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Coupled Attribute Similarity Learning
on Categorical Data

Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Senior Member, IEEE, and Chi-Hung Chi

Abstract— Attribute independence has been taken as a major
assumption in the limited research that has been conducted on
similarity analysis for categorical data, especially unsupervised
learning. However, in real-world data sources, attributes are
more or less associated with each other in terms of certain
coupling relationships. Accordingly, recent works on attribute
dependency aggregation have introduced the co-occurrence of
attribute values to explore attribute coupling, but they only
present a local picture in analyzing categorical data similarity.
This is inadequate for deep analysis, and the computational
complexity grows exponentially when the data scale increases.
This paper proposes an efficient data-driven similarity learning
approach that generates a coupled attribute similarity measure
for nominal objects with attribute couplings to capture a global
picture of attribute similarity. It involves the frequency-based
intra-coupled similarity within an attribute and the inter-coupled
similarity upon value co-occurrences between attributes, as well
as their integration on the object level. In particular, four
measures are designed for the inter-coupled similarity to calculate
the similarity between two categorical values by considering
their relationships with other attributes in terms of power set,
universal set, joint set, and intersection set. The theoretical
analysis reveals the equivalent accuracy and superior efficiency
of the measure based on the intersection set, particularly for
large-scale data sets. Intensive experiments of data structure
and clustering algorithms incorporating the coupled dissimilarity
metric achieve a significant performance improvement on state-
of-the-art measures and algorithms on 13 UCI data sets, which
is confirmed by the statistical analysis. The experiment results
show that the proposed coupled attribute similarity is generic,
and can effectively and efficiently capture the intrinsic and
global interactions within and between attributes for especially
large-scale categorical data sets. In addition, two new coupled
categorical clustering algorithms, i.e., CROCK and CLIMBO are
proposed, and they both outperform the original ones in terms
of clustering quality on UCI data sets and bibliographic data.
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I. INTRODUCTION

S IMILARITY analysis has been a problem of great
practical importance in several domains for decades, not

least in recent work, including behavior analysis [1], document
analysis [2], and image analysis [3]. A typical aspect of these
applications is clustering, in which the similarity is usually
defined in terms of one of the following levels: 1) between
clusters; 2) between attributes; 3) between data objects; or
4) between attribute values. The similarity between clusters is
often built on top of the similarity between data objects, e.g.,
centroid similarity. Further, the similarity between data objects
is generally derived from the similarity between attribute
values, e.g., Euclidean distance and simple matching similarity
(SMS) [4]. The similarity between attribute values assesses the
relationship between two data objects and even between two
clusters. The more two objects or clusters resemble each other,
the larger is the similarity [5]. The other similarity between
attributes [6] can also be converted into the difference of
similarities between pairwise attribute values [7]. Therefore,
the similarity between attribute values plays a fundamental
role in similarity analysis.

The similarity measures for attribute values are sensitive
to the attribute types, which are classified as discrete and
continuous. The discrete attribute is further typed as nominal
(categorical) or binary [5]. The nominal data, a special case of
the discrete type, has only a finite number of values, while the
binary variable has exactly two values. In this paper, we regard
the binary data as a special case of the nominal data.

Compared with the intensive study on the similarity between
two numerical variables, such as Euclidean and Minkowski
distance, and between two categorical values in supervised
learning, e.g., heterogeneous distance functions [8] and mod-
ified value distance matrix (MVDM) [9], the similarity for
nominal variables has received much less attention in unsuper-
vised learning on unlabeled data. Only limited efforts [5] have
been made, including SMS, which uses 0s and 1s to distinguish
the similarity between distinct and identical categorical values,
occurrence frequency (OF) [10] and information-theoretical
similarity (Lin) [10], [11], to discuss the similarity between
nominal values. The challenge is that these methods are
too rough to precisely characterize the similarity between
categorical attribute values, and they only deliver a local
picture of the similarity and are not data-driven. In addition,
none of them provides a comprehensive picture of similarity

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 4, APRIL 2015

TABLE I

INSTANCE OF THE MOVIE DATABASE

between categorical attributes by combining relevant aspects.
Below, we illustrate the problem with SMS and the challenge
of analyzing the categorical data similarity.

As shown in Table I, six movie objects are divided into two
classes with three nominal attributes: 1) director; 2) actor; and
3) genre. The SMS measure between directors Scorsese and
Coppola is 0, but Scorsese and Coppola are very similar.1

Another observation by following SMS is that the similarity
between Koster and Hitchcock is equal to that between Koster
and Coppola; however, the similarity of the former pair should
be greater because both directors belong to the same class l2.

The above examples show that it is much more complex to
analyze the similarity between nominal variables than between
continuous data. The SMS and its variants fail to capture a
global picture of the genuine relationship for nominal data.
With the exponential increase of categorical data, such as
that derived from social networks, it is important to develop
effective and efficient measures for capturing the similarity
between nominal variables.

The similarity between categorical values is sensitive to
the data characteristics. In general, two attribute values are
expected to be similar if they present analogous frequency
distributions within one attribute (e.g., OF and Lin) [10], [11];
this reflects the intra-coupled similarity within attributes.
For example, two directors are very similar if they appear
with almost the same frequency, such as Scorsese with
Coppola and Koster with Hitchcock. However, the reality is
that the former director pair is more similar than the latter.
Ahmad and Dey [12] introduced the co-occurrence probability
of categorical values from different attributes and compared
this probability for two categorical values from the same
attribute. This means that the similarity between directors
relates to the dependency of director on other attributes, such
as actor and genre over all the movie objects, namely, the inter-
coupled similarity between attributes. They both capture local
pictures of the similarity from different perspectives. No work
has been reported on systematically considering both intra-
coupled similarity and inter-coupled similarity. The incomplete
description of the categorical value similarity leads to tentative
and less effective learning performance. In addition, it is
usually very costly to consider the similarity between values
in relation to the dependency between attributes and the
aggregation of such dependency [12], which is verified in
Section VI.

In this paper, we explicitly discuss the data-driven
intra-coupled similarity and inter-coupled similarity, as well

1A conclusion drawn from a well-informed cinematic source.

as their global aggregation in unsupervised learning on
nominal data. The key contributions are as follows.

1) We propose a coupled attribute similarity for objects
(CASO) measure based on the coupled attribute simi-
larity for values (CASV), by considering both the intra-
coupled and inter-coupled attribute value similarities
(IaASV and IeASV), which globally capture the attribute
value frequency distribution and attribute dependency
aggregation with high accuracy and relatively low com-
plexity.

2) We compare the accuracy and efficiency of the four
proposed measures for IeASV in terms of four relation-
ships: power set; universal set; joint set; and intersection
set; and obtain the most efficient candidate based on
the intersection set (i.e., IRSI) from theoretical and
experimental aspects.

3) A method is proposed to flexibly define the dissimilarity
metrics with the proposed similarity building blocks
according to specific requirements.

4) The proposed measures are compared with the state-of-
the-art metrics on various benchmark data sets in terms
of the internal and external clustering criteria. All the
results are statistically significant.

5) We propose two new coupled categorical clustering
algorithms: CROCK and CLIMBO.

This paper is organized as follows. In Section II, we
briefly review the related work. Preliminary definitions are
specified in Section III. Section IV proposes the framework
of the coupled attribute similarity analysis. Section V defines
the intra-coupled similarity, inter-coupled similarity, and their
aggregation. The theoretical analysis is given in Section VI.
We describe the CASO algorithm in Section VII. The effec-
tiveness of CASO is empirically studied in Section VIII, two
new categorical clustering methods (CROCK and CLIMBO)
are introduced, and a flexible method to define dissimilarity
metrics is also developed. Section IX discusses the coupled
nominal similarity with open issues. Finally, we conclude this
paper in Section X.

II. RELATED WORK

Some surveys, in particular [5] and [10], discuss the
similarity between categorical attributes. The usual practice is
to binarize the data and use binary similarity measures rather
than directly considering nominal data. Cost and Salzberg [9]
proposed MVDM based on labels, Wilson and Martinez [8]
performed a detailed study of heterogeneous distance func-
tions for instance based learning, and Figueiredo et al. [2]
introduced word co-occurrence features for text classification.
Unlike our focus, their similarities are only designed for
supervised approaches.

A. Nominal Similarity in Unsupervised Learning

There are a number of existing data mining techniques
for the unsupervised learning of nominal data [10], [12].
Well-known metrics include SMS [4] and its diverse variants,
such as Jaccard coefficients [13], which are all intuitively
based on the principle that the similarity measure is 1 with
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identical values and 0 otherwise, which are not data driven.
More recently, the frequency distribution of attribute values
has been considered for similarity measures [10], such as
OF and Lin. Similarity computation has been incorporated into
the learning algorithm without explicitly defining general mea-
sures [14]. Neighborhood-based similarity [15], [16] was also
explored to measure the proximity of objects using functions
that operate on the intersection of two neighborhoods. They
present the similarity between a pair of objects by considering
only the relationships among data objects, which are built
on the similarity between attribute values simply quantified
by the variants of SMS. However, the couplings between
attributes involve the similarity both between attribute values
and between data objects. Such couplings are catered in our
proposed similarity measure between attribute values, which is
incorporated with the neighborhood-based similarity between
data objects to more precisely describe the neighborhood of
an object. It represents the neighborhood-based metric as a
meta-similarity measure [10] in terms of both the couplings
between attributes and between objects.

