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Abstract
Modeling high-dimensional dependence is widely studied to ex-
plore deep relations in multiple variables particularly useful for
financial risk assessment. Very often, strong restrictions are ap-
plied on a dependence structure by existing high-dimensional de-
pendence models. These restrictions disabled the detection of so-
phisticated structures such as asymmetry, upper and lower tail de-
pendence between multiple variables. The paper proposes a partial
regular vine copula model to relax these restrictions. The new mod-
el employs partial correlation to construct the regular vine struc-
ture, which is algebraically independent. This model is also able
to capture the asymmetric characteristics among multiple variables
by using two-parametric copula with flexible lower and upper tail
dependence. Our method is tested on a cross-country stock market
data set to analyse the asymmetry and tail dependence. The high
prediction performance is examined by the Value at Risk, which is
a commonly adopted evaluation measure in financial market.

1 Introduction
Learning dependeces among high-dimensional variables, has
been widely studied and applied in a large number of areas,
such as social media and financial markets. Existing stud-
ies concern on the degree of dependence, however, few of
them focus on the another important respect of dependence–
the dependence structure, especially the asymmetric and tail
dependence characteristics. Dependence structure studying
plays a important role in financial area, especially in portfo-
lio investment theory. Typical models of investment theory
impose strong restriction on the dependence structure, which
did not consider the asymmetric characteristics. It results in
these typical models do not reflect the scenario in real world.
For example, in the cross-country stock market, the typical
investment theory suggests portfolio diversification. How-
ever, it is useless when all stocks tend to fall as the market
falls, which is demonstrated in 2008 global financial crisis.
It indicates that stock returns have stronger dependence dur-
ing bear market than bull market, which results in that stock
returns may fall together, rather than boom together.

Recently, copula based dependence modelling emerges
as a promising tool. Copula based dependence modelling
is free of the linear correlation restriction, and allow de-
pendence and correlation to vary over time. It uses corre-
lation/conditional correlation to capture the natural of de-
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pendence, and at the same time, it can build flexible struc-
ture to model complex high-dimensional dependencies struc-
ture. In order to model the asymmetric dependence with
high-dimensional financial variables, it is essential to devel-
op flexible dependence model with parametric copula fam-
ilies, which is suitable to multivariate data with various de-
pendence structures. Hence, the model should have desired
properties, which are described as follow:

(i). Flexible dependence structure, without imposing any
assumptions or restrictions;

(ii). Wide range of dependence, allowing for both positive
and negative dependencies;

(iii). Flexible rang of tail dependence, allowing for various
lower and upper tail dependencies;

(iv). Computationally feasible estimation for the joint den-
sity functions.

The existing multivariate copula models with parametric
families did not satisfy all above conditions. Typically,
multivariate Archimedean copula model has the structure
with only narrow range of negative dependence [19]. The
multivariate Gaussian copula model is not suitable to model
the asymmetric characteristics, since (1) Gaussian copula
does not have lower and upper tail dependence, and (2) the
Gaussian assumption are not appropriate in the real world
[2, 9]. The multivariate t copula model, which is studied
by [8, 20], does not have flexible lower and upper tail
dependence since t copula has same lower and upper tail
dependence. Canonical vine or D vine copula model, such
as [1, 4, 22], have wide range of dependence by choosing
appropriate bivariate copula families. However, they does
not have flexible dependence structure due to their structure
assumptions. These assumptions imposed on dependence
structure lead to their dependence structure may not reflect
the actual dependence in high-dimensional data.

In order to fulfill the above needs, we propose a new par-
tial correlation-based regular vine copula model with asym-
metric dependence. The new model can capture asymmetric
dependence in high-dimensional data. The new model em-
ploys regular vine theory to construct the dependence struc-
ture, in which it does not impose any strong restriction on



the dependence structure. Hence, it can reflect the actual
dependence structure of high-dimensional data. In addition,
copula family with flexible lower and upper tail dependence
are connecting with our new models, which ensure the new
model have a wide range of lower and upper tail dependence.

The paper have these contributions: (1) The paper de-
velops a new partial correlation based algorithm to construc-
t the regular vine structure, which is called partial regular
vine. The partial regular vine can uniquely determine the
correlation matrix and be algebraically independent. It indi-
cates that dependence structure constructed via partial cor-
relation is more flexible, since the current tree structure is
independently from the established tree structure and bivari-
ate copulas selection. Hence, our model did not impose any
strong restriction on the dependence structure; (2) For al-
l linking bivariate copula on the partial regular vine depen-
dence structure, we use only the BB1, survival BB1, BB7
and survival BB7, since these copula have both lower and
upper tail dependence that can range independently from 0
to 1, and; (3) In the literature, it is the first time to analyze
the moving trends of lower and upper tail dependence with
the high-dimensional data structure. In addition, we also an-
alyze the trends of lower and upper tail dependence during
dynamic period.

The rest of paper is structured as follow. Section 2 in-
troduces the definition of copula and its related tail depen-
dence. The regular vine theorem and related definitions are
introduced in Section 3. Section 4 discuss how to construct
the partial regular vine copula model and copula family se-
lection. Section 5 discusses how to estimate parameters in
partial regular vine copula and marginal distribution. Value
at Risk, which is the popular evaluation method used in fi-
nancial market, and its related tests are discussed in Section
7. Finally, Section 8 conclude the paper.

