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Dynamic Infinite Mixed-Membership
Stochastic Blockmodel

Xuhui Fan, Longbing Cao, Senior Member, IEEE, and Richard Yi Da Xu

Abstract— Directional and pairwise measurements are often
used to model interactions in a social network setting. The
mixed-membership stochastic blockmodel (MMSB) was a sem-
inal work in this area, and its ability has been extended.
However, models such as MMSB face particular challenges in
modeling dynamic networks, for example, with the unknown
number of communities. Accordingly, this paper proposes a
dynamic infinite mixed-membership stochastic blockmodel, a gen-
eralized framework that extends the existing work to poten-
tially infinite communities inside a network in dynamic settings
(i.e., networks are observed over time). Additional model para-
meters are introduced to reflect the degree of persistence among
one’s memberships at consecutive time stamps. Under this
framework, two specific models, namely mixture time variant
and mixture time invariant models, are proposed to depict two
different time correlation structures. Two effective posterior
sampling strategies and their results are presented, respectively,
using synthetic and real-world data.

Index Terms— Bayesian nonparametric, dynamic, Gibbs
sampling, Markov Chain Monte Carlo (MCMC) inference,
mixed-membership stochastic blockmodel (MMSB), slice
sampling.

I. INTRODUCTION

NETWORKING applications with dynamic settings
(i.e., networks observed over time) are widely seen in

real-world environments, such as link prediction and commu-
nity detection in social networks, social media interactions,
capital market movements, and recommender systems. A deep
understanding of such dynamic network mechanisms relies
on latent relation analysis and latent variable modeling of
dynamic network interactions and structures. This presents
both challenges and opportunities to existing learning theories.
The intricacy associated with the time-varying attributes makes
learning and inference a difficult task, but at the same time, one
can explore the evolutionary behavior of a network structure
more realistically in this time-varying setting. The various
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dynamic characteristics of such a network can therefore be
revealed in real applications.

A number of researchers have recently attempted to address
this issue. Some notable earlier examples include stochastic
blockmodel [1] and its infinite community case infinite rela-
tional model (IRM) [2] where the aim is to partition a network
of nodes into different groups on the basis of their pairwise
and directional binary interactions. It was extended in [3]
to infer the evolving community’s behavior over time. Their
work assumes that a fixed number of K communities exist
to which one node can potentially belong. However, in many
applications, an accurate estimate of K beforehand may be
impractical and its value may also vary during time stamps.

A dynamic IRM [4] is an alternative way to address the
same problem, where K can be inferred from data itself.
However, just as described in [2], its drawback is that this
model assumes each node i must belong to only one single
community. Therefore, an interaction between nodes i and j
can only be determined by their community indicators. This
approach can be inflexible in many scenarios, such as the
monastery example depicted in [5], where one monk can
belong to different communities. To this end, Airoldi et al. [5]
introduce the concept of mixed-membership, where they
assume each node i might belong to multiple communities.
The membership indicators of one’s interaction are no longer
a fixed value of a special community. Instead, they are sampled
from the nodes’ mixed-membership distributions.

The aforementioned work addresses some aspects (such as
infinite, dynamic, mixed-membership, and data-driven
inference) of relational modeling. An emergent need is to
effectively unify these models to provide a flexible and
generalized framework which can encapsulate the advantages
of most of this paper and address multiple aspects of
complexities in one model. This is certainly not an easy
thing to do because of the need to understand the relations
among aspects and to build a seamless approach to aggregate
the challenges. Accordingly, we propose a dynamic infinite
mixed-membership stochastic blockmodel (DIM3).

DIM3 has the following features: 1) it allows a network to
have an infinite number of latent communities; 2) it allows
mixed-membership associated with each node; 3) the model
adapts to dynamic settings and the number of communities
varies with the time; and 4) it is apparent that in many social
networking applications, a node’s membership may become
consistent (i.e., unchanged) over consecutive time stamps. For
example, a person’s opinion of a peer is more likely to be
consistent in two consecutive time stamps.
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To model this persistence, we devise two different imple-
mentations. The first is to have a single mixed-membership
distribution for each node at different time intervals. The
persistence factor is dependent on the statistics of each node’s
interactions with the rest of the nodes. The second implemen-
tation is to allow a set of mixed-membership distributions to
associate with each node, and they are time-invariant. The
number of elements in the set varies nonparametrically, as
reported in [6]. The persistence factor is dependent on the
value of the membership indicator at the previous time stamp.

Consequently, two effective sampling algorithms are
designed for our proposed models, using either the Gibbs
or slice sampling technique for efficient model inference.
Their convergence behavior and mixing rate are analyzed
and displayed in the first part of the experiment. In the
experimental analysis, we show that we can assess nodes’
positions in the network and their developing trends, predict
unknown links according to the current structure, understand
the network structure and identify change points. The tech-
niques proposed can be used for forecasting the political
tendencies of senators [7], predicting the function of a protein
in biology [8], and tracking authors’ community cooperation
in academic circles [9].

The rest of the article is organized as follows. Section II
introduces the preliminary knowledge for our work, including
a brief introduction to mixed-membership stochastic block-
model (MMSB) and Dirichlet processes. Section III details
our main framework and explains how it can incorporate
infinite communities in a dynamic setting. The related work
is reviewed in Section IV. The inference schemes for the two
proposed models are detailed in Section V. In Section VI,
we show the experimental results of the proposed models by
using both synthetic and real-world social network data. The
conclusion is given in Section VII.

II. PRELIMINARY KNOWLEDGE

A. Notations

For notational clarity, we first define the key terms and their
meanings, as shown in Table I.

B. Introduction to MMSB and Bayesian Nonparametrics

1) Mixed-Membership Stochastic Blockmodel: MMSB [5]
aims to model each node’s individual mixed-membership
distribution. In MMSB, each interaction ei j corresponds to
two membership indicators: si j from the sender i and ri j to the
receiver j (w.l.o.g. (Without Loss Of Generality), we assume
si j = k, ri j = l). The interaction’s value is determined by
the compatibility of two corresponding communities k and l.
Fig. 1 shows the graphical model, and the detailed generative
process can be described as:

1) ∀{k, l} ∈ N > 0, draw the communities’ compatibility
values Wk,l ∼ Beta(λ1, λ2);

2) ∀i ∈ {1, · · · , n}, draw node i ’s mixed-membership
distribution πi ∼ Dirichlet (β);

3) ∀{i, j} ∈ {1, · · · , n}2, for interaction ei j :

a) sender’s membership indicator si j ∼ Multi(πi );
b) receiver’s membership indicator ri j ∼ Multi(π j );
c) the interaction ei j ∼ Bernoulli (Wsij ,ri j ).

TABLE I

NOTATIONS FOR DIM3

Fig. 1. MMSB model.

It should be noted that each π i is responsible for generating
both the sender’s label {si j }n

j=1 from node i and the receiver’s
label {r j i }n

j=1 for node i .
W is the communities’ compatibility matrix as described

previously. The prior P(W ) is elementwise beta distributed,
which is a conjugate to the Bernoulli distribution P(ei j |.).
Therefore, a marginal distribution of P(ei j ), that is,∫

W p(ei j |W )p(W )d(W ) can be obtained on the basis of data
analysis, and hence there is no need to explicitly sample the
values of W .

2) Bayesian Nonparametrics: In the dynamic setting, the
Bayesian nonparametric method is a perfect tool for allow-
ing the communities’ numbers to vary across time periods.
In our case, we use variants of the hierarchical Dirichlet
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Fig. 2. MTV model.

process (HDP) [10] to model the mixed-membership
distribution {πi }n

i=1, where ∀i ∈ {1, . . . , n}, πi ∼
DP(α,β) and β is generated from a stick-breaking
construction β = ∑∞

k=1 βkδk,βk = β ′
k

∏k−1
l=1 (1 − β ′

l ), β
′
l ∼

Beta(1, γ )) [11].

III. DYNAMIC INFINITE MIXED-MEMBERSHIP

STOCHASTIC BLOCKMODEL

A. General Settings

In DIM3, we allow each node’s membership indicators to
change across time periods. Additionally, it is imperative that
these indicators should contain the time-persistence property
with past values, through which the reality of social behavior
can be reflected. Here, we use the strategy of incorporating
a sticky parameter κ into the mixed-membership distributions
to overcome this issue [6], [12]. Different detailed designs
are proposed for the mixture time variant (MTV) and mix-
ture time invariant (MTI) models; however, the common
idea is that the current mixed-membership distributions are
influenced by the corresponding distributions at the previous
time.

Once the current mixed-membership distributions have
been selected, the interaction data is generated in the same
way as MMSB. Thus, this paper is focused on the details
of mixed-membership distribution constructions following
the main route of the HDP [10]. Also, we should note that
the intermediate variable β is identical for both models,
representing the significance of all the communities
across time periods, and its construction is the
same as the stick-breaking construction as described
in Section II-B2.

B. Mixture Time Variant (MTV) Model

Fig. 2 shows the graphical model of the MTV model. Here
we only show all the variables involved for time t , and omit
those for the other time points, where the structure is identical
at any other time τ �= t .

Let us focus on the mixed-membership distribution’s con-
struction in the MTV model, which is

π t
i ∼ DP

⎛

⎜
⎜
⎜
⎝

α + κ,

αβ + κ

2n
·
∑

k

Nt−1
ik δk

α + κ

⎞

⎟
⎟
⎟
⎠

(1)

st
i j ∼ π t

i , r t
i j ∼ π t

j ∀i, j ∈ N , t ≥ 1. (2)

The mixed-membership distribution {π t
i }1:T

1:n is sampled
from the Dirichlet process with a concentration parameter
(α + κ) and a base measure (αβ + κ

2n

∑
k Nt−1

ik δk/α + κ).
There will be N × T of these distributions. They jointly
describe each node’s activities.

In the base measure, the introduced sticky parame-
ter κ stands for each node’s time influence on its mixed-
membership distribution. In other words, we assume that each
node’s mixed-membership distribution at time t will be largely
influenced by its activities at time t −1. This is reflected in the
hidden label’s multinomial distribution whereby the previous
explicit activities will occupy a fixed proportion κ/α + κ of
the current distribution. The larger the value of κ , the more
weight the activities at t − 1 will have at time t .

As our method is largely based on the HDP
framework, we use the popular Chinese Restaurant
Franchise (CRF) [6], [10] analogy to explain our model.
Using the CRF analogy, the mixed-membership distribution
associated with a node i at time t can be seen as a
restaurant π t

i , with its dishes representing the communities.
If a customer st

i j (or r t
j i ) eats the dish k at the i th restaurant

at time t , then st
i j (r

t
j i) = k. For all t > 1, the restaurant π t

i
will have its own specials on the dishes served, representing
the sticky configuration in the graphical model. In contrast to
the sticky HDP–hidden Markov model (HMM) [6] approach,
which places emphasis on one dish only, we allow multiple
specials in our work, where the weight of each special dish
is adjusted according to the number of dishes served at this
restaurant at time t −1, that is, (κ/2n)

∑
k Nt−1

ik δk . Therefore,
we can ensure that the special dishes are served persistently
across time in the same restaurant.

C. Mixture Time Invariant (MTI) Model

We show the MTI model in Fig. 3. Here we only show the
interaction e1

i j and omit the other interactions, whose structure
is directly derived.

The β in the MTI model is identical to that in the
MTV model, and we sample the mixed-membership distri-
bution and membership indicators as follows:

π
(k)
i ∼ DP

(

α + κ,
αβ + κδk

α + κ

)

∀i, k ∈ N (3)

st
i j ∼ π

(
st−1

i j

)

i , r t
i j ∼ π

(
rt−1

i j

)

j ∀i, j ∈ N , t ≥ 1. (4)

We assign uninformative priors on sampling the initial mem-
bership indicators {s0

i j , r0
i j }i, j , that is, {s0

i j , r0
i j }i, j are sampled

from a multinomial distribution, with each category having an
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Fig. 3. MTI model.

equalized success probability. The dimension of this multino-
mial distribution is automatically adjusted according to the
current number of communities in the model.