All the above methods are attribute-independent since
similarity is calculated separately for two categorical values
of individual attributes. However, an increasing number of
researchers argue that the attribute value similarity is also
dependent on the couplings of other attributes [1], [10]. The
Pearson correlation coefficient [15] measures only the strength
of linear dependence between two numerical variables.
Das and Mannila [6] put forward the iterated contextual
distances algorithm, believing that the attribute, object, and
subrelation similarities are inter-dependent. They convert each
object with binary attribute values to a continuous vector by a
kernel smoothing function, and define the similarity between
objects as the Manhattan distance between continuous
vectors [6]. By contrast, we directly consider similarity for
categorical values to maintain the least information loss.
Andritsos et al. [17] introduced a context sensitive dissim-
ilarity measure between attribute values based on the Jensen–
Shannon divergence. Similarly, Ahmad and Dey [12] proposed
an algorithm ADD to compute the dissimilarity between
attribute values by considering the co-occurrence probability
between each attribute value and the values of another
attribute. Though the dissimilarity metric leads to high accu-
racy, the computation is usually very costly [12], which limits
its application in large-scale problems. In addition, Ahmad
and Dey’s [12] approaches only focus on the interactions
among different attributes, whereas our proposed measure
also considers the couplings within each attribute globally.

B. Categorical Clustering

Clustering algorithms [16], including partition-based meth-
ods, such as k-means and hierarchy-based methods like divi-
sive approaches [5], are more suitable for clustering data with
numerical attributes than categorical data.

Clustering of categorical data (categorical clustering for
short) is a difficult, yet important task. Many fields, from statis-
tics to psychology, deal with categorical data. Despite this fact,
categorical clustering has received limited attention with only

TABLE II

EXAMPLE OF INFORMATION TABLE

a handful of relevant publications. Guha et al. [16] proposed
a robust hierarchical clustering algorithm ROCK, which uses
the link-based similarity measure to measure the similarity
between two categorical data points and between two clusters.
Gibson et al. [14] first constructed a hypergraph according to
the database, and then cluster the hypergraph using a discrete
dynamic system STIRR. Andritsos et al. [17] introduced a
scalable hierarchical categorical clustering algorithm LIMBO
that builds on the information bottleneck (IB) framework for
quantifying the relevant information preserved when cluster-
ing. An incremental algorithm called COOLCAT [18] was pro-
posed to cluster categorical attributes using entropy; however,
it is based on the assumption of independence between the
attributes. Clustering with sLOPE (CLOPE), presented in [19],
uses a global criterion function instead of a local one defined
by the pairwise similarity to cluster categorical data, espe-
cially transactional data. Rather than a measure of similarity,
CLICKS [20] uses a graph-theoretic approach to find k disjoint
sets of vertices in a graph constructed for a particular data
set. The last three algorithms, i.e., COOLCAT, CLOPE, and
CLICKS, have a different focus from our proposed coupled
similarity.

Therefore, in the experiments, we compare the clustering
quality of ROCK, STIRR, and LIMBO with the coupled
versions of them, i.e., when our proposed coupled similarity
measure replaces the original similarity measure between
attribute values in ROCK and LIMBO.

III. PRELIMINARY DEFINITIONS

A large number of data objects with the same attribute set
can be organized by an information table S =< U, A, V , f >,
where universe U = {u1, . . . , um} is composed of a nonempty
finite set of data objects; A = {a1, . . . , an} is a finite set of
attributes; V = ∪n

j=1Vj is a collection of attribute value sets,
in which Vj is the set of attribute values from attribute a j (1 ≤
j ≤ n); and f = ∪n

j=1 f j , f j : U → Vj (1 ≤ j ≤ n) is an
information function that assigns a particular value of attribute
a j to every object. For instance, Table II is an information
table consisting of six objects {u1, . . . , u6} and three attributes
{a1, a2, a3}, the attribute value of object u1 for attribute a2
is f2(u1) = B1, and the set of all attribute values for a2 is
V2 = {B1,B2,B3}.

Generally speaking, the similarity between two objects
ux , uy(∈ U) can be built on top of the similarities between
their attribute values vx

j , vy
j (∈ Vj ) for all attributes a j ∈ A.

Here, vx
j and vy

j indicate the respective attribute values of
objects ux and uy for the attribute a j , for example, v1

2 = B1
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and v2
1 = A2. By proposing a coupled attribute value similarity

measure, we define a new object similarity for categorical
data. The basic concepts below facilitate the formulation
for a coupled attribute value similarity measure. They are
exemplified by Table II. Below, an information table S is given,
and |set| is the number of elements in a certain set.

Definition 3.1 (SIF): Two set information functions (SIFs)
are defined as

Fj : 2U → 2Vj , Fj (U
′) = { f j (ux)|ux ∈ U ′} (1)

G j : 2Vj → 2U , G j (V ′j ) = {ui | f j (ui ) ∈ V ′j } (2)

where 1 ≤ j ≤ n, 1 ≤ i ≤ m, U ′ ⊆ U , and V ′j ⊆ Vj .
These SIFs describe the relationships between objects and

attribute values from different levels. Function Fj (U ′) assigns
the associated value set of attribute a j to the object set U ′.
Function G j (V ′j ) maps the value set V ′j of attribute a j to the
dependent object set. For example, based on the attribute a2,
F2({u1, u2, u3}) = {B1,B2} collects the attribute values of
u1, u2 and u3; and G2({B1,B2}) = {u1, u2, u3, u6} returns
the objects whose attribute values are B1 and B2. In Table I
on the movie data, G1({Hitchcock}) = {Vertigo, N by NW}
while F2({Vertigo, N by NW}) = {Stewart, Grant}.

Note that in the two definitions below, the superscripts x and
y of v j are omitted, since any attribute value v j ∈ Vj used
here is independent of the objects ux and uy . However, vx

j and
vy

j are reused when defining the similarity in the following
sections.

Definition 3.2 (IIF): The inter-information function (IIF)
obtains a value subset of attribute ak for the corresponding
objects, which are derived from the value v j of attribute a j .
It is defined as

ϕ j→k : Vj → 2Vk , ϕ j→k(v j ) = Fk(G j ({v j })). (3)

This IIF ϕ j→k is the composition of Fk and G j . The
involved subscript j → k means that this mapping ϕ is per-
formed from attribute a j to attribute ak . Intuitively, ϕ j→k(v j )
computes the set of attribute values from attribute ak that
co-occurs with a particular attribute value v j from attribute a j .
In other words, ϕ j→k(v j ) returns an attribute value subset
of Vk that shares the same objects as v j . For example,
ϕ2→1(B1) = {A1,A2} specifies the values B1 of attribute
a2 and {A1,A2} of attribute a1 are related by the corre-
sponding objects: 1) u1 and 2) u2. Likewise, in Table I,
ϕ1→2(Hitchcock) = {Stewart, Grant} due to the connected
objects: Vertigo and N by NW.

Definition 3.3 (ICP): The value subset V ′k(⊆ Vk) of attri-
bute ak , and the value v j (∈ Vj ) of attribute a j , then the
information conditional probability (ICP) of V ′k with respect
to v j is Pk| j (V ′k |v j ), defined as

Pk| j (V ′k |v j ) = |Gk(V ′k)
⋂

G j ({v j })|
|G j ({v j })| . (4)

Intuitively, when given all the objects with the value v j

of attribute a j , ICP is the percentage of common objects
whose values of attribute ak fall in subset V ′k and whose
values of attribute a j are exactly v j as well. For example,
P1|2({A1}|B1) = 0.5. Hence, ICP quantifies the relative
overlapping ratio of attribute values in terms of objects.

TABLE III

LIST OF MAIN NOTATIONS

TABLE IV

LIST OF ABBREVIATIONS

Back to Table I, P2|1({De Niro, Stewart}|Hitchcock) = 0.5
since actor subset {De Niro, Stewart} and director Hitchcock
co-occur in only one movie Vertigo given Hitchcock directs
two movies: Vertigo and N by NW. Note that the use of subset
V ′k and element v j is to facilitate the definitions in Section V,
and make them mathematically solid and consistent.

All these concepts and functions form the foundation for
formalizing the coupled interactions within and between cat-
egorical attributes, as presented below. The main notations in
this paper are listed in Table III. In addition, several important
abbreviations are defined in Table IV to facilitate the reading
of this paper.

IV. FRAMEWORK OF THE COUPLED ATTRIBUTE

SIMILARITY ANALYSIS

In this section, a framework for coupled attribute similarity
analysis is proposed from a global perspective of the intra-
coupled interaction within an attribute, the inter-coupled inter-
action among multiple attributes, and the integration of both.

With respect to the intra-coupled interaction, the similarity
between attribute values is considered by examining their
occurrence frequencies within one attribute. For the inter-
coupled interaction, the similarity between attribute values is
captured by exposing their co-occurrence dependency on the
values of other attributes. For example, the coupled value
similarity between B1 and B2 (i.e., values of attribute a2)
concerns both the intra-coupled relationship specified by the
repeated times of values B1 and B2: 2 and 2, and the inter-
coupled interaction triggered by the other two attributes (a1
and a3). The coupled interaction is then derived by the
integration of intra-coupling and inter-coupling. In this way,
the couplings of attributes lead to more accurate similarity
(∈ [0, 1]) between attribute values, rather than a rude assign-
ment of either 0 or 1.
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Fig. 1. Framework of coupled attribute similarity analysis, where ������
indicates intra-coupling and ←→ refers to inter-coupling.

In the framework described in Fig. 1, the couplings of
attributes are revealed via the similarity between attribute
values vx

j (e.g., Scorsese in Table I) and vy
j (e.g., Coppola

in Table I) of each attribute a j (e.g., Director in Table I) by
means of the intra-coupling and inter-coupling. Further, the
coupled similarity for objects is built on top of the pairwise
similarity between attribute values according to the integration
of couplings. Finally, two learning tasks are explored for the
data structure analysis and data clustering evaluation by incor-
porating the coupled interactions, revealing that the couplings
of attributes are essential to applications in empirical studies.