2 Introducation to Copula and Tail Dependence
In the Section, we introduce the definitions of copula and
its tail dependence. Due to the theorem in [21], an n-
dimensional joint distribution can be decomposed into its
n univariate marginal distributions and an n-dimensional
copula function:

Let x ≡ [x1, ..., xn]
′ ∼ F, with xi ∼ Fi

then ∃ C : [0, 1]n → [0, 1]

s.t. F (y) = C(F1(x1), ..., Fn(xn)) ∀ x ∈ Rn

(2.1)

Thus, copula C is the function that maps the univariate
marginal distributions Fi to the joint distribution F . Accord-
ing the above representation of the joint cumulative distri-
bution function, the representation of the joint probability
distribution function is as following:

f(y1, ..., yn) = c(F1(y1), ..., Fn(yn))×
n∏

i=1

fi(yi)

where c(u1, ..., un) =
∂nC(u1, ..., un)

∂u1, ..., ∂un

(2.2)

The representation is typically useful. Given any set of
n univariate distribution (F1, ..., Fn) and any copula C, the
function F in Equation (2.1) can give a valid joint distribu-
tion with marginal distributions (F1, ..., Fn). The ability to
sperate dependence structure independently from marginal
distribution allow researchers to focus on the dependence
structure, ignoring the effect of marginal distribution.

One important copula-based dependence measuremen-
t is tail dependence coefficient, which indicates the depen-
dence between extreme events. The extremal dependence of
a multivariate distribution F can be described by various tail
dependence parameters of its copula C. Suppose that ran-
dom vector (U1, ..., Un) := (F1(x1), ...Fn(Xn)) with stan-
dard uniform marginal distribution. The lower and upper tail
dependence coefficients are defined as follow:

λL = lim
u→0

Pr{U1 ≤ u, ..., Un ≤ u | Un ≤ u}

= lim
u→0

C(u, ..., u)

u

λU = lim
u→0

Pr{U1 > 1− u, ..., Un > 1− u | Un > 1− u}

= lim
u→0

C(1− u, ..., 1− u)

u

(2.3)

where C is denoted as the survival function of C. If
λU exists and λU ∈ (0, 1], then copula C has upper
tail dependence coefficient, and no upper tail dependence
coefficient if λU = 0. Similarly, If λL exists and λL ∈ (0, 1],
then copula C has upper tail dependence coefficient, and no
upper tail dependence coefficient if λL = 0. In addition, tail
dependence is one of important properties that discriminate
the different copula families. For example, Gumbel copula
has only upper tail dependence coefficient, and Gaussian
copula does not allow for any tail dependence coefficient.
For simplicity, the tail dependence in the late of paper are
short for tail dependence coefficient.

Frahm et al [11] proposed a non-parametric method to
obtain the non-parametric estimator of lower and upper tail
dependence by using ’Pickand’s dependence function’. One
simple nonparametric estimator of tail dependence is the log
estimator. In the paper, the non-parametric method is used
for roughly analyzing the tail dependence coefficient before
we building the regular vine copula model.



3 Regular Vine Theory
In the Section, we introduce the regular vine theory and its
related definitions. Vine theory is introduced by [3], which is
one kind of graphical model. Let V , T , E, N be denoted as
vine structure, trees, edges, nodes respectively. The regular
vine and its related definition are given as follow:

DEFINITION 3.1. (REGULAR VINE) V is a regular vine on
n variables if

(i). T1 is a tree with nodes N1 = 1, ..., n and a set of edges
denoted by E1;

(ii). For j = 2, ..., n−1, Tj is a tree with nodes Nj = Ej−1

and edge set Ej;

(iii). (proximity condition) For j = 2, ..., n − 1 and a, b ∈
Ej , #(a △ b) = 2, where △ denotes the symmetric
difference operator and # denotes the cardinality.

DEFINITION 3.2. (COMPLETE UNION) For any ei ∈
Ei, i ≤ n − 1, k = 2, ..., i, the subset Uei(k) of Ei−k =
Ni−k+1 is defined by:

Uei(k) = {e ∈ Ei−k | ∃ ej ∈ Ej , j = 1− (k − 1), ..., i− 1

with e ∈ ei−(k−1) ∈ ei−(k−2) ∈ ... ∈ ei−1 ∈ ei}

(3.4)

Then, the complete union of ei ∈ Ei is defined as

(3.5) Uei = Uei(k)

Thus, Uei is a set of all nodes in Ni that are connected
by the edges ei. By definition, Uei(1) = ei.