On each node’s membership distribution, our MTI model
is essentially a Sticky HDP–HMM [6], [12], [13]. In this
model, each node has a variable number of mixed-membership
distributions associated with it, which may be infinite. At time
t ≥ 2, its membership indicator st

i j (or r t
i j ) is generated from

π
(st−1

i j )

i (or π
(rt−1

i j )

j ). To encourage persistence, each πik is
generated from the corresponding β, where κ is added to β’s
kth component [6], [12], [13].

Returning to the CRF [10] analogy, we have N ×∞ matrix,
where its (i, k)th element refers to π

(k)
i , which can be seen as

the weights of eating each of the available dishes. A customer
st

i j (or r t
j i ) can therefore only travel between restaurants located

at the i th row of the matrix. When π
(k)
i ’s kth component is

more likely to be larger, it means that the dish k is a special
dish for restaurant k. Therefore, a customer at restaurant k at
time t − 1 is more likely to eat the same dish (i.e., kth dish),
and hence to stay at restaurant k at time t .

D. Discussion and Comparison

Here, we discuss the difference between the two models in
the design of the time-persistence property. The MTV model
allows the mixed-membership distribution itself to change over
time stamps. However, there is only a single (but different)
distribution for each node at each individual time stamp. The
membership indicator of a node at time t is dependent on the
statistics of all membership indicators of the same node at
t − 1 and t + 1. With a larger value of the sticky parameter κ ,
the current mixed-membership distribution tends to be more
similar to that of the previous time stamp.

In contrast, the MTI model requires the mixed-membership
distributions to stay invariant over time. However, there may
be an infinite number of possible distributions associated with
each node, due to a HDP prior, often only a few distributions
will be discovered. In this case, the membership indicator at
the current time is dependent and more likely to have the same
value as it has in the previous time stamp.

IV. RELATED WORK

We here provide a detailed review of some of the current
state-of-the-art in relational learning and at the same time,

distinguish our paper from existing ones. In general, we cat-
egorize the relational learning models into two major
frameworks: the latent feature model (LFM) and latent class
model (LCM). Both frameworks assume that a node’s interac-
tion is a Bernoulli draw, which is parameterized by an entry
from the role-compatibility matrix. Their main difference is
hence in the way the entry is indexed. For LCM, it is assumed
that the indices for each pair of nodes are derived from the two
associated hidden class labels; in case of LFM, it is assumed
that the indices are, however, determined from a set of latent
features associated with the pair of nodes.

A representative work for LFM is the latent feature
relational model (LFRM) [14], which uses a latent fea-
ture matrix and a corresponding link generative function to
define the model. To account for the variable number of
features associated with each node, it uses the Indian Buffet
Process [15], [16] as a prior. The max-margin latent feature
relational model (Med-LFRM) [17] uses the maximum entropy
discrimination (MED) [18] technique to minimize the hinge
loss which measures the quality of link prediction. The infinite
latent attribute (ILA) model [19] uses a Dirichlet process
to construct a substructure within each feature, and all the
features are used through the LFRM model.

On the LCM front, the classical approach is the MMSB
which enables each node to be associated with multiple
membership indicators, and an interaction is formed using one
of these indicators. Several variants are subsequently proposed
from MMSB, with examples including [20] which extends the
MMSB into the infinite communities case [21], which uses
the nested Chinese Restaurant Process [22] to build a com-
munities’ hierarchical structure, and [23] which incorporates
the node’s attribute information into its membership indicator
construction in MMSB.

Like any data modeling problem, interaction data may also
change over time; therefore, dynamic extensions are found
in both the LCM and LFM frameworks. Examples such as
[24] and [25] describe the time dependency by using Gaussian
linear motion models. The dynamic relational infinite feature
model (DRIFT) [26], which employs an independent Markov
dynamic transition matrix to correlate consecutive time
interaction data, is a natural extension of the LFRM.
Latent feature propagation (LFP) [9] directly integrates
observed interactions, rather than the latent feature matrix,
in the current time to model the distribution of latent
features at the next time stamp. On the dynamic set-
ting of MMSB, Xing et al. [8] and Fu et al. [27]
place a parameter (the mean)-dependent Gaussian distribu-
tion to consider the time correlation, whereas Ho et al. [7]
consider hierarchical communities modeling that evolves.
However, as both of these two models require predefinition
of the number of communities, additional techniques, such
as cross-validation, are necessary when choosing the number
of communities. Furthermore, their implicit description of the
time dependency may not be sufficiently intuitive.

V. INFERENCE

Two sampling schemes are implemented to complete the
inference on the MTV model: standard Gibbs sampling and
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slice-efficient sampling, which both target the same posterior
distribution.

A. Gibbs Sampling for the MTV Model

The Gibbs sampling scheme is largely based on [10]. The
variables of interest are: β, Z and auxiliary variables m̂, where
m̂ refers to the number of tables having dish k as in [6] and
[10] without counting the tables that are generated from the
sticky portion, that is, κ Nt−1

ik . Note that we do not sample
{π t

i }1:T
1:n , as it gets integrated out.

1) Sampling β: β is the prior for all {π t
i }s, which can be

viewed as the ratios between the community components for
all communities. Its posterior distribution is obtained through
the auxiliary variable m̂

(β1, . . . ,βK ,βμ) ∼ Dir(m̂·1, · · · , m̂·K , γ ) (5)

where its detail can be found in [10].
2) Sampling {st

i j }1:T
n×n , {r t

i j }1:T
n×n: Each observation et

i j is
sampled from a fixed Bernoulli distribution, where
the Bernoulli’s parameter is contained within the role-
compatibility matrix W whose rows and columns are indexed
by a pair of corresponding membership indicators {st

i j , r t
i j }.

W.l.o.g., ∀k, l ∈ {1, · · · , K +1}, the joint posterior probability
of (st

i j = k, r t
i j = l) is

Pr
(
st

i j = k, r t
i j = l|Z\{st

i j , r t
i j

}
, e,β, α, λ1, λ2, κ

)

∝ Pr
(
st

i j = k|{st
i j0

}
j0 �= j ,

{
r t

j0i

}n
j0=1,β, α, κ, Nt−1

i

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

· Pr
(
r t

i j = l|{r t
i0 j

}
i0 �=i , {s j i0}n

i0=1,β, α, κ, Nt−1
j

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

· Pr
(
et

i j |E\{et
i j

}
, st

i j = k, r t
i j = l, Z\ {st

i j , r t
i j

}
, λ1, λ2

)
.

(6)

The first two terms of (6)

Pr
(
st

i j = k|{st
i j0

}
j0 �= j ,

{
r t

j0i

}n
j0=1,β, α, κ, Nt−1

i

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

∝


(
αβk +Nt+1

ik + κ N
t,−st

i j
ik + κ

)



(
αβk + Nt+1

ik + κ N
t,−st

i j
ik

) ·


(
αβk + κ N

t,−st
i j

ik

)



(
αβk + κ N

t,−st
i j

ik + κ
)

·
⎧
⎨

⎩

αβk + κ Nt−1
ik + N

t,−st
i j

ik , k ∈ {1, . . . , K };
αβμ, k = K + 1

(7)

where N0
ik = 0, NT +1

ik = 0, ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , K }.

The following two terms of (6) are:

Pr
(
r t

i j = l|{r t
i0 j

}
i0 �=i ,

{
st

j i0

}n
i0=1,β, α, κ, Nt−1

j

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

∝


(
αβl + Nt+1

j l + κ N
t,−rt

i j
j l + κ

)



(
αβ l + Nt+1

j l + κ N
t,−rt

i j
j l

) ·


(
αβ l + κ N

t,−rt
i j

j l

)



(
αβ l + κ N

t,−rt
i j

j l + κ
)

·
{

αβ l + κ Nt−1
j l + N

t,−rt
i j

j l , l ∈ {1, . . . , K }
αβμ, l = K + 1.

(8)

The last term, that is, the likelihood term, is calculated as

Pr
(
et

i j |E\{et
i j }, st

i j = k, r t
i j = l, Z\{st

i j , r t
i j }, λ1, λ2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n
t,1,−et

i j
k,l + λ1

n
t,−et

i j
k,l + λ1 + λ2

, et
i j = 1

n
t,0,−et

i j
k,l + λ2

n
t,−et

i j
k,l + λ1 + λ2

, et
i j = 0

(9)

where n
t,−et

i j
k,l = nt

k,l − 1(st
i j = k, r t

i j = l) = ∑
i ′ j ′ 1(st

i ′ j ′ = k,

r t
i ′ j ′ = l) − 1(st

i j = k, r t
i j = l), n

t,1,−et
i j

k,l = n1,t
k,l − 1(st

i j = k,

r t
i j = l)et

i j = ∑
i ′ j ′:st

i′ j ′=k,rt
i′ j ′=l et

i ′ j ′ − 1(st
i j = k, r t

i j = l)et
i j ,

and n
t,0,−et

i j
k,l = n

t,−et
i j

k,l − n
t,1,−et

i j
k,l .

The detailed derivation of (7)–(9) is given in Assum-
ing the current sample of {st

i j , r t
i j } has values rang-

ing between 1 . . . K , we let the undiscovered (i.e., new)
community be indexed by K + 1. Then, to sample a
pair (st

i j , r t
i j ) in question, we need to calculate all (K + 1)2

combinations of values for the pair.
3) Sampling m̂: Using the restaurant-table-dish analogy,

we denote mt
ik as the number of tables having dish k,∀i, k, t .

This is related to the variable m̂ used in sampling β;
it also includes the counts of the unsticky portion, that
is, αβk .

The sampling of mt
ik incorporates a similar strategy

as in [6] and [10], which is independently distributed
from

Pr
(
mt

ik = m|α,βk, Nt−1
ik , κ

) ∝ S
(
Nt

ik , m
)(

αβk + κ Nt−1
ik

)m

(10)

where S(·, ·) is the Stirling number of the first kind.
For each node, the ratio of generating new tables is the result

of two factors: 1) a Dirichlet prior with parameter {α,β} and
2) the sticky configuration from membership indicators at t−1,
that is, κ Nt−1

ik .
To sample β, we need to only include tables generated

from the unsticky portion, that is, m̂, where each m̂t
ik can
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be obtained from a single binomial raw

m̂t
ik ∼ Binomial

(

mt
ik ,

αβk
κ
2n Nt−1

ik + αβk

)

. (11)

m̂k =
∑

i,t

m̂t
ik . (12)

B. Adapted Slice-Efficient Sampling for
the MTV Model

We also incorporate the slice-efficient sampling [28], [29] to
our model. The original sampling scheme was designed
to sample the Dirichlet process mixture model. To adapt it
to our framework, which is based on a HDP prior and also
has pairwise membership indicators, we use the auxiliary
variables U = {ut

i j,s , ut
i j,r } for each of the latent membership

pairs {st
i j , r t

i j }. With Us, we are able to limit the number of
components in which π i needs to be considered, which is
otherwise infinite.

Under the slice-efficient sampling framework, the
variables of interest are now extended to: π t

i , {ut
i j,r ,

ut
i j,s }, {st

i j , r t
i j },β, m:

1) Sampling π t : For each node i = 1, . . . , N;
t = 1, . . . , T : we generate π

′t
i using the stick-breaking

process [11], where each kth component is generated using
π

′t
ik ∼ beta(π

′t
ik ; at

ik, bt
ik) where

at
ik = αβk + Nt

ik + κ Nt−1
ik

bt
ik = α

(

1 −
k∑

l=1

βl

)

+ Nt
i,k0 >k + κ Nt−1

i,k0>k
(13)

where π t
k = π

′t
k

∏k−1
i=1 (1 − π

′t
i ).

