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An Efficient Approach for Outlier Detection with
Imperfect Data Labels

Bo Liu, Yanshan Xiao, Philip S. Yu, Zhifeng Hao, and Longbing Cao

Abstract—The task of outlier detection is to identify data objects that are markedly different from or inconsistent with the normal set
of data. Most existing solutions typically build a model using the normal data and identify outliers that do not fit the represented model
very well. However, in addition to normal data, there also exist limited negative examples or outliers in many applications, and data
may be corrupted such that the outlier detection data is imperfectly labeled. These make outlier detection far more difficult than the
traditional ones. This paper presents a novel outlier detection approach to address data with imperfect labels and incorporate limited
abnormal examples into learning. To deal with data with imperfect labels, we introduce likelihood values for each input data which
denote the degree of membership of an example toward the normal and abnormal classes respectively. Our proposed approach
works in two steps. In the first step, we generate a pseudo training dataset by computing likelihood values of each example based on
its local behavior. We present kernel k-means clustering method and kernel LOF-based method to compute the likelihood values. In
the second step, we incorporate the generated likelihood values and limited abnormal examples into SVDD-based learning
framework to build a more accurate classifier for global outlier detection. By integrating local and global outlier detection, our
proposed method explicitly handles data with imperfect labels and enhances the performance of outlier detection. Extensive
experiments on real life datasets have demonstrated that our proposed approaches can achieve a better tradeoff between detection
rate and false alarm rate as compared to state-of-the-art outlier detection approaches.

Index Terms—Outlier detection, data of uncertainty

1 INTRODUCTION

OUTLIER detection has attracted increasing attention in
machine learning, data mining and and statistics lit-

erature. Outliers always refer to the data objects that are
markedly different from or inconsistent with the normal
existing data [1], [2]. A well-known definition of "outlier" is
given in [3]: "an observation which deviates so much from
other observations as to arouse suspicions that it was gen-
erated by a different mechanism," which gives the general
idea of an outlier and motivates many anomaly detec-
tion methods [1], [4]. Practically, outlier detection has been
found in wide-ranging applications from fraud detection
for credit cards, insurance or health care, intrusion detection
for cyber-security, fault detection in safety critical systems,
to military surveillance [1].

• B. Liu is with the Department of Automation, Guangdong University of
Technology, Guangzhou 510006, China. E-mail: csbliu@gmail.com.

• Y. Xiao and Z. Hao is with the Department of Computer Science,
Guangdong University of Technology, Guangzhou 510006, China.
E-mail: xiaoyanshan@gmail.com; mazfhao@scut.edu.cn.

• P. S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607, and with the Department of
Computer Science, King Abdulaziz University Jeddah, Saudi Arabia.
E-mail: psyu@uic.edu.

• L. Cao is with the Faculty of Engineering and Information Technology,
University of Technology, Sydney, NSW 2007, Australia.
E-mail: lbcao@it.uts.edu.au.

Manuscript received 2 Jan. 2013; revised 24 Apr. 2013; accepted 22 May
2013. Date of publication 25 June 2013; date of current version 9 July 2014.
Recommended for acceptance by X. He.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.108

Many outlier detection methods have been proposed to
detect outliers from existing normal data. In general, the
previous work on outlier detection can be broadly clas-
sified into distribution (statistical)-based, clustering-based,
density-based and model-based approaches [5]–[8], all of
them with long history. In the model-based approaches [8],
they typically use a predictive model to characterize the
normal data and then detect outliers as deviations from the
model. In this category, the support vector data description
(SVDD) [9], [10] has been demonstrated to be capable of
detecting outliers in various application domains. In SVDD,
a hyper-sphere is constructed to enclose most of the normal
example with minimum sphere. The learned hyper-sphere
is then utilized as a classifier to separate a test data into
normal examples or outliers.

Though much progress has been done in support vector
data description for outlier detection, most of the exist-
ing works on outlier detection always assume that input
training data are perfectly labeled for building the outlier
detection model or classifier. However, we may collect the
data with imperfect labels due to noise or data of uncer-
tainty [11], [12]. For examples, sensor networks typically
generate a large amount of data subject to sampling errors
or instrument imperfections. Thus, a normal example may
behave like an outlier, even though the example itself may
not be an outlier. These kind of uncertain data information
might introduce labeling imperfections or errors into the
training data, which further limits the accuracy of subse-
quent outlier detection. Therefore, it is necessary to develop
outlier detection algorithms to handle imperfectly labeled
data.
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In addition, another important observation is that,
negative examples or outliers, although very few, do exist
in many applications. For example, in the network intru-
sion domain, in addition to extensive data about the normal
traffic conditions in the network, there also exist a small
number of cyber attacks that can be collected to facilitate
outlier detection. Although these outliers are not sufficient
for constructing a binary classifier, they can be incorporated
into the training process to refine the decision boundary
around the normal data for outlier detection.

In order to handle outlier detection with imperfect
labels, we propose a novel approach to outlier detection
by generalizing the support vector data description learn-
ing framework on imperfectly labeled training dataset. We
associate each example in the training dataset not only with
a class label but also likelihood values which denotes the
degree of membership towards the positive and negative
classes. We then incorporate the few labeled negative exam-
ples and the generated likelihood values into the learning
phase of SVDD to build a more accurate classifier. The main
contribution of our work can be summarized as follows.

1) We put forward two likelihood models, called sin-
gle likelihood model and bi-likelihood model. In the
single likelihood model, each input data is associ-
ated with one likelihood value which denotes the
degree of membership towards its own class label.
In the bi-likelihood model, each sample has two
likelihood values which denote the degree of mem-
bership towards positive and negative class labels
respectively. Based on the two likelihood models,
we generate pseudo training datasets by computing
likelihood values based on the local data behavior
in the feature space. We put forward two meth-
ods based on the k-means clustering [1] and local
outlier factor (LOF) [6] approaches respectively, to
generate the likelihood values, which are called
kernel k-means clustering-based method and ker-
nel LOF-based method respectively. After that, we
obtain two pseudo training sets for the two likeli-
hood models respectively, in which each sample has
likelihood values.

2) In the second step, we construct two global classi-
fiers for outlier detection by generalizing the SVDD-
based learning process based on the two likelihood
models. The developed model derived from single
likelihood model is called soft-SVDD. Another clas-
sifier related with bi-likelihood model is called bi-
soft-SVDD. For both approaches, we incorporate the
generated likelihood values of each sample and lim-
ited negative examples into the learning of support
vector data description phase to build accurate out-
lier detection classifiers. In the process, each sample
makes different contribution to the learning of the
outlier detection decision boundary based on their
likelihood values. By integrating local and global
outlier detection, our proposed approaches explic-
itly handle the input data with imperfect labels and
include a few labeled outliers into learning.

