
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2017 1

Unsupervised Coupled Metric Similarity for
Non-IID Categorical Data
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Abstract—Appropriate similarity measures always play a critical role in data analytics, learning and processing. Measuring the intrinsic
similarity of categorical data for unsupervised learning has not been substantially addressed, and even less effort has been made for
the similarity analysis of categorical data that is not independent and identically distributed (non-IID). In this work, a Coupled Metric
Similarity (CMS) is defined for unsupervised learning which flexibly captures the value-to-attribute-to-object heterogeneous coupling
relationships. CMS learns the similarities in terms of intrinsic heterogeneous intra- and inter-attribute couplings and attribute-to-object
couplings in categorical data. The CMS validity is guaranteed by satisfying metric properties and conditions, and CMS can flexibly
adapt to IID to non-IID data. CMS is incorporated into spectral clustering and k-modes clustering and compared with relevant
state-of-the-art similarity measures that are not necessarily metrics. The experimental results and theoretical analysis show the CMS
effectiveness of capturing independent and coupled data characteristics, which significantly outperforms other similarity measures on
most datasets.

Index Terms—Similarity learning, metric learning, non-IID data, coupling learning, categorical data, unsupervised learning, clustering.
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1 INTRODUCTION

A Ppropriately measuring similarity or distance between
objects is fundamental for effective data analytics, in-

cluding tasks in data mining [1], machine learning [2], [3],
image processing [4], computer vision [5], and information
retrieval tasks [6], and in particular for complex data. It
determines whether the learned outcomes of data analytics
and learning are reliable and the underlying models gen-
uinely capture intrinsic data characteristics.

Similarity measures for categorical (nominal) and nu-
merical data are usually distinct. Most existing work on
similarity learning focuses on numerical data, such as the
commonly used Euclidean and Manhattan distances. The
similarity (or distance) of categorical data is not as straight-
forward as it is for numerical data, since the different values
of a categorical attribute may not be inherently ordered or
comparable. Although there may be no inherent order in
categorical data, other factors like matching statistics and
frequency distribution exist and thus indicate similarity.
Among existing work, the most straightforward and widely
used distance metric is the Hamming distance [7]. It corre-
sponds to matching-based similarity measures, which use
0 and 1 to distinguish the similarity between distinct and
identical categorical values. Other similarity measures take
the frequency distribution of different attribute values into
account, such as the Inverse Occurrence Frequency (IOF) and
Occurrence Frequency (OF) [8]. These similarity measures
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only capture the characteristics within an attribute but ig-
nore the relationships between attributes.

1.1 Motivating toy example

We illustrate the problem with the existing work and the
inherent challenges in analyzing the similarity of categorical
data by taking the staff data of a lab in Table 1 as an example.
The staff data consists of four categorical attributes: Sex,
Education, Occupation and Marriage. From the matching per-
spective, the similarity between Staff 1 and Staff 2 is the same
as that between Staff 1 and Staff 3, because they are both 0.5.
However, from both education and occupation perspectives,
professors and assistant professors should be more similar
than professors and students in the lab.

Further, the frequency distribution of an attribute value
and the co-occurrences between attributes have shown to
be valuable for categorical similarity learning. From the OF
perspective, two values of an attribute are similar if they
present analogous frequency distributions [8]. For example,
the similarity between Professor and Assistance Professor is
greater than that between Professor and Student, because
the occurrence frequency of Professor and Assistant Pro-
fessor in this staff data is the same. Although the attribute
values can disclose more information than simple matching,
the value frequency-based similarity is not sufficient. For
example, the similarity between the education levels Doctor
and Master is the same as that between Doctor and Bachelor.
This is because the frequency distribution only captures
the count statistics of attribute values, but ignores the cou-
pling relationships within and between attributes. The co-
occurrences of attribute values induced on other attributes
is more comparable [9], [10], and complements the accuracy
of frequency-based value similarity. By incorporating the co-
occurrence-based attribute similarity, the pair Doctor and
Master is more similar than Doctor and Bachelor, because
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TABLE 1
An Example: The Staff Data

Staff Sex Education Occupation Marriage
Staff 1 F Doctor Professor Married
Staff 2 M Doctor Assistant Professor Married
Staff 3 F Master Student Married
Staff 4 M Master Student Single
Staff 5 F Bachelor Student Single
Staff 6 M Bachelor Student Single

the former pair co-occurs with the same occupation and
marriage, while the latter does not.

1.2 Major issues and contributions

The above example shows that it is often much more com-
plicated in defining the similarity of categorical data, espe-
cially when data is embedded with complex relationships
[11], [12]. Complex data applications become increasingly
important and popular, heterogeneous and hierarchical cou-
pling relationships [11], [13] are embedded in categorical
attributes, values and objects, which make it even more
difficult to measure similarity or dissimilarity. For example,
the market dynamics in a stock market may be related
to many factors, such as psychological, economic, social,
organizational, political, cultural or even military aspects.
Data presenting explicit and/or implicit couplings and het-
erogeneity is not independent and identically distributed
(i.e., non-IID) [14], [15], [16]. Such data does not fit the IID
assumption widely taken by classic analytics and learning
and their similarity measures.

Non-IID learning has attracted increasing attention in
the relevant communities, which usually only consider the
non-IIDness [14] at the sample level [15], [16]. Model-based
approaches are typically used to address non-IID samples,
such as analyzing non-IID textual data by higher order
Naive Bayes [17], classification with non-IID samples [18],
developing chromatic PAC-Bayes bounds for non-IID data
[19], and learning from dependent observations [20].

The real-life data may be often embodied with various
non-IIDness [14] in terms of diverse couplings and hetero-
geneities between values, between attributes, and between
objects, forming the value-to-object hierarchical non-IIDness
[13], [14]. Learning such non-IID data has been recognized
as a foundational issue in complex data analytics, with
fundamental tasks including learning the hierarchical non-
IIDness and ensuring the robustness and generalization
[21] of learning metrics and models. For this, the Hamming
and OF-based measures cannot fully capture the genuine
similarity of non-IID categorical data as they only capture
particular aspects.

In recent years, increasing efforts have been made to
address the above type of non-IID categorical data, with
a typical focus on learning the value-to-object hierarchical
couplings. Coupled Object Similarity (COS) [10], [22] in-
volves the couplings within and between attributes before
object similarity is defined. Other related work incorporates
couplings into various types of learning tasks, including
coupled clustering [10], coupled KNN for classification

[23], term coupling-based document analysis [24], coupled
keyword queries [25], coupled matrix factorization by item
and user couplings into recommender systems [26], under-
standing relationships between patterns for pattern relation
analysis [27], [28], and analyzing image couplings [29], [30].

Many of the existing similarity measures for categorical
data face two issues. One is that few methods are metric-
based and provide a sound theoretical foundation to satisfy
the metric properties: positivity, reflexivity, commutativity
and triangle inequality (details in Section 3). A metric is
a function that defines a distance between each pair of
elements in a set. A set with a metric is called a metric
space which induces a topology on this set. A metric-based
similarity is derived from a metric by a bijection function.
In fact, a lot of properties and theorems have been derived
in the metric spaces and the corresponding algorithms only
work for sound reasons when built on similarity metrics.
For example, the most classic clustering algorithm k-means
was defined with metrics like the Euclidean or Hamming
distance, whose clustering outcomes are explainable. The
other issue is that few of existing methods capture the value-
to-object hierarchical couplings. COS is the only one catering
for both intra- and inter-attribute similarities, but it is not
a metric. Therefore, it is important to develop appropriate
metric-based similarity measures for non-IID categorical
data.

In this paper, building on the idea of incorporating
heterogeneous and hierarchical value-to-object coupling re-
lationships [13] into learning systems, we propose a coupled
metric similarity (CMS) metric for non-IID categorical data.
CMS integrates the frequency-based intra-attribute similar-
ity with the co-occurrence-based inter-attribute similarity
before object similarity is measured. The intra-attribute simi-
larity captures the frequency distribution and the couplings
between values in an attribute. The inter-attribute similar-
ity aggregates the attribute dependency between values of
different attributes by considering the intersection of their
co-occurrence conditional probability. CMS integrates intra-
attribute similarity with inter-attribute similarity by catering
for their contributions. Further, we prove that CMS is a valid
similarity metric that satisfies the metric properties.

Our main contributions are detailed below:

• A coupled metric similarity (CMS) measure is pro-
posed for the unsupervised learning of non-IID cate-
gorical data. CMS captures both the intra- and inter-
attribute couplings and further learns heterogeneous
and hierarchical value-to-object couplings to mea-
sure the object similarity.