2) Sampling ut
i j,s , ut

i j,r , st
i j , r t

i j : We use ut
i j,s ∼ U(0,π t

ist
i j
),

ut
i j,r ∼ U(0,π t

j r t
i j
). The hidden label subsequently obtained

is then independently sampled from the finite candidates

P
(
st

i j = k, r t
i j = l|Z , et

i j ,β, α, κ, N,π , ut
i j,s , ut

i j,r

))

∝ 1
(
π t

ik > ut
i j,s

) · 1
(
π t

j l > ut
i j,r

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

· Pr
(
et

i j |E\{et
i j }, st

i j = k, r t
i j = l, Z\{st

i j , r t
i j }, λ1, λ2

)
.

(14)

We refer the reader to (7)–(9) for the detailed calculation of
each term in (14).

3) Sampling β: An obvious choice for the
proposal distribution of β used in M-H is its prior
p(β|γ ) = stick − breaking(γ ). However, this proposal
may be noninformative, which results in a low acceptance
rate. We sample β∗ conditioned on an auxiliary variable m̂:
(β∗

1, . . . ,β
∗
K ,β∗

K+1) ∼ Dir(m̂1, . . . , m̂K , γ ), to increase the
M-H’s acceptance rate, where m̂ are sampled in accordance
with the method proposed in Section V-A3 [(10)–(12)].
However, instead of sampling β directly from m as described

in Section V-A3, we only use it for our proposal distribution,
as we explicitly sample {πi }n

i=1. The acceptance ratio is hence
(τ indexes the iteration time)

A(β∗,β(τ )) = min(1, a) (15)

a =
∏

t,i

[
K+1∏

d=1


(
αβ

(τ )
d

) · [π t
id

]αβ∗
d

]

∏

t,i

[
K+1∏

d=1


(
αβ∗

d

) · [π t
id

]αβ
(τ )
d

] ·

K∏

d=1

[
β

(τ )
d

]m̂d−γ

K∏

d=1

[
β∗

d

]m̂d−γ

.

(16)

C. Hyperparameter Sampling

The hyperparameters involved in the MTV model are γ, α,
and κ . However, it is impossible to compute their posterior
individually. Therefore, we place three prior distributions
on some combination of the variables. A vague gamma
prior G(1, 1) is placed on both γ, (α + κ). A beta prior is
placed on the ratio κ/α + κ.

To sample γ value, since log(γ )’s posterior distribution is
log-concave, we use the adaptive rejection sampling (ARS)
method [30].

To sample (α + κ), we use the auxiliary variable
sampling [10], and this needs the auxiliary variable m in (10),
as proposed in [10].

To sample κ/(α + κ), we place a vague beta prior B(1, 1)
on it, with a likelihood of {mt

ik − m̂t
ik ,∀i, k, t > 1} in (11).

The posterior is in an analytical form that can be sampled,
owing to its conjugate property.

D. Gibbs Sampling for the MTI Model

The variables of interest are: β, Z and auxiliary variables m̂,
where m̂ refers to the number of tables having dish k as used
in [6] and [10] without counting the tables generated from
the sticky portion, that is, κ Nt−1

ik . As the hyperparameters in
the MTI model are quite similar to those in [12], we do not
present the hyperparameters here. Interested readers can refer
to [6], [12], and [13] for the detailed implementation.

1) Sampling β: β’s sampling is the same as (1).
2) Sampling st

i j , r t
i j : The posterior probability of st

i j , r t
i j is

Pr
(
si j = k, ri j = l|α,β, κ, {N (i)·· }, {N ( j )·· }, e, λ1, λ2, Z

)

∝ Pr
(
st

i j = k|α,β, κ, N (i)
st−1

i j ·, st−1
i j

)

Pr
(
r t

i j = l|α,β, κ, N ( j )

rt−1
i j ·, r t−1

i j

)

· Pr
(
et

i j |e/{et
i j }, st

i j = k, r t
i j = l, Z/{st

i j , r t
i j }, λ1, λ2

)
.

(17)

The first term of (17) is

Pr
(
st

i j = k|α,β, κ, N (i)
st−1

i j ·, st−1
i j

)

∝ (
αβk + N (i)

st−1
i j k

+ κδ
(
st−1

i j , k
))

·
⎛

⎜
⎝

αβst+1
i j

+ N (i)
kst+1

i j
+ kδ

(
k, st+1

i j

)+ δ
(
k, st−1

i j

)
δ
(
k, st+1

i j

)

α + N (i)
k· + κ + δ

(
st−1

i j , k
)

⎞

⎟
⎠.

(18)
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Fig. 4. Four cases of the compatibility matrix. Left (Case 1): large diagonal values and small nondiagonal values. Left-middle (Case 2): large diagonal
values and mediate nondiagonal values. Right-middle (Case 3): large nondiagonal values and small diagonal values. Right (Case 4): small diagonal values
and mediate nondiagonal values.

The second term of (17) is

Pr
(
r t

i j = l|α,β, κ, N ( j )

rt−1
i j ·, r t−1

i j

)

∝ (
αβ l + N ( j )

rt−1
i j l

+ κδ
(
r t−1

i j , l
))

·
⎛

⎜
⎝

αβrt+1
i j

+ N (i)

lr t+1
i j

+ lδ
(
l, r t+1

i j

)+ δ
(
l, r t−1

i j

)
δ
(
l, r t+1

i j

)

α + N (i)
l· + κ + δ

(
r t−1

i j , l
)

⎞

⎟
⎠.

(19)

The likelihood of Pr(et
i j |e/{et

i j }, st
i j = k, r t

i j = l, Z/

{st
i j , r t

i j }, λ1, λ2) is the same as (9).
3) Sampling m̂: m̂ is similar to that in the MTV model;

however, it differs in the incorporation of κ

Pr
(
m(i)

qk = m|α,βk, κ, N (i)
qk

) ∝ S
(
N (i)

qk , m
)(

αβk + κ
)

(20)

m̂(i)
qk ∼ Binomial

(

m(i)
qk ,

αβk

κ + αβk

)

(21)

m̂·k =
∑

q,i

m̂(i)
qk . (22)

E. Inference Discussions

Both the Gibbs sampling and slice-efficient sampling are
two feasible ways to accomplish our task. They have different
advantages and disadvantages.

As mentioned previously, Gibbs sampling in our MTV mod-
el integrates out the mixed-membership distribution {π t

i }.
It is the marginal approach [31]. The property of commu-
nity exchangeability makes it simple to implement. However,
theoretically, the obtained samples mix slowly as the sampling
of each label is dependent on other labels.

Slice-efficient sampling is a conditional approach [28]
whereas the membership indicators are independently sam-
pled from {π t

i }. In each iteration, given {π t
i } and the role-

compatibility matrix W , we can parallelize the process of
sampling membership indicators, which may help to improve
the computation, especially when the number of nodes (N)
becomes larger, and the number of communities (k) becomes
smaller.

VI. EXPERIMENTS

The performance of our DIM3 model is validated by
experiments on both synthetic and real-world datasets. On the
synthetic datasets, we implement the finite-communities cases
of our models as baseline algorithms, namely as the f-MTV
and f-MTI model. On the real-world datasets, we individually
implement three benchmark models: MMSB, IRM, and LFRM
to the best of our understanding. Also, we compare DRIFT
with our models on real-world datasets, and the source code
is provided by [26].

A. Synthetic Datasets

For the synthetic data generation, the variables are gen-
erated by following [7]. We use N = 20, T = 3, and
hence E is a 20 × 20 × 3 asymmetric and binary matrix.
The parameters are set up in a way so that 20 nodes are
equally partitioned into four groups. The ground-truth of the
mixed-membership distributions for each of the groups are
[0.8, 0.2, 0; 0, 0.8, 0.2; 0.1, 0.05, 0.85; 0.4, 0.4, 0.2].

We consider four different cases to fully assess
DIM3 against the ground-truth; all lie in the three-role-
compatibility matrix.

The detailed results of the role-compatibility matrix on these
four cases are shown in Fig. 4.

1) Markov Chain Monte Carlo Analysis: The convergence
behavior is tested in terms of two quantities: the cluster
number K , that is, the number of different values Z can take,
and the deviance D of the estimated density [28], [31], which
is defined as

D = −2
∑

i, j,t

log

(∑

k,l

Nt
ik · Nt

jl

4n2T
p(et

i j |Z , λ1, λ2)

)

. (23)

In our Markov Chain Monte Carlo (MCMC) stationary
analysis, we run five independent Markov chains and discard
the first half of the Markov chains as a burn-in. With the
random partition of three initial classes as the starting point,
20 000 iterations are conducted in our samplings.

The simulated chains satisfy the standard convergence
criteria, when the test was implemented using the CODA
package [32]. In Gelman and Rubin’s diagnostics [33], the
value of the proportional scale reduction factor is 1.09 (with
upper C.I. 1.27) for k, 1.03 (with upper C.I. 1.09) for D in
the Gibbs sampling, and 1.02 (with upper C.I. 1.06) for k,
1.02 (with upper C.I. 1.02) for D in slice sampling. Geweke’s
convergence diagnostics [34] are also employed, with the
proportion of the first 10% and last 50% of the chain for
comparison. The corresponding z-scores are calculated in
the interval [−2.09, 0.85] for five chains. In addition, the
stationarity and half-width tests of the Heidelberg and Welch
Diagnostic [35] are both passed in all cases, with the
p-value higher than 0.05. On the basis of all these statistics, the
Markov chain’s stationarity can be safely ensured in our case.

The efficiency of the algorithms can be measured by esti-
mating the integrated autocorrelation time τ for K and D.
τ is a good performance indicator as it measures the statistical
error of Monte Carlo approximation on a target function f .
The smaller the τ , the more efficient the algorithm is.

Referenece [28] used an estimator τ̂ as

τ̂ = 1

2
+

C−1∑

l=1

ρ̂l (24)
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TABLE II

INTEGRATED AUTOCORRELATION TIMES ESTIMATOR τ̂ FOR K AND D

where ρ̂l is the estimated autocorrelation at lag l and C is a
cutoff point, which is defined as C := min{l : |ρ̂l | < 2/

√
M},

and M is the number of iterations.
We test the sampling efficiency of the MTV-g and MTV-s

models on Case 1 with the same setting as [31]. Of the whole
20 000 iterations, the first half of the samples is discarded as a
burn-in and the remainder are thinned 1/20. We manually try
different values of the hyperparameters γ and α and show the
integrated autocorrelation time estimator in Table II. Although
some outliers exist, we can see that there is a general trend that,
with a fixed α value, the autocorrelation function decreases
when the γ value increases. This same phenomenon happens
on α while γ is fixed. This result confirms our empirical
knowledge. The larger value of γ, α will help to discover more
clusters, followed by a smaller autocorrelation function.

On the other hand, we confirm that MTV-g and
MTV-s models do not show much difference in the mixing
rate of the Markov Chain, as shown in Table II. As men-
tioned in the previous section, slice sampling provides a
mixed-membership distribution-independent sampling scheme,
which enjoys the time efficiency of parallel computing in
one iteration. For large-scale datasets, it is a feasible solution.
In Gibbs sampling, parallel computing is impossible as the
sampling variables are in a dependent sequence.

Fig. 5 shows the trace plot of the training log-likelihood
against the iterations on Case 1. As we can see, the sam-
pler in the MTI model converges to the high training log-
likelihood region faster than the MTV model. Also, the
MTI model reaches a higher training log-likelihood than the
MTV model.

2) Further Performance: We will compare the models
in terms of the log-likelihood (Fig. 6); the average l2
distance between the mixed-membership distributions and
its ground-truth; and the l2 distance between the posterior
role-compatibility matrix and its ground-truth (Table III).

From the log-likelihood comparison shown in Fig. 6, we can
see that the MTI model performs better than the MTV
model in general. On the average l2 distance to the ground-
truth performance, the MTI model also performs better. The
superiority of the MTI model’s performance over that of the
MTV model is within our expectation, as the MTI model
describes the membership indicator’s time consistency more
accurately (i.e., integrating the sticky parameter κ on the

Fig. 5. Top: training log-likelihood trace plot on the MTV-g model.
Bottom: training log-likelihood trace plot on the MTI-g model.