Given an information table S with a set of m objects U
and a set of n attributes A, we specify those interactions and
couplings in the following sections.

V. COUPLED ATTRIBUTE SIMILARITY

The attribute couplings are proposed in terms of both
intra-coupled and inter-coupled similarities. Below, the intra-
coupled and inter-coupled relationships, as well as the inte-
grated coupling, are formalized and exemplified. Note that all
the main notations are listed in Table III.

A. Intra-Coupled Interaction

According to [5], the discrepancy in attribute value occur-
rence times reflects the value similarity in terms of frequency
distribution. It reveals that greater similarity is assigned to
the attribute value pair which owns approximately equal fre-
quencies. The higher these frequencies are, the closer the two
values are. Different occurrence frequencies therefore indicate
distinct levels of attribute value significance.

These principles are also consistent with the similarity theo-
rem presented in [11], in which the commonality corresponds
to the product of frequencies and the full description relates
to the total sum of individual frequencies and their product.
In addition, a comparative evaluation on similarity measures
for categorical data has been done in [10], delivering OF and
Lin as the two best similarity measures among 14 existing
measures on 18 data sets. Both these measures assign higher
weights to mismatches or matches on frequent values, and

the maximum similarity is attained when the attribute values
exhibit approximately equal frequencies [10].

Thus, when calculating attribute value similarity (e.g., the
similarity between Scorsese and Coppola in Table I), we con-
sider the relationship between the attribute value frequencies
of an attribute, proposed as intra-coupled similarity to satisfy
the above principles.

Definition 5.1 (IaASV): The intra-coupled attribute similar-
ity for values (IaASV) between values vx

j and vy
j of attribute

a j is

δ I a
j (vx

j , vy
j )

= |G j ({vx
j })|·|G j ({vy

j })|
|G j ({vx

j })|+|G j(v
y
j )|+|G j ({vx

j })|·|G j ({vy
j })|

. (5)

Since 1 ≤ |G j (vx
j )|, |G j (v

y
j )| ≤ m and 2 ≤ |G j (vx

j )| +
|G j (v

y
j )| ≤ m, then δ I a

j ∈ [1/3, m/(m + 4)] is obtained
according to Proof (a) in the Appendix. For example, in
Table II, both B1 and B2 are observed twice, δ I a

2 (B1,B2) =
0.5. In Table I, we have δ I a

1 (Scorsese, Coppola) = 1/3
since both directors Scorsese and Coppola appear once, i.e.,
|G1({Scorsese})| = |G1({Coppola})| = 1.

Note that there is still an issue in the above definition: if two
attribute values vx

j and vy
j have the same frequency, then we

have δ I a
j (vx

j , vx
j ) = δ I a

j (vx
j , vy

j ). This is somewhat intuitively
problematic, but the inter-coupled similarity proposed in the
next section remedies this issue because the inter-coupled sim-
ilarities between vx

j , vx
j and between vx

j , vy
j are overwhelmingly

distinct.
By taking the frequency of attribute values into consider-

ation, IaASV characterizes the value similarity in terms of
attribute value occurrence times.

B. Inter-Coupled Interaction

The IaASV considers the interaction between attribute
values within an attribute a j . It does not involve the couplings
between attributes [e.g., ak(k 	= j) and a j ] when calculating
the attribute value similarity. For this, we discuss the depen-
dency aggregation, i.e., inter-coupled interaction.

In 1993, Cost and Salzberg [9] presented a powerful new
method MVDM for measuring the dissimilarity between cate-
gorical values of a given attribute. The MVDM considers the
overall similarity of classification of all objects on each pos-
sible value of each attribute. The dissimilarity D j |L between
two attribute values vx

j and vy
j (e.g., Scorsese and Coppola in

Table I) for a specific attribute a j (e.g., Director in Table I)
regarding labels L (e.g., Class in Table I) is

D j |L(vx
j , vy

j ) =
∑

l∈L

|Pl| j ({l}|vx
j )− Pl| j ({l}|vy

j )| (6)

where l (∈ L, e.g., l1 and l2 in Table I) is a label in the
information table. Pl| j is the ICP defined in (4) by replacing
the attribute ak with the label l, the attribute value subset
V ′k with the label subset L ′ ⊆ L (here L ′ = {l}), in which
Gl(L ′) refers to the set of objects whose labels fall in L ′.
D j |L indicates that values are identified as being similar if
they occur with the same relative frequency for all classes.
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TABLE V

EXAMPLE OF COMPUTING SIMILARITY USING IRSP

The idea behind is that we wish to establish that values are
similar if they occur with the same relative frequency for all
classifications.

According to the principle [21] that, for the categorical data
distribution, the sum of L1 dissimilarities and twice the total
variation dissimilarity are equivalent, we have

D j |L(vx
j , vy

j ) = 2 · max
L ′⊆L
|Pl| j (L ′|vx

j )− Pl| j (L ′|vy
j )|. (7)

The detailed proof on the equivalence of (6) and (7) is specified
by Proof (b) in the Appendix.

In the absence of labels, the above (7) is adapted to satisfy
our target problem by replacing the class label information
with other attribute knowledge to enable unsupervised learn-
ing. In Table I, for instance, we consider the attribute Actor
rather than Class when calculating the similarity between
Scorsese and Coppola for Director, since Class is invisible
in unsupervised learning process. We regard this interaction
between attributes as inter-coupled similarity in terms of the
co-occurrence comparisons of ICP. The most intuitive variant
of (7) is IRSP.

Definition 5.2 (IRSP): The inter-coupled relative similar-
ity based on power set (IRSP) between values vx

j and vy
j

of attribute a j based on another attribute ak is defined as
δP

j |k(v
x
j , vy

j , Vk) (below δP
j |k for short)

δP
j |k = min

V ′k⊆Vk

{2− Pk| j (V ′k|vx
j )− Pk| j (V ′k|vy

j )} (8)

where V ′k = Vk\V ′k is the complementary set of a set V ′k under
the complete value set Vk of attribute ak .

The main difference between (8) and (7) includes: 1) the
multiplier 2 in (7) is omitted; 2) labels are replaced with
other values of a particular attribute ak , i.e., V ′k and Vk are
substituted for L ′ and L, respectively; 3) a complementary set
V ′k rather than the original set V ′k is concerned for vy

j in ICP,

note that Pk| j (V ′k |vy
j ) = 1 − Pk| j (V ′k |vy

j ); and 4) dissimilarity
is considered rather than similarity; the new dissimilarity
measure

D′j |k(vx
j , vy

j ) = max
V ′k⊆Vk

|Pk| j (V ′k |vx
j )+ Pk| j (V ′k |vy

j )− 1| (9)

is obtained by following the previous three steps, then we
have δP

j |k = 1− D′j |k(v
x
j , vy

j ). The detailed conversion process
is provided in Proof (c) in the Appendix. Two attribute values
are closer to each other if they have more similar probabilities
with other attribute value subsets in terms of co-occurrence
object frequencies.

In Table II, by employing (8), we want to obtain
δP

2|1(B1,B2, {Ai }4i=1), i.e., the similarity between two attribute
values B1,B2 of a2 regarding attribute a1 with its values

{Ai }4i=1. As shown in Table V, the set of all attribute values
of a1 is V1 = {A1,A2,A3,A4}. The number of all power
sets within V1 is 24, i.e., the number of the combinations
consisting of V ′1 ⊆ V1 and V ′1 ⊆ V1 is 24. In detail, for
the second row when we consider V ′1 = {A1} and V ′1 ={A2,A3,A4}, we have P1|2(V ′1|B1) = |{u1}|/|{u1, u2}| =
0.5 and P1|2(V ′1|B2) = |{u3, u6}|/|{u3, u6}| = 1. Therefore,
2 − P1|2(V ′1|B1) − P1|2(V ′1|B2) = 2 − 0.5 − 1 = 0.5. The
other elements in the power set of V1 follow the same rule.
Accordingly, the minimal value among them is 0.5, which
indicates that the corresponding similarity δP

2|1 is 0.5.
This process shows that the combinational explosion

brought about by the power set needs to be considered when
calculating attribute value similarity by IRSP. For a given set
of attribute values, the power set considers all the subsets.
However, the universal set concerns all the elements involved,
which effectively reduces the number of items involved. The
joint and intersection sets focus on parts of the elements, which
further optimize the calculation time. We start with the power
set-based IRSP, and will proceed to the universal set-based
IRSU, the joint set-based IRSJ, and the intersection set-based
IRSI to see whether the problem can be reduced in this way.
We therefore try to define three more similarity metrics IRSU,
IRSJ, and IRSI based on IRSP.

Definition 5.3 (IRSU, IRSJ, IRSI): The inter-coupled rela-
tive similarity based on universal set (IRSU), joint set (IRSJ),
and intersection set (IRSI) between values vx

j and vy
j of

attribute a j based on another attribute ak are defined as
δU

j |k(v
x
j , vy

j , Vk), δ J
j |k(v

x
j , vy

j , Vk), and δ I
j |k(v

x
j , vy

j , Vk) (below
δ j |k , δ J

j |k , and δ I
j |k for short), respectively

δU
j |k = 2−

∑

vk∈Vk

max{Pk| j ({vk}|vx
j ), Pk| j ({vk}|vy

j )} (10)

δ J
j |k = 2−

∑

vk∈∪
max{Pk| j ({vk}|vx

j ), Pk| j ({vk}|vy
j )} (11)

δ I
j |k =

∑

vk∈⋂
min{Pk| j ({vk}|vx

j ), Pk| j ({vk}|vy
j )} (12)

where vk ∈ ∪ and vk ∈ ∩ denote vk ∈ ϕ j→k(vx
j )∪ ϕ j→k(v

y
j )

and vk ∈ ϕ j→k(vx
j ) ∩ ϕ j→k(v

y
j ), respectively.