• By introducing a control parameter, CMS combines
intra- and inter-attribute similarities based on the
data characteristics of given data, adapting to both
IID and non-IID data. This shows the flexibility of
CMS.

• Four theorems are proposed and proved to ensure
the validity of CMS as a metric.

• CMS is compared with the state-of-the-art similarity
measures by incorporating them into both distance-
based clustering and similarity-based clustering al-
gorithms on nineteen UCI benchmark datasets. Eval-
uation and empirical analysis of the resultant statis-
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tically significant outcomes are provided to under-
stand why CMS works well from the perspectives
of both similarity constituents and capturing various
couplings.

The remainder of the paper is organized as follows. In
Section 2, we discuss the related work. The problem is spec-
ified in Section 3. Section 4 introduces the CMS measure.
The proof of CMS validity and theoretical analyses of metric
properties are given in Section 5. We demonstrate the CMS
effectiveness and efficiency by experiments and analysis in
Section 6, and discuss the underlying working mechanisms
of CMS in Section 7. Lastly, conclusions and future work are
discussed in Section 8.

2 RELATED WORK

The similarity learning of categorical data has attracted
increasing attention in recent years [8], [31], [32]. Compared
to numeric data similarity learning, learning categorical data
similarity is more complicated, and limited research out-
comes have been reported. The matching-based measures
are typical for categorical data. A matching-based measure
simply assigns the similarity as 1 if the values of an attribute
for two objects are identical; otherwise it assigns 0. How-
ever, such simple matching-based measures often result in
misleading learning outcomes as discussed in the above,
and they disregard the hidden similarity between categor-
ical values [33]. Further, the Inverse Occurrence Frequency
(IOF) and Occurrence Frequency (OF) based measures take
the occurrence frequency distribution into account. IOF
is related to the concept of inverse document frequency,
which was designed for text mining [34] and assigns lower
similarity to mismatches on more frequent values, and vice
versa. An OF measure gives the opposite weight of the IOF
measure for mismatches.

Intensive studies have been conducted on learning the
similarity between two categorical values in supervised
learning [35], [36], [37]. A classic similarity measure in
supervised learning is the Value Distance Matrix (VDM) and
the Modified Value Distance Matrix (MVDM) [38] based
on class labels. Both methods measure the distance be-
tween two numeric attribute values in a multi-dimensional
attribute space for supervised learning and modify the
distance with a weighting scheme. Wilson and Martineza
designed a Heterogeneous Value Difference Metric (HVDM)
[39] to cater for categorical attributes.

An increasing number of researchers have also paid
attention to similarity analysis for unsupervised learning
[40], [41]. A key point is that the attribute value similarity is
also dependent on other attributes [8], [11]. Typical efforts
in this area applied the Pearson and Jaccard coefficients
between values [22], [31]. The Pearson correlation coefficient
only reflects the strength of linear dependence [42] within
numeric data. The Jaccard similarity coefficient statistically
compares the similarity and diversity of sample sets and is
widely used in data mining tasks [43].

A variety of techniques for learning the similarity of
categorical data have been explored. Believing that the
attribute and object similarities are interdependent, Das and
Mannila [44] presented the Iterated Contextual Distances

(ICD) algorithm. ICD considers and iterates attribute sim-
ilarity, sub-relation similarity, and row similarity; however,
it faces a number of issues including the selection of starting
points, database scan times, iterations, and convergence.
Ahmad and Dey [9] proposed a distance-based measure
in terms of value co-occurrences. Their work considers the
overall distribution of two attribute values in a dataset along
with their co-occurrences with the values of other attributes.
Their similarity only considers value co-occurrences, and
does not cater for value-to-object hierarchical similarity; in
addition, computation is costly. No theoretical foundation
and analysis about metric properties were provided.

Built on the concepts of intra- and inter-behavior cou-
pling relationships [13] and coupled behavior similarity for
coupled behavior analysis [11], the coupled object similarity
(COS) [10], [22] was proposed to learn categorical data
similarity. COS is based on the belief that object similarity,
attribute similarity and value similarity form an interactive
and inter-dependent hierarchical system which cannot be
ignored in the similarity definition for complex data. Ac-
cordingly, COS captures the Intra-coupled Attribute Value
Similarity (IaAVS), the Inter-coupled Attribute Value Sim-
ilarity (IeAVS) and their integration to learn object simi-
larity. Experiments show that COS achieves significant im-
provement over existing similarity measures in clustering
categorical data. The CBA and COS methods have been
applied in classification [23], recommender systems [26],
text mining [24], keyword query [25], and video processing
[30]. However, COS is not a metric-based similarity, and no
theoretical foundation and analysis have been provided to
verify its metric properties and determine why it works for
sound reasons.

To address the above relevant issues, this work takes
a step forward by proposing the concept and similarity
learning system Coupled Metric Similarity (CMS). CMS
learns object similarity by proposing hierarchical similarity
measures that capture both horizontal and vertical coupling
relationships between the values of an attribute, between
attributes, and between objects. CMS ensures that these
value-to-attribute-to-object similarity measures satisfy met-
ric properties with sound theoretical design and proof and
this foundation makes CMS applicable to distance-based
algorithms.

3 PROBLEM FORMULATION

In this section, we first discuss the necessary conditions
for a valid distance-based function and a metric similarity
measure. Further, preliminaries are provided to establish
the foundation for proposing new similarity metrics. These
will form the theoretical foundation for the concept of CMS,
which will be discussed in Section 5.

3.1 Metric properties
A metric space is an ordered pair (M, δ) where M is a set
and δ is a metric on M , i.e., a function: d : M ×M → R so
that, for any ux, uy, uz ∈ M , the following properties hold
[45]:

1) non-negativity: δ(ux, uy) ≥ 0
2) reflexivity: δ(ux, uy) = 0⇔ ux = uy
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3) commutativity: δ(ux, uy) = δ(uy, ux)
4) triangle inequality: δ(ux, uz) ≤ δ(ux, uy)+δ(uy, uz)

The function δ() is called a distance function (here simply
called distance).

A valid metric needs to satisfy the above properties.
Given the above metric function δ(), the following bijection
function [8] is applied to convert a metric distance to a
metric-based similarity:

s(ux, uy) =
1

1 + δ(ux, uy)
, (1)

where s(ux, uy) is the similarity between two data points ux
and uy , and δ(ux, uy) is the distance between ux and uy .

With the above mapping function, we can deduce the
following conditions that a metric-based similarity measure
should hold:

1) positivity: 0 < s(ux, uy) ≤ 1
2) reflexivity: s(ux, uy) = 1 ⇔ then ux is exactly the

same as uy
3) commutativity: s(ux, uy) = s(uy, ux)
4) triangle inequality: 1

s(ux,uy)
+ 1

s(uy,uz)
≥ 1+ 1

s(ux,uz)

3.2 Problem statement
Assume a dataset DB consists of a number of data objects
U that are described by a set of attributes A. DB can be
organized as an information table S =< U,A, V >, where
U = {u1, ..., un} is composed of a non-empty finite set of
data objects; A = {a1, ..., am} is a finite set of attributes;
V = ∪mj=1Vj consists of sets of values of all attributes, in
which Vj is the set of values of attribute aj .

For the better readability by illustrating CMS-based sim-
ilarity calculations in the following sections, the information
table shown in Table 2 is used as an example. Symbols
A1 and A2 represent two distinct values of attribute a1;
B1 and B2 represent two distinct values of attribute a2;
and C1 and C2 represent two distinct values of attribute
a3. Table 2 thus consists of six objects {u1, ..., u6} and four
attributes {a1, a2, a3, a4}, and the value set of attribute a2 is
V2 = {B1, B2}.

We assume that the similarity between two objects ux
and uy (ux, uy ∈ U ) is the summation of the similarities
between attribute values vxj , vyj (vxj , vyj ∈ Vj) for any
attribute aj , where j ∈ [1,m]), and vxj and vyj indicate
the respective attribute values of objects ux and uy on the
attribute aj . For instance, v21 = A2 and v12 = B1. Several
basic concepts are defined below to form the foundation of
introducing the CMS measure, a new object similarity metric
for categorical data in Section 4.
Definition 1 (Conditional Probability of Attribute Values).