Fig. 6. Log-likelihood performance on all the four cases.

specific membership indicator, rather than the mixed-
membership distribution). Also, the hidden Markov property
enables the MTI model to categorize membership indicators
into the same mixed-membership distributions on the basis of
its previous value. This seems to be a more effective method
than the time-based grouping in the MTV model. However,
in situations where there are dramatic changes amongst the
membership distributions over time, the MTI model will not
respond well. The MTV model is much more effective and
robust under these settings as the distribution consistency is
a more robust modeling strategy. In addition, the assumption
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TABLE III

AVERAGE l2 DISTANCE TO THE GROUND-TRUTH

TABLE IV

RUNNING TIME (SECONDS PER ITERATION)

that there exist different membership distributions at each time
instance makes it possible to parallelize the MTV model to
some extent, making it suitable for dealing with large-scale
problems.

Here, we compare the computational complexity
(running time) of the models in one iteration, with K
discovered communities, and show the results in Table IV.
We discuss the MTV-g and MTV-s models as an instance.
In the MTV-g model, the number of variables to be sampled is
(2K + 2n2T ), whereas a total of (2K + 4n2T + nT ) variables
are sampled in the MTV-s model. However, the posterior
calculation of Z in the MTV-s model can be directly obtained
from the mixed-membership distribution, while we need to
calculate the ratio for each of Z in the MTV-g model. Also,
the U value at each time can be sampled in one operation as
its independency in the MTV-s model. The result shows that
the MTV-s model runs faster than the MTV-g model, which
is in accordance with our assumption.

We also tried a parallel implementation of the slice variables
{ut

i j,s , ut
i j,r }i, j,t ’s in the MTV-s model. During each iteration,

these slice variables are partitioned into four parts (as our
machine has four cores) and are sampled independently, while
other variables are still sampled in a sequence. Its correspond-
ing running time is shown in the last column of Table IV.
It shows that the parallel design costs even more time when
the dataset size is small (N ≤ 500). This may be due to the
time spent on transferring the variables. However, it needs less
time when the dataset size becomes larger (N > 500). This
verifies that our parallel slice sampling method is a promising
approach in achieving scalability.

3) Larger Data Size Results: We also conduct the experi-
ments with a larger synthetic dataset (N = 100, T = 20). With
the same construction as previous ones, we increase the role
number to 5 and set the role-compatibility matrix as shown
in Fig. 7.

We set five groups in this network, with the group
sizes as [35, 20, 20, 20, 5] and the mixed-membership

Fig. 7. Larger dataset’s role-compatibility matrix.

distributions for each of the groups as [0.8, 0.1, 0,
0.05, 0.05; 0.02, 0.85, 0.05, 0.03, 0.05; 0.1, 0, 0.9, 0, 0; 0.05,
0.1, 0, 0.85, 0; 0, 0.2, 0, 0.4, 0.4]. The detailed results are
also given in Table III. As we can see, our MTI model still
achieves the best performance of all the models.

B. Real-World Datasets Performance

We select ten real-world datasets for benchmark testing.
Their detailed information, including the number of nodes,
the number of edges, edge types, and time intervals, is
given in Table VII. Following a general test on the training
log-likelihood of the training data and area under the ROC
(Receiver Operating Characteristic) curve (AUC) of the test
data, we elaborate the results on three selected datasets in the
following.

We use a fivefold cross validation method to certify our
model’s performance on the real-world datasets. The hyper-
parameters γ, κ, α are sampled according to the sampling
strategy mentioned in Section V. Each experiment is run ten
times and we report their mean and standard deviation in
Tables V and VI.

In these two tables, the bold type denotes the best value
in each row. As we can see, our MTI model performs best
in eight of the ten datasets on the training log-likelihood and
six of the ten datasets on the AUC value. In the remaining
datasets, although our MTI model’s performance is still quite
competitive, the DRIFT model has the best values, possibly
because, in these datasets, all associated communities from
both nodes are considered in generating the link between these
two nodes [14]. The MTV models still do not perform well
enough, for the reason previously given. The IRM’s results are
the worst, which reflects that the simple structure (i.e., each
node occupies only one class) may not be enough to capture
the full structure in relational learning.

C. Kapferer Tailor Shop

The Kapferer Tailor Shop data [1] records interactions in
a tailor shop at two time points. In this time period, the
employees in the shop negotiate for higher wages. The dataset
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TABLE V

TRAINING LOG-LIKELIHOOD PERFORMANCE (95% CONFIDENCE INTERVAL = MEAN ∓1.96× STANDARD DEVIATION)

TABLE VI

AUC PERFORMANCE (95% CONFIDENCE INTERVAL = MEAN ∓1.96× STANDARD DEVIATION)

TABLE VII

DATASET INFORMATION

Fig. 8. MTI model’s performance on Kapferer Tailor Shop dataset. The
x-axis stands for the nodes, while the y-axis represents the mixed-membership
distribution. Different colors represent various communities we discovered.
Top bar chart: all the employees’ mixed-membership distributions in Time 1.
Bottom bar chart: all the employees’ mixed-membership distributions in
Time 2.

is of particular interest because two strikes occur after each
time point, with the first failing and the second successful.

We mainly use the work–assistance interaction matrix in
the dataset. The employees have eight occupations: head
tailor (19), cutter (16), line 1 tailor (1-3, 5-7, 9, 11-14, 21, 24),

Fig. 9. Nodes’ mixed-membership distribution of the MTI model on
Sampson Monastery dataset. Left to right: time 1–3. Blue: loyal opposition.
Red: outcasts. Green: young Turks. Magenta: interstitial group.

Fig. 10. Role-compatibility matrix. Left: MTV-g. Right: MTI.

button machiner (25-26), line 3 tailor (8, 15, 20, 22-23,
27-28), ironer (29, 33, 39), cotton boy (30-32, 34-38), and
line 2 tailor (4, 10, 17-18).

In Fig. 8, we can see that the yellow communities at Time 2
are larger than those at Time 1, which means that people
tend to have another community at Time 2, rather than being
mostly dominated by one large group at Time 1. This larger
yellow community may be the result of the first failed strike,
after which employees start to shift to the minor (yellow)
community for a successful strike.
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Fig. 11. MTI model’s performance on the hypertext 2009 dynamic contact network. Numbers on the left side: orders of nodes. Each bar chart: dynamic
behavior of one node’s mixed-membership distribution, where the x-axis stands for the ten time stamps. Different colors are interpreted as the communities
we have discovered, and their role-compatibility is represented below the bar chart.

D. Sampson Monastery Dataset

The Sampson Monastery dataset is used here to extend the
study. There are 18 monks in this dataset, and their social
linkage data is collected at three different time points with
various interactions. Here, we especially focus on the like-
specification. In the like-specification data, each monk selects
three monks as his closest friends. In our settings, we mark the
selected interactions as 1, otherwise 0. Thus, an 18 × 18 × 3
social network dataset is constructed, with each row having
three elements valued at 1.

According to the previous studies in [8] and [23], the
monks are divided into four communities: young Turks, loyal
opposition, outcasts, and an interstitial group.

Fig. 9 shows the detailed results of the MTI model.
As three communities have been detected, we put all the
results in a two-simplex, in which we denote the com-
munities as A, B , and C . For trajectory convenience,
we also color the nodes according to which special group
they belong. The results show that these groups behave
significantly differently. The loyal opposition group lies closer

to C , and the interstitial group tends to belong to A. Both of
their mixed-membership distributions are stable across time.
The outcasts and young Turks groups lie much closer to B .

We also show the role-compatibility matrix in Fig. 10 for
comparison. Compared with the results given in [8], our results
have larger compatibility values for the same role. Also, the
first role’s value in our model is 0 versus 0.6 that is reported
in [8].

E. Hypertext 2009 Dynamic Contact Network

This dataset [42] is collected from the ACM Hypertext
2009 conference. 113 conference attendees volunteered to
wear radio badges that recorded their face-to-face contacts
during the conference. The original data is composed of
records such as (t, i, j), where t is the communication time
and i, j are the attendees’ ID. By adaptively partitioning the
whole time period into ten parts and noting the interaction
data as 1 if communicated during the time stamps, we obtain
a 113 × 113 × 10 binary matrix. Fig. 11 shows the dynamic
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behavior of the nodes’ mixed-membership distributions and
the corresponding role-compatibility matrix.

The results show that almost half of all the mixed-
membership distributions fluctuate during these time stamps.
This phenomenon coincides with our common knowledge that
people at academic conferences tend to communicate causally.
Thus, people’s roles may change during different time stamps.

The learned value of the role-compatibility matrix is about
the sky blue community, whose intrarole-compatibility value
is 0.6932. It has a small probability of interaction with
other communities. The other community’s compatibility value
is almost 0. This might be the reason for sparsity in the
interaction data.

Here we specially mention node 108. In the record, this
person is always the first to communicate with others on
each of the three days. His/her mixed-membership distribution
is mainly composed of the sky blue community 1, which
indicates he/she could be an organizer of this conference. The
other nodes with mixed-membership distribution dominated
by community 1, such as nodes 24, 53, 61, all were engaged
actively with others according to the record.

Another interesting phenomenon is that the nodes contain-
ing the orange community 2 interact with community 1 at a
probability of 0.2. This might be an indication that most of
the attendees communicated with the organizers for various
reasons.

VII. CONCLUSION

Modeling complex networking behaviors in a dynamic
setting is crucial for widespread applications, including social
media, social networks, online business, and market dynamic
analysis. This challenges the existing learning systems that
have limited power to address the dynamics. In this paper,
we have provided a generalized and flexible framework to
improve the popular MMSB by allowing a network to have
infinite types of communities with relationships that change
across time periods. By incorporating a time-sticky factor
into the mixed-membership distributions, we have realistically
modeled the time-correlation among latent labels. Both Gibbs
sampling and adapted slice-efficient sampling have been used
to infer the desired target distribution. Quantitative analysis on
the MCMC’s convergence behavior, including the convergence
test, autocorrelation function, and so forth, has been provided
to demonstrate the inference performance. The results of the
experiments verify that our proposed DIM3 is effective in
constructing the dynamic mixed-membership distribution and
role-compatibility matrix.

Possible future work includes a systematic application
of DIM3 to various large real-world social networks.
In particular, we are also interested in adapting our model
to many atypical applications, for example, where sequences
of networks have nonbinary and directional measurements.
We will also study many other flexible frameworks for mod-
eling persistence of memberships across time. Lastly, we will
perform an extensive study into patterns of joint dynamics
of {π t

i } to extract meaningful latent information from them.
This is done in a setting where the number of components
between π t

i and π t+1
i may differ.

Recent developments [46], [47] in the large-scale learn-
ing of latent space modeling give us more insights for
possible future work. These improvements include parsimo-
nious link modeling [46] that reduces the parameter size
from O(n2 K 2) to O(n2 K ), the utilization of the stochastic
variational inference method [48], and a triangular representa-
tion of networks [49], [47], which could reduce the parameter
size to O(nK 2). Through these, we are hoping to enlarge
our model’s scalability to millions of nodes and hundreds of
communities.