In the above definition, universal set, joint set, and inter-
section set are proposed to quantify the inter-coupled sim-
ilarity based on the power set. Let us explain the intuitive
meaning and understanding behind those complex formu-
las. For example, in Table I, the IRSP similarity between
directors Scorsese and Coppola is measured by examin-
ing their individual connections with all the actor subsets
(V ′2 ⊆ V2), such as {De Niro}, {De Niro, Stewart}, {Stewart,
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TABLE VI

COMPUTING SIMILARITY USING IRSU

TABLE VII

COMPUTING SIMILARITY USING IRSJ

Grant}.2 Alternatively, the IRSU similarity between directors
Scorsese and Coppola is defined upon all the actors (v2 ∈ V2),
including De Niro, Stewart, and Grant. The IRSJ similarity
between directors Scorsese and Coppola is further built on the
subset of {De Niro, Stewart, Grant} according to the joint
rule (v2 ∈ ∪), which produces all the possible values to
share objects. The IRSI similarity between directors Scorsese
and Coppola is composed by another subset of {De Niro,
Stewart, Grant} based on the intersection rule (v2 ∈ ∩), which
returns the common values to share objects. In addition, the
joint and intersection rules correspond to different selection
schemes of actors that co-occur with directors Scorsese and/or
Coppola in movies. The former collects the co-occurrence
actors with either Scorsese or Coppola, while the latter gains
the co-occurrence actors with both Scorsese and Coppola.
As discussed later in Section VI, these four options are
actually equivalent to one another, though present varying
computational efficiency.

In detail, each value vk(∈ Vk) of attribute ak , rather than its
value subset V ′k ⊆ Vk , is considered to reduce computational
complexity. As shown in Table VI, we have P1|2({A1}|B1) =
|{u1}|/|{u1, u2}| = 0.5 and P1|2({A1}|B2) = |∅|/|{u3, u6}| =
0 when vk takes A1, thus the maximum is 0.5. Accordingly,
the similarity δU

2|1 based on IRSU is δU
2|1(B1,B2, {Ai }4i=1) =

2 − 0.5 − 0.5 − 0 − 0.5 = 0.5. Since IRSU only concerns
all the single attribute values rather than exploring the whole
power set, it solves the combinational explosion issue to a
great extent. In IRSU, ICP is merely calculated eight times
compared with 32 times by IRSP, which leads to a substantial
improvement in efficiency.

The IIF (3) is used to further reduce the time cost of ICP
with two more similarity measures: IRSJ (11) and IRSI (12).
With (11), the calculation of δ J

2|1 is further simplified since
A3 	∈ ϕ2→1(B1) ∪ ϕ2→1(B2), where ϕ2→1(B1) = {A1,A2}
and ϕ2→1(B2) = {A2,A4}. As shown in Table VII, we
obtain δ J

2|1(B1,B2, {Ai }4i=1) = 2 − 0.5 − 0.5 − 0.5 = 0.5 by
calculating ICP with {A1,A2,A4} rather than the whole value
set {A1,A2,A3,A4} of attribute a1. This reveals the fact that
it is enough to compute ICP with w ∈ V1 that belongs to
ϕ2→1(B1)∪ϕ2→1(B2) instead of all the elements in V1. Thus,
IRSJ further reduces the complexity compared with IRSU.

2This is just an illustration, the whole power set includes eight subsets.

TABLE VIII

COMPUTING SIMILARITY USING IRSI

Based on IRSU, an alternative IRSI is concerned. With
(12), the calculation of δ I

2|1 is once again simplified as in
Table VIII since only A2 ∈ ϕ2→1(B1) ∩ϕ2→1(B2), where
ϕ2→1(B1) = {A1,A2} and ϕ2→1(B2) = {A2,A4}. Then, we
easily obtain δ I

2|1(B1,B2, {Ai }4i=1) = 0.5 as the final result,
though ICP has been calculated only once. In this case, it
is sufficient to compute ICP with A2 ∈ V1, which only
belongs to ϕ2→1(B1)∩ ϕ2→1(B2) (i.e., {A1,A2} ∩ {A2,A4}).
In detail, we have P1|2({A2}|B1) = |{u2}|/|{u1, u2}| = 0.5
and P1|2({A2}|B2) = |{u3}|/|{u3, u6}| = 0.5, so the minimum
is 0.5. It is trivial that the cardinality of intersection ∩ is
always no larger than that of joint set ∪. Thus, IRSI is more
efficient than IRSU due to the reduction of intra-coupled
relative similarity complexity.

Intuitively, IRSI is the most efficient of all the proposed
inter-coupled relative similarity measures: IRSP, IRSU, IRSJ,
and IRSI. All four measures lead to the same similarity result,
such as 0.5 in our example. These measures are mathemati-
cally equivalent to one another. This assumption is proved in
Section VI.

Accordingly, the similarity between the value pair (vx
j , vy

j )
of attribute a j can be calculated on top of these four optional
measures by aggregating all the relative similarity on attributes
other than a j . In Table I, the inter-coupled similarity between
Scorsese and Coppola can be naturally constructed by sum-
marizing both the co-occurrences from attributes other than
Director, which are Actor and Genre.

Definition 5.4 (IeASV): The inter-coupled attribute similar-
ity for values (IeASV) between attribute values vx

j and vy
j of

attribute a j is

δ I e
j (vx

j , vy
j , {Vk}k 	= j ) =

n∑

k=1,k 	= j

αkδ j |k(vx
j , vy

j , Vk) (13)

where αk is the weight parameter for attribute ak ,∑n
k=1,k 	= j αk = 1, αk ∈ [0, 1], and δ j |k(vx

j , vy
j , Vk) is one

of the inter-coupled relative similarity candidates.
Therefore, δ I e

j ∈ [0, 1]. Intuitively, δ I e
j calculates the inter-

coupled similarity of values by aggregating all the connections
between other attributes and the attribute a j . Back to Table I,
the inter-coupled similarity between Scorsese and Coppola
(δ I e

1 )3 is determined by the respective co-occurrences of Actor
(δ1|2) and Genre (δ1|3) with them. The parameter αk specifies
how strongly two attributes are dependent on each other.
In this paper, we simply assign αk = 1/(n−1), which indicates
that every two attributes uniformly connect with each other.
Thus, different similarity values rest with distinct extents of
co-occurrence between attributes.

For example, in Table II, we have δ I e
2 (B1,B2, {V1, V3}) =

0.5 · δ2|1(B1,B2, {Ai }4i=1) + 0.5 · δ2|3(B1,B2, {Ci }3i=1) = 0.25

3The symbols within brackets are omitted if no ambiguity arises.
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if α1 and α3 equal to 0.5. The calculation of the first compo-
nent has been displayed above, while the second component
can also be obtained by following the same approach. Alter-
natively, the parameter αk which reflects the coupling weight
of categorical attributes can also be defined to capture the
average connection degree of attribute values inspired by [22]
that proposes the support of attribute values. Later, we will
explore and analyze this strategy in our future work.

C. Coupled Interaction

So far, we have built formal definitions for both IaASV and
IeASV measures. The IaASV emphasizes the attribute value
OF, while IeASV focuses on the co-occurrence comparison of
ICP with four inter-coupled relative similarity options. Then,
the CASV is naturally derived by simultaneously considering
both measures.

Definition 5.5 (CASV): The CASV between attribute values
vx

j and vy
j of attribute a j is

δA
j (vx

j , vy
j , {Vk}nk=1) = δ I a

j (vx
j , vy

j ) · δ I e
j (vx

j , vy
j , {Vk}k 	= j ) (14)

where Vk(k 	= j) is a value set of attribute ak different from
a j to enable the inter-coupled interaction. δ I a

j and δ I e
j are

IaASV and IeASV, respectively, which will be detailed in the
following sections.

As indicated in (14), CASV gets larger by increasing either
IaASV or IeASV. Here, we choose the multiplication of
these two components. The rationale is twofold: 1) IaASV
is associated with how often the value occurs, while IeASV
reflects the extent of the value difference brought by other
attributes, hence intuitively, the multiplication of them indi-
cates the total amount of attribute value difference and 2) the
multiplication method is consistent with the adapted simple
matching distance introduced in [5]. Alternatively, in our
future work, we could consider other combination forms of
IaASV and IeASV according to the data structure, such as
δA

j (vx
j , vy

j , {Vk}nk=1) = β · δ̃ I a
j (vx

j , vy
j )+γ ·δ I e

j (vx
j , vy

j , {Vk}k 	= j ),

where δ̃ I a
j ∈ [0, 1] is the normalized intra-coupled similarity,4

0 ≤ β, γ ≤ 1 (β + γ = 1) are the corresponding weights.
Thus, IaASV and IeASV can be controlled flexibly to display
in which cases the former is more significant than the latter,
and vice versa.

In addition, δA
j = δ I a

j · δ I e
j ∈ [0, m/(m + 4)] since

we have δ I a
j ∈ [1/3, m/(m + 4)](m ≥ 2) as well as

δ I e
j ∈ [0, 1]. For example, in Table II, the CASV of

attribute values B1 and B2 is δA2 (B1,B2, {V1, V2, V3}) =
δ I a

2 (B1,B2)·δ I e
2 (B1,B2, {V1, V3}) = 0.5 × 0.25 = 0.125. For

the Movie data, the coupled similarity between Scorsese and
Coppola (δA

j ) is obtained by multiplying the intra-coupled sim-
ilarity (δ I a

1 ) characterized by frequency with the inter-coupled
similarity (δ I e

1 ) quantified by co-occurrence. For other director
pairs, we accordingly obtain that δA

Director(Scorsese,Coppola) =
δA

Director (Coppola,Coppola) = 0.33, and δA
Director (Koster,

Coppola) = 0 while δA
Director (Koster, Hitchcock) = 0.25.