DEFINITION 3.3. For e = {a, b} ∈ Ei, a, b ∈ Ei−1, i =
1, ..., n− 1, the conditioning set (De) with edge e is

(3.6) De = Ua ∩ Ub,

and the conditioned set (Ce) with e are

(3.7) Ce(a) = Ua\De

(3.8) Ce(b) = Ub\De

(3.9) Ce = Ce(a) ∪ Ce(b) = Ua △ Ub

The constraint set for e is
(3.10)
CVe = {({Ce(a), Ce(b)}, De) | i = 1, ..., n− 1, e ∈ Ei, e = a, b}

The edge e can be written as {Ce|De}, where the condition-
ing set De is shown to the right of ”|”, and the conditioned
set Ce to the left. {Ua\De} is the set which includes al-
l variables in the set Ua, but excludes the variables in the
conditioning set De.

DEFINITION 3.4. (REGULAR VINE COPULA SPECIFICATION)
A regular vine copula specification on n variables is
a multivariate distribution function is defined as C=
(V,B(V ), θ(B(V )))

(i). V is a vine structure on n variables;

(ii). B(V ) = {Ce(a),e(b)|De
|ei ∈ Ei, i = 1, ..., n − 1} is

the set of n(n− 1)/2 copula families; and

(iii). θ(B(V )) = {θe(a),e(b)|De
|e ∈ Ei, i = 1, ..., n − 1}

is the set of parameters, corresponding to the copula
family in B(V ).

Based on the definition of regular vine specification, the
full specification of a regular vine copula has three compo-
nents: the vine tree structure V , the copula family set B(V ),
and the corresponding copula parameters θ(B(V )). Then,
there is a corresponding density distribution that realises the
regular vine copula specification, which is given as follow:

f1:n(x|V,B, θ) =

n∏
k=1

fk(xk)·

n−1∏
i=1

∏
e∈Ei

ce(a),e(b)|De(Fe(a)|De(xe(a)|xDe), Fe(b)|De(xe(b)|xDe))

(3.11)

where x = (x1, x2, ..., xn), e = a, b ∈ E and xDe stands
for the variables in De. fi is denoted as the density function
of the corresponding F for i = 1, ..., n. The corresponding
density function of multivariate vine copula can be factorized
in terms of many bivariate copulas, hence, various vine tree
structures V can be constructed. For n-dimensional regular
vine, there are (n − 1) bivariate copulas at tree level 1, and
(n− 2) bivariate copulas at tree level 2. Typically, there are
(n− l) bivariate copulas in tree level l for l = 2, ..., n− 1.

4 Regular Vine Copula Model with Asymmetric
Dependence

4.1 Regular Vine Tree Structure Construction In the
Section, we discuss how to build the vine tree structure
V firstly, and then consider how to select the bivariate
copula for all edges in vine tree structure. The regular
vine tree structure is dependence structure which connects
all bivariate copula together. For dependence structure with
dimension < 5, the vine tree structure is either canonical
vine or D vine. However, for dependence structure with high
dimensional (dimension ≥ 5), there are three dependence
structures, including regular, canonical or D vine. The
canonical and D vine are two boundary cases of regular
vine. The canonical vine impose restrictions on vine tree
dependence structure, in which each variable connect to one
variable in each tree. Hence, canonical vine has a star-like
structure. D vine has the restriction that each variable links



Algorithm 1 Regular Vine Construction via Top-to-Bottom
Strategy
Require: Observations of n variables

1: Calculate partial correlation ρx,y ; I\{x,y} for all possible pair
variables {x, y}, x, y ∈ {1, ..., n} = I .

2: Find the Maximum Spanning Tree (MST), which can maximize
the sum of absolute value of partial correlation ρ, such as:
max

∑
|ρx,y ; I\{x,y}|.

3: for j = 2, ..., n− 1 do
4: In Tj , based on the structure in Tj−1, find all possible

edges {e(p), e(q) ; De} which are part of tree Tj , where
e = {p, q} ∈ I , and {p, q} ̸∈ {x, y}.

5: Ensure that these edges satisfy the proximity condition in
Definition 1;

6: Choose MST which can maximize the sum of absolute value
of partial correlation, max

∑
|ρe(p),e(q) ;De |, where ρ is

partial correlation.
7: end for
8: return Partial regular vine tree structure

to no more than two variables, which results in a flat-path-
like structure. Regular vine, which does not impose any
assumption or restriction on the vine structure, can reflect
the actual dependence structure of high-dimensional data set.
Hence, for high-dimensional data, regular vine is better than
canonical vine or D vine.

We develop a new partial correlation-based algorithm
to construct the regular vine, which is called partial regular
vine. We consider to use partial correlation to produce the
regular vine tree structure, since (1) The partial correlation
is obtained directly from the data, without knowing any
structure or parametric assumption. The partial correlation
ρ is defined by:

(4.12) ρ1,2:3,...,n = − K12√
K11K22

where Kij is denoted as the (i, j) cofactor of the correlation
matrix. The partial correlation can be computed from corre-
lation with the following recursive formula:

(4.13) ρ1,2:3,...,n =
ρ1,2:3,...,n−1 − ρ1,n:3,...,n−1 · ρ2,n:3,...,n−1√

1− ρ21,n:3,...,n−1

√
1− ρ22,n:3,...,n−1

Obviously, ρ1,2 is equal to correlation. Hence, when build-
ing the partial regular vine tree structure, the current vine tree
structure is independently from the previous tree structure,
and (2) As we discussed in Section 3, for copula selection,
regular vine tree structure built by partial correlation can en-
sure that copula selection in current tree structure is inde-
pendently from the copula selection result in previous tree.
Hence, partial correlation-based regular vine tree structure
ensure we focus on the dependence structure itself, ignoring
the effect of different copula family selection.