To describe the time dependency, the dependent Dirichlet
process (DDP) [50] provides an alternative. Among the var-
ious constructions of the DDP [51]–[55], we may construct
the DDP by projecting the gamma process into different
subspaces and normalizing them individually, through which
the overlapping spaces reflect the correlation. Lin et al. [56]
discuss the intrinsic relationship between the Poisson process,
gamma process and Dirichlet process and uses three oper-
ations namely superposition, subsampling, and point transi-
tion to evolve from one Dirichlet process to another, with
an elegant and solid theory support. Subsequent literatures
including [57]–[59] extend this paper from different
perspectives.
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Dynamic Infinite Mixed-Membership
Stochastic Blockmodel

Xuhui Fan, Longbing Cao, Senior Member, IEEE, and Richard Yi Da Xu

Abstract— Directional and pairwise measurements are often
used to model interactions in a social network setting. The
mixed-membership stochastic blockmodel (MMSB) was a sem-
inal work in this area, and its ability has been extended.
However, models such as MMSB face particular challenges in
modeling dynamic networks, for example, with the unknown
number of communities. Accordingly, this paper proposes a
dynamic infinite mixed-membership stochastic blockmodel, a gen-
eralized framework that extends the existing work to poten-
tially infinite communities inside a network in dynamic settings
(i.e., networks are observed over time). Additional model para-
meters are introduced to reflect the degree of persistence among
one’s memberships at consecutive time stamps. Under this
framework, two specific models, namely mixture time variant
and mixture time invariant models, are proposed to depict two
different time correlation structures. Two effective posterior
sampling strategies and their results are presented, respectively,
using synthetic and real-world data.

Index Terms— Bayesian nonparametric, dynamic, Gibbs
sampling, Markov Chain Monte Carlo (MCMC) inference,
mixed-membership stochastic blockmodel (MMSB), slice
sampling.

I. INTRODUCTION

NETWORKING applications with dynamic settings
(i.e., networks observed over time) are widely seen in

real-world environments, such as link prediction and commu-
nity detection in social networks, social media interactions,
capital market movements, and recommender systems. A deep
understanding of such dynamic network mechanisms relies
on latent relation analysis and latent variable modeling of
dynamic network interactions and structures. This presents
both challenges and opportunities to existing learning theories.
The intricacy associated with the time-varying attributes makes
learning and inference a difficult task, but at the same time, one
can explore the evolutionary behavior of a network structure
more realistically in this time-varying setting. The various
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dynamic characteristics of such a network can therefore be
revealed in real applications.

A number of researchers have recently attempted to address
this issue. Some notable earlier examples include stochastic
blockmodel [1] and its infinite community case infinite rela-
tional model (IRM) [2] where the aim is to partition a network
of nodes into different groups on the basis of their pairwise
and directional binary interactions. It was extended in [3]
to infer the evolving community’s behavior over time. Their
work assumes that a fixed number of K communities exist
to which one node can potentially belong. However, in many
applications, an accurate estimate of K beforehand may be
impractical and its value may also vary during time stamps.

A dynamic IRM [4] is an alternative way to address the
same problem, where K can be inferred from data itself.
However, just as described in [2], its drawback is that this
model assumes each node i must belong to only one single
community. Therefore, an interaction between nodes i and j
can only be determined by their community indicators. This
approach can be inflexible in many scenarios, such as the
monastery example depicted in [5], where one monk can
belong to different communities. To this end, Airoldi et al. [5]
introduce the concept of mixed-membership, where they
assume each node i might belong to multiple communities.
The membership indicators of one’s interaction are no longer
a fixed value of a special community. Instead, they are sampled
from the nodes’ mixed-membership distributions.

The aforementioned work addresses some aspects (such as
infinite, dynamic, mixed-membership, and data-driven
inference) of relational modeling. An emergent need is to
effectively unify these models to provide a flexible and
generalized framework which can encapsulate the advantages
of most of this paper and address multiple aspects of
complexities in one model. This is certainly not an easy
thing to do because of the need to understand the relations
among aspects and to build a seamless approach to aggregate
the challenges. Accordingly, we propose a dynamic infinite
mixed-membership stochastic blockmodel (DIM3).

DIM3 has the following features: 1) it allows a network to
have an infinite number of latent communities; 2) it allows
mixed-membership associated with each node; 3) the model
adapts to dynamic settings and the number of communities
varies with the time; and 4) it is apparent that in many social
networking applications, a node’s membership may become
consistent (i.e., unchanged) over consecutive time stamps. For
example, a person’s opinion of a peer is more likely to be
consistent in two consecutive time stamps.

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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To model this persistence, we devise two different imple-
mentations. The first is to have a single mixed-membership
distribution for each node at different time intervals. The
persistence factor is dependent on the statistics of each node’s
interactions with the rest of the nodes. The second implemen-
tation is to allow a set of mixed-membership distributions to
associate with each node, and they are time-invariant. The
number of elements in the set varies nonparametrically, as
reported in [6]. The persistence factor is dependent on the
value of the membership indicator at the previous time stamp.

Consequently, two effective sampling algorithms are
designed for our proposed models, using either the Gibbs
or slice sampling technique for efficient model inference.
Their convergence behavior and mixing rate are analyzed
and displayed in the first part of the experiment. In the
experimental analysis, we show that we can assess nodes’
positions in the network and their developing trends, predict
unknown links according to the current structure, understand
the network structure and identify change points. The tech-
niques proposed can be used for forecasting the political
tendencies of senators [7], predicting the function of a protein
in biology [8], and tracking authors’ community cooperation
in academic circles [9].

The rest of the article is organized as follows. Section II
introduces the preliminary knowledge for our work, including
a brief introduction to mixed-membership stochastic block-
model (MMSB) and Dirichlet processes. Section III details
our main framework and explains how it can incorporate
infinite communities in a dynamic setting. The related work
is reviewed in Section IV. The inference schemes for the two
proposed models are detailed in Section V. In Section VI,
we show the experimental results of the proposed models by
using both synthetic and real-world social network data. The
conclusion is given in Section VII.

II. PRELIMINARY KNOWLEDGE

A. Notations

For notational clarity, we first define the key terms and their
meanings, as shown in Table I.

B. Introduction to MMSB and Bayesian Nonparametrics

1) Mixed-Membership Stochastic Blockmodel: MMSB [5]
aims to model each node’s individual mixed-membership
distribution. In MMSB, each interaction ei j corresponds to
two membership indicators: si j from the sender i and ri j to the
receiver j (w.l.o.g. (Without Loss Of Generality), we assume
si j = k, ri j = l). The interaction’s value is determined by
the compatibility of two corresponding communities k and l.
Fig. 1 shows the graphical model, and the detailed generative
process can be described as:

1) ∀{k, l} ∈ N > 0, draw the communities’ compatibility
values Wk,l ∼ Beta(λ1, λ2);

2) ∀i ∈ {1, · · · , n}, draw node i ’s mixed-membership
distribution πi ∼ Dirichlet (β);

3) ∀{i, j} ∈ {1, · · · , n}2, for interaction ei j :

a) sender’s membership indicator si j ∼ Multi(πi );
b) receiver’s membership indicator ri j ∼ Multi(π j );
c) the interaction ei j ∼ Bernoulli (Wsij ,ri j ).

TABLE I

NOTATIONS FOR DIM3

Fig. 1. MMSB model.

It should be noted that each π i is responsible for generating
both the sender’s label {si j }n

j=1 from node i and the receiver’s
label {r j i }n

j=1 for node i .
W is the communities’ compatibility matrix as described

previously. The prior P(W ) is elementwise beta distributed,
which is a conjugate to the Bernoulli distribution P(ei j |.).
Therefore, a marginal distribution of P(ei j ), that is,∫

W p(ei j |W )p(W )d(W ) can be obtained on the basis of data
analysis, and hence there is no need to explicitly sample the
values of W .

2) Bayesian Nonparametrics: In the dynamic setting, the
Bayesian nonparametric method is a perfect tool for allow-
ing the communities’ numbers to vary across time periods.
In our case, we use variants of the hierarchical Dirichlet
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Fig. 2. MTV model.

process (HDP) [10] to model the mixed-membership
distribution {πi }n

i=1, where ∀i ∈ {1, . . . , n}, πi ∼
DP(α,β) and β is generated from a stick-breaking
construction β = ∑∞

k=1 βkδk,βk = β ′
k

∏k−1
l=1 (1 − β ′

l ), β
′
l ∼

Beta(1, γ )) [11].

III. DYNAMIC INFINITE MIXED-MEMBERSHIP

STOCHASTIC BLOCKMODEL

A. General Settings

In DIM3, we allow each node’s membership indicators to
change across time periods. Additionally, it is imperative that
these indicators should contain the time-persistence property
with past values, through which the reality of social behavior
can be reflected. Here, we use the strategy of incorporating
a sticky parameter κ into the mixed-membership distributions
to overcome this issue [6], [12]. Different detailed designs
are proposed for the mixture time variant (MTV) and mix-
ture time invariant (MTI) models; however, the common
idea is that the current mixed-membership distributions are
influenced by the corresponding distributions at the previous
time.

Once the current mixed-membership distributions have
been selected, the interaction data is generated in the same
way as MMSB. Thus, this paper is focused on the details
of mixed-membership distribution constructions following
the main route of the HDP [10]. Also, we should note that
the intermediate variable β is identical for both models,
representing the significance of all the communities
across time periods, and its construction is the
same as the stick-breaking construction as described
in Section II-B2.

B. Mixture Time Variant (MTV) Model

Fig. 2 shows the graphical model of the MTV model. Here
we only show all the variables involved for time t , and omit
those for the other time points, where the structure is identical
at any other time τ �= t .

Let us focus on the mixed-membership distribution’s con-
struction in the MTV model, which is

π t
i ∼ DP

⎛

⎜
⎜
⎜
⎝

α + κ,

αβ + κ

2n
·
∑

k

Nt−1
ik δk

α + κ

⎞

⎟
⎟
⎟
⎠

(1)

st
i j ∼ π t

i , r t
i j ∼ π t

j ∀i, j ∈ N , t ≥ 1. (2)

The mixed-membership distribution {π t
i }1:T

1:n is sampled
from the Dirichlet process with a concentration parameter
(α + κ) and a base measure (αβ + κ

2n

∑
k Nt−1

ik δk/α + κ).
There will be N × T of these distributions. They jointly
describe each node’s activities.

In the base measure, the introduced sticky parame-
ter κ stands for each node’s time influence on its mixed-
membership distribution. In other words, we assume that each
node’s mixed-membership distribution at time t will be largely
influenced by its activities at time t −1. This is reflected in the
hidden label’s multinomial distribution whereby the previous
explicit activities will occupy a fixed proportion κ/α + κ of
the current distribution. The larger the value of κ , the more
weight the activities at t − 1 will have at time t .

As our method is largely based on the HDP
framework, we use the popular Chinese Restaurant
Franchise (CRF) [6], [10] analogy to explain our model.
Using the CRF analogy, the mixed-membership distribution
associated with a node i at time t can be seen as a
restaurant π t

i , with its dishes representing the communities.
If a customer st

i j (or r t
j i ) eats the dish k at the i th restaurant

at time t , then st
i j (r

t
j i) = k. For all t > 1, the restaurant π t

i
will have its own specials on the dishes served, representing
the sticky configuration in the graphical model. In contrast to
the sticky HDP–hidden Markov model (HMM) [6] approach,
which places emphasis on one dish only, we allow multiple
specials in our work, where the weight of each special dish
is adjusted according to the number of dishes served at this
restaurant at time t −1, that is, (κ/2n)

∑
k Nt−1

ik δk . Therefore,
we can ensure that the special dishes are served persistently
across time in the same restaurant.

C. Mixture Time Invariant (MTI) Model

We show the MTI model in Fig. 3. Here we only show the
interaction e1

i j and omit the other interactions, whose structure
is directly derived.

The β in the MTI model is identical to that in the
MTV model, and we sample the mixed-membership distri-
bution and membership indicators as follows:

π
(k)
i ∼ DP

(

α + κ,
αβ + κδk

α + κ

)

∀i, k ∈ N (3)

st
i j ∼ π

(
st−1

i j

)

i , r t
i j ∼ π

(
rt−1

i j

)

j ∀i, j ∈ N , t ≥ 1. (4)

We assign uninformative priors on sampling the initial mem-
bership indicators {s0

i j , r0
i j }i, j , that is, {s0

i j , r0
i j }i, j are sampled

from a multinomial distribution, with each category having an
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Fig. 3. MTI model.

equalized success probability. The dimension of this multino-
mial distribution is automatically adjusted according to the
current number of communities in the model.