4The normalization can be made by δ̃ I a
j = (δ I a

j − min)/(max − min),

where min and max denote the minimum and maximum values of δ I a
j for

each attribute, respectively.

TABLE IX

TIME COST OF ICP

They correspond to the fact that Scorsese and Coppola are
very similar directors just as Coppola is to himself, and the
similarity between Koster and Hitchcock is larger than that
between Koster and Coppola, as clarified in Section I.

In the following theoretical analysis in Section VI, the
computational accuracy and complexity of the four inter-
coupled relative similarity options are analyzed.

VI. THEORETICAL ANALYSIS

This section compares the proposed four inter-coupled rela-
tive similarity measures (IRSP, IRSU, IRSJ, and IRSI) in terms
of their computational accuracy and complexity.

A. Accuracy Equivalence

According to the set theory, these four measures are equiva-
lent to one another in calculating value similarity; we therefore
have the following theorem. This theorem is deduced by
Proof (d) in the Appendix.

Theorem 6.1: The IRSP, IRSU, IRSJ, and IRSI are all
equivalent to one another.

The above theorem indicates that IRSP, IRSU, IRSJ, and
IRSI are equivalent to one another in terms of the information
and knowledge they present. It also explains the similarity
result in Section V-B. Thus, these measures can induce exactly
the same computational accuracy in different learning tasks,
including classification and clustering.

B. Computational Complexity Comparison

When calculating the similarity between every pair of
attribute values for all attributes, the computational complexity
linearly depends on the time cost of ICP, which is quantified
by the calculation counts of ICP. This reflects the efficiency
difference between distinct similarity measures. Table IX
summarizes the time costs of the four inter-coupled relative
similarity measures.

Let |ICP(M)
j |k | represent the time cost of ICP for δM

j |k(vx
j , v

y
j )

with the associated measure M = {P, U, J, I }, whose ele-
ments are IRSP, IRSU, IRSJ, and IRSI, respectively. From
Table IX, |ICP(P)

j |k | ≥ |ICP(U )
j |k | ≥ |ICP(J )

j |k | ≥ |ICP(I )
j |k| holds

constantly. It demonstrates the competitive efficiency of IRSI
compared with the other three measures. In Table II, 32 cal-
culation counts of ICP are required in IRSP, compared with
only two calculation counts when using IRSI.

Suppose the maximal number of values for each attribute is
R(= maxn

j=1 |Vj |). In total, the number of value pairs for all
the attributes is at most n·R(R−1)/2, which is also the number
of calculation steps. For each inter-coupled relative similarity,
we calculate ICP for |ICP(M)

j |k | times. As we have n attributes,
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TABLE X

COMPUTATIONAL COMPLEXITY FOR CASV

the total ICP time cost for CASV is 2 · |ICP(M)
j |k | · (n−1) flops

per step. The computational complexity for calculating all four
options of CASV is shown in Table X.

As indicated in Table X, all the measures have the same
calculation steps, while their flops per step are sorted in
descending order since 2R > R ≥ R∪ ≥ R∩, in which R∪
and R∩ are the cardinality of the join and intersection sets
of the corresponding IIFs, respectively. This evidences that
the computational complexity essentially depends linearly on
the time cost of ICP with given data. Specifically, IRSP has
the largest complexity O(n2 R22R), compared with the smaller
equal ones O(n2 R3) presented by the other three measures
(IRSU, IRSJ, and IRSI). Of the latter three candidates, though
they have the same computational complexity, IRSI is the
most efficient due to R∩ ≤ R∪ ≤ R. The dissimilarity ADD
that Ahmad and Dey [12] used for mixed data clustering
corresponds to the worst measure IRSP.

Considering both the accuracy analysis and complexity
comparison, we conclude that IRSI is the best performing
measure because it indicates the least complexity but maintains
equal accuracy to present couplings. Thus, we only consider
IRSI in the following algorithmic design and experimental
comparisons.

VII. COUPLED SIMILARITY ALGORITHM

In previous sections, we have discussed the construction of
CASV and its theoretical comparison among the inter-coupled
relative similarity candidates. In this section, a coupled sim-
ilarity between objects is built based on CASV. Below, we
consider the sum of all these CASV measures, following the
Manhattan dissimilarity [5].

Definition 7.1 (CASO): Given an information table S, the
CASO between objects ux and uy is CASO(ux , uy)

C ASO(ux , uy) =
n∑

j=1

δA
j (vx

j , vy
j , {Vk}nk=1) (15)

where δA
j is the CASV measure defined in (14), vx

j and vy
j

are the attribute values of attribute a j for objects ux and uy ,
respectively, and 1 ≤ x, y ≤ m, 1 ≤ j ≤ n.

For CASO, all the CASVs with each attribute are summed
up for two objects. For example the similarity between u2 and
u3 in Table II is CASO(u2, u3) =∑3

j=1 δA
j (v2

j , v3
j , {Vk}3k=1) =

0.5+ 0.125+ 0.125 = 0.75.
The CASO has the properties of non-negativity

since CASO(ux , uy) ∈ [0, mn/(m + 4)], in particular
CASO(ux , ux ) ∈ [n/3, mn/(m + 4)], and symmetry, i.e.,
CASO(ux , uy) = CASO(uy, ux ), although it does not
guarantee the property of triangle inequality. Therefore,
CASO is a nonmetric similarity measure.

Algorithm 1 Coupled Attribute Similarity for Objects
Data: Data set Sm×n with m objects and n attributes,

object ux , uy(x, y ∈ [1, m]), and weight
α = (αk)1×n .

Result: Coupled Similarity for objects C ASO(ux , uy).
begin

//Compute pairwise similarity for any two values of the
same attribute.

for attribute a j , j = 1 : n do
for every value pair (vx

j , v
y
j ∈ [1, |Vj |]) do

U1←− {i |v i
j == vx

j }, U2 ←− {i |v i
j == v

y
j };

//Compute intra-coupled similarity for two values vx
j

and vy
j .

δ I a
j (vx

j , v
y
j ) =

(|U1||U2|)/(|U1| + |U2| + |U1||U2|);
//Compute coupled similarity for two attribute values

vx
j and vy

j .

δA
j (vx

j , vy
j , {Vk}nk=1)←−

δ I a
j (vx

j , v
y
j ) · I eASV (vx

j , v
y
j , {Vk}k 	= j );

//Compute coupled similarity between two objects ux and
uy .

C ASO(ux , uy)←− sum(δA
j (vx

j , vy
j , {Vk}nk=1));

end
end
Function I eASV (vx

j , v
y
j , {Vk}k 	= j )

begin
//Compute inter-coupled similarity for two attribute values

vx
j and vy

j .

for attribute (k = 1 : n) ∧ (k 	= j) do
{vz

k}z∈U3 ←− {vx
k }x∈U1 ∩ {v y

k }y∈U2;
for intersection z = U3(1) : U3(|U3|) do

U0 ←− {i |v i
k == vz

k};
IC Px ←− |U0 ∩U1|/|U1|;
IC Py ←− |U0 ∩U2|/|U2|;
Min(x,y)←− min(IC Px , IC Py);

//Compute IRSI for vx
j and vy

j .

δ I
j |k(v

x
j , vy

j , Vk) = sum(Min(x,y));

δle
j (vx

j , v
y
j , {Vk}k 	= j ) = sum[α(k)× δ I

j |k(vx
j , vy

j , Vk)];
return δle

j (vx
j , v

y
j , {Vk}k 	= j );

end

We then design an algorithm CASO(), given in Algorithm 1,
to compute the coupled object similarity with IRSI (i.e., the
best inter-coupled relative similarity candidate). The whole
process of this algorithm is summarized as follows: 1) Com-
pute the IaASV for values vx

j and v
y
j of attribute a j (Line 1);

2) Compute the IeASV for attribute values vx
j and v

y
j based

on IRSI (Line 1–Line 1); 3) Compute the CASV for attribute
values vx

j and v
y
j (Line 1); and 4) Compute the CASO for

objects ux and uy (Line 1).
Before the similarity calculation is performed, some data

preprocessing is conducted to enable this algorithm. In detail,
all the categories of each attribute need to be encoded as
numberings, starting at one and increasing to the maximum,
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which is the respective number of attribute values. To reduce
unnecessary iterations in Line 1, pairwise CASV similarity
for any two values of the same attribute, rather than the
only two values involved of each attribute, is precalculated
for reuse when computing the object similarity. Explicitly,
this pseudocode also embodies the fact that the computational
complexity for IRSI is indeed O(n2 R3). However, it might not
be very attractive for extremely large data sets with attributes
that take too many values. Thus, we are working on strategies
of attribute reduction to effectively reduce the number of
coupled attributes.

VIII. EXPERIMENTS AND EVALUATION

In this section, extensive experiments are performed on
several UCI and bibliographic data sets to show the effec-
tiveness of our proposed coupled similarity measures. For
simplicity, we assign the weight vector α = (αk)1×n with
values α(k) = 1/(n − 1) in Definition 5.4.

In this part of our experiments, we focus on comparing
our novel coupled attribute dissimilarity for objects (CADO)
induced from CASO with existing categorical dissimilarity
measures. Four independent groups of experiments are con-
ducted with extensive data sets based on machine learning
applications. In the following, we evaluate the CADO, which
is derived from (15):
C ADO(ux , uy)

=
n∑

j=1

h1(δ
I a
j (vx

j , vy
j )) · h2(δ

I e
j (vx

j , vy
j , {Vk}k 	= j )) (16)

where h1(t) and h2(t) are decreasing functions. Based on
intra-coupled and inter-coupled similarities, h1(t) and h2(t)
can be flexibly chosen to build dissimilarity measures accord-
ing to specific requirements. In terms of the capability of
revealing the data relationship, the better the induced dissim-
ilarity, the better is its similarity.