The algorithm to construct the partial regular vine tree
structure is given in Algorithm 1. Based on the partial corre-

lation definition, the partial correlation is equal to correlation
in the first tree T1. In the paper, we use Kendall’s tau τ to
measure the correlation between any two variables, since it
can measure dependence independently of the assumed dis-
tribution. Hence, in T1, ρ1,2 = τ1,2. To build the first tree
T1, we firstly calculate partial correlation ρ for all possible
pair variables. Then, we employ the Maximum Spanning
Tree (MST) to find the vine tree structure in T1. Typically,
the Algorithm of Prim is used to producing a Minimum S-
panning Tree [7]. However, Algorithm of Prim can work in
both ways. That means that Algorithm of Prim can also pro-
duce the Maximum Spanning Tree. By using the MST, we
can build a large number of regular vine tree structures, we
choose the structure which can maximize the sum of absolute
value of partial correlation ρ. Once the first tree structure is
identified, we starting building following trees, which em-
ploys similar strategy used in the first tree building. For tree
building from T2 to Tn−1, all edges must satisfy the prox-
imity condition mentioned in Section 3. The partial regular
vine is obtained by assigning a partial correlation ρ with a
value chosen arbitrarily in the interval (-1,1) to each edge e
that is defined in Section 3. Therefore, the most important
advantage of the partial regular vine is that it can uniquely
determine the correlation matrix and algebraically indepen-
dent. The limitation of partial regular vine is that the partial
regula vine structure V is built on elliptical copulas. How-
ever, the theorem in [3] indicates that a partial regular vine
structure can provide a bijective mapping from (−1, 1)(

n
2)

into the set of positive definition matrices with 1’s on the
diagonal. Therefore, we can construct partial regular vine
structure firstly, and then map it into the conditional corre-
lation based regular vine dependence structure. Then, we
can fit the whole structure with various copulas. We can re-
move the limitation of partial regular vine and fit the vine tree
structure with various copula, other than elliptical copula.

4.2 Bivariate Copula Family Selection Once the vine
tree structure is identified, the next step is to choose appropri-
ate bivariate copula for all edges. According to the theory in
[15], if the multivariate uniform vector U = (U1, ..., Un) =
(1 − U1, ..., 1 − Un), then U is a reflection of symme-
try. If the copula density function C = c(u1, ..., un) =
c(1− u1, ..., 1− un), then the vine is a reflection symmetric
dependence structure. It means that if we select the copula
with symmetric lower and upper tail dependence, then it is a
reflection of symmetric dependence structure. If we want to
model the asymmetric dependence, it is better to choose cop-
ula with various lower and upper tail dependence. Current-
ly, There are a huge of copula families, which have various
tail dependencies. The detail of tail dependence of copu-
la families are listed in Table 1. For one-parametric copula,
Gaussian and Frank copulas do not have any tail dependence,
Clayton and Joe copulas have only lower tail dependence,



Table 1: The Tail Dependence of Copula Family

Lower Tail Dependence Upper Tail Dependence
Gaussian - -

t 2tν+1(µ(ν, ϕ)) 2tν+1(µ(ν, ϕ))

Gumbel - 2−1/ϕ

Frank - -
Clayton 2−1/ϕ -

Joe - 2 − 21/ϕ

BB1 2−1/(ϕδ) 2 − 21/δ

BB6 - 2 − 21/(δϕ)

BB7 2 − 21/δ 2 − 21/ϕ

S.BB7 2 − 21/ϕ 2 − 21/δ

S.BB1 2 − 21/δ 2−1/(ϕδ)

BB8 - 2−1/ϕ when δ = 1

S.BB1 and S.BB7 are survival BB1 and BB7 copula respectively.
ϕ and δ are parameters of the corresponding copula family. For t

copula, µ(ν, ϕ) =
(
−
√
ν + 1

√
1−ϕ
1+ϕ

)
.

and Gumbel copula has only upper tail dependence. For two-
parametric copula, t copula has symmetric upper and lower
tail dependence, which reflects the symmetric dependence.
BB1, S.BB1 BB7 and S.BB7 copulas have different lower
and upper tail dependencies, where S.BB1 and S.BB7 copu-
la are short for survival (rotated 180 degree) BB1 and BB7
copulas respectively. BB6 and BB8 copulas have only upper
tail dependence. To capture the asymmetric characteristics,
the BB1, S.BB1, BB7 and S.BB7 copulas should be the best
choice since their have various lower and upper tail depen-
dence, which can vary independently from 0 to 1.

