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Abstract—Recently, there has been a great interest in feature
based image source identification. Previous statistical learning
based methods usually defined the identification process as a
classification problem. They assumed the dependence of features
and the dependence of models. However, the two assumption are
usually problematic, because of the genuine coupling of features
and models. To address the two issues, in this paper, we propose a
new image source identification scheme. For the feature coupling,
a coupled feature representation is adopted to analyze the coupled
interaction among features. The coupling relations among fea-
tures and their powers are quantified with Pearson’s correlations,
and integrated in a Taylor-like expansion manner. Regarding
model coupling, a new coupled model probability representation
is developed. The model coupling relationships are characterized
with conditional probabilities induced by confusion matrix. The
conditional probabilities are then combined with the law of total
probability. The experiments carried out on the Dresden image
collection confirm the effectiveness of the proposed scheme. Via
mining the feature coupling and model coupling, the identification
accuracy can be significantly improved.

Index Terms—Image source identification, feature coupling,
model coupling, machine learning, digital forensics.

I. Introduction

W ITH the pervasive connectivity and availability of the
Internet and digital imaging technologies, massive dig-

ital images are created and used in everyday’s life. Nowadays,
more and more governmental, legal, scientific organizations
use digital images as crucial evidence to make decisions
[1]. Source identification is one of the most fundamental
requirements in these scenarios, which aims to associate an
image with its acquisition device. For example, identifying
source device of child abuse images in court, verifying the
owner of images for copyright disputing [2].

Existing source identification approaches can be classified
into three categories. The apparent simple solution is the image
metadata based approach, which is to investigate the EXIF
(Exchangeable Image File) header [3] of an image. The image
source related information, such as camera brand, model, are
directly embedded in the EXIF header. However, the metadata
based solution is unreliable in practice, since the EXIF header
can be easily manipulated. The watermark based approach
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[4, 5] addresses the issue of source identification via insert-
ing into the image a watermark. The watermark carries the
source related information. However, the watermark injection
module can increase the production cost of digital cameras.
Recently, researchers have been devoted to the feature based
approach [6–10]. Firstly, features on hardware or software-
related fingerprints left during the image acquisition process
are extracted. Then, the source identification is regarded as
classification problem and solved with statistical classifiers
such as support vector machine (SVM) [11]. In this paper,
we focus on the feature based approach.

Traditional feature based approach usually assume the inde-
pendence of features and the independence of models. That is,
the extracted features are directly feed into the statistical clas-
sifiers without mining their relationships. Moreover, the output
labels of classifier are straightforward used as identification
results, without further considering the relationships among
source models. However, the feature independence and model
independence assumptions are usually problematic, because of
the genuine coupling of both features and models.

• Feature Coupling: The features characterize the hardware
or software-related fingerprints from different views, they
are naturally related to each other in certain ways. For
example, the Average Pixel Value and Neighbor Dis-
tribution Center of Mass features both describe pixel
distributions of different color bands with different views,
those features tend to have the related distributions.

• Model Coupling: The camera models designed by the
same manufacturer tend to be related to each other,
because those models may have the analogous hard-
ware infrastructure and similar image processing algo-
rithms. As an example, the models Agfa DC-504 and
Agfa Sensor530s tend to couple with each other, and the
identification results of the two models could be mixed
up.

This work is to investigate the issues of feature coupling and
model coupling for image source identification. Our goal is to
design a new image source identification scheme which can
capture both the feature coupling and model coupling relation-
ships. The major contributions of our work are summarized as
follows.

• To the best of our knowledge, our work is the first to
identify and address the issues of feature coupling and
model coupling for source camera identification.

• We design a new image source identification scheme,
which can capture the feature coupling via coupled fea-



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XX, NO.XX, XX 2017 2

ture representation, and the model coupling by coupled
model probability representation.

• A novel coupled feature representation is employed to
analyze the coupled interaction among features, which
can successfully capture the intrinsic linear and non-linear
coupling relationships. The coupling relations among
features and their powers are quantified with Pearson’s
correlations, and integrated in a Taylor-like expansion
manner.

• We propose a new coupled model probability represen-
tation to capture the dependence relationships among
source models. The model coupling relationships are
characterized with conditional probabilities induced by
confusion matrix. The conditional probabilities are then
combined following the law of total probability.