Given the value vk of attribute ak (ak ∈ A), and the
value vxj (vxj ∈ Vj) of object ux on attribute aj , then
the conditional probability of vk with respect to vxj is
p(vk|vxj ), defined as:

p(vk|vxj ) =
|I(vxj , vk)|
|I(vxj )|

, (2)

where I(vxj , vk) denotes the set of the objects ux whose
attribute value of aj is vxj and attribute value of ak is
vk, I(vxj ) denotes the set of the objects whose attribute

TABLE 2
Toy Example: A Car Data Set

U
A

a1 a2 a3

u1 A1 B1 C1

u2 A2 B1 C2

u3 A1 B2 C1

u4 A1 B2 C2

u5 A2 B2 C1

u6 A1 B1 C2

TABLE 3
List of Main Notations

Notation Explanation

{u1, ..., un} The set of n objects
{a1, ..., am} The set of m attributes
vxj , v

y
j Specific values of attribute aj for objects

ux, uy

vk Any value of attribute ak
I(vxj ) The set of the objects whose value of attribute

aj is vxj
I(vxj , vk) The set of the objects whose value of attribute

aj is vxj and value of attribute ak is vk
V I
j The set of values of attribute aj for all objects

in the object set I
|I| The size of set I , i.e., the number of objects in

I
δ(ui, uj) The similarity between objects ui and uj

p(vk|vxj ) The conditional probability of vk w.r.t. vxj

value of aj is vxj , | · | denotes the number of elements in
the contained set.

For example, the values for two objects u1 and u2 on
attribute a1 are v11 = A1 and v21 = A2, hence I(v11) =
I(A1) = {u1, u3, u6}, for the value B1 of attribute a2,
I(A1, B1) = {u1,u6}, p(B1|A1) = |I(A1, B1)|/|I(A1)| =
2/3.

The above notations and definitions form the CMS foun-
dation, which will be presented in the following section. The
main notations in this paper are listed in Table 3.

4 COUPLED METRIC SIMILARITY MEASURES

In this section, we discuss the learning framework, working
mechanism, and key components that form the Coupled
Metric Similarity (CMS) measures.

4.1 The learning framework

We propose the coupled metric similarity to capture the ob-
ject similarity by considering and integrating both intra- and
inter-attribute similarities as well as object similarities. Fig.
1 illustrates its learning framework, working mechanism,
and corresponding key similarity measures. The coupled
metric similarity is built on an information table for cat-
egorical data as discussed in Session 3.2. It first captures
the value couplings in terms of intra-attribute similarities
(sjIa(v

x
j , v

y
j )), followed by the feature couplings in terms

of inter-attribute similarities (sk|jIe (v
x
j , v

y
j )). The intra- and
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inter-attribute similarities are then integrated into the cou-
pled metric attribute value similarity sj(vxj , v

y
j ), which are

further aggregated into the coupled metric similarity to
measure object similarities.

The intra-attribute similarity captures the value co-
occurrence distribution within an attribute. For example,
in Table 2, the intra-attribute similarity between attribute
values A1 and A2 is related to the frequency of the values
A1 and A2, which are both 3. The inter-attribute similarity
between values A1 and A2 of attribute a1 depends on the
attribute values of other two attributes (a2 and a3). The
coupled metric similarity further adaptively combines the
intra-attribute similarity and the inter-attribute similarity to
measure the object similarity. We ensure the metric validity
of the proposed intra-attribute similarity, the inter-attribute
similarity, and the CMS.

4.2 Intra-attribute similarity
According to [31], the discrepancy in attribute value oc-
currence times reflects the value similarity in terms of fre-
quency distribution. The similarity between two objects is
related to their commonality. Accordingly, the intra-attribute
similarity considers the relationship between the frequency
of the attribute values of an attribute, defined as follows.
Definition 2 (Intra-attribute Similarity). The intra-attribute

similarity between two attribute values vxj , v
y
j of objects

ux and uy on attribute aj is sjIa(v
x
j , v

y
j ), defined as

follows:

sjIa(v
x
j , v

y
j )

=


1 if vxj = vyj

log p · log q
log(p · q) + log p · log q

otherwise

, (3)

where log represents the natural logarithm, p denotes
|I(vxj )| + 1, and q denotes |I(vyj )| + 1. I(vxj ) is the set
of objects whose values of attribute aj are vxj . Similarly,
I(vyj ) is the set of objects whose values of attribute aj is
vyj .

According to metric similarity conditions defined in
Section 3, if the attribute values are identical, the similarity
between them should be 1. When the attribute values are
not identical, their occurrence frequencies indicate their
similarity. Equation (3) is designed to satisfy the following
three principles.

• The maximum similarity between two attribute val-
ues is reached when the values are identical.

• The greater similarity is assigned to the attribute
value pair which shares approximately equal fre-
quencies.

• The higher the frequency of two values, the closer
two values are.

Equation (3) reflects that different occurrence frequencies
indicate distinct levels of attribute value significance. When
the size of the data increases sharply, the log function
can control the growth of similarity. To prevent the de-
nominator from being zero, we add 1 to each term. Since
1 ≤ |I(vxj )|, |I(v

y
j )| ≤ m, then sjIa(v

x
j , v

y
j ) ∈ (0, 1]. If

vxj 6= vyj , sjIa(v
x
j , v

y
j ) achieves the maximum value when

|I(vxj )| = |I(v
y
j )| = m/2. For example, in Table 2, |I(A1)| =

3 and |I(A2)| = 3, s1Ia(A1, A2)= 0.41.

4.3 Inter-attribute similarity

The above intra-attribute similarity reflects the coupling
relationships between the attribute values of one attribute
aj , which does not involve the couplings between other
attributes ak (k 6= j) and attribute aj . Accordingly, we
discuss the inter-attribute similarity, which involves the
couplings between attributes and is much more complicated
than intra-attribute couplings.

We note that the Modified Value Distance Matrix
(MVDM) [38] measures the dissimilarity between categori-
cal values w.r.t. class labels. It shows that attribute values
are similar if they occur with similar relative frequency
for all classifiers. Based on MVDM, Wang et. al. [10], [22]
replaced the class labels with other attributes to enable un-
supervised learning and proposed the Inter-coupled Relative
Similarity based on Power Set (IRSP). They also proposed the
Inter-coupled Relative Similarity based on Join Set (IRSJ), and
the Inter-coupled Relative Similarity based on Intersection Set
(IRSI), and proved that these measures are equivalent to
each other in achieving the same accuracy in calculating
value similarity [10], [22]. They prove that IRSI is the most
efficient of the above measures; however, IRSI cannot retain
the conditions of a metric similarity which are discussed in
Section 3. Below, we propose a new inter-attribute similarity
measure to satisfy metric properties.

Before calculating the inter-attribute similarity, we define
the intersection set of co-occurrence conditional probability
Wk.

Definition 3 (Intersection Set of Co-occurrence Conditional
Probability of Attribute Values). The intersection set of
co-occurrence conditional probability of values vxj , vyj of
attribute aj with the co-occurrence values of attribute ak
(j 6= k) is:

Wk = V
I(vx

j )

k ∩ V I(vy
j )

k , (4)

V
I(vx

j )

k is the set of values of attribute ak for all objects in
I(vxj ). Wk consists of those attribute values of attribute
ak which co-occur with both vxj and vyj .

The Jaccard similarity coefficient is widely used in clus-
tering and classification. The Jaccard similarity coefficient is
defined as:

J(f ,g) =

∑
i min(fi, gj)∑
i max(fi, gj)

, (5)

where f = (f1, f2, ..., fn) and g = (g1, g2, ..., gn) are two
vectors with all real numbers.

The Jaccard distance is a distance metric [46] as follows:

δJ(ux, uy) = 1− J(x, y). (6)

According to the Jaccard distance and Equation (1) dis-
cussed in the previous section, we define the inter-attribute
similarity with the Jaccard similarity based on IRSI [10] and
Wk as follows.

Definition 4 (Inter-attribute Similarity of Attribute Values
w.r.t. Another Attribute). The inter-attribute similarity
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Fig. 1. The Framework of Coupling Metric Similarity Learning

between two attribute values vxj and vyj of attribute aj
with another attribute ak is:

s
k|j
Ie (v

x
j , v

y
j ) (7)

=


1, if vxj = vyj∑|Wk|

i=1 max(pix, p
i
y)

2 ·
∑|Wk|

i=1 max(pix, p
i
y)−

∑|Wk|
i=1 min(pix, p

i
y)

otherwise

where pix = p(wi
k|vxj ), piy = p(wi

k|v
y
j ), they are condi-

tional probabilities of wi
k with respect to vxj and vyj , pix

and piy are calculated according to Equation (2). wi
k is the

ith element in Wk which is calculated according to Equa-
tion (4). In particular, if Wk is empty, sk|jIe (v

x
j , v

y
j ) = ε

where ε is a small positive number.