5 Marginal Distribution Specification and Parameter
Estimate

In the Section, we discuss the marginal distribution spec-
ification and parameter estimate. According to the Equa-
tion (2.2), the multivariate joint density function has two
parts, one is multivariate copula mentioned in above sec-
tion, another part is the marginal distributions. For finan-
cial data, ARMA(1,1)-GARCH(1,1) model is best choice for
the marginal distribution [16] [10]. Typically, let Xt(t =
0, 1, ..., Z) be a time series of the price on a financial as-
set, such as stock market index. Then the return of financial
asset can be defined as log(Xt/Xt−1). Suppose there are
n assets with returns rt,1, ..., rt,n. The estimation of partial
regular vine copula model can be proceed in two steps. In
the first step, we select the appropriate marginal distribution
of variables (i.e.financial asset), which is univariate distribu-
tion. Due to the character of financial assets, such as volatil-
ity cluster, a common choice is ARMA(1,1)-GARCH(1,1)
with Student-t innovations, which is defined as follow:

rt,j = cj + φjrt−1,j + γjεt−1,j + εt,j ,

εt,j = σt,j · et,j
σ2
t,j = ωj + αjε

2
t−1,j + βjσ

2
t−1,j

(5.14)

where j = 1, ..., n, t = 1, ..., Z and et,j is the inno-
vations which follow Student-t distribution. Let θmj =

(cj , φj , γj , ωj , αj , βj) be denoted as the parameter set of
marginal distribution. Let θc be denoted as the parameters
of multivariate copula functions. The multivariate joint log-
likelihood is given by:

L(θm1 , ..., θmn , θc) =

Z∑
t=1

logf(rt,1, ..., rt,n; θ
m
1 , ..., θmn , θc)

=

Z∑
t=1

log c(F1(rt,1), ..., Fn(rt,n); θ
c)

+

Z∑
t=1

n∑
j=1

log fj(rt,j ; θ
m
j )

(5.15)

where the multivariate c(· ; θc) is denoted as the regular vine
model. Maximum the Equation (5.15) is possible. How-
ever, it is time consuming when n is large. We use In-
ference Functions of Margins (IFM) method [14] to re-
solve the issue. IFM is two-step estimate method, which
can efficiently estimate the parameters. In the first step,
the marginal distribution ARMA(1,1)-GARCH(1,1) is em-
ployed to filtered the financial returns and the univariate pa-
rameters θmj = (cj , φj , γj , ωj , αj , βj) are derived. In the
second step, the joint log-likelihood in Equation (5.15) is
maximized over copula parameters θc, and the univariate pa-
rameters (cj , φj , γj , ωj , αj , βj) is fixed at the estimated val-
ue in the first step. It means that the joint log-likelihood is
reduced to the equation which consist of only copula param-
eters due to parameters of log-likelihood is fixed.

6 Value at Risk– A widely Used Evaluation in Financial
Market

Value at Risk (VaR) is a probabilistic metric of market risk
and is an industrial golden benchmark for measuring market
risk. VaR at the level (1− α) is defined by
(6.16)
V aRt(1− α) = −inf{c ∈ R : P (rt ≤ c|zt−1)| ≥ (1− α)}

where zt−1 represents the past information at time t − 1.
For a good model, it is capable to produce high quantity of
VaR. Given a set of financial returns, such as stock indices,
the portfolio returns can be defined as:

(6.17) rportfolio,t =
n∑

i=1

µiri,t

Suppose the current time is time t, we calculate the
Value at Risk forecasting at time t + 1. The process for
computing VaR is given as follow:

(i). Fit ARMA(1,1)-GARCH(1,1) with Student t innova-
tions with returns by using the Equation (5.14) Then,
the standardized residuals is obtained by :

(6.18) êt,j =
rt,j − ĉj − φ̂jrt−1,j − γ̂j σ̂t−1,j êt−1,j

σ̂t,j



(ii). The ex-ante garch variance forecast for j = 1, ..., n
can be computed as follow :

(6.19) σ̂2
t+1,j = ω̂j + α̂j ε̂

2
t1,j + β̂j σ̂

2
t,j

(iii). The standardized residuals obtained from Arma(1,1)-
garch(1,1) are transformed to approximately uniform
data uj = u1,j , ..., ut,j by using Student-t cumulative
distribution function;

(iv). Fit a regular vine structure with approximately unifor-
m data uj and estimate parameters of copula;

(v). Use the fitted regular vine structure with estimated
copula parameters to simulate a sample for each finan-
cial return variable, i.e.,vt+1,j ;

(vi). Transfer the sample to standard residuals by using the
inverse Student-t cumulative probability distribution
functions with parameters obtained in Step (i), and
then obtained the simulated standardised residuals,
i.e., êt+1,j ;

(vii). Calculate the one day forecast return and variance
for each financial variable by using the estimated
ARMA(1,1)-GARCH(1,1) which is calculated in Step
(i), i.e.,

(6.20) r̂t+1,j = cj + φ̂jrt,j + γ̂j ε̂t,j + ε̂t+1,j

(viii). The portfolio return is calculated by using Equation
(6.17). Then, we repeat from Steps (iv) to (vii)
for N times (e.g. N = 10000). Then, the 99%,
95%, and 90% VaR forecast is determined by taking
the corresponding 1%, 5% and 10% quantiles of the
portfolio return forecast respectively.

