA NA NA 0.5661 0.6108 0.5010

wap.wc 4229 2537 3570 1.0000 0.9026 0.8739 0.6387 0.7339 0.7429 0.5395 0.5902 0.6816 0.5121 0.5566 0.7355 0.5437 0.6065 0.7161 0.4856

R8 9467 5680 2006 0.9479 NA NA 0.9249 0.8902 NA 0.8758 0.8370 NA 0.8426 0.8020 NA 0.7902 0.8772 NA 0.7252

CAL16 253 151 194 0.9928 0.9930 0.9928 0.9931 0.9910 0.9900 0.9903 0.9828 0.9824 0.9811 0.9922 0.9908 0.9920 0.4327 0.4428 0.2923

AD 1555 933 49 0.9290 0.7845 0.7456 0.7432 0.7547 0.7587 0.7428 0.7345 0.7723 0.7435 0.7298 0.7548 0.7495 0.5760 0.6652 0.5233

CAL28 727 436 564 0.9608 0.9603 0.9604 0.9599 0.9566 0.9584 0.9540 0.9488 0.9524 0.9421 0.9507 0.9526 0.9402 0.2247 0.2393 0.3345

CelebA 39 23 34 0.8968 0.8901 0.8818 0.8502 0.8519 0.8511 0.7722 0.8038 0.8213 0.6973 NA NA NA 0.5644 0.6051 0.5220

PCMAC 3039 1823 1256 0.6935 0.6759 0.6678 0.6413 0.5952 0.5793 0.4959 0.5509 0.5425 0.4745 0.5582 0.5511 0.4580 0.6605 0.6574 0.5988

BASE 4320 2592 1895 0.6521 0.6294 0.6558 0.5760 0.5396 0.5897 0.4375 0.5096 0.5417 0.4233 0.5117 0.5666 0.4086 0.6666 0.6984 0.6187

WebKB 6601 3960 3487 0.7306 0.7449 NA 0.7251 0.7377 NA 0.6995 0.7292 NA 0.6891 0.7369 NA 0.6712 0.4543 NA 0.8246
RELA 4080 2448 2101 0.7449 0.7256 0.7352 0.6984 0.6580 0.6793 0.5987 0.6268 0.6459 0.5844 0.6338 0.6582 0.5718 0.7141 0.7334 0.6965

Arrhy 64 38 13 0.6762 0.6095 0.6527 0.5625 0.6074 0.6540 0.5626 0.6065 0.6543 0.5624 0.5341 0.5814 0.5540 0.6004 0.6230 0.5534

Average 0.8410 0.7943 0.7940 0.7357 0.7572 0.7592 0.6820 0.7091 0.7362 0.6640 0.7006 0.7240 0.6679 0.5786 0.5992 0.5563

P-value - 0.0098 0.0117 0.0010 0.0024 0.0020 0.0005 0.0005 0.0020 0.0005 0.0059 0.0078 0.0020 0.0010 0.0098 0.0024

three feature selection methods do not improve the performance of

LOF. This is mainly because LOF needs to re-tune its neighborhood

size MinPts to obtain desirable performance on the data sets with

reduced feature sets due to its sensitivity to the data distribution.

6.7 Q4. Scalability
6.7.1 Experiment Settings. We examine the scalability of POP

w.r.t. both of data size and dimensionality.
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Figure 2: Scalability Test Results. ABOD and CBRW run out
of memory when the number of objects reaches 25,000 and
the number of features reaches 8,000, respectively.

We use six subsets of the largest data set CelebA to test the

scalability w.r.t. data size. The smallest data subset contains 6,250

objects, and the sizes of subsequent subsets are increased by a factor

of two until the largest subset containing 200,000 objects. All these

data subsets contain the same number of features (i.e., 39).

In terms of scalability w.r.t. the number of features, four subsets

of the data set with the largest number of features, R8, are used. The
data subset with the lowest dimensionality contains 1,000 features,

and subsequent data sets are created by increasing the dimension-

ality by a factor of 2, until the data set with highest dimensionality

containing 8,000 features. All these four data subsets contain the

same number of objects (i.e., 3,974).