The remainder of the paper is structured as follows. Some
related work is briefly reviewed in Section II. Section III
demonstrates the feature coupling and model coupling phe-
nomenons on a real-world dataset. Section IV presents the new
image source identification scheme in detail. Section V reports
the experiments and results. Finally, the paper is concluded in
Section VI.

II. Related work

Recently, researchers have been devoted on the feature
based image source identification solutions [6–10]. Existing
research efforts can be classified into two categories. The first
is to design sophisticated features to capture the fingerprints
left during the image acquisition process. Based on these fea-
tures, the second category of researches focus on developing
novel statistical leaning based identification solutions.

To our best knowledge, both the problems of feature cou-
pling and model coupling haven’t been addressed in existing
researches on feature based image source identification.

A. Features of Image Source Identification

Research efforts of this category aim to design various fea-
tures to capture the intrinsic hardware artifacts and software-
related fingerprints left during the image acquisition process.
The pattern noise [12–18], lens radial distortion [19–21],
chromatic aberration [22], and sensor dust [23, 24] are the
typical features of hardware artifacts. Image-related features
[7] and artifacts introduced by color filter array [6] are two
representatives of software-related features.

Kharrazi et al.s work [7] is the first endeavor in this domain.
Their work was motivated by the observation that an output
image is greatly effected by the color filter arrays demo-
saicing algorithm and color transformation. In their research,
34 features were developed to capture the underlying color
characteristics of different cameras. The hot pixels or dead
pixels are treated as evidence for source camera identification
in Geradts et al.’s work [25]. Dirik et al. [23] observed that
dust spots can be a useful fingerprint for digital single lens
reflex cameras, and they developed a novel image source
identification method based on sensor dust traces. Choi et
al.’s solution [19] was motivated by the observation that the
majority of digital cameras are equipped with lenses having

spherical surfaces, whose inherent radial distortions serve as
unique fingerprints. They used intrinsic lens radial distortion
for image source identification. In literature [22], Van et al.
estimated the parameters of lateral chromatic aberration and
used them as features for camera identification. The underline
idea is the chromatic aberration phenomenon, where lights of
different wavelengths fail to converge at the same position on
the focal plane. Several researches have been focused on using
the photo-response nonuniformity noise (PRNU) as fingerprint
for camera identification. Lukás̆ et al.’s effort [12] is the first
step towards this direction. In their approach, firstly, original
images are denoised with a wavelet denoising filter to attain
PRNU. Then, by averaging the PRNU of images, the reference
PRNU of the camera can be obtained. Finally, the correction
between PRNU of an image and the camera reference PRNU
was used to perform the image source identification. Li et
al. [15] argued that color filter array can lead to inaccurate
extraction of PRNU. To address this issue, they decomposed
each color channel into four sub-images and extracted the
PRNU from each sub-image. The PRNU of the sub-images
are then combined.

Most recently, Convolutional Neural Networks (CNNs) is
used to extract feature for image source identification [26–
28]. Different from previous works replying on hand-crafted
descriptors, the CNNs based manner [26–28] takes advantage
of great amount of data in order to learn characteristic features
directly from the data itself. In other words, that is purely data-
driven.

B. Statistical Leaning based Image Source Identification
After feature extraction, image source identification can be

treated as machine learning problem and solved with statistical
learning tools. Existing research works towards this direction
can be classified into two categories: supervised learning based
approaches and unsupervised learning based approaches.

In the supervised learning based approaches, images from
a number of known camera models are collected in advance,
and the target images are assumed to be from one of the given
camera models. In this situation, image source identification
is treated as a K-class (K is the number of known models)
classification problem, and solved with multi-class classifiers
such as multi-class SVM [6–10]. In a more challenging open
set scenario, the target images may also come from unknown
sources. The key is how to identify images of the unknown
models as well as distinguish the images of the known models
[29, 30]. Costa et al. [29] proposed a decision boundary
carving based approach (DBC) to deal with unknown models.
Regarding the images of a known model as positive samples
and the images of other known models as negative samples, a
binary SVM is trained. Taking unknown models into account,
the decision boundary of the SVM is adjusted towards the
positive class and outwards the negative class to minimize
future false positive matches. Huang et al. [30] propose a new
scheme, namely Source Camera Identification with Unknown
models (SCIU), to address the problem of unknown. SCIU can
explore the information of unknown models through unknown
detection and unknown expansion, and then incorporate the
unknown information into the (K + 1)-class classification.
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Fig. 1: The coupling relationships of the 34 features (For clarity, the absolute value of Pearson’s correction coefficient is
showed.)