In Table 2 for example, according to Equation (4), the
similarity s

2|1
Ie (A1, A2) depends on the values of attribute

a2. I(A1) = {u1, u3, u6} and I(A2) = {u2, u4, u5, },
hence V

I(A1)
2 = {B1, B2}, V

I(A2)
2 = {B1, B2} and

W2 = {B1, B2}. According to Equation (7), we calculate
max(p(B1|A1), p(B1|A2)), max(p(B2|A1), p(B2|A2)),
min(p(B1|A1), p(B1|A2)), and min(p(B2|A1), p(B2|A2)),
and obtain s2|1Ie (A1, A2) = 0.57.

Following the above discussion, we further define the
similarity between the value pair (vxj , v

y
j ) of attribute aj on

top of the Jaccard similarity of other attributes ak (j 6= k).
Definition 5 (Inter-attribute Similarity). The inter-attribute

similarity between two attribute values vxj and vyj of
attribute aj is:

sjIe(v
x
j , v

y
j ) =

m∑
k=1,k 6=j

γk|js
k|j
Ie (v

x
j , v

y
j ), (8)

where γk|j represents the weight of each attribute ak
(j 6= k) to attribute aj ,

∑m
k=1,k 6=j γk|j = 1, γk|j ∈ [0, 1],

and s
k|j
Ie (v

x
j , v

y
j ) is one of the inter-attribute similarity

candidates with attribute ak. γk|j reflects the relation
between attributes aj and ak.

Consequently, we have sk|jIe (v
x
j , v

y
j ) ∈ [0, 1]. Particularly,

if Wk is not empty, sk|jIe (v
x
j , v

y
j ) ∈ [0.5, 1]. Since sk|jIe (v

x
j , v

y
j )

is in [0, 1], then sjIe(v
x
j , v

y
j ) ∈ (0, 1].

In Table 2, for example s1Ie(A1, A2) = 0.5 ·s1|2Ie (A1, A2)+

0.5 · s1|3Ie (A1, A2) = 0.57 if γ2 = γ3 = 0.5 by taking the
equal weight. Furthermore, the coupled metric similarity

(see Equation (10) in the following section) is obtained as
s1(vxj , v

y
j ) = 0.4904 if α = 1.

4.4 Coupled metric similarity
With the above defined intra-attribute similarity mea-
sure sjIa(v

x
j , v

y
j ) and inter-attribute similarity measure

sjIe(v
x
j , v

y
j ), we now define the coupled metric similarity

measure for attribute aj .
We believe an ideal similarity measure should adapt to

both IID and non-IID [14] data based on the characteristics
of given data, hence we introduce a control parameter α
in integrating the intra- and inter-attribute similarities. We
define the coupled similarity measure of vxj and vyj as
follows.
Definition 6 (Coupled Metric Attribute Value Similarity).

The coupled metric attribute value similarity (CMAVS) be-
tween attribute values vxj and vyj of attribute aj is:

sj(vxj , v
y
j ) =

1

α · 1
sjIe

+ (1− α) · 1
sjIa

, (9)

where sjIa and sjle are respectively the intra-attribute
similarity sjIa(v

x
j , v

y
j ) and inter-attribute similarity

sjIe(v
x
j , v

y
j ) of attribute values vxj and vyj , α ∈ [0, 1].

We use the weighted harmonic mean of inter-attribute
similarity and intra-attribute similarity for the two main
reasons. (1) The weighted harmonic mean guarantees the
triangle equality of combined similarity (cf. Appendix). (2)
It is more robust to outlier values but does not give much
weight to the larger value. When α = 0.5, the sj is the
harmonic mean of sjIe and sjIa.

Different α values reflect the different proportions of
the intra-attribute similarity and inter-attribute similarity in
forming the overall object similarity. A larger α indicates
that inter-attribute couplings play a more important role
in object similarity, i.e., the couplings between attribute aj
and other attributes play a more important role than the
couplings between values in aj .

In particular, if all attributes are independent, i.e., α = 0,
correspondingly sj(vxj , v

y
j ) = sjIa, indicating that only the

couplings within an attribute contribute to object similarity.
When α increases, sj(vxj , v

y
j ) becomes closer to sjIe. α = 1

indicates that attribute values are independent. Therefore,
by adjusting α, we can control sj(vxj , v

y
j ) to flexibly capture

the intrinsic couplings in data. Later in Section 6, we will
show the selection of parameter α and demonstrate that it
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may be possible to find an empirically optimal α value for
a given dataset, while different datasets may share distinct
α values.

We calculate the similarity between two objects ux and
uy on top of CMAVS defined in Equation (9).
Definition 7 (Coupled Metric Similarity). The coupled met-

ric similarity (CMS) between two objects ux and uy is
s(ux, uy):

s(ux, uy) =
m∑
j=1

βjs
j(vxj , v

y
j ), (10)

where βj represents the weight of the coupled metric
attribute value similarity of an attribute aj ,

∑m
j=1 βj = 1,

βj ∈ [0, 1].

5 THEORETICAL ANALYSIS

This section proves that CMS is a valid similarity metric
and analyses the theoretical properties and computational
complexity of CMS.

5.1 CMS metric validity
Before we prove the validity of CMS, we first prove several
theorems to lay the foundation.

Theorem 1. sj(vxj , v
y
j ) = 1, if and only if sjIe(v

x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1 for every attribute aj and when α 6= 0

and α 6= 1.

Theorem 2. The coupled metric attribute value similarity
sj satisfies the triangle inequality if both intra-attribute
similarity sjIa and inter-attribute similarity sjIe satisfy the
triangle inequality for every attribute aj .

Theorem 3. The intra-attribute similarity sjIa satisfies the
triangle inequality for any attribute aj .

Theorem 4. The inter-attribute similarity sjIe satisfies the
triangle inequality for any attribute aj .

These theorems are proved in the Appendix. Conse-
quently, we prove that the validity of the proposed CMS,
namely s(ux, uy), satisfies the following metric properties.

1) Positivity: 0 < s(ux, uy) ≤ 1.
sj(vxj , v

y
j ) consists of sjIa(v

x
j , v

y
j ) and sjIe(v

x
j , v

y
j ).

According to Equation (3), sjIa(v
x
j , v

y
j ) is in (0,1].

sjIe(v
x
j , v

y
j ) is based on the linear product of

s
k|j
Ie (v

x
j , v

y
j ), and sk|jIe (v

x
j , v

y
j ) is the Jaccard similarity

of vectors, accordingly sjIe(v
x
j , v

y
j ) ∈ (0, 1]. Accord-

ing to Equation (9), s(ux, uy) is the weighted sum of
all similarity measures for each attribute’s sj(vxj , v

y
j )

which is the weighted harmonic mean of sjIa(v
x
j , v

y
j )

and sjIe(v
x
j , v

y
j ). Therefore, the similarity measure

s(ux, uy) satisfies the positivity constraint.
2) Reflexivity: s(ux, uy) = 1⇔ ux = uy

We prove the necessity first.
If ux = uy then it means vxj = vyj for all attributes
{aj}. According to Equations (3) and (8), if vxj = vyj ,
then sjIe(v

x
j , v

y
j ) = sjIa(v

x
j , v

y
j ) = 1, so sj(vxj , v

y
j ) =

1 and sj(ux, uy) = 1. Hence, the similarity measure
satisfies the necessity condition.
We further prove the sufficiency.
If s(ux, uy) = 1, we can conclude that sj(vxj , v

y
j ) = 1

for every attribute aj according to Equation (10),
because sj(vxj , v

y
j ) is also in (0,1]. According to The-

orem 1, sj(vxj , v
y
j ) = 1, if and only if sjIe(v

x
j , v

y
j ) =

sjIa(v
x
j , v

y
j ) = 1 and when α 6= 0 and α 6= 1 .

When α = 0, sj(vxj , v
y
j ) = sjIa(v

x
j , v

y
j ) = 1. From

Equation (3), we can conclude that sjIa(v
x
j , v

y
j ) = 1

if and only if vxj = vyj . When α = 1, sj(vxj , v
y
j ) =

sjIe(v
x
j , v

y
j ) = 1. From Equation (8), we can conclude

that sjIe(v
x
j , v

y
j ) = 1 if and only if vxj = vyj . For all

attributes aj , vxj = vyj means ux = uy . The similarity
measure satisfies the sufficiency condition, therefore
the proposed similarity measure s(ux, uy) = 1, if
and only if ux = uy .