6.7.2 Findings - POP Obtaining Good Scalability. As expected,
POP is linear to the data size and quadratic to the number of fea-

tures. In the left panel, POP runs comparably fast to CBRW, iForest

and ZERO, and is two to four orders of magnitude faster than LOF

and ABOD. In the right panel, POP and CBRW have similar runtime

and they run considerably slower than the other four detectors,

since both POP and CBRWmodel complex value interactions while

the other four detectors ignore these interactions. Although POP

and CBRW runs slower, they obtain significantly better AUC per-

formance than their counterparts, as shown in Tables 1 - 2.

6.8 Q5. Sensitivity
6.8.1 Experimental Settings. We investigate the sensitivity of

POP w.r.t. its only parameter k on all the 12 data sets using a wide

range of k , i.e., {0.1, 0.2, 0.3, 0.4, 0.5}.

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

w7a

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

wap.wc

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

R8

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

CAL16

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

AD

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

CAL28

0.1 0.2 0.3 0.4 0.5

k

0.8

0.85

0.9

0.95

1

A
U
C

CelebA

0.1 0.2 0.3 0.4 0.5

k

0.6

0.7

0.8

0.9

1

A
U
C

PCMAC

0.1 0.2 0.3 0.4 0.5

k

0.6

0.7

0.8

0.9

1

A
U
C

BASE

0.1 0.2 0.3 0.4 0.5

k

0.6

0.7

0.8

0.9

1

A
U
C

WebKB

0.1 0.2 0.3 0.4 0.5

k

0.6

0.7

0.8

0.9

1

A
U
C

RELA

0.1 0.2 0.3 0.4 0.5

k

0.5

0.6

0.7

0.8

0.9

1

A
U
C

Arrhy

Figure 3: Sensitivity Test Results of POP w.r.t. k

6.8.2 Findings - POP Performing Stably w.r.t. k . The sensitivity
test results of POP are shown in Figure 3. POP performs very sta-

bly w.r.t. k on all the data sets except w7a and Arrhy when k is



chosen in {0.2, 0.3, 0.4}. This may be because POP is able to retain

stable outlierness of the top-ranked outlying values in the value

outlierness vector when the selected value subset mainly contains

outlying values. We conjecture that the two data setsw7a and Arrhy
may contain a larger proportion of outlying values, so a larger k is

required to have a more effective modeling of the selective value

couplings. In general, k = 0.3 is recommended in practice.

6.9 Q6. Convergence
6.9.1 Experimental Settings. This section examines the ℓ1-norm

convergence, i.e., ∆ = | |qt+1 − qt | |1, on all the 12 data sets.

6.9.2 Findings - POP Obtaining Rapid Convergence. The con-

vergence test results are presented in Figure 4. As expected, POP

converges on all the 12 data sets. POP converges within 100 iter-

ations in most of the data sets. POP takes slight longer time to

converge in a few data sets, e.g., w7a, BASE, WebKB and Arrhy.
This may be because these data sets contain larger percentages of

outlying values, or they contain many noisy values that behave

quite similarly as outlying values. Nevertheless, POP converges

within 160 iterations on these data sets.
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Figure 4: Convergence Test Results

7 CONCLUSIONS
A novel framework SelectVC is proposed to combine value selection

with outlier scoring by iteratively learning selective value couplings

to detect outliers in high-dimensional categorical data. SelectVC

is further instantiated to a partial outlierness propagation-based

method called POP. Our extensive empirical results show that (i)

POP performs significantly better than 20 competitors, including

five state-of-the-art full space- or subspace-based outlier detec-

tors and their combinations with three outlying feature selection

methods, on 12 real-world high-dimensional data with a variety of

irrelevant features; (ii) The partial outlierness propagation enables

POP to obtain about 3% AUC improvement, while the joint opti-

mization enables POP to gain at least 5% AUC improvement; and

(iii) POP obtains good scalability, stable performance w.r.t. the only

parameter k and fast convergence rate. These results justify our

key insight that modeling only selective value couplings enables

us to well contrast outlying behaviors to non-outlying behaviors.

In future, we plan to extend POP by capturing the interactions of

values with a set of arbitrary-length outlying/normal patterns to

identify more sophisticated outliers.
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