In the unsupervised learning based approaches, the prior
information on the possible sources involved is unavailable.
In this scenario, the issue is to understand which images are
from the same camera models, and which are not. In previous
researches, clustering technologies are usually employed to
address this problem. Bloy [31] is the pioneer of this direction.
He proposed using pairwise nearest neighbor (PNN) algorithm
to deal with this problem. Boly introduced some tricks into
PNN for reducing computation cost, such as randomly pick-
ing clusters candidates for merging. To further alleviate the
computational burden, some variants of this procedure can
be found in literatures [32, 33]. Some researchers [34, 35]
regarded this issue as a graph partitioning problem. The images
were treated as nodes in a weighted undirected graph, graph
processing tools were then used to partition the graph into
disjunct sets. Most recently, Marra et al. [36] developed
a new purely blind clustering method leveraging correction
clustering, consensus clustering and ad hoc cluster refinement.
A remarkable feature of the new method is that it does not
require the user to set critical parameters, such as the number
of clusters, or some thresholds on data similarity.

III. Coupling Phenomenons

In this section, we show the genuine coupling phenomenons
with experimental results on a real-world dataset.

A. Feature Coupling

The features are designed to capture the fingerprints left
during the image acquisition process. Various features charac-
terize the fingerprints from different views, therefore they are
naturally coupled to each other. This couple relationship can
be measured with the Pearson’s correction coefficient [37].

Given the features fi and f j, the image collection Φ, the
Pearson’s correction coefficient of fi and f j can be calculated
as,

Cor( fi, f j) =

∑
I∈Φ( fi(I) − f̄i)( f j(I) − f̄ j)√∑

I∈Φ ( fi(I) − f̄i)2
√∑

I∈Φ ( f j(I) − f̄ j)2
, (1)

where I is an image in Φ, fi(I) denotes the feature value of
I on fi. f̄i, f̄ j represent the mean value of fi and f j on Φ

respectively.
Suppose the feature set is F = { f1, · · · , fF}. The pairwise

coupling relationships of features in F can be represented as
feature coupling matrix as

FCM =


Cor( f1, f1) Cor( f1, f2) · · · Cor( f1, fF)
Cor( f2, f1) Cor( f2, f2) · · · Cor( f2, fF)

...
...

. . .
...

Cor( fF , f1) Cor( fF , f2) · · · Cor( fF , fF)

 . (2)

Figure.1 shows the feature coupling matrix of 34 features
with grey-scale map. The experiment setting here is the same
with that in Section.V-A, and the experiment was performed
on set C. We can see that some features are closely coupled



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XX, NO.XX, XX 2017 4

A1 A2 A3 A4 A5 C1 C2 C3 C4 F1 K1 N1 N2 N3 N4 O1 P1 P2 P3 PR1 R1 RO1 S1 S2 SO1 SO2 SO3

A
1

A
2

A
3

A
4

A
5

C
1

C
2

C
3

C
4

F
1

K
1

N
1

N
2

N
3

N
4

O
1

P
1

P
2

P
3

P
R

1
R

1
R

O
1

S
1

S
2

S
O

1
S

O
2

S
O

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2: The coupling relationships of the 27 models.

to each other. Some representatives of coupled feature pairs
are as follows.
• AP2 (Average Pixel Value, channel G) and AP3 (Average

Pixel Value, channel B). The two features are both based
on the gray world assumption, and they are calculated in
the same manner.

• AP1 (Average Pixel Value,channel R) and CM1 (Neigh-
bor Distribution Center of Mass, channel R). AP1 and
CM1 are both captured in the red channel.

• AP3 (Average Pixel Value, channel B) and CM3 (Neigh-
bor Distribution Center of Mass, channel B). The two
features are obtained from the blue band.

B. Model Coupling

The camera models with the similar hardware infrastruc-
tures or image processing algorithms tend to be coupled with
each other. In the identification task, the images from the two
models tend to be mixed up. In this paper, we evaluate this
coupling phenomenon based on confusion matrix.