Here, we consider h1(t) = 1/t − 1 and h2(t) =
1 − t to reflect the complementarity between similarity
and dissimilarity measures, since they are both decreasing
functions of t . The rationale behind these two functions is
as follows. The first conversion corresponds to the improved
simple matching dissimilarity (SMD) with frequency [5], if
only 0 and 1 are assigned to δ I e

j (i.e., SMD [23]: dissim-
ilarity 0 for identical values, and otherwise 1). The second
transformation guarantees the consistency of CADO with the
dissimilarity measure ADD [12], when a constant is fixed for
δ I a

j . In addition, h1(t) = 1/t − 1 is also consistent with the
converted measures proposed in [11]; h2(t) = 1 − t follows
the way of converting OF to OFD [10] as well, presented in
the next section. Both these functions are designed to include
existing classical measures as special cases of our proposed
coupled similarity. The detailed specialization to the improved
SMD and the ADD are explained in Section IX.

A. Data Structure Analysis

This section performs experiments to explicitly specify
the internal structures for the labeled data. Clusterings are

Fig. 2. Data structure index comparison.

normally evaluated by assigning the best score to the algo-
rithm that produces clusters with highest similarity within
a cluster and lowest similarity between clusters based on
a certain similarity measure. We work in a different way,
in which similarity measures are evaluated with clustering
criteria and given labels. In this way, a better cluster structure
can be clarified with a better similarity measure in terms
of the clustering internal descriptors, such as sum-square,
Davies–Bouldin index (DBI) [24], and Dunn index (DI) [25].

To reflect the data cluster structure more clearly, the
induced dissimilarity metrics are evaluated by four descriptors.
1) Relative dissimilarity (RD). 2) DBI. 3) DI. 4) Sum-
dissimilarity (SD). In detail, RD is the ratio of average inter-
cluster dissimilarity upon average intra-cluster dissimilarity
for all cluster labels. SD is the sum of object dissimilarities
within all the clusters. Since internal criteria seek clusters with
high intra-cluster similarity and low inter-cluster similarity,
dissimilarity metrics that produce clusters with high RD or
DI and low DBI or SD are more desirable.

Four object dissimilarity metrics are considered: 1) SMD
[5] (i.e., Hamming distance [23]); 2) OF dissimilarity (OFD)
[10]; 3) ADD introduced in [12]; and 4) our proposed CADO.
The SMD is a simple, well-known measure for categorical
data, while OFD considers matching in terms of attribute value
frequency distribution, both formalized as the sum of value
dissimilarities for all the attributes. Further, value dissimilar-
ities DSMD

j = DOFD
j = 0 if vx

j = x y
j , otherwise they equal

1 and 1 − [
1 + log(m/|G j ({vx

j })|) · log(m/|G j ({v y
j })|)

]−1

for SMD and OFD, respectively. The dissimilarity measure
ADD, derived from (15) with the worst inter-coupled rela-
tive similarity candidate IRSP, considers the sum of inter-
coupled interactions between all the corresponding attribute
values. These three measures only concern local pictures,
while CADO is globally formalized based on (16).

The cluster structures produced by the above four dissim-
ilarity metrics are then analyzed on 10 data sets in different
scales. The results after dissimilarity normalization are shown
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TABLE XI

CLUSTERING EVALUATION ON SIX DATA SETS

in Fig. 2, where the x-axis refers to the data sets Movie,
Balloon, Soybean-small, Zoo, Hayesroth, Voting, Breast-
cancer, Tic, Letter, and Mushroom, respectively. They are
ordered according to the number of objects involved (i.e., m)
to describe distinct data scales, ranging from 6 to 8124.
As discussed previously, larger RD, larger DI, smaller DBI,
and smaller SD indicate better characterization of the cluster
differentiation capability, which corresponds to a better dissim-
ilarity metric being induced. From Fig. 2, we observe that, with
the exception of a few items, the corresponding RD and DI
indexes on CADO are mostly the largest ones when compared
with those on SMD, OFD, and ADD; while the associated DBI
and SD index curves on CADO are mostly below the other
three curves. The results show that our proposed CADO is
better than SMD and OFD in terms of differentiating objects
in distinct clusters. ADD also seems to be slightly better than
SMD and OFD in most cases. The degrees of improvement of
CADO upon SMD, OFD, and ADD mainly depend on data
structure rather than on data scale |U |(= m) alone.

B. Data Clustering Evaluation

To demonstrate the effectiveness of our proposed CADO
and CASO in applications, we conduct two groups of exper-
iments: 1) k-modes (KM) and spectral clustering (SC) and
2) ROCK and CROCK. The former compares two classical
clustering methods based on four dissimilarity metrics on six
data sets. The latter considers the clustering quality of the
adapted method CROCK by integrating our proposed CASO
with the categorical clustering algorithm ROCK [16].

1) KM and SC: One of the clustering approaches is the
KM algorithm [5], designed to cluster categorical data sets.
The main idea of KM is to specify the number of clusters k
and then to select k initial modes, followed by allocating every
object to the nearest mode. The other is a branch of graph-
based clustering, i.e., SC [26], which makes use of Laplacian
Eigenmaps on a dissimilarity matrix to perform dimensionality
reduction for clustering before the k-means algorithm. Below,
we aim to compare the performance of CADO (16) against
SMD [5], OFD [10], and ADD [12] as used in data cluster
analysis for further clustering evaluation.

We consider eight strategies for clustering on six UCI
data sets: KM with SMD, KM with OFD, KM with ADD,

KM with CADO, and SC with SMD, SC with OFDSC
with ADD, SC with CADO. The clustering performance is
evaluated by comparing the obtained cluster of each object
with that provided by the data label in terms of accuracy
(AC) and normalized mutual information (NMI) [27], which
are essentially the external criteria compared with the internal
criterion analysis in Section VIII-A. The AC ∈ [0, 1] is a
degree of closeness between the obtained clusters and its actual
data labels, while NMI ∈ [0, 1] is a quantity that measures the
mutual dependence of two variables: clusters and labels. The
larger AC or NMI is, the better the clustering is, and the better
the corresponding dissimilarity metric is.

Table XI reports the results on six data sets with differ-
ent |U |, ranging from 15 to 699 in the increasing order. The
performance of the aforementioned eight schemes is evaluated
on AC and NMI individually. Followed by Laplacian Eigen-
maps, the subspace dimensions are determined by the number
of labels in SC. For each data, the average performance
is computed over 100 tests for KM and SC with distinct
start points. Note that the highest measure score of each
experimental setting is highlighted in boldface.

As Table XI indicates, the clustering methods with CADO,
whether KM or SC, outperform those with SMD, OFD,
and ADD on both AC and NMI. In addition, CADO is
better than ADD for measuring clustering quality, ADD is
in general superior to OFD, OFD performs better than SMD
for most cases. These findings are consistent with the results
uncovered in Section VIII-A. In addition, Ahmad and Dey [12]
also evidenced that their proposed metric ADD outperforms
SMD in terms of KM clustering. Thus, we only analyze the
performance improvement of CADO upon ADD in details.
The reason is that the effect of inter-coupled interaction of
categorical attributes is generally stronger than that of
intra-coupled interaction, and the consideration of a complete
coupling relationship leads to the largest improvement on clus-
tering accuracy since it discloses the implicit whole structure
hidden in data.

For KM, the AC improving rate ranges from 5.56%
(Balloon) to 16.50% (Zoo), while the NMI improving rate falls
within 4.76% (Soybean-s, i.e., Soybean-small) and 37.38%
(Breastcancer). With regard to SC, the former rate takes the
minimal and maximal ratios as 4.21% (Balloon) and 20.84%
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(Soybean-l, i.e., Soybean-large), respectively, however, the
latter rate belongs to [5.45% (Soybean-l), 38.12% (Shuttle)].
The AC and NMI evaluate clustering quality from different
aspects; generally, they take minimal and maximal ratios on
distinct data sets. Statistical analysis, namely the t-test, has
been done on AC and NMI, at a 95% significance level.
The null hypothesis that CADO is better than ADD in terms
of AC and NMI is accepted. Another significant observation
is that SC mostly outperforms KM whenever it has the
same dissimilarity metric; this is consistent with the finding
in [26], indicating that SC very often outperforms k-means for
numerical data.

2) ROCK and CROCK: The ROCK, proposed by
Guha et al. [16], is a robust clustering algorithm for categorical
attributes. A link-based similarity measure between two data
points is defined based on the neighborhood relation of the
two data points, rather than distance or similarity with other
data points in the data set.

During the process of choosing neighbors for each data
object, Guha et al. [16] simply considered the Jaccard coef-
ficient to capture the closeness between each pair of data
objects, followed by the determination of neighbors with
a user-defined threshold parameter. Their algorithm mainly
focuses on the coupled relationship among objects, without
any concern for the coupled relationships among attributes
and their values. Therefore, we propose to replace the
Jaccard coefficient with our proposed coupled nominal sim-
ilarity CASO and to construct a coupled ROCK (CROCK)
algorithm by considering both coupled objects and coupled
attribute values. Specifically, we regard two data objects ux

and uy to be neighbors if CASO(ux , uy)/n ≥ θ , instead
of |ux ∩ uy|/|ux ∪ uy | ≥ θ presented in [16]. The other
procedures and functions remain the same as [16].

Below, we experiment with five real-life data sets, i.e.,
Movie, Hayesroth, SPECT, Voting, and Mushroom, to compare
the cluster quality between ROCK and CROCK in terms
of three measures: 1) precision (Pr); 2) recall (Re); and
3) specificity (Sp) [2], [17]. As described in [17], the larger
these indexes, the better the clustering. The number of runs for
each experiment here is set to be 20 to obtain corresponding
average results for the evaluation measures, due to the high
computational complexity.