3) Commutativity: s(ux, uy) = s(uy, ux).
All operations on our proposed similarity measure
are addition, multiplication, maximum selection,
and minimum selection. These operations are com-
mutative. Hence the inequality holds implicitly.

4) Triangle inequality: 1
s(ux,uy)

+ 1
s(uy,uz)

≥ 1 +
1

s(ux,uz)
.

The resultant similarity s(ux, uy) is the mean of
all similarities sj(vxj , v

x
j ) computed for every at-

tribute. If sj(vxj , v
x
j ) holds the triangle inequality, so

does s(ux, uy) (Its proof is similar to the proof of
Theorem 2). If we can prove that each component
of sj(vxj , v

x
j ) (including sjIa(v

x
j , v

x
j ) and sjIe(v

x
j , v

x
j ))

holds the triangle inequality, then sj(vxj , v
x
j ) sat-

isfies the triangle inequality according to Theo-
rem 2. According to Theorem 3 and Theorem 4,
sjIa(v

x
j , v

x
j ) and sjIe(v

x
j , v

x
j ) satisfy the triangle in-

equality. Hence, the triangle inequality is satisfied
as well.

5.2 CMS theoretical property and computational com-
plexity
The CMS measure s(ux, uy) is an increasing function of
sjIa and sjIe according to Equation (9). According to Def-
inition 2, sjIa(v

x
j , v

x
j ) reflects the intra-attribute similarity

between two attribute values vxj and vyj . The higher the
value sjIa(v

x
j , v

x
j ) is, the closer the two attribute values

are. Equation (7) shows that the inter-attribute similarity
s
k|j
Ie (v

x
j , v

y
j ) increases with the size of co-occurrence set |Wk|.

Hence, the larger sjIe is, the more similar the two attribute
values vxj and vyj are. In conclusion, we can obtain the
increasing property of CMS, which means that the larger
s(ux, uy) indicates that two objects ux and uy are more
similar.

The CMS between two objects captures all intra-attribute
and inter-attribute similarities of each attribute value pair
in the corresponding information table. Accordingly, the
computational complexity linearly depends on the number
of attribute values. The most time-consuming element is the
calculation of inter-attribute similarity which is quantified
by the calculation of sk|jIe (v

x
j , v

y
j ). Hash table is used as the
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data structure to store p(vk|vxj ) of each pair. Suppose the
maximal number of distinct values for each attribute is R
and m is the number of attributes, the time complexity
of calculating the hash table of p(vk|vxj ) for all attributes
is mR(R − 1). The maximal value of |Wk| is the number
of objects n. According to Equation (7) and Equation (8),
the computational complexity of inter-attribute similarity is
nm2R(R− 1). Considering Equation (10), the upper bound
of the time complexity of CMS for two objects is O(nm3R2),
and the upper bound of the total CMS complexity for n
objects is O(n2m3R2).

6 EXPERIMENTS AND EVALUATION

In this section, we compare CMS with other similarity mea-
sures in terms of clustering categorical data by incorporating
CMS into popular clustering methods on nineteen datasets.

6.1 Baseline clustering methods and measures

The following five state-of-the-art similarity/distance mea-
sures are compared with CMS: ALGO DISTANCE (ALGO
for short) [9], the Coupled Object Similarity (COS for short)
[10], [22], the Distance Metric (DM for short) in [47], the
Hamming Distance (HM for short) [7], and Occurrence
Frequency (OF for short) [8].

All the above similarity measures including CMS are
incorporated into a typical similarity-based categorical clus-
tering algorithm spectral clustering [48] and a distance-
based algorithm k-modes [49]. We compare their clustering
performance on categorical data to evaluate which similar-
ity measure achieves better outcomes.

According to the distance-similarity or dissimilarity-
similarity mapping function, i.e., Equation (1) in Section 3,
we can derive the metric distance or dissimilarity measure
from the coupled metric similarity as follows:

δ(ux, uy) =
1

s(ux, uy)
− 1, (11)

where δ(ux, uy) denotes the distance or dissimilarity be-
tween objects ux and uy , and s(ux, uy) is the coupled metric
similarity between ux and uy defined in Equation (10).

All similarity or distance measures and clustering meth-
ods are implemented in MATLAB and performed at 3.4GHz
Pheonix Cluster with 32GB memory.

6.2 Datasets

19 UCI datasets are used for the experiments1. The detailed
characteristics of these 19 different datasets are described in
terms of four data factors in Table 4. They areO - the number
of objects, A - the number of attributes, V - the number
of distinct values for all attributes, and C - the number
of classes (we include the class information for evaluation
only). Abbr. refers to the short form of a dataset name. All
numerical attributes in the datasets are removed to test the
similarity for categorical data only.

The UCI data is used here because it is public, relatively
simple and easy to understand compared to more complex

1. https://archive.ics.uci.edu/ml/datasets.html

TABLE 4
The Data Characteristics of 19 UCI Data Sets

Dataset O A V C Abbr.

Soybeansmall 47 35 97 4 So
Zoo 101 16 36 7 Zo
DNAPromoter 106 57 228 2 Dp
Hayesroth 132 4 15 3 Ha
Lymphography 148 18 59 4 Ly
Hepatitis 155 13 36 2 He
Housevotes 232 16 32 2 Ho
Spect 267 22 44 2 Sp
Mofn3710 300 10 20 2 Mo
Soybeanlarge 307 35 132 19 Sol
Primarytumor 339 17 42 21 Pr
Dermatology 366 33 129 6 De
ThreeOf9 512 9 18 2 Tr
Wisconsin 683 9 89 2 Wi
Crx 690 9 45 2 Cr
Breastcancer 699 9 90 2 Br
Mammographic 830 4 20 2 Ma
Flare 1066 11 41 6 Fl
Titanic 2201 3 6 4 Ti

real-life data. The assumption made is as follows. If a non-
IID-oriented measure can beat its baselines on the UCI data,
such a result should hold consistently on real-life data,
which is usually non-IID, since the UCI data is not likely to
contain more sophisticated non-IID characteristics. Another
reason for using the UCI data is the challenge of finding real-
life datasets that can be verified as non-IID, since currently
no tools are available to verify whether or to what extent a
dataset is non-IID.

6.3 Parameter Selection

There are three parameters: α, β and γ in CMS. The α
value in Equation (9) reflects the extent of the inter-attribute
coupling relationships embedded in a dataset. The larger
the value of α, the greater the proportion of inter-attribute
similarity is. Hence, the coupling relationships in a dataset
are stronger. β in Equation (10) and γ in Equation (7)
reflect the importance of each feature which can be learned
by feature selection methods [50]. In our experiments,
each feature is regarded equally important. We assign the
weight vector (βk)1×m with values βk = 1/m, and assign
γk|j = 1/(m− 1) for every attribute for simplicity. This
simple setting is not optimal, but it can test whether the
proposed CMS design is effective even in a non-optimal
situation.

Since α reflects the combination ratio of intra- and inter-
attribute couplings in a dataset, which varies per dataset,
customizing the appropriate α fitting a respective dataset is
necessary. We use the greedy search [51] on the validation
set to choose the optimal α in CMS for each dataset. For
large dataset, the validation set can be sampled from the
original dataset. However, for unsupervised learning, there
is no label to guide the parameter selection process for
clustering. We can use some clustering internal criteria to
guide the search of an optimal alpha. The clustering internal
criteria [52] focus on the compactness and separability of
clusters which are dependent on distance or similarity and
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TABLE 5
The Calinski-Harabasz Index of CMS-enabled Spectral Clustering with