To validate the VaR forecast, we consider use the test of
ex-post exceedance, which is defined at time t as:

(6.21) It =

{
1, if rportfolio,t < V aRt(1− α);
0, otherwise.

where rt,portfolio is the ex-post observed portfolio return at
time t. If the VaR forecast is accurate, It should be equal
to the significance level α. In addition, the quality of VaR
forecasting can be judged by backtesting methods, including
unconditional, independent and conditional coverage tests,
which are presented in [13].

7 Case Study
We study the daily log-return data of 8 major Euro-
pean indices, including Athen Index Composite (GD.AT),
ATX(ˆATX), Euronext BEL-20 (BFX), CAC40 (ˆFCHI),
DAX(ˆGDAXI), FTSE 100 (ˆFTSE), SMI (ˆSSMI), and

Table 2: Non-parametric Tail Dependence Analysis

v1 v2 v3 v4 v5 v6 v7 v8
v1 0.33 0.29 0.24 0.16 0.26 0.21 0.29
v2 0.18 0.23 0.28 0.36 0.21 0.43 0.25
v3 0.24 0.45 0.52 0.53 0.53 0.53 0.49
v4 0.11 0.34 0.46 0.63 0.60 0.48 0.61
v5 0.17 0.33 0.39 0.73 0.45 0.54 0.57
v6 0.18 0.31 0.51 0.58 0.50 0.39 0.41
v7 0.11 0.28 0.37 0.29 0.36 0.36 0.47
v8 0.14 0.37 0.46 0.52 0.55 0.48 0.29

These values above (below) the diagonal are corresponding upper (lower)
tail dependencies.

AEX (AEX.AS), where symbols are in the correspond-
ing parenthesis. The number indicates the following in-
dices of Europeans stock market: v1=GD.AT, v2=ˆATX,
v3=ˆBFX, v4=ˆFCHI, v5=ˆGDAXI, v6=ˆFTSE, v7=ˆSSMI
and v8=AEX.AS. The eight major indices cover the majori-
ty of European stock, which reflect the most trading situation
of European stock market. In particular, the period we used
is from 01/03/2006 to 28/12/2012, totally 1682 observation-
s for European indices. All the data was downloaded from
FRB St. Louis (http://research.stlouisfed.org).

7.1 Non-parametric Dependence Analysis Before
building our model to fit the data, we perform a non-
parametric method to analyse the lower and upper tail
dependence, which is mentioned in Section 2. The results
are shown in Table 2. We can see that for total 56 pairs, 46
pairs have a strong upper tail dependence, which indicates
that their upper tail dependence are larger than lower tail
dependence. In addition, only 11 pairs have a small gap
( less than 0.1) between lower and upper tail dependence.
These descriptive statistics indicate that for most financial
returns, they have a stronger upper tail dependence than
lower tail dependence. Due to the large gap between lower
and upper tail dependence, it seems that the two kind of
tail dependencies are significantly different. Therefore, vine
copula model with asymmetric dependence can be used
for checking whether the two kind of tail dependencies are
significantly different.

7.2 Regular Vine Copula Specification and Tail Depen-
dence Analysis Each index returns are fit with univariate
ARMA(1,1)-GARCH(1,1) with Student-t innovations. The
tests of Box and Pierce (BP) [5] and Ljoung and Box (LB)
[17] are employed for checking the autocorrelation of stan-
dardised residuals. Table 3 shows the result of the two tests,
which indicates there are no autocorrelation left for all in-
dices in the standardise residuals ej and squared standard-
ised residuals e2j (all p values > 0.05). Then, the standard-
ised residuals are used as an argument of the partial regular
vine copula.

The next step is to build the partial regular vine copula
model. We can obtain the vine tree structure V by using



Table 3: Results of BP and LP Tests

j ej (BP) e2j (BP) ej (LP) e2j (LP)
GD.AT 0.573 0.199 0.573 0.199
ˆATX 0.500 0.113 0.499 0.113
ˆFCHI 0.798 0.150 0.798 0.149

ˆGDAXI 0.319 0.315 0.318 0.315
ˆFTSE 0.993 0.152 0.993 0.152
ˆSSMI 0.766 0.656 0.766 0.655

AEX.AS 0.223 0.713 0.222 0.713

ej and e2j are standardised residuals and squared s-
tandardised residuals respectively from Arma-garch fits.
These values in corresponding columns are the p value
for BP and LP tests.

Table 4: Tail Dependence Analysis by Using
Various Copula

Non-para* BB1 S.BB1**

λL λU λL λU λL λU

{v4, v6} 0.50 0.60 0.63 0.76 0.71 0.78
{v4, v5} 0.73 0.63 0.74 0.81 0.78 0.82
{v4, v8} 0.52 0.61 0.71 0.79 0.77 0.81
{v4, v7} 0.29 0.48 0.60 0.69 0.66 0.75
{v2, v7} 0.28 0.43 0.40 0.55 0.50 0.67
{v2, v3} 0.45 0.23 0.45 0.61 0.56 0.69
{v1, v2} 0.18 0.33 0.28 0.41 0.39 0.62

t BB7 S.BB7**

λL λU λL λU λL λU

{v4, v6} 0.54 0.54 0.76 0.82 0.77 0.82
{v4, v5} 0.71 0.71 0.83 0.85 0.82 0.87
{v4, v8} 0.62 0.62 0.80 0.84 0.81 0.84
{v4, v7} 0.45 0.45 0.71 0.75 0.72 0.75
{v2, v7} 0.18 0.18 0.54 0.62 0.57 0.61
{v2, v3} 0.37 0.37 0.61 0.68 0.63 0.67
{v1, v2} 0.25 0.25 0.41 0.48 0.46 0.44