3) We conduct extensive experiments on real life
datasets to investigate the performance of our

proposed approaches. The results show that our
proposed approaches can offer a better tradeoff
between detection rate and false alarm rate and
are less sensitive to noise in comparison of the
state-of-the-art outlier detection algorithms.

Compared with the previous work on outlier detection,
such as Artificial Immune System (AIS) [13], [14], most
of them did not explicitly cope with the problem of both
outlier detection with very few labeled negative examples
and outlier detection on data with imperfect labels. Our
proposed approaches first capture local data information
by generating likelihood values for input examples, and
then incorporate such information into support vector data
description framework to build a more accurate outlier
detection classifier.

The rest of the paper is organized as follows. Section 2
discusses previous work related to our outlier detection
problem. Section 3 presents our proposed approached,
called soft-SVDD and bi-soft-SVDD, to outlier detection
in detail. Section 4 reports extensive experimental results
on real-world datasets. Section 5 concludes the paper and
discusses possible directions for future work.

2 RELATED WORK

In this section, we discuss previous work related to our
study. Since we focus on outlier detection with lim-
ited labeled outliers and data with imperfect labels, we
briefly review previous work on outlier detection in
section 2.1, and discuss another branch of related work
on learning from imbalanced data in section 2.2. Finally,
we briefly review support vector data description in
section 2.3.

2.1 Outlier Detection
In the past, many outlier detection methods have been
proposed [1]. Typically, these existing approaches can
be divided into four categories: distribution (statistical)-
based clustering-based, density-based and model-based
approaches [1], [15]. Statistical approaches [16]–[18] assume
that the data follows some standard or predetermined dis-
tributions, and this type of approach aims to find the
outliers which deviate form such distributions. The meth-
ods in this category always assume the normal example
follow a certain of data distribution. Nevertheless, we can
not always have this kind of priori data distribution knowl-
edge in practice, especially for high dimensional real data
sets. [15].

For clustering-based approaches [7], [19], [20], they
always conduct clustering-based techniques on the samples
of data to characterize the local data behavior. In gen-
eral, the sub-clusters contain significantly less data points
than other clusters, are considered as outliers. For exam-
ple, clustering techniques has been used to find anomaly
in the intrusion detection domain [19]. In the work of [20],
the clustering techniques iterative detect outliers to multi-
dimensional data analysis in subspace. Since clustering-
based approaches are unsupervised without requiring any
labeled training data, the performance of unsupervised
outlier detection is limited.
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In addition, density-based approaches [6], [21]–[25] has
been proposed. One of the representatives of this type of
approaches are local outlier factor (LOF) and variants [6].
Based on the local density of each data instance, the LOF
determines the degree of outlierness, which provides sus-
picious ranking scores for all samples. The most important
property of the LOF is the ability to estimate local data
structure via density estimation. The advantage of these
approaches is that they do not need to make any assump-
tion for the generative distribution of the data. However,
these approaches incur a high computational complexity in
the testing phase, since they have to calculate the distance
between each test instance and all the other instances to
compute nearest neighbors.

Besides the above work, model-based outlier detection
approaches have been proposed [9], [10], [26]. Among them,
support vector data description (SVDD) [9], [10] has been
demonstrated empirically to be capable of detecting out-
liers in various domains. SVDD conducts a small sphere
around the normal data and utilizes the constructed sphere
to detect an unknown sample as normal or outlier. The
most attractive feature of SVDD is that it can transform the
original data into a feature space via kernel function and
effectively detect global outliers for high-dimensional data.
However, its performance is sensitive to the noise involved
in the input data.

Depending on the availability of a training dataset,
outlier detection techniques described above operate
in two different modes: supervised and unsupervised
modes. Among the four types of outlier detection
approaches, distribution-based approaches and model-
based approaches fall into the category of supervised
outlier detection, which assumes the availability of a train-
ing dataset that has labeled instances for normal class (as
well as anomaly class sometimes). In addition, several tech-
niques [27]–[29] have been proposed that inject artificial
anomalies into a normal dataset to obtain a labeled train-
ing data set. In addition, the work of [30] presents a new
method to detect outliers by utilizing the instability of the
output of a classifier built on bootstrapped training data.

Despite much progress on outlier detection, most of the
previous work did not explicitly cope with the problem
of outlier detection with very few labeled negative exam-
ples and data with imperfect label as well. Our proposed
approaches capture local data information by generating
the likelihood values of each input example towards the
positive and negative classes respectively. Such information
is then incorporated into the generalized support vector
data description framework to enhance a global classifier
for outlier detection.

The work in the paper has difference from our previous
work about outlier detection [31]. First, the work in [31],
called uncertain-SVDD (U-SVDD) here, addresses the out-
lier detection only using normal data without taking the
outlier/negative examples into account. Second, U-SVDD
only calculates the degree of membership of an example
towards the normal example and takes single member-
ship into learning phase. However, the work in this paper
addresses the problem of outlier detection with a the few
labeled negative examples, and takes data with imper-
fect labels into account. Based on the problem, we put

forward single likelihood model and bi-likelihood model
to assign likelihood values to each examples based on
their local behaviors. For single likelihood model, examples
including positive and negative classes are assigned likeli-
hood values denoting the degree of membership towards
their own class labels. For bi-likelihood model, each exam-
ple is not only with a class label but also bi-likelihood
values which denote the degree of membership towards
the positive and negative classes respectively. Based on
two likelihood models, we put forward soft-SVDD and
bi-soft-SVDD approaches to incorporate the likelihood val-
ues together negative examples into SVDD-based learning
phase. Therefore, the optimization model (7) called soft-
SVDD, and model (12) called bi-soft-SVDD are completely
different from the optimization problem (15) in [31]. In
addition, the experiments in section 4 have shown that
our proposed outlier detection approaches perform better
than U-SVDD by incorporating few number of negative
examples into the learning phase.

2.2 Difference from Imbalanced Data Classification
The outlier detection problem that we consider in this paper
is also related to the problem of imbalanced data classifi-
cation [32], in which outliers corresponding to the negative
class are extremely small in proportion as compared to the
normal data corresponding to the positive class.

We briefly review the research on imbalanced data
[32]–[34] as follows. In general, previous work on imbal-
anced data classification falls into two main categories. The
first category attempts to modify the class distribution of
training data before applying any learning algorithms [35].
This is usually done by over-sampling, which replicates
the data in the minority class, or under-sampling, which
throws away part of the data in the majority class. The
second category focuses on making a particular classifier
learner cost sensitive, by setting the false positive and
false negative costs very differently and incorporating the
cost factors into the learning process [32]. Representative
methods include cost-sensitive decision trees [36] and cost-
sensitive SVMs [37]–[40]. In cost-sensitive SVMs, the cost
factors of two classes are set differently so that the cost
factors can affect the decision boundary. When imbal-
anced data are present, researchers have argued for the
use of ranking-based metrics, such as the ROC curve and
the area under ROC curve (AUC) [41] instead of using
accuracy.