Suppose the model set is C = {C1, · · · ,CN}, the confusion
matrix is defined as,

c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 , (3)

where ci j is the count of images known to be from model
Ci but predicted to be from model C j. The counts can be

normalised to percentages as,

ρi j =
ci j∑N

k=1 cik
, (4)

where ρi j is the percentage of images actually from model
Ci but predicted to be from model C j. Then, the coupling
relationships of models can be denoted as model coupling
matrix,

MCM =


ρ11 ρ12 · · · ρ1N

ρ21 ρ22 · · · ρ2N
...

...
. . .

...
ρN1 ρN2 · · · ρNN

 . (5)

The grey-scale map of the model coupling matrix is pre-
sented in Figure.2. The experiment set-up is consistent with
that in Section.V-A. The experiment was carried out on set
C with the original feature representation, and the confusion
matrix was obtained on the testing dataset. We can see that
some camera models produced by the same manufacture are
closely coupled to each other. For example, A1 (Agfa DC-
504) and A5 (Agfa Sensor530s), SO1 (Sony DSC-H50)
and SO3 (Sony DSC-W170). An interesting observation is
that camera models of different manufactures may also be
closely coupled. For instance, C1 (Canon Ixus55) and PR1
(Praktica DCZ5.9), S2 (Samsung NV15) and O1 (Olym-
pus mju 1050SW ).

IV. Proposed Scheme
This section provides a detailed presentation of the proposed

scheme. The system model of the new scheme is presented
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Fig. 3: The system model of the proposed scheme.

in Fig.3. As shown in the figure, the work flow of the new
solution is as follows:

1) Original Feature Representation: The original features
of the images in the image collection are extracted.

2) Coupled Feature Representation: The original features
are mapped to coupled feature representation via mining
feature coupling.

3) Probability Representation: The training samples with
the coupled feature representation are firstly used to train
multi-class classifier. Then, the trained classifier are used
to classify all the samples, outputting the probabilities of
being produced by each model. In this way, each sample
is associated with a probability representation.

4) Coupled Probability Representation: By incorporating
the model coupling relationships in the training dataset,
the probability representation is converted to the coupled
probability representation.

5) Source Identification: Finally, the identification classifier
is trained using the training samples in the coupled
probability representation, and then used to predict the
testing samples.

Coupled feature representation and coupled probability rep-
resentation are the two core components of the scheme, which
will be depicted in detail in the following subsections.

A. Coupled Feature Representation

To the best of our knowledge, previous researches on
image source identification [6–10] directly performed the
classification task using the original image features, overlook
the feature coupling relationships as shown in Section III-A.
Motivated by the coupled object analysis strategies [38, 39]
in the field of data mining, in our work, we propose to
use coupled feature representation to capture this feature
coupling relationships. The underline idea is to firstly expand

features with their powers. Then, the coupling relations among
features and their expansion are quantified with Pearson’s
correlations. Finally, the coupling relations are integrated with
a Taylor-like expansion manner. In this way, both the linear
and non-linear coupling relationships can be captured in the
coupled feature representation. Particularly, both intra-feature
coupling and inter-feature coupling relationships are taken into
consideration.

Since the Pearson’s correlation coefficient can describe the
linear relationship between two features. In order to deeply
investigate the coupling relationships, such as quadratic and
cubic relationships, we expand features with their powers.
Given feature fi, the expansion can be expressed as a feature
vector,

~fi = [ f 1
i , · · · , f t

i , · · · , f T
i ], (6)

where f t
i is the t-th power of fi, and T is the largest power.

Two types of coupling relationships are taken into consid-
eration for coupled feature representation. One is the intra-
feature coupling, which captures the coupling relationships of
a feature and its expansion. The other is the inter-feature cou-
pling, which focuses on calculating the coupling information
of a feature and the expansion of other features.