Different α Values

Datasets α value
0 0.2 0.4 0.6 0.8 1 α∗

So 74.6 84.8 99.7 123.1 163.1 238.2 1
Zo 67.9 56.8 42.3 34.2 63.8 53.5 0
Dp 9.7 9.8 10.0 10.2 10.6 10.8 1
Ha 44.0 47.5 52.2 58.8 67.9 79.6 1
Ly 27.8 28.1 28.9 29.6 30.4 34.1 1
He 76.1 78.6 76.6 74.3 79.8 75.4 0.8
Ho 800.9 856.1 910.6 960.3 1005.7 1048.1 1
Sp 184.3 185.3 188.5 192.7 197.0 201.1 1
Mo 33.6 33.8 36.1 39.9 52.8 90.7 1
Sol 46.8 70.4 154.9 82.9 58.9 44.1 0.4
Pr 12.5 10.9 12.8 13.9 12.7 13.2 0.6
De 168.5 208.1 234.7 242.5 304.3 427.2 1
Tr 40.9 40.6 40.9 40.9 44.5 43.2 0.8
Wi 2437.8 2846.4 3267.9 3638.4 3942.0 4253.1 1
Cr 216.7 224.0 231.7 239.6 246.1 220.3 0.8
Br 2442.9 2854.7 3275.5 3658.6 3966.8 4282.8 1
Ma 954.2 1179.4 1432.8 1707.5 2002.5 2321.1 1
Fl 221.6 211.1 218.4 227.3 270.5 271.1 1
Ti 5837.9 5904.3 5969.9 6034.7 6098.5 6061.5 0.8

reflect the quality of resultant clusters to a certain extent.
Here, we use the Calinski-Harabasz index [53] based on the
clustering results from spectral clustering as the search cri-
terion. The Calinski-Harabasz criterion is sometimes called
the variance ratio criterion (VRC) which is defined as:

V RCk =
SSB

SSW
× (N − k)

(k − 1)
, (12)

where SSB is the overall between-cluster variance, SSW is
the overall within-cluster variance [53], k is the number of
clusters, and N is the number of observations. Well-defined
clusters have a large between-cluster variance (SSB) and a
small within-cluster variance (SSW ). The larger the V RCk

ratio, the better the data partition.
The Calinski-Harabasz index is partially aligned with the

purpose of CMS, that is, to maximize the similarity between
similar objects and minimize the similarity between dissimi-
lar objects. It is also worth noting that the α value chosen by
the Calinski-Harabasz index may not be the optimal value
since it only reflects one aspect of similarity measurement
and there is no ground truth about the clustering results.
Based on the Calinski-Harabasz index, we empirically set
the step length to 0.2 in the greedy search and the search
space as [0, 0.2, 0.4, 0.6, 0.8, 1] in our experiments, which
considers the tradeoff between efficiency and effectiveness.

Table 5 reports the Calinski-Harabasz index of clustering
results for different α values taken in spectral clustering.
Since the datasets are not very large, we use the original
dataset as the validation dataset. The results show that most
datasets have inter-attribute coupling relationships between
attributes. In the following clustering process, we use the α
value which gets the best Calinski-Harabasz index for each
dataset.

6.4 Evaluation methods
For external criteria, we choose some commonly used cri-
teria to compare the clustering results for different similar-
ity measures. The external criteria estimate the difference

between the cluster label of each object assigned by each
clustering algorithm and the ground truth indicated by the
data labels given in the source data. The criteria include
normalized mutual information (NMI) and F-score. The larger
these criteria are, the better performance the clustering
achieves; the corresponding similarity measure is accord-
ingly more effective. The definitions of these three measures
are given below.

• Normalized Mutual Information

NMI =

k∑
i=1

c∑
j=1

ni,j log
(
n·ni,j

ni·nj

)
)√√√√( k∑

i=1
ni log

ni

n

)(
c∑

j=1
nj log

nj

n

) , (13)

where c stands for the true number of classes, k is the
number of clusters obtained by the algorithm, ni,j
denotes the number of agreements between cluster
i and class j, and n is the number of objects in the
whole dataset.

• F-score

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
, (14)

where TP , TN , FP , and FN stand for true posi-
tive, true negative, false positive, and false negative,
respectively.

6.5 Comparison of CMS and other similarity measures-
enabled spectral clustering

Tables 6 and 7 report the results of spectral clustering driven
by the similarity measures CMS, ALGO, COS, DM, OF and
HM in terms of performance measures NMI and F-score. The
overall performance is given in the bottom row w.r.t. the
mean value. For each dataset, the average performance is
obtained by 50 tests of spectral clustering with distinct start
points. In the clustering evaluation, the α∗ for each dataset,
as shown in Table 5, replaces the α parameter in Equation
(9). This reflects an acceptable balance between intra- and
inter-attribute couplings in a respective dataset.

The clustering results show that the CMS-enabled spec-
tral clustering outperforms the spectral clustering methods
empowered by ALGO, COS, DM, OF and HM on seven out
of 19 datasets in terms of both NMI in Table 6 and F-score
in Table 7. By contrast, COS, which also captures both intra-
and inter-attribute couplings achieves less mean value than
CMS in terms of NMI and F-score. CMS performs better than
two best and most recent similarity baselines for categorical
data: ALGO and COS by 3.1% and 3.9% respectively, and
the worst-performing measure OF by 9.0% in terms of the
mean NMI value. In addition, CMS outperforms ALGO and
COS by 2.6% and 2.9% respectively in terms of F-score.

It is also interesting to note that every other similarity
measure outperforms at least one of other measures in one
or two datasets. This reflects the difficulty in effectively
capturing the intrinsic data characteristics in categorical
data and the significant challenge in designing appropriate
and generalized similarity measures for categorical data.
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TABLE 6
The NMI of CMS vs. ALGO, COS, DM, OF and HM-enabled Spectral

Clustering

Datasets CMS ALGO COS DM OF HM

So 1 0.953 0.946 0.957 0.941 0.952
Zo 0.703 0.731 0.705 0.748 0.672 0.690
Dp 0.228 0.209 0.154 0.227 0.103 0.250
Ha 0.001 0.001 0.011 0.001 0.001 0.001
Ly 0.224 0.159 0.164 0.138 0.119 0.152
He 0.196 0.183 0.179 0.185 0.129 0.171
Ho 0.526 0.522 0.524 0.522 0.493 0.493
Sp 0.103 0.106 0.102 0.105 0.094 0.106
Mo 0.055 0.054 0.054 0.017 0.017 0.017
Sol 0.697 0.736 0.768 0.666 0.632 0.673
Pr 0.346 0.348 0.337 0.366 0.351 0.344
De 0.844 0.814 0.807 0.792 0.491 0.748
Tr 0.015 0.002 0.002 0.034 0.03 0.026
Wi 0.826 0.829 0.831 0.815 0.811 0.670
Cr 0.189 0.035 0.043 0.024 0.294 0.201
Br 0.806 0.818 0.82 0.805 0.801 0.749
Ma 0.336 0.329 0.361 0.332 0.326 0.331
Fl 0.260 0.318 0.269 0.192 0.374 0.280
Ti 0.115 0.101 0.101 0.122 0.128 0.114

Mean 0.393 0.381 0.378 0.371 0.358 0.367

TABLE 7
The F-score of CMS vs. ALGO, COS, DM, OF and HM-enabled

Spectral Clustering

Datasets CMS ALGO COS DM OF HM

So 1 0.952 0.943 0.935 0.888 0.925
Zo 0.525 0.547 0.538 0.588 0.494 0.518
Dp 0.762 0.753 0.726 0.753 0.675 0.750
Ha 0.338 0.335 0.338 0.329 0.336 0.337
Ly 0.398 0.366 0.395 0.286 0.319 0.340
He 0.696 0.662 0.622 0.695 0.633 0.649
Ho 0.892 0.888 0.893 0.888 0.884 0.884
Sp 0.547 0.572 0.582 0.563 0.565 0.559
Mo 0.567 0.567 0.567 0.509 0.509 0.509
Sol 0.528 0.553 0.609 0.476 0.48 0.504
Pr 0.213 0.209 0.196 0.230 0.213 0.205
De 0.762 0.710 0.730 0.735 0.615 0.660
Tr 0.555 0.522 0.519 0.591 0.582 0.555
Wi 0.968 0.971 0.973 0.942 0.968 0.923
Cr 0.745 0.551 0.493 0.527 0.791 0.753
Br 0.966 0.969 0.97 0.937 0.966 0.921
Ma 0.817 0.818 0.822 0.814 0.817 0.801
Fl 0.365 0.392 0.352 0.321 0.444 0.359
Ti 0.325 0.375 0.358 0.354 0.306 0.298

Mean 0.630 0.614 0.612 0.604 0.604 0.603

6.6 Comparison of CMS and other similarity measures-
enabled k-modes clustering

Tables 8 and 9 report the NMI and F-score results of k-modes
clustering enabled by the distance measures derived from
CMS, ALGO, COS, DM, OF and HM according to Equation
(11). The overall performance is given in the bottom row
w.r.t. the mean value. For each dataset, the average perfor-
mance is obtained by 50 tests of k-modes clustering with
distinct start points. In k-modes clustering, the α values for
respective datasets also follow the α∗ in Table 5.