The difference between imbalanced data classification
and our outlier detection problem is that: in imbalanced
data classification, the examples from one or more minority
classes are often self-similar, potentially forming compact
clusters, while in outlier detection, the outliers are typi-
cally scattered around normal data so that the distribution
of the negative class cannot be well represented by the very
few negative training examples. To solve our problem, we
can exploit cost-sensitive learning algorithms, but the false
positive and false negative costs are usually unknown to us
in real life applications. Therefore, we exploit a novel one-
class classification method for outlier detection, which aims
at building decision boundary around the normal data, and
utilizes the few negative examples to refine the boundary
to build an outlier detection classifier.
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Fig. 1. (a) Illustration of SVDD hyper-sphere in feature space.
(b) Illustration of SVDD decision boundary in input space.

2.3 Support Vector Data Description
The support vector data description (SVDD) [9] has been
proposed for one-class classification learning. Given a set
of target data {xi}, i = 1, . . . , l, where xi ∈ Rm, the basic idea
of SVDD is to find a minimum hyper-sphere that contains
most of target data in the feature space, as illustrated in
Fig. 1(a):

min F(R, o, ξi) = R2 + C
l∑

i=1

ξi,

s.t. ‖ φ(xi) − o ‖2 ≤ R2 + ξi,

ξi ≥ 0, (1)

where φ(.) is a mapping function which maps the input
data from input space into a feature space, and φ(xi) is the
image of xi in the feature space, ξi are slack variables to
allow some data points to lie outside the sphere, and C > 0
controls the tradeoff between the volume of the sphere and
the number of errors.

∑l
i=1 ξi is the penalty for misclassified

samples.
By introducing Lagrange multipliers αi, the optimization

problem (1) is transformed into:

max
l∑

i=1

αiK(xi, xi) −
l∑

i=1

l∑

k=1

αiαkK(xi, xk)

s.t. 0 ≤ αi ≤ C,∑

i

αi = 1, (2)

in which kernel function K(, ., ) is utilized to calculate the
inner pairwise product of two vector φ(xi) and φ(xj), that is
K(xi, xj) = φ(xi) ·φ(xj). The samples with αi > 0 are support
vectors (SVs). For a test point x, it is classified as normal
data when this distance is less than or equal to the radius
R. Otherwise, it is flagged as an outlier.

The most attractive feature of SVDD is that it can trans-
form the input data into a feature space and detect global
outliers effectively. As illustrated in Fig. 1(b), the hyper-
sphere in the feature space responds to a decent decision
boundary in input space. However, the performance of
SVDD is sensitive to the noise involved in the input data.
Our proposed method generalizes SVDD to incorporate the
likelihood values of samples towards to positive and neg-
ative classes, which mitigates the effect of noise on outlier
detection.

3 OUR PROPOSED APPROACH

In this section, we provide a detailed description about
our proposed approaches to outlier detection. Given a set
of training data S which consists of l normal examples
and a small amount of n outlier (or abnormal) examples,
the objective is to build a classifier using both normal
and abnormal training data and the classifier is there-
after applied to classify unseen test data. However, subject
to sampling errors or device imperfections, an normal
example may behave like an outlier, even though the
example itself may not be an outlier. Such error factors
might result in an imperfectly labeled training data, which
makes the subsequent outlier detection become grossly
inaccurate.

To deal with this problem, we put forward two likeli-
hood models as follows.
Single likelihood model: In the model, we associate each
input data with a likelihood value (xi, m(xi)), which indi-
cates degree of membership of an example towards its own
class label.
Bi-likelihood model: In the model, each sample is associate
with bi-likelihood values, denoted as (xi, mt(xi), mn(xi)), in
which mt(xi) and mn(xi) indicate the degree of an input
data xi belonging to the positive class and negative class
respectively.

The main difference of two models is that, single like-
lihood model only considers the degree of membership
towards its own class label; while bi-likelihood model
includes the degree of membership towards its own class
and the opposite class.

Such likelihood values information is thereafter incorpo-
rated into the construction of a global classifier for outlier
detection. Based on this, our proposed approaches work in
two steps as follows:

• In the first step, for each likelihood model, we
generate a pseudo training dataset by computing like-
lihood values for each input data based on local data
behavior in the feature space.

• In the second step, we put forward soft-SVDD and
bi-soft-SVDD for single likelihood model and bi-
likelihood model respectively, by using both normal
and abnormal examples as well as the generated
likelihood values.

In the following, we describe the two steps in detail.

3.1 Likelihood Values Generation
The main task of this step is to create a pseudo training
dataset by computing likelihood values for each input data.
For the single likelihood model, the generated pseudo train-
ing data consists of two parts for the l normal examples and
n abnormal examples as follows.

(x1, mt(x1)), . . . , (xl, mt(xl)), (xl+1, mn(xl+1)), . . . ,

(xl+n, mn(xl+n)),

in which mt(xi) and mn(xi) indicate the likelihood of exam-
ple xi belonging to the the normal class and the abnormal,
respectively.
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Similarly, the generated pseudo training data for bi-
likelihood model is:

(x1, mt(x1), mn(x1)), . . . , (xl, mt(xl), mn(xl)), (xl+1,

mt(xl+1), mn(xl+1)), . . . , (xl+n, mt(xl+n), mn(xl+n)),

For each likelihood model, we propose two different
schemes to compute likelihood values for each input data,
which are inspired by the clustering-based [7] and density-
based [6] approaches to outlier detection. The basic idea of
both schemes is to capture the local data uncertainty by
examining the relative distances of each input data to its
local neighbors in the feature space.

For both likelihood models, the likelihood values are
generated as follows.

3.1.1 Kernel K-Means Clustering-Based Method
We adopt the kernel k-means clustering algorithm to gen-
erate likelihood values for each input data. In kernel-based
method, a nonlinear mapping function φ(.) maps the input
samples into a feature space.Kernel k-means clustering
minimizes the following objective function:

J =
k∑

i=1

l+n∑

j=1

‖φ(xj) − φ(vi)‖2, (3)

where k is the number of clusters and vi is the cluster center
of the ith cluster.

By solving this optimization problem, k-means cluster-
ing returns a set of local clusters, in which data samples
belonging to a same cluster are more similar to each other.
Intuitively, for a data sample, if most of data samples in the
same cluster are normal, it would have a high probability of
being normal, and if there is an outlying point that doe not
belong to any cluster, it would have a high probability of
being an outlier. Therefore, we calculate the likelihood val-
ues for single likelihood model and bi-likelihood model as
follows. For a given cluster j, assume there exist lpj normal
examples and lnj negative examples.

For the single likelihood model, the likelihood value of
a normal example xt belonging to the normal class is cal-
culated mt(xt) = lpj /(l

p
j + lnj ). Similarly, the likelihood value

of an abnormal example xk belonging to the negative class
is computed as mn(xk) = lnj /(lpj + lnj ).