We firstly consider the intra-feature coupling relationship.
The relationship of f t

i and f s
i can be described with the

Pearson’s correction coefficient as,

α( f t
i , f s

i ) = Cor( f t
i , f s

i ), (7)

where Cor(·, ·) is defined in Formula.1.
Furthermore, the coupling relationships of f t

i and ~fi can be
expressed as a coupling vector,

α( f t
i ,
~fi) = [α( f t

i , f 1
i ), · · · , α( f t

i , f T
i )]. (8)

Then intra-feature coupling gain of ~fi to f t
i can be combined
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in Taylor-like expansion manner as,

CG1( f t
i |
~fi) =

α( f t
i , f 1

i )
1!

f 1
i +

α( f t
i , f 2

i )
2!

f 2
i + · · · +

α( f t
i , f T

i )
T !

f T
i

= w · α( f t
i ,
~fi) · ~fi,

(9)

where w = [ 1
1! ,

1
2! , · · · ,

1
T ! ] is the constant weight vector. The

underline idea of Taylor-like combination is that the features
with larger powers should have less coupling gain contribution.
That is, the s-th power of feature f s

i is scaled with 1
s! .

We further calculate the inter-feature coupling gain. The
relationship of f t

i and f s
j ( j , i) can be described according

to Formula.1 as,

β( f t
i , f s

j ) = Cor( f t
i , f s

j ). (10)

The coupling relationships of f t
i and ~f j can be expressed as,

β( f t
i ,
~f j) = [β( f t

i , f 1
j ), · · · , β( f t

i , f T
j )]. (11)

Then, the inter-feature coupling gain of ~f j contributing to f t
i

can be incorporated as,

CG2( f t
i |
~f j) =

β( f t
i , f 1

j )

1!
f 1

j +
β( f t

i , f 2
j )

2!
f 2

j + · · · +
β( f t

i , f T
j )

T !
f T

j

= w · β( f t
i ,
~fi) · ~f j

(12)

Taking both the intra-feature coupling and inter-feature
coupling into account, we have the synthetic coupled feature
representation of f t

i as,

CR( f t
i ) = f t

i + CG1( f t
i |
~fi) +

F∑
j=1, j,i

CG2( f t
i |
~f j)

= f t
i +

α( f t
i , f 1

i )
1!

f 1
i +

α( f t
i , f 2

i )
2!

f 2
i + · · · +

α( f t
i , f T

i )
T !

f T
i

+

F∑
j=1, j,i

β( f t
i , f 1

j )

1!
f 1

j +

F∑
j=1, j,i

β( f t
i , f 2

j )

2!
f 2

j + · · · +

F∑
j=1, j,i

β( f t
i , f T

j )

T !
f T

j

= f t
i + w · α( f t

i ,
~fi) · ~fi

+

F−1︷       ︸︸       ︷
[w, · · · ,w] · [β( f t

i ,
~f1), · · · , β( f t

i ,
~fi−1), β( f t

i ,
~fi+1), · · · , β( f t

i ,
~f1)]

·[~f1, · · · , ~fi−1, ~fi+1, · · · , ~fF].
(13)

Given the feature set F = { f1, · · · , fF}, we define,

F−i = F − { fi} = { f1, · · · , fi−1, fi+1, · · · , fF} . (14)

Accordingly,

~F−i = [~f1, · · · , ~fi−1, ~fi+1, · · · , ~fF], (15)

and

β( f t
i ,
~F−i) = [β( f t

i ,
~f1), · · · , β( f t

i ,
~fi−1), β( f t

i ,
~fi+1), · · · , β( f t

i ,
~fF)].
(16)

Then, Formula.13 can be rewritten as,

CR( f t
i ) = f t

i + CG1( f t
i |
~fi) +

F∑
j=1, j,i

CG2( f t
i |
~f j)

= f t
i + w · α( f t

i ,
~fi) · ~fi +

F−1︷       ︸︸       ︷
[w, · · · ,w] · β( f t

i ,
~F−i) · ~F−i.

(17)

Accordingly, the coupled feature representation of feature
fi’s expansion is,

CR(~fi) = [CR( f 1
i ), · · · ,CR( f T

i )] (18)

Finally, when all the F original features are considered, we
obtain the coupled feature representation to be a concatenated
vector:

CR(~F) = [CR(~f1), · · · ,CR( ~fF)], (19)

where ~F = [~f1, · · · , ~fF].

B. Coupled Probability Representation

As shown in Section.III-B, because of the model coupling
relationships, the identification results from the coupled mod-
els tend to be mixed up. Existing researches [6–10] directly use
the outputs of identification classifier as final results, without
considering the model coupling relationships. In this paper, a
new coupled probability representation is proposed to capture
the dependence relationships among source models. Firstly,
via making use of the confusion matrix, the model coupling
relationships are characterized with conditional probabilities.
Then, conditional probabilities are combined following the law
of total probability.