On each node’s membership distribution, our MTI model
is essentially a Sticky HDP–HMM [6], [12], [13]. In this
model, each node has a variable number of mixed-membership
distributions associated with it, which may be infinite. At time
t ≥ 2, its membership indicator st

i j (or r t
i j ) is generated from

π
(st−1

i j )

i (or π
(rt−1

i j )

j ). To encourage persistence, each πik is
generated from the corresponding β, where κ is added to β’s
kth component [6], [12], [13].

Returning to the CRF [10] analogy, we have N ×∞ matrix,
where its (i, k)th element refers to π

(k)
i , which can be seen as

the weights of eating each of the available dishes. A customer
st

i j (or r t
j i ) can therefore only travel between restaurants located

at the i th row of the matrix. When π
(k)
i ’s kth component is

more likely to be larger, it means that the dish k is a special
dish for restaurant k. Therefore, a customer at restaurant k at
time t − 1 is more likely to eat the same dish (i.e., kth dish),
and hence to stay at restaurant k at time t .

D. Discussion and Comparison

Here, we discuss the difference between the two models in
the design of the time-persistence property. The MTV model
allows the mixed-membership distribution itself to change over
time stamps. However, there is only a single (but different)
distribution for each node at each individual time stamp. The
membership indicator of a node at time t is dependent on the
statistics of all membership indicators of the same node at
t − 1 and t + 1. With a larger value of the sticky parameter κ ,
the current mixed-membership distribution tends to be more
similar to that of the previous time stamp.

In contrast, the MTI model requires the mixed-membership
distributions to stay invariant over time. However, there may
be an infinite number of possible distributions associated with
each node, due to a HDP prior, often only a few distributions
will be discovered. In this case, the membership indicator at
the current time is dependent and more likely to have the same
value as it has in the previous time stamp.

IV. RELATED WORK

We here provide a detailed review of some of the current
state-of-the-art in relational learning and at the same time,

distinguish our paper from existing ones. In general, we cat-
egorize the relational learning models into two major
frameworks: the latent feature model (LFM) and latent class
model (LCM). Both frameworks assume that a node’s interac-
tion is a Bernoulli draw, which is parameterized by an entry
from the role-compatibility matrix. Their main difference is
hence in the way the entry is indexed. For LCM, it is assumed
that the indices for each pair of nodes are derived from the two
associated hidden class labels; in case of LFM, it is assumed
that the indices are, however, determined from a set of latent
features associated with the pair of nodes.

A representative work for LFM is the latent feature
relational model (LFRM) [14], which uses a latent fea-
ture matrix and a corresponding link generative function to
define the model. To account for the variable number of
features associated with each node, it uses the Indian Buffet
Process [15], [16] as a prior. The max-margin latent feature
relational model (Med-LFRM) [17] uses the maximum entropy
discrimination (MED) [18] technique to minimize the hinge
loss which measures the quality of link prediction. The infinite
latent attribute (ILA) model [19] uses a Dirichlet process
to construct a substructure within each feature, and all the
features are used through the LFRM model.

On the LCM front, the classical approach is the MMSB
which enables each node to be associated with multiple
membership indicators, and an interaction is formed using one
of these indicators. Several variants are subsequently proposed
from MMSB, with examples including [20] which extends the
MMSB into the infinite communities case [21], which uses
the nested Chinese Restaurant Process [22] to build a com-
munities’ hierarchical structure, and [23] which incorporates
the node’s attribute information into its membership indicator
construction in MMSB.

Like any data modeling problem, interaction data may also
change over time; therefore, dynamic extensions are found
in both the LCM and LFM frameworks. Examples such as
[24] and [25] describe the time dependency by using Gaussian
linear motion models. The dynamic relational infinite feature
model (DRIFT) [26], which employs an independent Markov
dynamic transition matrix to correlate consecutive time
interaction data, is a natural extension of the LFRM.
Latent feature propagation (LFP) [9] directly integrates
observed interactions, rather than the latent feature matrix,
in the current time to model the distribution of latent
features at the next time stamp. On the dynamic set-
ting of MMSB, Xing et al. [8] and Fu et al. [27]
place a parameter (the mean)-dependent Gaussian distribu-
tion to consider the time correlation, whereas Ho et al. [7]
consider hierarchical communities modeling that evolves.
However, as both of these two models require predefinition
of the number of communities, additional techniques, such
as cross-validation, are necessary when choosing the number
of communities. Furthermore, their implicit description of the
time dependency may not be sufficiently intuitive.

V. INFERENCE

Two sampling schemes are implemented to complete the
inference on the MTV model: standard Gibbs sampling and
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slice-efficient sampling, which both target the same posterior
distribution.

A. Gibbs Sampling for the MTV Model

The Gibbs sampling scheme is largely based on [10]. The
variables of interest are: β, Z and auxiliary variables m̂, where
m̂ refers to the number of tables having dish k as in [6] and
[10] without counting the tables that are generated from the
sticky portion, that is, κ Nt−1

ik . Note that we do not sample
{π t

i }1:T
1:n , as it gets integrated out.

1) Sampling β: β is the prior for all {π t
i }s, which can be

viewed as the ratios between the community components for
all communities. Its posterior distribution is obtained through
the auxiliary variable m̂

(β1, . . . ,βK ,βμ) ∼ Dir(m̂·1, · · · , m̂·K , γ ) (5)

where its detail can be found in [10].
2) Sampling {st

i j }1:T
n×n , {r t

i j }1:T
n×n: Each observation et

i j is
sampled from a fixed Bernoulli distribution, where
the Bernoulli’s parameter is contained within the role-
compatibility matrix W whose rows and columns are indexed
by a pair of corresponding membership indicators {st

i j , r t
i j }.

W.l.o.g., ∀k, l ∈ {1, · · · , K +1}, the joint posterior probability
of (st

i j = k, r t
i j = l) is

Pr
(
st

i j = k, r t
i j = l|Z\{st

i j , r t
i j

}
, e,β, α, λ1, λ2, κ

)

∝ Pr
(
st

i j = k|{st
i j0

}
j0 �= j ,

{
r t

j0i

}n
j0=1,β, α, κ, Nt−1

i

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

· Pr
(
r t

i j = l|{r t
i0 j

}
i0 �=i , {s j i0}n

i0=1,β, α, κ, Nt−1
j

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

· Pr
(
et

i j |E\{et
i j

}
, st

i j = k, r t
i j = l, Z\ {st

i j , r t
i j

}
, λ1, λ2

)
.

(6)

The first two terms of (6)

Pr
(
st

i j = k|{st
i j0

}
j0 �= j ,

{
r t

j0i

}n
j0=1,β, α, κ, Nt−1

i

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

∝


(
αβk +Nt+1

ik + κ N
t,−st

i j
ik + κ

)



(
αβk + Nt+1

ik + κ N
t,−st

i j
ik

) ·


(
αβk + κ N

t,−st
i j

ik

)



(
αβk + κ N

t,−st
i j

ik + κ
)

·
⎧
⎨

⎩

αβk + κ Nt−1
ik + N

t,−st
i j

ik , k ∈ {1, . . . , K };
αβμ, k = K + 1

(7)

where N0
ik = 0, NT +1

ik = 0, ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , K }.

The following two terms of (6) are:

Pr
(
r t

i j = l|{r t
i0 j

}
i0 �=i ,

{
st

j i0

}n
i0=1,β, α, κ, Nt−1

j

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

∝


(
αβl + Nt+1

j l + κ N
t,−rt

i j
j l + κ

)



(
αβ l + Nt+1

j l + κ N
t,−rt

i j
j l

) ·


(
αβ l + κ N

t,−rt
i j

j l

)



(
αβ l + κ N

t,−rt
i j

j l + κ
)

·
{

αβ l + κ Nt−1
j l + N

t,−rt
i j

j l , l ∈ {1, . . . , K }
αβμ, l = K + 1.

(8)

The last term, that is, the likelihood term, is calculated as

Pr
(
et

i j |E\{et
i j }, st

i j = k, r t
i j = l, Z\{st

i j , r t
i j }, λ1, λ2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n
t,1,−et

i j
k,l + λ1

n
t,−et

i j
k,l + λ1 + λ2

, et
i j = 1

n
t,0,−et

i j
k,l + λ2

n
t,−et

i j
k,l + λ1 + λ2

, et
i j = 0

(9)

where n
t,−et

i j
k,l = nt

k,l − 1(st
i j = k, r t

i j = l) = ∑
i ′ j ′ 1(st

i ′ j ′ = k,

r t
i ′ j ′ = l) − 1(st

i j = k, r t
i j = l), n

t,1,−et
i j

k,l = n1,t
k,l − 1(st

i j = k,

r t
i j = l)et

i j = ∑
i ′ j ′:st

i′ j ′=k,rt
i′ j ′=l et

i ′ j ′ − 1(st
i j = k, r t

i j = l)et
i j ,

and n
t,0,−et

i j
k,l = n

t,−et
i j

k,l − n
t,1,−et

i j
k,l .

The detailed derivation of (7)–(9) is given in Assum-
ing the current sample of {st

i j , r t
i j } has values rang-

ing between 1 . . . K , we let the undiscovered (i.e., new)
community be indexed by K + 1. Then, to sample a
pair (st

i j , r t
i j ) in question, we need to calculate all (K + 1)2

combinations of values for the pair.
3) Sampling m̂: Using the restaurant-table-dish analogy,

we denote mt
ik as the number of tables having dish k,∀i, k, t .

This is related to the variable m̂ used in sampling β;
it also includes the counts of the unsticky portion, that
is, αβk .

The sampling of mt
ik incorporates a similar strategy

as in [6] and [10], which is independently distributed
from

Pr
(
mt

ik = m|α,βk, Nt−1
ik , κ

) ∝ S
(
Nt

ik , m
)(

αβk + κ Nt−1
ik

)m

(10)

where S(·, ·) is the Stirling number of the first kind.
For each node, the ratio of generating new tables is the result

of two factors: 1) a Dirichlet prior with parameter {α,β} and
2) the sticky configuration from membership indicators at t−1,
that is, κ Nt−1

ik .
To sample β, we need to only include tables generated

from the unsticky portion, that is, m̂, where each m̂t
ik can
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be obtained from a single binomial raw

m̂t
ik ∼ Binomial

(

mt
ik ,

αβk
κ
2n Nt−1

ik + αβk

)

. (11)

m̂k =
∑

i,t

m̂t
ik . (12)

B. Adapted Slice-Efficient Sampling for
the MTV Model

We also incorporate the slice-efficient sampling [28], [29] to
our model. The original sampling scheme was designed
to sample the Dirichlet process mixture model. To adapt it
to our framework, which is based on a HDP prior and also
has pairwise membership indicators, we use the auxiliary
variables U = {ut

i j,s , ut
i j,r } for each of the latent membership

pairs {st
i j , r t

i j }. With Us, we are able to limit the number of
components in which π i needs to be considered, which is
otherwise infinite.

Under the slice-efficient sampling framework, the
variables of interest are now extended to: π t

i , {ut
i j,r ,

ut
i j,s }, {st

i j , r t
i j },β, m:

1) Sampling π t : For each node i = 1, . . . , N;
t = 1, . . . , T : we generate π

′t
i using the stick-breaking

process [11], where each kth component is generated using
π

′t
ik ∼ beta(π

′t
ik ; at

ik, bt
ik) where

at
ik = αβk + Nt

ik + κ Nt−1
ik

bt
ik = α

(

1 −
k∑

l=1

βl

)

+ Nt
i,k0 >k + κ Nt−1

i,k0>k
(13)

where π t
k = π

′t
k

∏k−1
i=1 (1 − π

′t
i ).