* Non-para means that the tail dependence coefficient is calculat-
ed via non-parametric method;

** S.BB1 and S.BB7 are the survival BB1 and BB7 copula respec-
tively.

Algorithm 1. The Figure 1 shows the full tree structure that
is built by our algorithm. in Figure 1, we can see that there
are two main blocks in Tree 1. One is v2, which connects
to three variables, v1, v3 and v7. Another is v4, which
connects to four indices, such as v5, v6, v7 and v8. Once the
structure is identified, the next step is to choose the copula
for each edge. According to the analysis in Section 7.1, the
bivariate copula which can provide flexible lower and upper
tail dependence are most appropriate to build the partial
vine copula model with asymmetric dependence. Based on
the Section 4.2, BB1, S.BB1, BB7 and S.BB7 copula can
provide both lower and upper tail dependence. Therefore,
we consider to use the BB1, BB7, S.BB1 and S.BB7 copula
to build vine copula model with asymmetric dependence to
capture the asymmetric characteristics. In order to compare
the performance of various copula, we use only one copula
family (e.g., BB1) to fit the partial regular tree structure,
which allow us to easily assess the performance of each
copula family.

The Table 4 shown the tail dependence in Tree 1 of
Figure 1 during the period from 2006 to 2012. The non-
parametric and t copula results are listed as reference. The
result shows that lower tail dependence of pairs in Tree 1 are
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Figure 1: The Partial Regular Vine Tree Structure

less than their corresponding upper tail dependence. Various
bivariate copula provide different results. However, they
show same conclusion that lower tail dependence are less
than upper one.

In order to investigate the tail dependence and its move-
ment trend, we use fixed period (e.g., one year) as the in-
vestigation period of tail dependence. We then use a mov-
ing windows of 890 observations corresponding to approx-
imately 2.5 years of daily observations, from 6/02/2007 to
28/12/2012. The partial regular vine copula are re-estimated
daily in moving windows to produce tail dependence of in-
vestigation period. While estimating the tail dependence of
investigation period over the moving windows, we use the
vine tree structure mentioned in Figure 1 as partial regular
vine. For copula selection, we use mixed copula candida-
tures (including BB1, BB7, S.BB1 and S.BB7) to fit the vine
tree structure. The selection criteria is based on the AIC,
which means we choose copula candidatures with smallest
value of AIC. In order to find the movement trend in dif-
ferent length of period, we use 12, 24 or 36 months as the
investigation period. The result of pair {v1, v4} in tree 1
is shown in Figure 7.2. The top 2, middle 2 and bottom 2
figures in Figure 1 use the 12, 24, 36 months as the investi-
gation period respectively. The left 3 figures show the lower
and upper tail dependence, and the right 3 figures indicate
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Figure 2: Lower and Upper Tail Dependence

the corresponding difference between lower and upper tail
dependence. We can see that the gap between lower and up-
per tail dependence has a sharp increase since January 2009.
The gap in short investigation period (12 months) is larger
than those in long investigation period (24 or 36 months).
It indicates that the difference between lower and upper tail
dependence is more significant in short investigated period
than in long one. However, the difference is decreasing over
the length of investigation period increasing. For other pairs,
which are omitted due to the limitation of pages, we can find
similar conclusion.

7.3 Value at Risk Forecasting The predictable perfor-
mance of model can be examined via Value at Risk (VaR)
forecasting. We use a moving windows from 04/01/2007
to 28/12/2012, totally 1417 observations, corresponding to
approximately 4 years of trading days. A training period
from 04/01/2006 to 28/12/2006 with 264 observations, ap-
propriately 1 year of trading days. Then, the model are
re-estimated daily to produce the one day ahead VaR fore-
casting. While re-estimating the regular vine copula mod-
el, we use the partial regular vine tree structure shown in
Figure 1. Various copulas are fit in the regular vine copula
model, in order to compare the performance and conclude
whether model with asymmetric dependence are better than
those with symmetric dependence. In addition, we consider
to fit the canonical vine and D vine tree structure with cop-
ula, in order to compare the performance and find whether
regular vine tree structure are better than canonical vine or D
vine.

Table 5 shows the backtesting results of partial regular
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Figure 3: The VaR Forecasting of Portfolio Returns

vine, canonical vine and D vine with various copula. We fit
regular vine, canonical vine or D vine with the copula indi-
cated in second row of Table 5. BB1, S.BB1, BB7 and S.BB7
copulas have flexible lower and upper tail dependence, which
is a reflection of asymmetric dependence. The t copula has
symmetric lower and upper tail dependence, to reflect the
symmetric dependence. Clayton copula has only lower tail
dependence, and Gumbel copula has only upper tail depen-
dence. The BB1 and S.BB1 copulas have the best perfor-
mance, followed by the BB7 and S.BB7 copulas. The model
with t copula is better than Clayton, Gumbel and BB6 cop-
ulas which have only one tail dependence. Figure 3 shows
the corresponding VaR forecasting that produced by regular
vine with BB1 and t copulas.