In Table 8, the NMI results of CMS-enabled k-modes
are superior to other measures-enabled k-modes on nine
datasets, compared to five by ALGO, three by COS, one
by DM, two by OF, and none by HM. Overall, CMS out-
performs ALGO by 1.1%, COS by 5.8%, DM by 9.7%, OF

by 45.9%, and HM by 16.0%. The F-score results of CMS-
enabled k-modes outperform five other measures in ten out
of 19 datasets as shown in Table 9, compared to four by
ALGO, two by COS, two by HM, one by OF and none by
HM. With regard to the mean F-score, CMS is superior to
ALGO by 6.6%, COS by 9.3%, DM by 9.7%, OF by 18.8%,
and HM by 9.8%.

TABLE 8
The NMI of CMS vs. ALGO, COS, DM, OF and HM-enabled K-modes

Clustering

Datasets CMS ALGO COS DM OF HM

So 1 0.887 0.860 0.858 0.745 0.828
Zo 0.842 0.788 0.803 0.757 0.736 0.759
Dp 0.002 0.08 0.071 0.018 0.048 0.06
Ha 0.012 0.014 0.056 0.012 0.037 0.015
Ly 0.252 0.159 0.164 0.138 0.119 0.152
He 0.188 0.15 0.102 0.128 0.099 0.131
Ho 0.447 0.511 0.511 0.531 0.440 0.461
Sp 0.110 0.092 0.087 0.092 0.089 0.088
Mo 0.008 0.017 0.025 0.023 0.029 0.02
Sol 0.677 0.683 0.674 0.613 0.602 0.631
Pr 0.376 0.374 0.359 0.348 0.335 0.362
De 0.770 0.734 0.743 0.719 0.272 0.578
Tr 0.001 0.004 0.004 0.026 0.020 0.025
Wi 0.610 0.668 0.606 0.593 0.102 0.482
Cr 0.267 0.176 0.054 0.229 0.132 0.168
Br 0.595 0.673 0.609 0.574 0.115 0.437
Ma 0.327 0.326 0.277 0.271 0.269 0.305
Fl 0.274 0.364 0.375 0.232 0.409 0.31
Ti 0.114 0.112 0.117 0.113 0.106 0.109

Mean 0.362 0.359 0.342 0.330 0.248 0.312

TABLE 9
The F-score of CMS vs. ALGO, COS, DM, OF and HM-enabled

K-modes Clustering

Datasets CMS ALGO COS DM OF HM

So 1 0.854 0.780 0.744 0.745 0.799
Zo 0.713 0.554 0.571 0.563 0.514 0.534
Dp 0.498 0.611 0.564 0.358 0.578 0.606
Ha 0.403 0.374 0.421 0.375 0.398 0.359
Ly 0.396 0.366 0.395 0.324 0.319 0.34
He 0.667 0.641 0.620 0.637 0.615 0.636
Ho 0.866 0.884 0.884 0.896 0.865 0.87
Sp 0.351 0.445 0.403 0.468 0.463 0.42
Mo 0.455 0.505 0.507 0.508 0.514 0.493
Sol 0.555 0.489 0.504 0.478 0.449 0.452
Pr 0.218 0.226 0.215 0.213 0.205 0.228
De 0.677 0.601 0.577 0.579 0.317 0.517
Tr 0.697 0.353 0.345 0.534 0.552 0.564
Wi 0.900 0.907 0.887 0.854 0.536 0.815
Cr 0.793 0.668 0.578 0.751 0.64 0.678
Br 0.896 0.928 0.901 0.882 0.542 0.783
Ma 0.819 0.817 0.769 0.759 0.759 0.793
Fl 0.393 0.377 0.390 0.364 0.445 0.375
Ti 0.337 0.314 0.320 0.313 0.324 0.318

Mean 0.612 0.574 0.560 0.558 0.515 0.557

6.7 Comparison of CMS and its variants
With different α values, we can obtain multiple CMS vari-
ants, e.g., intra-attribute similarity (α = 0), inter-attribute
similarity (α = 1), and combined similarity (α = 0.5). Table
10 reports the results of spectral clustering by taking the
intra-attribute similarity (denoted by Intra), inter-attribute
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similarity (denoted by Inter), and combined similarity (de-
noted by Combo).

According to the mean results of all datasets, the com-
bined similarity outperforms pure intra-attribute similarity
or inter-attribute similarity. The results in Tables 6 and 7
also show that the combined similarity outperforms other
combinations of intra- and inter-attribute similarities in
CMS. Though an optimal alpha value may be obtained by
the greedy search per criteria such as the Calinski-Harabasz
index, it may be highly costly and we thus recommend the
empirical value α = 0.5 for new datasets.

TABLE 10
The F-score and NMI of Intra-attribute Similarity, Inter-attribute
Similarity, and Combined Similarity-enabled Spectral Clustering

NMI F-score
Datasets Intra Inter Combo Intra Inter Combo

Zo 0.699 0.731 0.674 0.504 0.554 0.490
Dp 0.250 0.228 0.250 0.771 0.762 0.771
Ha 0.001 0.001 0.001 0.342 0.336 0.336
Ly 0.219 0.221 0.225 0.373 0.385 0.381
He 0.193 0.185 0.203 0.673 0.681 0.698
Ho 0.493 0.526 0.509 0.884 0.892 0.888
Sp 0.099 0.100 0.093 0.560 0.548 0.551
Mo 0.017 0.054 0.016 0.509 0.567 0.528
Sol 0.679 0.704 0.688 0.522 0.528 0.530
Pr 0.337 0.341 0.336 0.201 0.204 0.208
De 0.766 0.847 0.788 0.713 0.757 0.757
Tr 0.012 0.003 0.038 0.550 0.526 0.596
Wi 0.731 0.816 0.797 0.945 0.968 0.964
Cr 0.201 0.024 0.195 0.753 0.527 0.749
Br 0.720 0.806 0.782 0.942 0.966 0.960
Ma 0.334 0.326 0.336 0.824 0.817 0.825
Fl 0.318 0.266 0.257 0.383 0.366 0.362
Ti 0.115 0.114 0.114 0.304 0.299 0.299

Mean 0.378 0.384 0.384 0.619 0.615 0.626

6.8 Scalability Test
Here we use two datasets to test the scalability of the simi-
larity measures. We compare the running time of calculating
the similarity between each pair of attribute values in each
similarity measure. Except the Hamming distance which
does not need to calculate the value distance, we test the
scalability of CMS, ALGO, COS, DM and OF.

To test the scalability w.r.t. the number of objects, we
generate five synthetic datasets with the smallest size of
1,875 and the largest size of 30,000 from the UCI dataset
Adult which have 30,162 objects and 8 attributes. To test the
scalability w.r.t. the number of attributes, we generate six
synthetic data with the smallest dimension of 125 and the
largest dimension of 4,000 from a high-dimensional dataset
Wap.wc2 which have 346 objects and 4,229 attributes.

In the left panel of Fig. 2, CMS runs significantly faster
than ALGO, COS and DM but slower than OF since OF does
not consider any coupling relationships between attributes.
In the right panel, CMS has similar runtime as ALGO but
faster than COS and DM.

6.9 Experimental summary
In summary, the above experiments show that CMS in most
cases outperforms the other state-of-the-art similarity and

2. http://tunedit.org/repo/Data/Text-wc
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Fig. 2. The Scalability Test Results w.r.t. Data Size and Dimensionality

distance measures when they are incorporated into spectral
clustering and k-modes for clustering categorical data. The
experimental results also show that, for most datasets, the
similarity/distance measures that involve couplings, i.e.,
CMS, ALGO, DM and COS, almost always obtain better
performance. This shows the importance of capturing the
various couplings embedded in complex categorical data
[13]. By contrast, CMS significantly outperforms the five
state-of-the-art categorical similarity measures in the overall
results, indicating that CMS is better at capturing couplings
than the other similarity measures.

The results also show that none of the similarity and
distance measures can always win on all 19 datasets for
unsupervised learning. This indicates the complexity and
significance of deeply understanding the intrinsic data char-
acteristics of complex categorical data (which cannot be sim-
ply measured by the Hamming measure or the frequency of
co-occurrences).

7 DISCUSSION ABOUT CMS TO ADAPTIVELY CAP-
TURE HIERARCHICAL COUPLING RELATIONSHIPS

In this section, we empirically analyze why CMS achieves
good performance. We explore the intrinsic working mecha-
nisms of CMS, namely, by observing the impact of involving
three levels of coupling relationships on clustering perfor-
mance: the intra-attribute similarity for capturing value cou-
plings, the inter-attribute similarity for capturing attribute
couplings, and the coupled similarity between objects which
integrates both intra-attribute similarity and inter-attribute
similarity. We discuss how the intra- and inter-attribute
similarities capture the intrinsic couplings within data.