For the bi-likelihood model, likelihood values of an
example towards the normal and abnormal classes are cal-
culated as mt(xt) = lpj /(l

p
j + lnj ) and mn(xt) = lnj /(lpj + lnj )

respectively.
Based on the kernel k-means clustering-based method, if

a cluster only contains normal examples, the mt(xi) of each
sample in the cluster equals to 1; while their corresponding
mn(xi) is equivalent to 0. Therefore, the likelihood values
generation method considers the local data information of
each sample. The advantage of kernel k-means is that it can
partition the dataset into a set of local clusters that are non-
linearly separable in the input space. However, the main
limitation is that it does not work well on datasets with
varying densities by using a global distance function, which
causes the generated likelihood values to be inaccurate.

3.1.2 Kernel LOF-Based Method
To cope with datasets with varying densities, we propose
a local density-based method to compute likelihood values
for each input data. Inspired by the LOF algorithm [6], the
basic idea is to examine the relative distance of a point
to its local neighbors in feature space. More specifically,
we extend the original LOF into the kernel space by using
kernel function and generate the likelihood values in the
kernel space instead of the input space.

For each point xi, we first compute its local reachability
density, which is the average reachability distance based on
the k-nearest neighbors of xi.

lrdk(xi) = 1
k

∑

xj∈Nk(xi)

reach-distk(xi, xj), (4)

where Nk(xi) is a set of k-nearest neighbors of point xi.
Here, reach-distk(xi, xj) denotes the reachability distance
of object xi with respect to object xj in the feature space,
which is defined as reach-distk(xi, xj) = max{‖φ(xi) −
φ(xj)‖, maxx′∈Nk(xi) ‖φ(xi) − φ(x′)‖}. The Interested readers
please refer to [6] for detailed definitions. By consid-
ering the definition of reach-distk(xi, xj), Equation (4) is
simplified as

lrdk(xi) = max
x′∈Nk(xi)

‖φ(xi) − φ(x′)‖. (5)

After the local reachability density lrdk(xi) is computed, for
the point xi, we find its lrd-neighborhood Nlrd(xi) = {xj ∈
D | ‖φ(xi)−φ(xj)‖2 ≤ lrdk(xi)}. The distance between xi and
xj in the feature space is computed as

‖φ(xi) − φ(xj)‖2 = (φ(xi) − φ(xj)) · (φ(xi) − φ(xj))

= φ(xi) · φ(xi) + φ(xj) · φ(xj) − 2φ(xi) · φ(xj)

= K(xi, xi) + K(xj, xj) − 2K(xi, xj). (6)

For a sample, suppose that there exist lt examples out of
|Nlrd(xi)| nearest neighbors belonging to the positive class.
|Nlrd(xi)| denotes the number of nearest neighbors in the
lrd-neighborhood. Let ln = |Nlrd(xi)| − lt.

For single likelihood model, the likelihood value of a
normal example xt belonging to the normal class is calcu-
lated mt(xt) = lt/|Nlrd(xi)|. Similarly, the likelihood value of
an abnormal example xn belonging to the negative class is
computed mn(xk) = ln/|Nlrd(xi)|.

For bi-likelihood model, the likelihood value of xt
towards the positive class and negative class are calculated
mt(xt) = lt/|Nlrd(xi)| and mn(xk) = ln/|Nlrd(xi)|.

Based on the above method, the likelihood value mt(xi)

of sample xi equals to 1 if there is not any abnormal exam-
ples in its lrd-neighborhood Nlrd(xi) and the corresponding
mn(xi) is equivalent to 0. In this method, we can calculate
the likelihood values based on the local behavior of each
sample and cope with the dataset with varying densities.

3.2 Constructing SVDD-Based Classifiers
Above, for the two likelihood models, we put forward
kernel k-means clustering-based and kernel LOF-based
method to generate likelihood values. We then develop soft-
SVDD and bi-soft-SVDD for the single likelihood model
and bi-likelihood model respectively. Both developed meth-
ods include normal and abnormal data in the learning.
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However, soft-SVDD only incorporates single likelihood
value of an example towards its own class label in the
learning; while bi-soft-SVDD takes bi-likelihood values of
an examples towards the positive and negative class labels
in the training. The basic idea of our methods are to
enclose normal examples inside the sphere and exclude the
abnormal examples outside of the sphere and consider the
likelihood values in the learning. Below, we present two
developed approaches.

3.2.1 Constructing Soft-SVDD Classifiers
For the single likelihood model, we put positive examples
into set Sp, in which examples only have mt(xi), and put
negative examples into set Sn, where examples are only
associated with mn(xj). Since the membership functions
mt(xi) and mn(xj) indicate the degree of the membership
of data example xi toward normal class and negative class,
the solution to soft-SVDD can be achieved by solving the
following optimization problem:

min F = R2 + C1
∑

mt(xi)ξi + C2mn(xj)ξj

s.t. ‖ xi − o ‖2 ≤ R2 + ξi, xi ∈ Sp

‖ xj − o ‖2 ≥ R2 − ξj, xj ∈ Sn

ξi ≥ 0, ξj ≥ 0, (7)

Above, Parameters C1 and C2 control the tradeoff between
the sphere volume and the errors. Parameters ξi are ξj are
defined as a measure of error, as in SVDD. The terms
mt(xi)ξi and mn(xj)ξj can be therefore considered as a mea-
sure of error with different weighing factors. Note that a
smaller value of mt(xi) could reduce the effect of the param-
eter ξi in Equation (7), such that the corresponding data
example xi becomes less significant in the training.
Problem Solution

In order to resolve the optimization problem (7),
we introduce the Lagrange method [42] and then have
Theorem 1.

Theorem 1. The solution of problem (7) can be resolved by the
optimization problem (8):

max
l+n∑

i=1

αiK(xi, xi) −
l+n∑

i=1

l+n∑

j=1

αiαjK(xi, xj) (8)

s.t. 0 ≤ αi ≤ Cm
i i = 1, 2, . . . , l + n,

l+n∑

i=1

αi = 1,

in which αi ≥ 0, αj ≥ 0 are Lagrange multipliers, Cm
i =

C1mt(xi)(i = 1, 2, . . . , l) and Cm
i = C2mn(xi)(i = l + 1, l +

2, . . . , l + n).

Proof. To solve the above optimization problem (7), we
introduce Lagrange multipliers αt

i ≥ 0, αn
j ≥ 0, βt

i ≥ 0,
βn

j ≥ 0, and convert problem (7) into problem (9).

L = R2 + C1
∑

mt(xi)ξi + C2
∑

mn(xj)ξj

−
∑

αt
i (R

2 + ξi − ‖ φ(xi) − o ‖2) −
∑

βn
j ξj

−
∑

βt
i ξi −

∑
αn

j (‖ �(xj) − o ‖2 − R2 − ξj).