Table XII shows the results of both algorithms on quality
measures. We choose parameters to obtain the best results,
such as θ = 0.75 for Voting. As this table indicates, the
adapted CROCK with our proposed CASO outperforms the
original ROCK on almost all the evaluation measures. Statis-
tical testing also supports the results on Pr, Re, and Sp, that
CROCK performs better than ROCK, at a 95% significance
level. Thus, CROCK’s quality is verified to be superior to
that of ROCK due to the fact that the former considers both
the couplings between attributes with their values (through
co-occurrence) and between objects (by links).

C. Intra-Attribute Value Clustering

In this part, we present the results of CASO applications
to the problem of intra-attribute value clustering. We use

TABLE XII

CROCK VERSUS ROCK ON UCI DATA SETS

TABLE XIII

CLUSTERING QUALITIES FOR FIRST AUTHOR

the bibliographic data taken from the publicly-accessible bib-
liographic databases with 720 research papers [14]. Some
190 papers focus on database research, and the remaining
530 papers are written on theoretical computer science and
related fields. For each paper, we record the name of the first
author, the name of the second author, the name of the confer-
ence/journal, and the year of publication. We are interested in
clustering the first authors, as well as the conferences/journals.

As mentioned in Section II, STIRR applies an itera-
tive method based on a linear dynamic system to assign
and propagate weights on the categorical values [14] to
conduct the intra-attribute value clustering, and LIMBO
defines a distance between attribute values on the basis
of the IB framework to quantify the degree of inter-
changeability of attribute values within a single attribute to
group them [17]. So, we substitute our proposed CADO in (16)
for the distance δ I (ci , c j ) described by the information loss
(i.e., Jensen–Shannon divergence) in [17], and then propose
a coupled version of LIMBO, i.e., CLIMBO. The LIMBO
reveals that two attribute values are similar if the contexts
in which they appear are similar. It is an alternative way
to explicate the inter-coupled interactions among different
attributes; however, it lacks the consideration of the intra-
coupled interactions within each attribute. Thus CADO can
be extended to measure the coupled distance between clusters
by replacing an object ui with a cluster ci , then CLIMBO is
naturally induced.

Below, two experiments are conducted to compare these
algorithms for the intra-attribute value clustering. The para-
meters are specified in the second column of Table XIII.
For STIRR, M and N are the numbers of initial
configurations and iterations, respectively. For LIMBO and
CLIMBO, φ indicates the size bound, S refers to the accuracy
bound, and the addition operator is used. Note that the exper-
iments in this part only run 20 times to display the average
results, since the algorithms itself is computational costly.

The first experiment is designed to cluster the first authors of
the 720 academic papers, and the labels for evaluation are the
preknown research fields: 1) database research (190 papers)
and 2) theoretical computer science (530 papers). Note that all
authors are identified by their last names so that, for instance,
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Fig. 3. Clusterings for conferences/journals.

an attribute value Wang actually represents several Wangs
taken together. In addition, the second author is regarded as
being the same as the first author if the research paper has
only one author. These two aspects lead to the overall modest
clustering quality. The STIRR, LIMBO, and CLIMBO are
compared on the intra-attribute value clustering results of the
attribute first author with regard to Pr, Sp [2], and AC [17].
Table XIII shows that CLIMBO is the best in terms of Pr and
AC, and is comparable with LIMBO on Sp. All the results on
Pr, Sp, and AC are supported by a statistical significant test
at a 95% significance level.

We now turn to the problem of clustering the confer-
ences/journals. Fig. 3 shows the clusters produced by STIRR,
LIMBO, and CLIMBO. The x-axis represents the academic
papers, while the y-axis denotes publishing venues. The thick
horizontal line separates the clusters of conferences/journals,
and the thick vertical line distinguishes between database
research related papers (on the left) and theoretical computer
science related papers (on the right). If an author has published
a paper in a particular venue, this is represented by a point.
From this figure, it is clear that CLIMBO yields the best
partition, followed by LIMBO, and STIRR performs worst.
However, even the clustering of CLIMBO is slightly mistaken
by the conferences/journals between index 50 and 60, which
is due to the influence of their co-authors.

The above two experiments therefore reveal that CLIMBO
is better than LIMBO and STIRR on the clustering quality of
intra-attribute values. In addition, LIMBO can also be clearly
observed to outperform STIRR, which is consistent with the
conclusion drawn in [17].

In summary: 1) intra-coupled relative similarity measures
IRSP, IRSU, IRSJ, and IRSI all present the same learning
accuracy, but IRSI is the most efficient, especially for large-
scale data; 2) our proposed object dissimilarity metric CADO
is better than others, i.e., the traditional SMD, frequency
distribution only OFD, and dependency aggregation only
ADD, for categorical data in terms of data structure analysis
and clustering quality; and 3) the incorporation of CASO or
CADO into existing categorical clustering algorithms, such as
overlap-based methods (e.g., KM and ROCK), context-based
methods (e.g., STIRR), and information-theoretic methods
(e.g., LIMBO) can greatly lift their performance.

IX. DISCUSSION

Below, we discuss the potential opportunities triggered by
our proposed CASV, CASO, and CADO. The degenerative

(first) aspect discusses the degeneration of CADO and CASV
with special cases, while the extended (second) aspect focuses
on the direct extension of CASO and CADO.

Degenerative Aspect: Many existing similarity measures for
attribute values are special cases of our proposed CADO
or CASV. On one hand, CADO could degenerate as an
intra-attribute-independence measure if frequency functions
G j ({vx

j }), G j ({vy
j }) take a nonzero constant value ξ . In this

way, the dissimilarity measure ADD between vx
j and vy

j
proposed in [12] is exactly ξ/2 · CADO, which consid-
ers the interactions between attributes, but lacks the cou-
plings within each attribute. On the other hand, an inter-
attribute-independence measure could be produced by consid-
ering δ I e

j (vx
j , vy

j , {Vk}k= j ) for IeASV, in which δ I
j | j (vx

j , vy
j , Vj )

replaces δ I
j |k(vx

j , vy
j , Vk) (k 	= j) for IRSI. Such an exam-

ple is the improved SMD with frequency [5]. In addi-
tion, an intra-inter-attribute-independence measure could be
obtained by specializing G j ({vx

j }) = G j ({vy
j }) = ξ and

δ I e
j (vx

j , vy
j , {Vk}k= j ) both, which corresponds to the classical

similarity measure SMS and its variants, such as Jaccard
coefficients [5]. So, our proposed measures have the capa-
bility of generalization to the existing similarity measures
which assume independence and partial dependence among
attributes.

Extended Aspect: The couplings or relationships between
attribute values, attributes, objects, and even clusters should
be considered to cater for the interactions among the data.
We have already proposed a coupled discretization algorithm
CD [28], which concerns both the information dependency
and deterministic relationship to disclose the couplings of
uncertainty and certainty. A coupled framework for clustering
ensembles have been reported in [29] by considering both the
relationships within each base clustering and the interactions
between distinct base clusterings, in which CASO or CADO
is applied. On the other hand, coupled attribute analysis [30]
has also been carried out to quantify the relationships among
continuous data. In addition, how to appropriately choose the
weights αk for IeASV defined in (13), rather than simply
treating them as equal, is in great need of further exploration.
Further, we are also working on a flexible way to control
the respective importance of IaASV and IeASV by using
corresponding weights β and γ , according to the specific data
structure. Other data mining and machine learning tasks, e.g.
fraud detection [1] and relational learning [31], can also be
considered to involve coupled interactions.

X. CONCLUSION

We have proposed CASO, a novel data-driven coupled
attribute similarity measure for objects incorporating both
IaASV and inter-coupled attribute similarity for values in
unsupervised learning on nominal data. The measure involves
both attribute value frequency distribution (intra-coupling)
and attribute dependency aggregation (inter-coupling) and
the interaction of the two, which captures a global picture
of the similarity and has been shown to improve learning
accuracy in diverse similarity measures. Theoretical analysis
have shown that the inter-coupled relative similarity measure
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IRSI significantly outperforms the other options (IRSP, IRSU,
and IRSJ) in terms of efficiency, while maintaining equal
accuracy. In addition, our derived dissimilarity metric is more
general and accurate in capturing the internal structures of the
predefined clusters and clustering quality in accordance with
intensive empirical results. Very substantial experiments on
accuracy have been conducted on the data structure and clus-
tering performance by incorporating the proposed similarity.
This has clearly shown that the proposed coupled nomi-
nal similarity leads to more accurate learning performance
on large scale categorical data sets, supported by statistical
analysis. The reason is that our proposed measure is global
as a result of effectively integrating different aspects of the
similarity.

We are currently applying the CASO measure with IRSI
to attribute discretization, clustering ensemble, and other data
mining and machine learning tasks. We are working on the
assignment of attribute weights, and the flexible engagement of
IaASV and IeASV. We are designing the strategies of attribute
reduction to fit the extremely large data. In addition, the
proposed concepts inter-information function and information
conditional probability have the potential to be used in other
applications. Flexible dissimilarity measures can also be built
on our fundamental similarity building blocks according to
different requirements.

APPENDIX

Proof (a):
Theorem 1(a) (Definition 5.1): Intra-coupled attribute simi-

larity for values (IaASV) between values vx
j and vy

j of attribute
a j is δ I a

j (vx
j , vy

j ), we have δ I a
j ∈ [1/3, m/(m + 4)].