Previous researches [6–10] usually use the output labels of
identification classifier (usually multi-class SVM) as identifi-
cation results. Instead, we make use of the output probabilities
of the classifier. The commonly used SVM implementation,
LIBSVM [40], supports multi-class probability estimation via
pairwise coupling [41].

Given the training dataset T, the collection of all images Φ,
and the model set C = {C1, · · · ,CN}. Suppose the SVM model
trained on T is M, each sample I in Φ can be associated with
a probability representation as,

~e(I) = [e1(I), · · · , eN(I)]← SVMPredict(M, I), (20)

where ei(I) indicates the I’s predicted probability of being
from Ci.

As shown in Section.III-B, the model coupling relationships
can be described with the confusion matrix. Taking this point
into account, we use the conditional probability driven from
the confusion matrix to characterize the model coupling. The
SVM model M can be used to predict the images in training
dataset T, and the confusion matrix of the identification result
can be represented as,

c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 , (21)
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No. Model Size Alias No. Model Size Alias No. Model Size Alias
1 Agfa DC − 504 169 A1 10 FujiFilm FinePixJ50 630 F1 19 Pentax OptioW60 192 P3
2 Agfa DC − 733s 281 A2 11 Kodak M1063 2391 K1 20 Praktica DCZ5.9 1019 PR1
3 Agfa DC − 830i 363 A3 12 Nikon CoolPixS710 925 N1 21 Ricoh GX100 854 R1
4 Agfa Sensor505 − x 172 A4 13 Nikon D200 752 N2 22 Rollei RCP − 7325XS 589 RO1
5 Agfa Sensor530s 372 A5 14 Nikon D70 369 N3 23 Samsung L74wide 686 S1
6 Canon Ixus55 224 C1 15 Nikon D70s 367 N4 24 Samsung NV15 645 S2
7 Canon Ixus70 567 C2 16 Olympus mju 1050SW 1040 O1 25 Sony DSC − H50 541 SO1
8 Canon PowerShotA640 188 C3 17 Panasonic DMC − FZ50 931 P1 26 Sony DSC − T77 725 SO2
9 Casio EX − Z150 925 C4 18 Pentax OptioA40 638 P2 27 Sony DSC −W170 405 SO3

TABLE I: The Dresden image collection.

where ci j is the count of images known to be from model
Ci but predicted to be from model C j. The counts can be
converted to the conditional probability as,

pi| j =
ci j∑N

k=1 ck j
, (22)

where pi| j indicates the probability of actually from model Ci

when predicted to be from model C j. All those conditional
probabilities can be represented as a matrix,

P =


p1|1 p1|2 · · · p1|N
p2|1 p2|2 · · · p2|N
...

...
. . .

...
pN |1 pN |2 · · · pN |N

 . (23)

We analysis the model coupling relationships in two-folds.
The first is the intra-model coupling, which captures the
coupling relationships of itself. The second is the inter-model
coupling, which describes the inter-model coupling relation-
ships.

Firstly, we calculate the intra-model coupling probability
gain. The intra-model coupling relationship of Ci to itself can
be described with the conditional probability as,

λi = pi|i, (24)

where p·|· is defined in Formula.20. Then, the intra-model
coupling probability gain of ei to itself can be obtained as,

CPG1(ei) = λiei. (25)

Secondly, we consider the inter-model coupling relation-
ships. The inter-model coupling relationships of model C j to
Ci can be characterized using the conditional probability as,

µi| j = pi| j, (26)

and the inter-model coupling probability gain of C j to Ci can
be calculated as,

CPG2(ei|e j) = µi| je j. (27)

Finally, the coupled probability representation of ei can be
obtained via combining the intra-model coupling and inter-

model coupling as,

CPR(ei) = ei + η(CPG1(ei) +

N∑
j=1, j,i

CPG2(ei|e j))

= ei + η(λiei +

N∑
j=1, j,i

µi| je j)

= ei + η(piiei +

N∑
j=1, j,i

pi| je j)

= ei + η(
N∑

j=1

pi| je j),

(28)

where η is the introduced adjustment factor to adjust the
influence of overall model coupling probability gain. The left
part of the Formula.28,

∑N
j=1 pi| je j, shows that the conditional

probabilities induced from the confusion matrix are integrated
following the law of total probability.