2) Sampling ut
i j,s , ut

i j,r , st
i j , r t

i j : We use ut
i j,s ∼ U(0,π t

ist
i j
),

ut
i j,r ∼ U(0,π t

j r t
i j
). The hidden label subsequently obtained

is then independently sampled from the finite candidates

P
(
st

i j = k, r t
i j = l|Z , et

i j ,β, α, κ, N,π , ut
i j,s , ut

i j,r

))

∝ 1
(
π t

ik > ut
i j,s

) · 1
(
π t

j l > ut
i j,r

)

·
2n∏

l=1

Pr
(
zt+1

il |zt
i·/st

i j , st
i j = k,β, α, κ, Nt+1

i

)

·
2n∏

l=1

Pr
(
zt+1

j l |zt
j ·/r t

i j , r t
i j = l,β, α, κ, Nt+1

j

)

· Pr
(
et

i j |E\{et
i j }, st

i j = k, r t
i j = l, Z\{st

i j , r t
i j }, λ1, λ2

)
.

(14)

We refer the reader to (7)–(9) for the detailed calculation of
each term in (14).

3) Sampling β: An obvious choice for the
proposal distribution of β used in M-H is its prior
p(β|γ ) = stick − breaking(γ ). However, this proposal
may be noninformative, which results in a low acceptance
rate. We sample β∗ conditioned on an auxiliary variable m̂:
(β∗

1, . . . ,β
∗
K ,β∗

K+1) ∼ Dir(m̂1, . . . , m̂K , γ ), to increase the
M-H’s acceptance rate, where m̂ are sampled in accordance
with the method proposed in Section V-A3 [(10)–(12)].
However, instead of sampling β directly from m as described

in Section V-A3, we only use it for our proposal distribution,
as we explicitly sample {πi }n

i=1. The acceptance ratio is hence
(τ indexes the iteration time)

A(β∗,β(τ )) = min(1, a) (15)

a =
∏

t,i

[
K+1∏

d=1


(
αβ

(τ )
d

) · [π t
id

]αβ∗
d

]

∏

t,i

[
K+1∏

d=1


(
αβ∗

d

) · [π t
id

]αβ
(τ )
d

] ·

K∏

d=1

[
β

(τ )
d

]m̂d−γ

K∏

d=1

[
β∗

d

]m̂d−γ

.

(16)

C. Hyperparameter Sampling

The hyperparameters involved in the MTV model are γ, α,
and κ . However, it is impossible to compute their posterior
individually. Therefore, we place three prior distributions
on some combination of the variables. A vague gamma
prior G(1, 1) is placed on both γ, (α + κ). A beta prior is
placed on the ratio κ/α + κ.

To sample γ value, since log(γ )’s posterior distribution is
log-concave, we use the adaptive rejection sampling (ARS)
method [30].

To sample (α + κ), we use the auxiliary variable
sampling [10], and this needs the auxiliary variable m in (10),
as proposed in [10].

To sample κ/(α + κ), we place a vague beta prior B(1, 1)
on it, with a likelihood of {mt

ik − m̂t
ik ,∀i, k, t > 1} in (11).

The posterior is in an analytical form that can be sampled,
owing to its conjugate property.

D. Gibbs Sampling for the MTI Model

The variables of interest are: β, Z and auxiliary variables m̂,
where m̂ refers to the number of tables having dish k as used
in [6] and [10] without counting the tables generated from
the sticky portion, that is, κ Nt−1

ik . As the hyperparameters in
the MTI model are quite similar to those in [12], we do not
present the hyperparameters here. Interested readers can refer
to [6], [12], and [13] for the detailed implementation.

1) Sampling β: β’s sampling is the same as (1).
2) Sampling st

i j , r t
i j : The posterior probability of st

i j , r t
i j is

Pr
(
si j = k, ri j = l|α,β, κ, {N (i)·· }, {N ( j )·· }, e, λ1, λ2, Z

)

∝ Pr
(
st

i j = k|α,β, κ, N (i)
st−1

i j ·, st−1
i j

)

Pr
(
r t

i j = l|α,β, κ, N ( j )

rt−1
i j ·, r t−1

i j

)

· Pr
(
et

i j |e/{et
i j }, st

i j = k, r t
i j = l, Z/{st

i j , r t
i j }, λ1, λ2

)
.

(17)

The first term of (17) is

Pr
(
st

i j = k|α,β, κ, N (i)
st−1

i j ·, st−1
i j

)

∝ (
αβk + N (i)

st−1
i j k

+ κδ
(
st−1

i j , k
))

·
⎛

⎜
⎝

αβst+1
i j

+ N (i)
kst+1

i j
+ kδ

(
k, st+1

i j

)+ δ
(
k, st−1

i j

)
δ
(
k, st+1

i j

)

α + N (i)
k· + κ + δ

(
st−1

i j , k
)

⎞

⎟
⎠.

(18)
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Fig. 4. Four cases of the compatibility matrix. Left (Case 1): large diagonal values and small nondiagonal values. Left-middle (Case 2): large diagonal
values and mediate nondiagonal values. Right-middle (Case 3): large nondiagonal values and small diagonal values. Right (Case 4): small diagonal values
and mediate nondiagonal values.

The second term of (17) is

Pr
(
r t

i j = l|α,β, κ, N ( j )

rt−1
i j ·, r t−1

i j

)

∝ (
αβ l + N ( j )

rt−1
i j l

+ κδ
(
r t−1

i j , l
))

·
⎛

⎜
⎝

αβrt+1
i j

+ N (i)

lr t+1
i j

+ lδ
(
l, r t+1

i j

)+ δ
(
l, r t−1

i j

)
δ
(
l, r t+1

i j

)

α + N (i)
l· + κ + δ

(
r t−1

i j , l
)

⎞

⎟
⎠.

(19)

The likelihood of Pr(et
i j |e/{et

i j }, st
i j = k, r t

i j = l, Z/

{st
i j , r t

i j }, λ1, λ2) is the same as (9).
3) Sampling m̂: m̂ is similar to that in the MTV model;

however, it differs in the incorporation of κ

Pr
(
m(i)

qk = m|α,βk, κ, N (i)
qk

) ∝ S
(
N (i)

qk , m
)(

αβk + κ
)

(20)

m̂(i)
qk ∼ Binomial

(

m(i)
qk ,

αβk

κ + αβk

)

(21)

m̂·k =
∑

q,i

m̂(i)
qk . (22)

E. Inference Discussions

Both the Gibbs sampling and slice-efficient sampling are
two feasible ways to accomplish our task. They have different
advantages and disadvantages.

As mentioned previously, Gibbs sampling in our MTV mod-
el integrates out the mixed-membership distribution {π t

i }.
It is the marginal approach [31]. The property of commu-
nity exchangeability makes it simple to implement. However,
theoretically, the obtained samples mix slowly as the sampling
of each label is dependent on other labels.

Slice-efficient sampling is a conditional approach [28]
whereas the membership indicators are independently sam-
pled from {π t

i }. In each iteration, given {π t
i } and the role-

compatibility matrix W , we can parallelize the process of
sampling membership indicators, which may help to improve
the computation, especially when the number of nodes (N)
becomes larger, and the number of communities (k) becomes
smaller.

VI. EXPERIMENTS

The performance of our DIM3 model is validated by
experiments on both synthetic and real-world datasets. On the
synthetic datasets, we implement the finite-communities cases
of our models as baseline algorithms, namely as the f-MTV
and f-MTI model. On the real-world datasets, we individually
implement three benchmark models: MMSB, IRM, and LFRM
to the best of our understanding. Also, we compare DRIFT
with our models on real-world datasets, and the source code
is provided by [26].

A. Synthetic Datasets

For the synthetic data generation, the variables are gen-
erated by following [7]. We use N = 20, T = 3, and
hence E is a 20 × 20 × 3 asymmetric and binary matrix.
The parameters are set up in a way so that 20 nodes are
equally partitioned into four groups. The ground-truth of the
mixed-membership distributions for each of the groups are
[0.8, 0.2, 0; 0, 0.8, 0.2; 0.1, 0.05, 0.85; 0.4, 0.4, 0.2].

We consider four different cases to fully assess
DIM3 against the ground-truth; all lie in the three-role-
compatibility matrix.

The detailed results of the role-compatibility matrix on these
four cases are shown in Fig. 4.

1) Markov Chain Monte Carlo Analysis: The convergence
behavior is tested in terms of two quantities: the cluster
number K , that is, the number of different values Z can take,
and the deviance D of the estimated density [28], [31], which
is defined as

D = −2
∑

i, j,t

log

(∑

k,l

Nt
ik · Nt

jl

4n2T
p(et

i j |Z , λ1, λ2)

)

. (23)

In our Markov Chain Monte Carlo (MCMC) stationary
analysis, we run five independent Markov chains and discard
the first half of the Markov chains as a burn-in. With the
random partition of three initial classes as the starting point,
20 000 iterations are conducted in our samplings.

The simulated chains satisfy the standard convergence
criteria, when the test was implemented using the CODA
package [32]. In Gelman and Rubin’s diagnostics [33], the
value of the proportional scale reduction factor is 1.09 (with
upper C.I. 1.27) for k, 1.03 (with upper C.I. 1.09) for D in
the Gibbs sampling, and 1.02 (with upper C.I. 1.06) for k,
1.02 (with upper C.I. 1.02) for D in slice sampling. Geweke’s
convergence diagnostics [34] are also employed, with the
proportion of the first 10% and last 50% of the chain for
comparison. The corresponding z-scores are calculated in
the interval [−2.09, 0.85] for five chains. In addition, the
stationarity and half-width tests of the Heidelberg and Welch
Diagnostic [35] are both passed in all cases, with the
p-value higher than 0.05. On the basis of all these statistics, the
Markov chain’s stationarity can be safely ensured in our case.

The efficiency of the algorithms can be measured by esti-
mating the integrated autocorrelation time τ for K and D.
τ is a good performance indicator as it measures the statistical
error of Monte Carlo approximation on a target function f .
The smaller the τ , the more efficient the algorithm is.

Referenece [28] used an estimator τ̂ as

τ̂ = 1

2
+

C−1∑

l=1

ρ̂l (24)
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TABLE II

INTEGRATED AUTOCORRELATION TIMES ESTIMATOR τ̂ FOR K AND D

where ρ̂l is the estimated autocorrelation at lag l and C is a
cutoff point, which is defined as C := min{l : |ρ̂l | < 2/

√
M},

and M is the number of iterations.
We test the sampling efficiency of the MTV-g and MTV-s

models on Case 1 with the same setting as [31]. Of the whole
20 000 iterations, the first half of the samples is discarded as a
burn-in and the remainder are thinned 1/20. We manually try
different values of the hyperparameters γ and α and show the
integrated autocorrelation time estimator in Table II. Although
some outliers exist, we can see that there is a general trend that,
with a fixed α value, the autocorrelation function decreases
when the γ value increases. This same phenomenon happens
on α while γ is fixed. This result confirms our empirical
knowledge. The larger value of γ, α will help to discover more
clusters, followed by a smaller autocorrelation function.

On the other hand, we confirm that MTV-g and
MTV-s models do not show much difference in the mixing
rate of the Markov Chain, as shown in Table II. As men-
tioned in the previous section, slice sampling provides a
mixed-membership distribution-independent sampling scheme,
which enjoys the time efficiency of parallel computing in
one iteration. For large-scale datasets, it is a feasible solution.
In Gibbs sampling, parallel computing is impossible as the
sampling variables are in a dependent sequence.

Fig. 5 shows the trace plot of the training log-likelihood
against the iterations on Case 1. As we can see, the sam-
pler in the MTI model converges to the high training log-
likelihood region faster than the MTV model. Also, the
MTI model reaches a higher training log-likelihood than the
MTV model.

2) Further Performance: We will compare the models
in terms of the log-likelihood (Fig. 6); the average l2
distance between the mixed-membership distributions and
its ground-truth; and the l2 distance between the posterior
role-compatibility matrix and its ground-truth (Table III).

From the log-likelihood comparison shown in Fig. 6, we can
see that the MTI model performs better than the MTV
model in general. On the average l2 distance to the ground-
truth performance, the MTI model also performs better. The
superiority of the MTI model’s performance over that of the
MTV model is within our expectation, as the MTI model
describes the membership indicator’s time consistency more
accurately (i.e., integrating the sticky parameter κ on the

Fig. 5. Top: training log-likelihood trace plot on the MTV-g model.
Bottom: training log-likelihood trace plot on the MTI-g model.

