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Fig. 11. MTI model’s performance on the hypertext 2009 dynamic contact network. Numbers on the left side: orders of nodes. Each bar chart: dynamic
behavior of one node’s mixed-membership distribution, where the x-axis stands for the ten time stamps. Different colors are interpreted as the communities
we have discovered, and their role-compatibility is represented below the bar chart.

D. Sampson Monastery Dataset

The Sampson Monastery dataset is used here to extend the
study. There are 18 monks in this dataset, and their social
linkage data is collected at three different time points with
various interactions. Here, we especially focus on the like-
specification. In the like-specification data, each monk selects
three monks as his closest friends. In our settings, we mark the
selected interactions as 1, otherwise 0. Thus, an 18 × 18 × 3
social network dataset is constructed, with each row having
three elements valued at 1.

According to the previous studies in [8] and [23], the
monks are divided into four communities: young Turks, loyal
opposition, outcasts, and an interstitial group.

Fig. 9 shows the detailed results of the MTI model.
As three communities have been detected, we put all the
results in a two-simplex, in which we denote the com-
munities as A, B , and C . For trajectory convenience,
we also color the nodes according to which special group
they belong. The results show that these groups behave
significantly differently. The loyal opposition group lies closer

to C , and the interstitial group tends to belong to A. Both of
their mixed-membership distributions are stable across time.
The outcasts and young Turks groups lie much closer to B .

We also show the role-compatibility matrix in Fig. 10 for
comparison. Compared with the results given in [8], our results
have larger compatibility values for the same role. Also, the
first role’s value in our model is 0 versus 0.6 that is reported
in [8].

E. Hypertext 2009 Dynamic Contact Network

This dataset [42] is collected from the ACM Hypertext
2009 conference. 113 conference attendees volunteered to
wear radio badges that recorded their face-to-face contacts
during the conference. The original data is composed of
records such as (t, i, j), where t is the communication time
and i, j are the attendees’ ID. By adaptively partitioning the
whole time period into ten parts and noting the interaction
data as 1 if communicated during the time stamps, we obtain
a 113 × 113 × 10 binary matrix. Fig. 11 shows the dynamic
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behavior of the nodes’ mixed-membership distributions and
the corresponding role-compatibility matrix.

The results show that almost half of all the mixed-
membership distributions fluctuate during these time stamps.
This phenomenon coincides with our common knowledge that
people at academic conferences tend to communicate causally.
Thus, people’s roles may change during different time stamps.

The learned value of the role-compatibility matrix is about
the sky blue community, whose intrarole-compatibility value
is 0.6932. It has a small probability of interaction with
other communities. The other community’s compatibility value
is almost 0. This might be the reason for sparsity in the
interaction data.

Here we specially mention node 108. In the record, this
person is always the first to communicate with others on
each of the three days. His/her mixed-membership distribution
is mainly composed of the sky blue community 1, which
indicates he/she could be an organizer of this conference. The
other nodes with mixed-membership distribution dominated
by community 1, such as nodes 24, 53, 61, all were engaged
actively with others according to the record.

Another interesting phenomenon is that the nodes contain-
ing the orange community 2 interact with community 1 at a
probability of 0.2. This might be an indication that most of
the attendees communicated with the organizers for various
reasons.

VII. CONCLUSION

Modeling complex networking behaviors in a dynamic
setting is crucial for widespread applications, including social
media, social networks, online business, and market dynamic
analysis. This challenges the existing learning systems that
have limited power to address the dynamics. In this paper,
we have provided a generalized and flexible framework to
improve the popular MMSB by allowing a network to have
infinite types of communities with relationships that change
across time periods. By incorporating a time-sticky factor
into the mixed-membership distributions, we have realistically
modeled the time-correlation among latent labels. Both Gibbs
sampling and adapted slice-efficient sampling have been used
to infer the desired target distribution. Quantitative analysis on
the MCMC’s convergence behavior, including the convergence
test, autocorrelation function, and so forth, has been provided
to demonstrate the inference performance. The results of the
experiments verify that our proposed DIM3 is effective in
constructing the dynamic mixed-membership distribution and
role-compatibility matrix.

Possible future work includes a systematic application
of DIM3 to various large real-world social networks.
In particular, we are also interested in adapting our model
to many atypical applications, for example, where sequences
of networks have nonbinary and directional measurements.
We will also study many other flexible frameworks for mod-
eling persistence of memberships across time. Lastly, we will
perform an extensive study into patterns of joint dynamics
of {π t

i } to extract meaningful latent information from them.
This is done in a setting where the number of components
between π t

i and π t+1
i may differ.

Recent developments [46], [47] in the large-scale learn-
ing of latent space modeling give us more insights for
possible future work. These improvements include parsimo-
nious link modeling [46] that reduces the parameter size
from O(n2 K 2) to O(n2 K ), the utilization of the stochastic
variational inference method [48], and a triangular representa-
tion of networks [49], [47], which could reduce the parameter
size to O(nK 2). Through these, we are hoping to enlarge
our model’s scalability to millions of nodes and hundreds of
communities.

To describe the time dependency, the dependent Dirichlet
process (DDP) [50] provides an alternative. Among the var-
ious constructions of the DDP [51]–[55], we may construct
the DDP by projecting the gamma process into different
subspaces and normalizing them individually, through which
the overlapping spaces reflect the correlation. Lin et al. [56]
discuss the intrinsic relationship between the Poisson process,
gamma process and Dirichlet process and uses three oper-
ations namely superposition, subsampling, and point transi-
tion to evolve from one Dirichlet process to another, with
an elegant and solid theory support. Subsequent literatures
including [57]–[59] extend this paper from different
perspectives.
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