Accordingly, the coupled probability representation of ~e can
be expressed as,

CPR(~e) = [CPR(e1), · · · ,CPR(eN)]

= [e1 + η(
N∑

j=1

p1| je j, · · · , eN + η(
N∑

j=1

pN | je j]

= ~e + η~e ⊗ PT ,

(29)

where ⊗ denotes the matrix multiplication.

V. Experiments and results

A large number of experiments were carried on a real-world
image collection to evaluate the performance of the proposed
scheme. This section reports the experiments and results.

A. Dataset, feature and setting

In this paper, the Dresden image collection [42] is used for
the empirical study. The open image collection was specifically
built for the purpose of development and benchmarking of
camera-based digital forensic techniques. It was created using
different scenes of natural and urban environments as well
as indoor and outdoor environments. Table.I summarises the
camera models, the number of images of each model and the
aliases of camera models. To explore various situations, we
construct three image sets: Set A, Set B, Set C, which are
depicted in detail as follows.
• Set A: A1, A2, A3, A4, A5, C1, C2, C3, C4, F1, K1, N1,

N2, N3, N4;
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Feature Dimension Alias
Average Pixel Value

(R, G, B) 3 AP1∼AP3

RGB Pairs Correlation
(RG, RB, GB) 3 PC1∼PC3

Neighbor Distribution Center of Mass
(R, G, B) 3 CM1∼CM3

RGB Pairs Energy Ratio
(GB, GR, BR) 3 PE1∼PE3

RGB Pairs Energy Ratio
(GB, GR, BR) 9 WS1∼WS9

Pixel Difference based
Image Quality Metrics 4 PD1∼PD4

Correlation based
Image Quality Metrics 3 C1∼C3

Spectral Distance based
Image Quality Metrics 6 SD1∼SD6

TABLE II: The image features.

• Set B: O1, P1, P2, P3, PR1, R1, RO1, S1, S2, SO1, SO2,
SO3;

• Set C: All models.
We extracted 34 features proposed by Kharrazi et al. [7]

for the identification task. The features were generated by
using the source code provided by Kharrazi et al. [7]. Table.II
summarises the features, the dimensions and aliases. Finally,
an image was represented by a feature vector of 34 dimensions.

For each image set, 30% percent of all images are randomly
selected as training dataset. The remaining are treated as
testing dataset. We used the LIBSVM [40] to solve SVMs.
Linear kernels were applied in our experiments.

B. Evaluation metrics

We use accuracy and F-measure to measure the performance
of image source identification.
• Accuracy is defined as the ratio of the number of all

correctly identified images to the number of all identified
images.

Accuracy =
# correctly identified images

# identified images
. (30)

• F-measure [43] is used to measure the identification per-
formance of a camera model Ci, which is a combination
of precision and recall.

F −measurei = 2 ·
precisioni · recalli

precisioni + recalli
. (31)

where precisioni is the ratio of the number of correctly
identified images from Ci to the number of images
identified from Ci.

precisioni =
# correctly identified images from Ci

# images identified from Ci
.

(32)
and recalli is defined as the ratio of the number of
correctly identified images from Ci over the total of
images from Ci.

recalli =
# correctly identified images from Ci

#images from Ci
. (33)
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Fig. 4: Performance of coupled feature representation on set
A.
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Fig. 5: Performance of coupled feature representation on set
B.
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C. Evaluation of Coupled Feature Representation

In this experiment, we evaluate the performance of the
proposed coupled feature representation. The original feature
representation adopted in previous [6–10] was implemented as
reference. In the proposed coupled feature representation, there
is a parameter, T , the largest power defined in Formula.6. To
evaluate the influence of T , the coupled feature representation
was implemented with T varying from 1 to 10.

Figure.4, Figure.5 and Figure.6 show the experimental re-
sults of the two representation methods on set A, B, and C
respectively. We can see that the proposed coupled feature
representation can significantly improve the identification ac-
curacy. For example, on set A, with parameter T = 6, the
identification accuracy of coupled feature representation is
87.4%, while the original feature representation is 82.4%. On
set C, when T = 4, the identification accuracy of coupled
feature representation can be improved to 83.2%, while the
original feature representation is only 75.6%. The reason for
the performance improvement of coupled feature representa-
tion is that it can successfully capture the intrinsic linear and
non-linear feature coupling relationships, while the original
feature representation overlooks this point.