Proof 1: According to Definition 5.1, we have that
1 ≤ ∣
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Thus, considering both aspects above, we have
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Proof (b):
Theorem 2(b) (Definition 5.2): Equations (6) and (7) are

equal to each other: D j |L(vx
j , vy

j ) =
∑

l∈L |Pl| j ({l}|vx
j ) −

Pl| j ({l}|vy
j )| = 2 · maxL ′⊆L |Pl| j (L ′|vx

j ) − Pl| j (L ′|vy
j )| holds.

[Note] This theorem is deduced from a property in probability
theory, which is the total variation distance between two
probability measures P and Q on a sigma-algebra F of the
subsets of the sample space 
 is defined via δ(P, Q) =
supA∈F |P(A)−Q(A)|. For a finite alphabet, we can write
δ(P, Q) = (1/2)

∑
x∈
 |P(x)−Q(x)|. If we regard P =

Pl| j (·|vx
j ) and Q = Pl| j (·|vy

j ), A = L ′ and x = l, then the
above theorem holds accordingly.

Proof 2: Assume that L = {l1, l2, . . . , ln} and L ′ =
{l1, l2, . . . , lk} (k ≤ n), we have
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holds, then we have
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Proof (c):
(Definition 5.2): The conversion is conducted from (7) to (8)

via (9): D j |L
(
vx

j , vy
j

) = 2 ·maxL ′⊆L |Pl| j (L ′|vx
j )− Pl| j (L ′|vy

j )|
to δP

j |k = minV ′k⊆Vk
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j )− Pk| j (V ′k |vy
j )}.

Proof: The whole conversion procedural is divided into
four steps.

1) The multiplier 2 in D j |L
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j , vy
j

) = 1− D(3)
j |k

(
vx

j , vy
j

)

= 1− max
V ′k⊆Vk

∣
∣Pk| j

(
V ′k|vx

j

)+ Pk| j
(
V ′k|vy

j

)− 1
∣
∣.

If Pk| j
(
V ′k |vx

j

)+ Pk| j
(
V ′k |vy

j

)− 1 ≥ 0, then we have

D(4.2)
j |k

(
vx

j , vy
j

) = min
V ′k⊆Vk

{
2− Pk| j

(
V ′k |vx

j

)− Pk| j
(
V ′k |vy

j

)}

according to the fact that

1−max(| f (x)|) = min(1− f (x))

for all f (x) ≥ 0 (x ∈ R), where f (x) is a function and R is
the real number field.

If Pk| j
(
V ′k |vx

j

) + Pk| j
(
V ′k |vy

j

)− 1 < 0, we alternatively use

V ′′k = Vk − V ′k = V ′k . Then we have

D(4.1′)
j |k

(
vx

j , vy
j

) = 1− max
V ′′k ⊆Vk

∣
∣Pk| j

(
V ′′k |vx

j

)+ Pk| j
(
V ′′k |vy

j

)− 1
∣
∣.

Since Pk| j
(
V ′′k |vx

j

) = 1 − Pk| j
(
V ′k |vx

j

)
and Pk| j

(
V ′′k |vy

j

) =
Pk| j

(
V ′k |vy

j

) = 1− Pk| j
(
V ′k |vy

j

)
, we have

Pk| j
(
V ′′k |vx

j

)+ Pk| j
(
V ′′k |vy

j

)− 1 > 0.

Hence, we have

D(4.2′)
j |k

(
vx

j , vy
j

) = min
V ′′k ⊆Vk

{
2− Pk| j (V ′′k |vx

j )− Pk| j
(
V ′′k

∣
∣vy

j

)}

according to the fact that 1 − max(| f (x)|) = min(1 + f (x))
for all f (x) ≥ 0 (x ∈ R), where f (x) is a function and R is
the real number field.

We can see that

D(4.1)
j |k

(
vx

j , vy
j

) = D(4.1′)
j |k

(
vx

j , vy
j

)
.

Therefore, we have obtained that

D(4.1)
j |k

(
vx

j , vy
j

) = D(4.1′)
j |k

(
vx

j , vy
j

)

= D(4.2)
j |k

(
vx

j , vy
j

) = D(4.2′)
j |k

(
vx

j , vy
j

)
.

By following the above four steps, we have successfully
converted from (7) to (8) via (9): D j |L(vx

j , vy
j ) to D(4.2)

j |k (vx
j , vy

j )

or D(4.2′)
j |k (vx

j , vy
j ) via D(3)

j |k(v
x
j , vy

j ) or D′j |k(v
x
j , vy

j ).
Proof (d):
Theorem 3(d) (Theorem 6.1): IRSP, IRSU, IRSJ, and IRSI

are all equivalent to one another.
Proof: Part (I) IRSP⇐⇒IRSU.

Let V ∗k be the value set of attribute ak that makes

Pk| j
(
V ′k |vx

j

)+ Pk| j
(
V ′k

∣
∣v

y
j

)

maximal. Below, we show that for every vk ∈ V ∗k
Pk| j

({
vk

}|vx
j

) ≥ Pk| j
({

vk
}|v y

j

)

holds. If there exists vz
k (∈ V ∗k ) satisfying

Pk| j
({

vz
k

}|vx
j

)
< Pk| j

({
vz

k

}|v y
j

)

then set V ∗∗k = V ∗k \{vz
k}, V ∗∗k = V ∗k ∪ {vz

k}, it directly follows
that:
Pk| j

(
V ∗∗k |vx

j

)+ Pk| j
(
V ∗∗k |v y

j

)
> Pk| j

(
V ∗k |vx

j

)+ Pk| j
(
V ∗k |v y

j

)
.

This results in the contradiction between V ∗∗k and V ∗k because
of the maximal assumption of V ∗k .
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Similarly, for any vk ∈ V ∗k
Pk| j

({vk}|vx
j

) ≤ Pk| j
({vk}|v y

j

)

holds. Hence

δP
j |k

(
vx

j , v
y
j

) = min
V ′k⊆Vk

{
2− Pk| j

(
V ′k |vx

j

)− Pk| j
(
V ′k |vy

j

)}

= 2− max
V ′k⊆Vk

{
Pk| j

(
V ′k |vx

j

)+ Pk| j
(
V ′k

∣
∣v

y
j

)}

= 2− [
Pk| j

(
V ∗k |vx

j

)+ Pk| j
(
V ∗k |v y

j

)]

= 2−
⎡

⎢
⎣

∑

vk∈V ∗k

Pk| j
({vk}|vx

j

)+
∑

vk∈V ∗k

Pk| j
({vk}|v y

j

)

⎤

⎥
⎦

= 2−
⎡

⎣
∑

vk∈V ∗k

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)}

+
∑

vk∈V ∗k

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)}

⎤

⎥
⎦

= 2−
∑

vk∈Vk

max{Pk| j
({vk}|vx

j

)
, Pk| j

({
vk}|vy

j

)}

= δU
j |k

(
vx

j , v
y
j

)
.

Part (II) IRSU⇐⇒IRSJ.
Note that in the following Parts (II) and (III), vk ∈

vx
j \v y

j and vk ∈ v
y
j \vx

j are the abbreviated forms for
vk ∈ ϕ j→k(v

x
j )\ϕ j→k(v

y
j ) and vk ∈ ϕ j→k(v

y
j )\ϕ j→k(v

x
j ),

respectively.
Given vk 	∈ ϕ j→k

(
vx

j

) ∪ ϕ j→k
(
v

y
j

)
, that is

vk 	∈ ϕ j→k
(
vx

j

)
and vk 	∈ ϕ j→k

(
v

y
j

)
.

If vk 	∈ ϕ j→k
(
vx

j

)
, we then have

g∗k ({vk})
⋂

g j (v
x
j ) = ∅

so, Pk| j
({vk}|vx

j

) = 0. Similarly, Pk| j
({vk}|v y

j

) = 0. Therefore

δU
j |k

(
vx

j , v
y
j

) = 2−
∑

vk∈Vk

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|vy
j

)}

= 2−
⎡

⎣
∑

vk∈⋃
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|v y
j

)}

+
∑

vk 	∈⋃
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|v y
j

)}
⎤

⎦

= 2−
∑

vk∈⋃
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|vy
j

)}

= δ J
j |k

(
vx

j , v
y
j

)
.

Part (III) IRSJ⇐⇒IRSI.
If vk ∈ ϕ j→k

(
vx

j

)\ϕ j→k
(
v

y
j

)
, then Pk| j

({vk}|v y
j

) = 0.
Accordingly, we have

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)} = Pk| j
({vk}|vx

j

)
.

Similarly, if vk ∈ ϕ j→k
(
v

y
j

)\ϕ j→k
(
vx

j

)
, it indicates

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)} = Pk| j
({vk}|v y

j

)
.

Therefore, we have

δ J
j |k

(
vx

j , v
y
j

)

= 2−
∑

vk∈⋃
max{Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|vy
j

)}

= 2−
⎡

⎢
⎣

∑

vk∈v x
j \v y

j

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)}

+
∑

vk∈v y
j \v x

j

max
{

Pk| j
({vk}|vx

j

)
, Pk| j

({vk}|v y
j

)}

+
∑

vk∈⋂
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|v y
j

)}
⎤

⎦

= 2−
⎡

⎣1−
∑

vk∈⋂
Pk| j

({vk}|vx
j

)+ 1−
∑

vk∈⋂
Pk| j

({vk}|v y
j

)

+
∑

vk∈⋂
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|v y
j

)}
⎤

⎦

=
∑

vk∈⋂
[
Pk| j

({vk}|vx
j

)+ Pk| j
({vk}|v y

j

)]

−
∑

vk∈⋂
max

{
Pk| j

({vk}|vx
j

)
, Pk| j

({vk}|v y
j

)}

=
∑

vk∈⋂
min

{
Pk| j

({vk}|vx
j

)
, Pk| j

({
vk}|vy

j

)} = δ I
j |k

(
vx

j , v
y
j

)
.
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