Fig. 6. Log-likelihood performance on all the four cases.

specific membership indicator, rather than the mixed-
membership distribution). Also, the hidden Markov property
enables the MTI model to categorize membership indicators
into the same mixed-membership distributions on the basis of
its previous value. This seems to be a more effective method
than the time-based grouping in the MTV model. However,
in situations where there are dramatic changes amongst the
membership distributions over time, the MTI model will not
respond well. The MTV model is much more effective and
robust under these settings as the distribution consistency is
a more robust modeling strategy. In addition, the assumption
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TABLE III

AVERAGE l2 DISTANCE TO THE GROUND-TRUTH

TABLE IV

RUNNING TIME (SECONDS PER ITERATION)

that there exist different membership distributions at each time
instance makes it possible to parallelize the MTV model to
some extent, making it suitable for dealing with large-scale
problems.

Here, we compare the computational complexity
(running time) of the models in one iteration, with K
discovered communities, and show the results in Table IV.
We discuss the MTV-g and MTV-s models as an instance.
In the MTV-g model, the number of variables to be sampled is
(2K + 2n2T ), whereas a total of (2K + 4n2T + nT ) variables
are sampled in the MTV-s model. However, the posterior
calculation of Z in the MTV-s model can be directly obtained
from the mixed-membership distribution, while we need to
calculate the ratio for each of Z in the MTV-g model. Also,
the U value at each time can be sampled in one operation as
its independency in the MTV-s model. The result shows that
the MTV-s model runs faster than the MTV-g model, which
is in accordance with our assumption.

We also tried a parallel implementation of the slice variables
{ut

i j,s , ut
i j,r }i, j,t ’s in the MTV-s model. During each iteration,

these slice variables are partitioned into four parts (as our
machine has four cores) and are sampled independently, while
other variables are still sampled in a sequence. Its correspond-
ing running time is shown in the last column of Table IV.
It shows that the parallel design costs even more time when
the dataset size is small (N ≤ 500). This may be due to the
time spent on transferring the variables. However, it needs less
time when the dataset size becomes larger (N > 500). This
verifies that our parallel slice sampling method is a promising
approach in achieving scalability.

3) Larger Data Size Results: We also conduct the experi-
ments with a larger synthetic dataset (N = 100, T = 20). With
the same construction as previous ones, we increase the role
number to 5 and set the role-compatibility matrix as shown
in Fig. 7.

We set five groups in this network, with the group
sizes as [35, 20, 20, 20, 5] and the mixed-membership

Fig. 7. Larger dataset’s role-compatibility matrix.

distributions for each of the groups as [0.8, 0.1, 0,
0.05, 0.05; 0.02, 0.85, 0.05, 0.03, 0.05; 0.1, 0, 0.9, 0, 0; 0.05,
0.1, 0, 0.85, 0; 0, 0.2, 0, 0.4, 0.4]. The detailed results are
also given in Table III. As we can see, our MTI model still
achieves the best performance of all the models.

B. Real-World Datasets Performance

We select ten real-world datasets for benchmark testing.
Their detailed information, including the number of nodes,
the number of edges, edge types, and time intervals, is
given in Table VII. Following a general test on the training
log-likelihood of the training data and area under the ROC
(Receiver Operating Characteristic) curve (AUC) of the test
data, we elaborate the results on three selected datasets in the
following.

We use a fivefold cross validation method to certify our
model’s performance on the real-world datasets. The hyper-
parameters γ, κ, α are sampled according to the sampling
strategy mentioned in Section V. Each experiment is run ten
times and we report their mean and standard deviation in
Tables V and VI.

In these two tables, the bold type denotes the best value
in each row. As we can see, our MTI model performs best
in eight of the ten datasets on the training log-likelihood and
six of the ten datasets on the AUC value. In the remaining
datasets, although our MTI model’s performance is still quite
competitive, the DRIFT model has the best values, possibly
because, in these datasets, all associated communities from
both nodes are considered in generating the link between these
two nodes [14]. The MTV models still do not perform well
enough, for the reason previously given. The IRM’s results are
the worst, which reflects that the simple structure (i.e., each
node occupies only one class) may not be enough to capture
the full structure in relational learning.

C. Kapferer Tailor Shop

The Kapferer Tailor Shop data [1] records interactions in
a tailor shop at two time points. In this time period, the
employees in the shop negotiate for higher wages. The dataset
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TABLE V

TRAINING LOG-LIKELIHOOD PERFORMANCE (95% CONFIDENCE INTERVAL = MEAN ∓1.96× STANDARD DEVIATION)

TABLE VI

AUC PERFORMANCE (95% CONFIDENCE INTERVAL = MEAN ∓1.96× STANDARD DEVIATION)

TABLE VII

DATASET INFORMATION

Fig. 8. MTI model’s performance on Kapferer Tailor Shop dataset. The
x-axis stands for the nodes, while the y-axis represents the mixed-membership
distribution. Different colors represent various communities we discovered.
Top bar chart: all the employees’ mixed-membership distributions in Time 1.
Bottom bar chart: all the employees’ mixed-membership distributions in
Time 2.

is of particular interest because two strikes occur after each
time point, with the first failing and the second successful.

We mainly use the work–assistance interaction matrix in
the dataset. The employees have eight occupations: head
tailor (19), cutter (16), line 1 tailor (1-3, 5-7, 9, 11-14, 21, 24),

Fig. 9. Nodes’ mixed-membership distribution of the MTI model on
Sampson Monastery dataset. Left to right: time 1–3. Blue: loyal opposition.
Red: outcasts. Green: young Turks. Magenta: interstitial group.

Fig. 10. Role-compatibility matrix. Left: MTV-g. Right: MTI.

button machiner (25-26), line 3 tailor (8, 15, 20, 22-23,
27-28), ironer (29, 33, 39), cotton boy (30-32, 34-38), and
line 2 tailor (4, 10, 17-18).

In Fig. 8, we can see that the yellow communities at Time 2
are larger than those at Time 1, which means that people
tend to have another community at Time 2, rather than being
mostly dominated by one large group at Time 1. This larger
yellow community may be the result of the first failed strike,
after which employees start to shift to the minor (yellow)
community for a successful strike.



IE
EE

Pr
oo

f

FAN et al.: DYNAMIC INFINITE MMSB 11

Fig. 11. MTI model’s performance on the hypertext 2009 dynamic contact network. Numbers on the left side: orders of nodes. Each bar chart: dynamic
behavior of one node’s mixed-membership distribution, where the x-axis stands for the ten time stamps. Different colors are interpreted as the communities
we have discovered, and their role-compatibility is represented below the bar chart.

D. Sampson Monastery Dataset

The Sampson Monastery dataset is used here to extend the
study. There are 18 monks in this dataset, and their social
linkage data is collected at three different time points with
various interactions. Here, we especially focus on the like-
specification. In the like-specification data, each monk selects
three monks as his closest friends. In our settings, we mark the
selected interactions as 1, otherwise 0. Thus, an 18 × 18 × 3
social network dataset is constructed, with each row having
three elements valued at 1.

According to the previous studies in [8] and [23], the
monks are divided into four communities: young Turks, loyal
opposition, outcasts, and an interstitial group.

Fig. 9 shows the detailed results of the MTI model.
As three communities have been detected, we put all the
results in a two-simplex, in which we denote the com-
munities as A, B , and C . For trajectory convenience,
we also color the nodes according to which special group
they belong. The results show that these groups behave
significantly differently. The loyal opposition group lies closer

to C , and the interstitial group tends to belong to A. Both of
their mixed-membership distributions are stable across time.
The outcasts and young Turks groups lie much closer to B .

We also show the role-compatibility matrix in Fig. 10 for
comparison. Compared with the results given in [8], our results
have larger compatibility values for the same role. Also, the
first role’s value in our model is 0 versus 0.6 that is reported
in [8].

E. Hypertext 2009 Dynamic Contact Network

This dataset [42] is collected from the ACM Hypertext
2009 conference. 113 conference attendees volunteered to
wear radio badges that recorded their face-to-face contacts
during the conference. The original data is composed of
records such as (t, i, j), where t is the communication time
and i, j are the attendees’ ID. By adaptively partitioning the
whole time period into ten parts and noting the interaction
data as 1 if communicated during the time stamps, we obtain
a 113 × 113 × 10 binary matrix. Fig. 11 shows the dynamic
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behavior of the nodes’ mixed-membership distributions and
the corresponding role-compatibility matrix.

The results show that almost half of all the mixed-
membership distributions fluctuate during these time stamps.
This phenomenon coincides with our common knowledge that
people at academic conferences tend to communicate causally.
Thus, people’s roles may change during different time stamps.

The learned value of the role-compatibility matrix is about
the sky blue community, whose intrarole-compatibility value
is 0.6932. It has a small probability of interaction with
other communities. The other community’s compatibility value
is almost 0. This might be the reason for sparsity in the
interaction data.

Here we specially mention node 108. In the record, this
person is always the first to communicate with others on
each of the three days. His/her mixed-membership distribution
is mainly composed of the sky blue community 1, which
indicates he/she could be an organizer of this conference. The
other nodes with mixed-membership distribution dominated
by community 1, such as nodes 24, 53, 61, all were engaged
actively with others according to the record.

Another interesting phenomenon is that the nodes contain-
ing the orange community 2 interact with community 1 at a
probability of 0.2. This might be an indication that most of
the attendees communicated with the organizers for various
reasons.

VII. CONCLUSION

Modeling complex networking behaviors in a dynamic
setting is crucial for widespread applications, including social
media, social networks, online business, and market dynamic
analysis. This challenges the existing learning systems that
have limited power to address the dynamics. In this paper,
we have provided a generalized and flexible framework to
improve the popular MMSB by allowing a network to have
infinite types of communities with relationships that change
across time periods. By incorporating a time-sticky factor
into the mixed-membership distributions, we have realistically
modeled the time-correlation among latent labels. Both Gibbs
sampling and adapted slice-efficient sampling have been used
to infer the desired target distribution. Quantitative analysis on
the MCMC’s convergence behavior, including the convergence
test, autocorrelation function, and so forth, has been provided
to demonstrate the inference performance. The results of the
experiments verify that our proposed DIM3 is effective in
constructing the dynamic mixed-membership distribution and
role-compatibility matrix.

Possible future work includes a systematic application
of DIM3 to various large real-world social networks.
In particular, we are also interested in adapting our model
to many atypical applications, for example, where sequences
of networks have nonbinary and directional measurements.
We will also study many other flexible frameworks for mod-
eling persistence of memberships across time. Lastly, we will
perform an extensive study into patterns of joint dynamics
of {π t

i } to extract meaningful latent information from them.
This is done in a setting where the number of components
between π t

i and π t+1
i may differ.

Recent developments [46], [47] in the large-scale learn-
ing of latent space modeling give us more insights for
possible future work. These improvements include parsimo-
nious link modeling [46] that reduces the parameter size
from O(n2 K 2) to O(n2 K ), the utilization of the stochastic
variational inference method [48], and a triangular representa-
tion of networks [49], [47], which could reduce the parameter
size to O(nK 2). Through these, we are hoping to enlarge
our model’s scalability to millions of nodes and hundreds of
communities.

To describe the time dependency, the dependent Dirichlet
process (DDP) [50] provides an alternative. Among the var-
ious constructions of the DDP [51]–[55], we may construct
the DDP by projecting the gamma process into different
subspaces and normalizing them individually, through which
the overlapping spaces reflect the correlation. Lin et al. [56]
discuss the intrinsic relationship between the Poisson process,
gamma process and Dirichlet process and uses three oper-
ations namely superposition, subsampling, and point transi-
tion to evolve from one Dirichlet process to another, with
an elegant and solid theory support. Subsequent literatures
including [57]–[59] extend this paper from different
perspectives.
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