(9)

Setting the partial derivatives of L with respect to
R, o, ξi, ξj equal to zeros respectively, we can obtain

∂L
∂R

= 0 −→
∑

αt
i −

∑
αn

j = 1,

∂L
∂o

= 0 −→
∑

αt
i (o − φ(xi)) =

∑
αn

j (o − φ(xj)),

∂L
∂ξi

= 0 −→ αt
i + βt

i = C1mt(xi),

∂L
∂ξj

= 0 −→ αn
j + βn

j = C2mn(xj).

Replacing these into Equation (9), and set αi = αt
i (i =

1, 2, . . . , l), αi = αn
i (i = l + 1, l + 2, . . . , l + n), Cm

i =
C1mt(xi)(i = 1, 2, . . . , l) and Cm

i = C2mn(xi)(i = l + 1, l +
2, . . . , l+n), we have optimization problem problem (8).

After solving the above dual problem, we obtain the
Lagrange multipliers αi (1 ≤ i ≤ l + n), which gives the
centroid of the minimum sphere as a linear combination
of xi:

o =
l+n∑

i=1

αiφ(xi). (10)

Above, we find only the patterns with αi 	= 0 construct
the centroid of the minimum sphere, and these pattern
are called support vectors.
Decision Boundary Construction

By applying Karush-Kuhn-Tucker conditions [42], we
then obtain the radius R of the decision hyperplane.
Assume xu is one of the patterns lying on the surface
of sphere, R can be calculated as follows:

R2 = ‖xu − o‖2 = K(xu, xu) + K(o, o) − 2K(xu, o)

= K(xu, xu) +
l+n∑

i=1

l+n∑

k=1

αiαkK(xi, xk) − 2
l+n∑

i=1

αi(xi, xu).

To classify a test point x, we just calculate its distance to
the centroid of the hypersphere. If this distance is less
than or equal to R, i.e.

‖x − o‖2 ≤ R2, (11)

x is accepted as the normal data. Otherwise, it is detected
as an outlier.

3.2.2 Constructing Bi-Soft-SVDD Classifiers
For the bi-likelihood model, we derive the bi-soft-SVDD as
follows.

First of all, based on the generated likelihood values, we
split the datasets into three parts Sp, Sb and Sn for the sake
of derivation. For the samples in Sp, the likelihood value
towards the positive class equals to 1, that is mt(xi) = 1 and
mn(xi) = 0, which means the sample xi completely belongs
to the positive class. For the samples in Sb; it has non-zero
likelihood values towards the positive and negative classes
at the same time, that is mt(xh) 	= 0 and mn(xh) 	= 0. For
the samples in Sn, they completely belong to the negative
class, that is mn(xj) = 1 and mt(xj) = 0.

Since the likelihood values mt(xi) and mn(xi) indicate
the degree of membership of data example xi towards the



1608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 7, JULY 2014

positive and negative class respectively, the solution to bi-
soft-SVDD can be extended from problem (1) by solving
the following optimization problem:

min F = R2 + C1(
∑

ξi +
∑

mt(xh)ξh)

+ C2(
∑

ξj +
∑

mn(xk)ξk)

s.t. ‖ φ(xi) − o ‖2 ≤ R2 + ξi, xi ∈ Sp

‖ φ(xh) − o ‖2 ≤ R2 + ξh, xh ∈ Sb

‖ φ(xk) − o ‖2 ≥ R2 − ξk, xk ∈ Sb

‖ φ(xj) − o ‖2 ≥ R2 − ξj, xj ∈ Sn

ξi ≥ 0, ξh ≥ 0, ξk ≥ 0, ξj ≥ 0, (12)

Above, parameters C1, C2 control the tradeoff between the
sphere volume and the errors, which is the same func-
tion as C in optimization (1). Parameters ξi, ξj, ξh and ξk
are defined as measure of error, the same as ξi in (1). The
terms mt(xh)ξh and mn(xk)ξk can be therefore considered as
measure of error with different weighing factors.
Problem Solution

In order to resolve the optimization problem (12),
we introduce the Lagrange method [42] and then have
Theorem 2 to resolve the problem as follows.

Theorem 2. The solution of problem (12) can be resolved by the
optimization problem (13)

Max
∑

αt
i K(xi, xi) −

∑
αn

j K(xj, xj)

−
∑∑

αt
i α

t
kK(xi, xk) + 2

∑ ∑
αt

i α
n
j K(xi, xj)

−
∑∑

αn
j αn

v K(xj, xv)

s.t 0 ≤ αt
i ≤ mt

i(xi)C1,

0 ≤ αn
j ≤ mn

i (xi)C2,
∑

αt
i −

∑
αn

j = 1,

xi, xk ∈ Sp ∪ Sb, xj, xv ∈ Sb ∪ Sn, (13)

in which αt
i ≥ 0, αn

j ≥ 0 are Lagrange multipliers.

Proof. In order to solve the optimization problem in (13),
we introduce Lagrange multipliers αt

i ≥ 0, αb
h ≥ 0 αn

j ≥ 0,
αb

k ≥ 0, βt
i ≥ 0, βb

h ≥ 0, βn
j ≥ 0, βb

k ≥ 0, and convert the
problem (12) into the following problem (14):

L = R2 + C1
∑

ξi + C2
∑

ξj + C1
∑

mt(xh)ξh

+C2
∑

ξkmn(xk) −
∑

βt
i ξi −

∑
βb

hξh −
∑

βb
k ξk

−
∑

βn
j ξj −

∑
αt

i (R
2 + ξi − ‖ φ(xi) − o ‖2)

−
∑

αn
j (‖ φ(xj) − o ‖2 − R2 − ξj)

−
∑

αb
h(R

2 + ξh − ‖ φ(xh) − o ‖2)

−
∑

αb
k(‖ φ(xk) − o ‖2 − R2 − ξk). (14)

The parameters must satisfy that: ∂L
∂R = 0, ∂L

∂o = 0, ∂L
∂ξi

=
0, ∂L

∂ξj
= 0, ∂L

∂ξh
= 0, ∂L

∂ξk
= 0, we then have the following

conditions respectively:

∑
αt

i + ∑
αb

h − ∑
αb

k − ∑
αn

j = 1, (15)

o = ∑
αt

i φ(xi) + ∑
αb

hφ(xh) − ∑
αb

kφ(xk)

−∑
αn

j φ(xj), (16)

αt
i + βt

i = C1, (17)

αn
j + βn

j = C2, (18)

αb
h + βb

h = mt(xh)C1, (19)

αb
k + βb

k = mn(xk)C2. (20)

It is noted that if we substitute (16) into problem (14), it
will be complicated. To simplify the process, we rewrite
(15)-(20). First of all, let

αt
i =

⎧
⎨

⎩

αt
i , for xi ∈ Sp,

αb
h, for xh ∈ Sb,

αn
j =

⎧
⎨

⎩

αb
k for xk ∈ Sb,

αn
j for xj ∈ Sn.