In conclusion, the results of VaR forecasting indicate
that (1) the partial regular vine copula with asymmetric de-
pendence is better than those with symmetric lower and up-
per tail dependence, and (2) the models with two tail depen-
dencies are better than those with only one tail dependence.

8 Conclusion and Future Research
It is a very challenging task for modelling high-dimensional
and asymmetric dependence. Existing research made only
part progress regarding with the high-dimensional asymmet-
ric dependence modelling. This work has proposed a partial
correlation-based regular vine copula model to address this
challenging issue. It has been demonstrated by analyzing the
asymmetric dependence in cross-country stock markets. S-
ince the total parameters of partial regular vine copula model
may be increasing quadratically, we may optimize our model
by having conditional independence copula or Guassian cop-
ula in the edges in which partial correlations are weak, and
then apply it to data sets of a large number of dimensionali-
ties ( > 100 variables).



Table 5: The Backtesting Results of Value at Risk Forecasting

Partial Regular Vine Canonical Vine D Vine
1 − α BB1 S.BB1 BB7 S.BB7 t Clayton Gumbel BB1 S.BB1 BB7 BB1 S.BB1 BB7

PoF

99% 14 14 14 14 14 14 14 14 14 14 14 14 14
14 14 13 13 15 15 21 15 14 15 13 14 14

95% 70 70 70 70 70 70 70 70 70 70 70 70 70
72 73 73 74 71 70 81 74 74 76 75 76 74

90% 141 141 141 141 141 141 141 141 141 141 141 141 141
134 131 140 137 130 136 136 135 132 145 138 141 140

LRuc

99% 0.002 0.002 0.100 0.100 0.048 0.354 3.74 0.048 0.032 0.248 0.100 0.062 0.100
(0.964) (0.964) (0.751) (0.751) (0.826) (0.552) (0.053) (0.826) (0.858) (0.618) (0.751) (0.803) (0.751)

95% 0.020 0.068 0.068 0.145 0.051 0.224 1.466 0.145 0.145 0.385 0.220 0.068 0.145
(0.899) (0.794) (0.794) (0.703) (0.821) (0.636) (0.264) (0.703) (0.703) (0.309) (0.488) (0.273) (0.225)

90% 0.473 0.919 0.023 0.175 1.101 1.101 0.258 0.357 0.753 0.385 0.423 0.917 0.175
(0.492) (0.338) (0.880) (0.676) (0.294) (0.294) (0.612) (0.550) (0.385) (0.535) (0.338) (0.338) (0.676)

LRcc

99% 0.282 0.282 0.341 0.341 0.369 0.859 4.434 0.369 0.282 0.569 0.641 0.382 0.541
(0.869) (0.869) (0.843) (0.843) (0.831) (0.651) (0.109) (0.831) (0.869) (0.831) (0.467) (0.171) (0.869)

95% 1.436 2.599 2.599 2.479 1.946 1.729 2.662 1.685 1.785 2.351 1.436 2.530 1.436
(0.488) (0.273) (0.273) (0.290) (0.378) (0.421) (0.264) (0.431) (0.410) (0.309) (0.488) (0.826) (0.488)

90% 1.467 2.316 0.862 0.837 1.613 1.997 1.023 1.633 2.008 1.374 2.316 3.447 1.387
(0.480) (0.314) (0.650) (0.658) (0.446) (0.369) (0.600) (0.442) (0.366) (0.503) (0.314) (0.826) (0.763)

LRic

99% 0.280 0.280 0.241 0.241 0.321 0.505 0.694 0.321 0.250 0.321 0.541 0.320 0.441
(0.597) (0.597) (0.624) (0.624) (0.571) (0.477) (0.405) (0.571) (0.617) (0.571) (0.462) (0.572) (0.507)

95% 1.417 2.531 2.531 2.334 1.895 1.505 1.196 1.540 1.640 1.966 1.217 2.531 2.834
(0.234) (0.112) (0.112) (0.127) (0.169) (0.220) (0.274) (0.215) (0.200) (0.161) (0.270) (0.112) (0.092)

90% 0.994 1.397 0.839 0.662 0.513 0.896 0.765 1.276 1.255 0.989 1.397 2.530 1.212
(0.319) (0.237) (0.360) (0.416) (0.474) (0.344) (0.382) (0.259) (0.263) (0.320) (0.237) (0.112) (0.271)

The POF is percentage of failure. The first row shows the expected number of exceedances, and the following row is the actual number of exceedances. LRuc, LRic and
LRcc are short for the likelihood ratio of conditional, independent and unconditional coverage respectively. The first row shows the value, while the corresponding p value
is given the parenthesis in the following row. The critical value of LRuc or LRic is 3.841, while the critical value of LRcc is 5.991.
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