7.1 Balance between intra-attribute and inter-attribute
similarities

CMS integrates both intra-attribute similarity and inter-
attribute similarity, as shown in Equation (9), in terms of
their different contributions and combinations adjustable by
parameter α. α = 0 means we only consider the couplings
within an attribute (i.e., intra-attribute similarity). α = 1
indicates that we only consider the couplings between at-
tributes (i.e., inter-attribute similarity). The effect of tuning
parameter α on the Calinski-Harabasz index is shown in
Table 5, although the outcomes only capture partial aspects
of data characteristics and may be sub-optimal. The α value
corresponding to the highest Calinski-Harabasz index on a
dataset strikes a balance between the contributions made by
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Fig. 3. The clustering results on datasets Ly and De w.r.t. different α
values

intra-attribute similarity and inter-attribute similarity, which
explains why the CMS incorporated by the corresponding α
value obtains desirable clustering performance.

In our experiments, we also find that the CMS with
only inter-attribute similarity obtains better clustering per-
formance than some CMS variants that consider both intra-
attribute and inter-attribute similarities on datasets. As
shown in Tables 6 and 7 for spectral clustering and Tables 8
and 9 for k-modes clustering, CMS performs consistently
well on datasets Lymphography and Dermatology. Accord-
ingly, we show the clustering performance of CMS-enabled
spectral clustering and k-modes clustering w.r.t. all the α
values shown in Tables 5, which demonstrates the challenge
of balancing intra- and inter-attribute similarities in unsu-
pervised learning.

Fig. 3 reflects the clustering performance on datasets
Ly and De. It shows that different α values may lead to
different clustering performance, hence, it is necessary to
choose the optimal α value. The optimal α value on the Ly
dataset is 0.8 for k-modes clustering. Spectral clustering is
not sensitive to the change of α value on Ly and the optimal
value is 1. For dataset De, the change of α value has a large
influence on k-modes clustering and the optimal value is
1. In terms of spectral clustering, the optimal value w.r.t
NMI is slightly different from the optimal value w.r.t. F-
score. The optimal α value of one dataset is decided by not
only data characteristics but also the clustering algorithm.
We will study this issue in our future work.

7.2 Scrutinizing data characteristics
An effective similarity metric needs to capture the intrinsic
data characteristics, which may be quantified in terms of
data factors and indicators [54]. This section explores CMS
in terms of capturing categorical data factors and hierarchi-
cal similarities. We illustrate this exploration by scrutinizing
the characteristics of the Soybean-small data in Table 4.

The Soybean-small dataset contains 47 objects, 35 at-
tributes and 100 distinct attribute values. It is clearly a
small dataset but it is relatively interesting due to its ‘large’
numbers of attributes and values compared to very ‘small’
object number in the UCI data. To illustrate its value and
attribute coupling relationships, we select three attributes:
plant-stand, precip and temp, and use a1-a2, b1-b3, and c1-c3 to
label the distinct values of these respective attributes.

At the attribute value level, we calculate the occurrence
frequency of each value and the co-occurrence frequency
of each value pair in Table 11. The boldfaced values in

TABLE 11
The Frequencies and Co-occurrences of Attribute Values

Attribute Values a1 a2 b1 b2 b3 c1 c2 c3

a1 22 10 13 0 2 6 14
a2 25 0 21 4 15 0 10
b1 10 0 10 0 6 4
b2 13 21 33 15 0 18
b3 0 4 4 2 0 2
c1 2 15 0 15 2 17
c2 6 0 6 0 0 6
c3 14 10 4 18 2 24

the diagonal correspond to the occurrence frequencies of
attribute values, and the other non-empty cells capture the
co-occurrences of value pairs from different attributes.

Table 12 shows the intra-attribute similarity and inter-
attribute similarity of attribute value pairs, labelled as sjIa
for the intra-attribute similarity, sjIe for the inter-attribute
similarity, and sj for the coupled object similarity, as defined
in Equations (3), (8) and (9) with α = 0.5. The statistical
information shown in Table 11 and the diverse similarities
collected in Table 12 enable us to disclose the intrinsic data
characteristics in Soybean-small and the power of CMS in
terms of capturing such characteristics.

The intra-attribute similarity sjIa of pair b1-b2 is 0.5880,
which is larger than that of b1-b3. It consists of the relation-
ship between frequencies of b1, b2 and b3 in Table 11, hence
the intra-attribute similarity captures the frequency distri-
butions and reflects the couplings between values within an
attribute. The inter-attribute similarities sjIe of most pairs
(except pairs b1-b3 and c1-c2) in Table 12 are larger than
their intra-attribute similarities. For pair c1-c2, its inter-
attribute similarity is 0.2656, which is smaller than that of
other pairs. In Table 11, the co-occurrence frequency of pairs
c1-a2, c1-b2 and c1-b3 are 15, 15 and 2 respectively, while
the co-occurrence frequencies of pairs c2-a2, c2-b2 and c2-b3
are all 0. This indicates that the co-occurring values of c1 are
quite different from those of c2. The inter-attribute similarity
sjIe consists of the co-occurrence frequencies of attribute
value pairs; it captures the latent couplings between differ-
ent attributes. In this way, the similarity between attributes
is transformed to the attribute-value similarity and is then
reflected in the similarity on the object level. The results
in Table 12 also show the sensitivity of the integration of
the intra- and inter-attribute similarities in calculating the
value-to-attribute-to-object similarity.

Lastly, as shown in Section 7.1, CMS combines the intra-
and inter-attribute similarities. The parameter α adjusts the
combination of intra-attribute similarities and inter-attribute
similarities. Since different datasets probably own diverse
combinations of intra- and inter-attribute couplings, the cor-
responding optimal α values accordingly are different. An
optimal α value reflects the most appropriate distribution of
intra- and inter-attribute couplings in a dataset.

8 CONCLUSIONS AND FUTURE WORK

Learning for non-IID data significantly challenges existing
analytical and learning theories and similarity measures
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TABLE 12
The Value-to-Attribute-to-Object Similarities

a1-a2 b1-b2 b1-b3 b2-b3 c1-c2 c1-c3 c2-c3

sjIa 0.615 0.588 0.491 0.525 0.538 0.604 0.549
sjIe 0.682 0.703 0.417 0.827 0.266 0.734 0.626
sj 0.647 0.640 0.431 0.642 0.356 0.663 0.586

in terms of effectively capturing the intrinsic heterogeneity
and coupling relationships in non-IID data. The categorical
data embedded with value-to-attribute-to-object hierarchi-
cal coupling relationships is particularly complex. Learn-
ing such data requires the appropriate representation and
similarity metrics for capturing such hierarchical coupling
relationships from attribute values to attributes and objects.

In this paper, we have proposed and evaluated a novel
coupled metric similarity measure CMS for learning hierar-
chical couplings in categorical data. Taking a data-driven
approach that integrates the intrinsic coupling relationships
from low-level attributes and their values to objects in a
dataset, CMS captures both attribute value frequency dis-
tribution and attribute dependency similarity to measure
attribute value similarity, attribute similarity, and then object
similarity.

Compared with the state-of-the-art similarity measures,
including ALGO-distance, coupled object similarity, dis-
tance matrix, occurrence frequency-based measure, and
Hamming-based measure, the incorporation of CMS and the
above measures into two representative clustering methods,
spectral clustering and k-modes, shows the great advan-
tage of CMS against the baseline similarity measures in
representing the above hierarchical couplings. CMS also
incorporates a tuning mechanism for both distance-based
and similarity-based analysis of either IID or non-IID data.

In addition to the experimental evaluation, we have in-
vestigated the driving factors of CMS-enabled performance
improvement and soundness supported by satisfying the
metric properties and explained by discussions about the
underlying working mechanisms of CMS from statistical
and data characteristic perspectives. None of the existing
categorical similarity and dissimilarity measures provide
such a theoretical foundation as CMS.

We are working on designing more effective data struc-
tures and strategies for efficient enhancement and scalable
clustering of large-scale non-IID categorical data using CMS.
Incorporating feature selection or feature weighting into
CMS is another open issue for improving the CMS effective-
ness and efficiency. Another aspect we are working on is to
handle heterogeneous data with value-to-object couplings
and quantify the data characteristics to decide the strength
of couplings in data automatically.
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