(21)

then, (15) and (16) can be rewritten as
∑

αt
i −

∑
αn

j = 1, (22)

o =
∑

αt
i φ(xi) −

∑
αn

j φ(xj), (23)

in which xi ∈ Sp ∪ Sb and xj ∈ Sn ∪ Sb. let

mt
i(xi) =

⎧
⎨

⎩

1 for xi ∈ Sp,

mt
i(xh) for xh ∈ Sb,

(24)

mn
j (xj) =

⎧
⎨

⎩

mn
k (xk) for xk ∈ Sb,

1 for xj ∈ Sn,

(25)

βt
i (xi) =

⎧
⎨

⎩

βt
i for xi ∈ Sp,

βb
h for xh ∈ Sb,

(26)

βn
j (xj) =

⎧
⎨

⎩

βb
k , for xk ∈ Sb

βn
j for xj ∈ Sn.

(27)

Then (17), (18), (19), and (20) are represented as

αt
i + βt

i = mt
i(xi)C1, for xi ∈ Sp ∪ Sb, (28)

αn
j + βn

j = mn
j (xj)C2, for xj ∈ Sn ∪ Sb, (29)

since βt
i ≥ 0, βn

j ≥ 0, then we have

0 ≤ αt
i ≤ mt

i(xi)C1, for xi ∈ Sp ∪ Sb, (30)
0 ≤ αn

j ≤ mn
j (xj)C2, for xj ∈ Sn ∪ Sb. (31)

Based on (23), the inner product of the centroid of the
sphere is:

(o, o) =
∑∑

αt
i α

t
kK(xi, xk) − 2

∑∑
αt

i α
n
j K(xi, xj)

+
∑∑

αn
j αn

v K(xj, xv). (32)

Based on (22), (28), (29), we have

R2(1 −
∑

αt
i +

∑
αn

j ) = 0 (33)

C1
∑

mt(xi)ξi −
∑

βt
i ξi −

∑
αt

i ξi = 0 (34)

C2
∑

mn(xj)ξj −
∑

βn
j ξj −

∑
αn

j ξj = 0 (35)
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TABLE 1
Confusion Matrix

substitute (23) into (14), and consider (33), (34), (35), we
then have

L =
∑

αt
i K(xi, xi) −

∑
αn

j K(xj, xj) − (o, o) (36)

substitute (32) into (36), we have the Theorem 2.
By solving the optimization problem (13), we can

obtain the Lagrange multipliers αt
i ≥ 0, αn

j ≥ 0.
For the relationship between the location of the sam-

ples and their Lagrange multipliers αt
i , we have the fol-

lowing analysis: For the normal examples xi ∈ Sp, for the
problem (14), the Karush-Kuhn-Tucker conditions [42]
satisfy that

βt
i ξi = 0 for xi ∈ Sp (37)

αt
i (R

2 + ξi − ‖ xi − o ‖2) = 0 for xi ∈ Sp (38)

1) If xi lies outside the sphere, ξi > 0 holds, and we have
βt

i = 0 according to (37), and then αt
i = C1 from (17).

2) If 0 < αt
i < C1, from (17) and (37) βt

i 	= 0 and ξi = 0;
therefore, from the first constraint of (12), lie on the
surface of the sphere.

3) For all patterns inside the sphere, we necessarily
have αT

i = 0 from (38).
It is noted that, for the normal samples whose αt

i 	= 0
calledsupportvectors(SVs),andthesupportvectorsreside
onside or outside of the hyper-sphere. Based on this, the
centroid and radius of the hyper-sphere are denoted:

o =
∑

αt
i φ(xi) −

∑
αn

j φ(xj),

R2 = K(xu, xu) +
∑∑

αt
i α

t
kK(xi, xk)

+
∑ ∑

αn
j αn

v K(xj, xv) − 2
∑ ∑

αt
i α

n
j K(xi, xj)

−2
∑

αt
i K(xi, xu) + 2

∑
αn

j K(xj, xu) (39)

Fig. 2. (a) Illustration of ROC curve and the AUC. (b) Illustration of the
method used to add the noise to a data example: x is an original data
example, v is a noise vector, xv is the new data example with added
noise. Here we have xv = x + v.

TABLE 2
Datasets Description

in which xi, xk ∈ Sp ∪ Sb, xj, xv ∈ Sn ∪ Sb, and xu ∈ Sp
is the labeled normal example whose 0 < αt

i < C1, that
is it resides on the surface of the hyper-sphere. From
above formulations, we know that it is only the support
vectors that determine the centroid and radius of the
hyper-sphere.
Decision Boundary Determination

After obtaining the centroid and radius of the hyper-
sphere, we have the decision boundary of classifier. To
classify a test sample x, we calculate its distance to the
centroid of the hyper-sphere. If the distance is less than
or equals to R, i.e.

‖x − o‖2 = K(x, x) +
∑∑

αt
i α

t
kK(xi, xk)

+
∑ ∑

αn
j αn

v K(xj, xv) − 2
∑∑

αt
i α

n
j

K(xi, xj) − 2
∑

αt
i K(xi, x)

+2
∑

αn
j K(xj, x) ≤ R2, (40)

x is accepted as the normal data. Otherwise, it is classi-
fied as an outlier.

3.2.3 Discussion
For the single likelihood model, it only considers the degree
of membership towards its own class label. For the bi-
likelihood model, it includes the degree of membership
towards its own class and the opposite class.

In the likelihood values generation procedure, although
we have mt(xi) + mn(xi) = 1 for the kernel K-Means
clustering-based and kernel LOF-based methods, the two
likelihood models have different contribution on the sub-
sequent outlier detection classifiers construction. The soft-
SVDD classifier based on single likelihood model, i.e.
optimization problem (7), only considers the degree of
membership towards its own class label. For the example xi
in the normal class, it only incorporates mt(xi) in the learn-
ing, but discarding mn(xi), i.e. the degree of membership
towards the negative class, in the training. For the exam-
ple xj in the negative class, it only considers mn(xj) in the
optimization problem, but discarding mt(xj), i.e. the degree
of membership towards the normal class, in the training
phase. However, the bi-soft-SVDD classifier built on bi-
likelihood model incorporates the degree of membership
towards its own class and the opposite class in the train-
ing, as shown in optimization problem (12). Compared with
soft-SVDD, bi-soft-SVDD incorporates more data informa-
tion in the training phase; as a result, bi-soft-SVDD delivers
higher performance than soft-SVDD.
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Fig. 3. Performance of outlier detection approaches on ten data sets.

4 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to inves-
tigate the performance of our proposed approach on real
life datasets. For all reported results, the test platform is a
Dual 2.4GHz Intel Core2 T9600 laptop with 4GB RAM.