From the figures, we also can see that the parameter T has
great influence on the performance improvement. As a general
trend, the identification accuracy goes up as when T increase.
But the increase rate get smaller as T grows. This is consistent
with Formula.9 and Formula.12, since the features with larger
power have less coupling gain contribution. In the experiments
followed, we fix T to be 4 to balance the computation cost
and identification accuracy.

D. Evaluation of Coupled Probability Representation

This experiment was carried out to validate the effectiveness
of the proposed coupled probability representation. The orig-
inal feature representation, and coupled feature representation
without coupled probability representation were implemented
as references. Coupled probability representation was imple-
mented with parameter η (defined in Formula.28) varying from
2−3 to 26.

The experimental results on set A, B and C are reported
in Figure.7, Figure.8 and Figure.9 respectively. It is shown
that the couped probability representation can further improve
the identification performance. For example, on set C, with
η = 64, the accuracies of original feature representation, cou-
pled feature representation and coupled feature representation
plus coupled probability representation are 82.5%, 86.6% and
87.8%, respectively. On set C, the accuracies of the three
comparetives are 75.6%, 83.2% and 85.5% respectively. We
can see that the performance improvement on set C is larger
than that on set A. The reason is that set C contains more
models than set A, and the model coupling information of set
C is richer than set A.

Let’s further investigate the influence of parameter η. In
general, the identification accuracy goes up with bigger η.
This is because more coupling information are integrated
in the coupled probability representation. When η is big,
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Fig. 7: Performance of coupled probability representation on
set A.
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Fig. 10: The F-measure of the compared solutions on set A.
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Fig. 11: The F-measure of the compared solutions on set B.

A1 A2 A3 A4 A5 C1 C2 C3 C4 F1 K1 N1 N2 N3 N4 O1 P1 P2 P3 PR1 R1 RO1 S1 S2 SO1 SO2 SO3

Camera ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-M

ea
su

re

The F-Measures of the comparatives on set C.

Original Feature Representation

Coupled Feature Representation

Coupled Feature Representation + Coupled Probability Representation

Fig. 12: The F-measure of the compared solutions on set C.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XX, NO.XX, XX 2017 11

the identification accuracy becomes stable. In our further
experiments, η is set to 64.

E. Evaluation with F-Measures

The goal of this experiment is to investigate the performance
of the proposed solution in terms of F-Measures. The results
are reported in Figure.10, Figure.11 and Figure.12 respectively.
We can see that the results are consistent with that in Sec-
tion.V-D.

For most models, the F-Measures of coupled feature rep-
resentation plus coupled probability representation is superior
to only coupled feature representation. And coupled feature
representation is better than original feature representation. For
example, on set A, the F-Measures of the three methods for N4
are 27%, 32% and 44% respectively. On set C, the F-Measures
of C1 are 44%, 46% and 53% respectively.

From the figures, we also can see that the coupled models
tend to have better performance improvement. For example,
on set C, model N3 and N4 have bigger accuracy improvement
than the average, and they are coupled as shown in Figure.2.

VI. Conclusion

This paper addressed the issues of feature coupling and
model coupling for image source identification. To our best
knowledge, we are the first to identify and solve both the
two problems. The existing of feature coupling is because that
image features characterize the hardware or software-related
fingerprints from different views, and are naturally related
to each other in some ways. For the models produced by
the same manufacturer, the hardware infrastructure and image
processing algorithms of them tend to be similar, causing the
model coupling. In this paper, we demonstrated the two phe-
nomenons with experimental results on a real-word dataset. A
new image identification scheme is also developed to address
the two issues. In the proposed solution, the feature coupling
relationships are captured with coupled feature representation,
and a new coupled probability representation is developed to
deal with model coupling. To evaluate the new scheme, a
large number of experiments were carried out on a real-world
image collection. The results demonstrate that the both coupled
feature representation and coupled probability representation
can contribute to identification performance improvement.
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[8] O. Çeliktutan, B. Sankur, and I. Avcibaş, “Blind identi-
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