4.1 Baselines and Metrics
4.1.1 Baselines
For the single likelihood and bi-likelihood models, we put
forward kernel k-means clustering-based and kernel LOF-
based methods to generate likelihood values for them. After
that, we develop soft-SVDD and bi-soft-SVDD methods to
incorporate negative examples and likelihood values into
learning.

We then have four variants of our proposed approaches,
which are called k-means clustering-based soft-SVDD
(CS-SVDD), LOF-based soft-SVDD (LS-SVDD), k-means

clustering-based bi-soft-SVDD (CBS-SVDD) and LOF-based
bi-soft-SVDD (LBS-SVDD) respectively. For comparison,
another five state-of-the-art outlier detection algorithms are
used as baselines.

1) The first one is the kernel-LOF algorithm, which
generalizes the LOF algorithm [6] by computing the
outlier factor in the feature space. This baseline is used
to show the improvement of our proposed method
over unsupervised outlier detection approach.

2) The second one is SVDD [9], which builds a one-
class classifier solely based on the normal data. This
baseline is used to test the ability of our proposed
method over original SVDD classifier.

3) The third one is uncertain-SVDD (U-SVDD) [31],
which assigns single membership towards normal
data and constructs a classifier only based on the
normal data.
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Fig. 4. Comparison of ROC curves with respect to the detection rate and
false alarm rate.

4) The forth one is uLSIF [18], which uses the ratio
of training and test data densities to determine
outliers.

5) The fifth baseline is the cost-sensitive SVM (CS-
SVM) [39] for imbalanced classification, which
assigns different costs to the normal data and abnor-
mal data so as to learn a binary classifier for outlier
detection. This baseline is used to test the effective-
ness of our proposed method when very few labeled
negative examples are available for training.

4.1.2 Metrics
The performance of outlier detection algorithms can be
evaluated based on two error rates: detection rate and false
alarm rate. Detection rate gives information about the num-
ber of correctly identified outliers, while the false alarm
rate reports the number of outliers misclassified as normal
data records. Based on the confusion matrix in Table. 1.
The detection rate and the false alarm are computed as
follows: Detection rate = TP/TP + FN, False alarm rate =
FP/FP + TN.

The ROC (receiver operating characteristic) curve repre-
sents the trade-off between the detection rate and the false
alarm rate and is typically shown on a 2-D graph (Fig. 2(a),
where false alarm rate and detection rate are plotted on
x-axis, and y-axis respectively. In general, the area under
the curve (AUC) is also used to measure the performance
of outlier detection algorithm. The AUC of specific algo-
rithm is defined as the surface area under its ROC curve,
as illustrated in Fig. 2(a). The AUC for the ideal ROC curve
is typically closer to one, while AUCs of ąřless than per-
fectąś outlier detection algorithms are less than 1. We also
explicitly compute the AUC values [41] to compare the
algorithms.

4.2 Datasets and Parameter Settings
In our experiments, we used 10 real life datasets that
have been used earlier by other researchers for outlier
detection [43], [44]. These datasets include Abalone,
Spambase,thyroid, Waveform,Satellite, Delft pump,
Diabetes, Segment, Letter recognition, Arrhythmia, which
are available from UCI datasets [45] and [46]. The infor-
mation of these datasets is listed in Table. 2. To perform
outlier detection with very few abnormal data, we ran-
domly selected 50% of positive data and a small number
of abnormal data for training, such that 95 percent of
the training data belong to the positive class and only 5
percent belong to the negative class. All the remaining
data are used for testing.

For all the algorithms, the Gaussian RBF kernel was used
in the experiments

K(x, xi) = exp(−‖ x − xi ‖2/2σ 2). (41)

We use cross-validation on the training data to tune
the parameters for LBS-SVDD, CBS-SVDD, LS-SVDD, CS-
SVDD, CS-SVM, and SVDD. The parameter σ in the RBF
kernel is searched in the range from 2−3 to 24. In addition,
the parameter C in SVDD, as well as C1, C2 in LBS-SVDD,
CBS-SVDD, LS-SVDD, CS-SVDD is selected from 20 to 24.
All the reported AUC results are based on this setting.

For CBS-SVDD, CS-SVDD, the number of k in kernel
k-means is varied from 2 to l+n

2 and obtain the optimal
number of clusters k∗ by minimizing the external criteria
in [47]. For LBS-SVDD and LS-SVDD, we set the number of
nearest neighbors k used for computing confidence values
to the number of negative samples in the training set. For
kernel LOF, we follow the experimental setting in [6] to
compute the maximum LOF by varying k in the range from
30 to 50.

4.3 Performance Comparison
We first perform experiments to compare the classifica-
tion accuracy of the eight algorithms. For each dataset, we
generate the training data by randomly selecting positive
examples and negative examples at the ratio of 95% to 5%,
and apply the supervised outlier detection algorithms to the
training data and evaluate the performance on the remain-
ing test data. To avoid sampling bias, we repeat the above
process for 10 times, and report the average AUC values
for the 10 datasets in Fig. 3.

As we can see from the figure, our proposed methods,
i.e., CS-SVDD, LS-SVDD, CBS-SVDD and LBS-SVDD can
consistently outperform the other four baselines on all the
10 datasets. We also discover that, CBS-SVDD and LBS-
SVDD outperform CS-SVDD and LS-SVDD respectively,
this shows that the likelihood values used in bi-soft-SVDD
can contribute to performance than the single likelihood
value used in soft-SVDD. It is worth noting that LBS-SVDD
and LS-SVDD can yield better accuracy than CBS-SVDD
and CS-SVDD respectively on most of the datasets. This
is because, the likelihood values computed by the kernel
LOF-based method can better capture the local distribution
of data, in particular, when the data has varying densities.
As a result, the performance of bi-soft-SVDD and soft-
SVDD can be better enhanced. In addition, we discover
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Fig. 5. Comparison of AUC values with respect to different percents of training data corrupted by noise.

that LS-SVDD performs better than CBS-SVDD, as the
LOF-based likelihood values can capture the local distribu-
tion of data compared with the clustering-based likelihood
values.

Above, we have illustrated that, the AUC values of CS-
SVDD, LS-SVDD, CBS-SVDD and LBS-SVDD are higher
than other outlier detection algorithms. Taking the Abalone
and Spambase data sets for examples, we illustrate the ROC
curves of the nine outlier detection algorithms in Fig. 4 for
one out of ten groups of data. It is noted that, CS-SVDD,

LS-SVDD, CBS-SVDD and LBS-SVDD can consistently
outperform the other baselines. In addition, CBS-SVDD
outperforms CS-SVDD, U-SVDD, SVDD, CS-SVM, uLSIF
and kernel LOF. For the other datasets, we find similar
phenomenon.

4.4 Sensitivity to Input Data Noise
We also conduct experiments to investigate the sensitivity
of the nine algorithms to the noise added into the input
data. Following the method used in [48], we generate the



LIU ET AL.: AN EFFICIENT APPROACH FOR OUTLIER DETECTION WITH IMPERFECT DATA LABELS 1613

Fig. 6. Performance comparison under different percentage of data with error labels.

noise using a Gaussian distribution with zero mean and
standard deviation determined as follows. For each dataset,
we first calculate the standard deviation σ 0

i of the entire
data along the ith dimension, and then obtain the standard
deviation of the Gaussian noise σi randomly from the range
[0, 2 · σ 0

i ]. In this way, noise can be added to the positive
class as a vector having the same dimension as the original
dataset.

Fig. 2(b) illustrates the basic idea of the method used
to add the noise to data examples. Specifically, the stan-
dard deviation σ 0

i of the entire data along the ith dimen-
sion is first obtained. In order to model the difference
in noise on different dimensions, we define the standard
deviation σi along the ith dimension, whose value is ran-
domly drawn from the range [0, 2 · σ 0

i ]. Then, for the
ith dimension, we add noise from a random distribution
with standard deviation σi. In this way, a data example

xj is added with the noise, which can be presented as a
vector

σ xj = [σ
xj
1 , σ

xj
2 , . . . , σ

xj
n−1, σ

xj
n ]. (42)

Here, n denotes the number of dimensions for a data exam-
ple xj, and σ

xj

i , i = 1, · · · n represents the noise added into
the ith dimension of the data example.

In our experiments, we make the percentage of the data
corrupted by noise vary from 0% to 30%, and apply the
nine methods on these datasets. Fig. 5 shows the AUC
values achieved by the nine algorithms with respect to dif-
ferent percentages of training data corrupted by noise. It
is easily discovered that, as more noise is added into the
training data, the overall performance of the nine meth-
ods degrades. This occurs because, when more noise is
involved, target class becomes more indistinguishable from
negative class. However, we can clearly see that, our four
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TABLE 3
Comparison of AUC Values with Respect to Different Ratios of

Normal Data Size to Abnormal Data Size in the Training
Dataset

methods, CS-SVDD, LS-SVDD, CBS-SVDD and LBS-SVDD,
can still consistently yield higher accuracy than kernel
LOF, SVDD, U-SVDD, uLSIF, and CS-SVM. This concludes
that, our proposed soft-SVDD and bi-soft-SVDD is not
affected by noise more than the methods used for compar-
ison are. We can discover that CBS-SVDD and LBS-SVDD
using bi-likelihood values can contribute more to the clas-
sifier contribution than CS-SVDD, LS-SVDD using single
likelihood value.

4.5 Performance to Error Labels
In section 4.4, we add noise into the input data to make the
labels of data imperfect. This is because the original labels
of data are assigned based on the input data, when the
input data are added with noise, the corresponding labels
are not correct any more. The experiments have shown that
our proposed approaches can consistently obtain higher
performance.

In this set of experiment, we flip the labels of the data,
i.e., label the data with the labels of the opposite class.
This kind of operation has been performed in the previous
work [49], [50]. Since K-LOF calculates the outlier factors
only based on the test data, without involving the train-
ing data, we omit this baseline at this experiment. In our
experiments, we mislabel the percentage of the data from
0% to 9%, and apply the eight methods on these datasets.
Fig. 6 illustrates the AUC values of eight methods with
respect different percentages of training data mislabeled.
We can find that, the overall performance of the eight meth-
ods degrades when more data are mislabeled; however, our
four methods, CS-SVDD, LS-SVDD, CBS-SVDD and LBS-
SVDD, can still consistently obtain better performance than
SVDD, U-SVDD, uLSIF, and CS-SVM.

4.6 Impact of Imbalanced Data Distribution
We have demonstrated that the SVDD-based approaches:
CBS-SVDD, LBS-SVDD, CS-SVDD and LS-SVDD cam con-
sistently outperform CS-SVM when the number of abnor-
mal data is much smaller than the number of normal data.

Fig. 7. Average running time of each outlier detection approach.

However, it is still interesting to see how the performance
of the three algorithms would be affected when changing
the number of abnormal data in the training.

Table 3 shows the AUC values with respect to different
ratios of normal data size to abnormal data size in the train-
ing data of the first six data sets. It is noted that as more
abnormal examples are added into the training dataset,
CS-SVM offers increasing accuracy. This is because more
negative examples can offer more information from nega-
tive class to build a more accurate SVM. However, when
the ratio of normal data size to abnormal data size are 98:2
and 95:5 for which the number of abnormal examples are
very few, CBS-SVDD, LBS-SVDD, CS-SVDD and LS-SVDD
can remarkably outperform CS-SVM. This is because, based
on insufficient abnormal data, CS-SVM cannot construct an
accurate decision boundary to distinguish two classes. This
indicates that, our proposed method can yield higher accu-
racy in real-world applications where abnormal data are
very scarce.

4.7 Average Running Time Comparison
So far, we have compared our proposed approaches with
other outlier detection approaches with respect of per-
formance, sensitivity to noise, impact of imbalanced data
distribution, it is still interesting to know the average of
running time of each outlier detection approach.

Fig. 7 illustrates the average running time of each out-
lier detection approach over the data sets. It is easy to
discover that, CBS-SVDD, LBS-SVDD, CS-SVDD and LS-
SVDD take much more running time than the original
SVDD and U-SVDD since the former four approaches cal-
culate the likelihood values or confidence values based on
kernel k-means and kernel-LOF methods and take the lim-
ited abnormal samples into the learning phase; while SVDD
and U-SVDD train the outlier detection classifiers only
on the normal examples. We further find that, CBS-SVDD
and LBS-SVDD take little more time than CS-SVDD and
LS-SVDD, thought CBS-SVDD and LBS-SVDD utilize bi-
likelihood values in the training phase. In addition, SVDD
takes similar time as CS-SVM since both methods resolve
the quadratic optimization problem.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose new model-based approaches to
outlier detection by introducing likelihood values to each
input data into the SVDD training phase. Our proposed
method first captures the local uncertainty by comput-
ing likelihood values for each example based on its local
data behavior in the feature space, and then builds global
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classifiers for outlier detection by incorporating the nega-
tive examples and the likelihood values in the SVDD-based
learning framework. We have proposed four variants of
approaches to address the problem of data with imperfect
label in outlier detection. Extensive experiments on ten real
life data sets have shown that our proposed approaches
can achieve a better tradeoff between detection rate and
false alarm rate for outlier detection in comparison to
state-of-the-art outlier detection approaches.

We plan to extend our work in several directions. First,
we would like to investigate how to design better mech-
anisms to generate likelihood values based on the data
characteristics in a given application domain. Second, we
will look into how to use an online process to learn the
hyper-sphere boundary of soft-SVDD in streaming environ-
ments.
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