

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Improving the Quality of Recommendations for Users and Items
in the Tail of Distribution

LIANG HU, University of Technology, Sydney
LONGBING CAO, University of Technology, Sydney
JIAN CAO, Shanghai Jiao Tong University
ZHIPING GU, Shanghai Technical Institute of Electronics & Information
GUANDONG XU, University of Technology, Sydney
JIE WANG, Stanford University

Short-head and long-tail distributed data are widely observed in the real world. The same is true of
recommender systems (RSs), where a small number of popular items dominate the choices and feedback
data while the rest only account for a small amount of feedback. As a result, most RS methods tend to learn
user preferences from popular items since they account for most data. However, recent research in e-
commerce and marketing has shown that future businesses will obtain greater profit from long-tail selling.
Yet, although the number of long-tail items and users is much larger than that of short-head items and
users, in reality, the amount of data associated with long-tail items and users is much less. As a result, user
preferences tend to be popularity-biased. Furthermore, insufficient data makes long-tail items and users
more vulnerable to shilling attack. To improve the quality of recommendations for items and users in the
tail of distribution, we propose a coupled regularization approach that consists of two latent factor models:
C-HMF, for enhancing credibility, and S-HMF, for emphasizing specialty on user choices. Specifically, the
estimates learned from C-HMF and S-HMF recurrently serve as the empirical priors to regularize one
another. Such coupled regularization leads to the comprehensive effects of final estimates, which produce
more qualitative predictions for both tail users and tail items. To assess the effectiveness of our model, we
conduct empirical evaluations on large real-world datasets with various metrics. The results prove that our
approach significantly outperforms the compared methods.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Information filtering; I.2.6 [Artificial Intelligence]: Learning;

Additional Key Words and Phrases: Recommender Systems, Long Tail, Recurrent Mutual Regularization,
Multi-objective Learning, Trust and Reputation Systems

ACM Reference Format:

Liang Hu, Longbing Cao, Jian Cao, Zhiping Gu, Guandong Xu, Jie Wang 2016 Improving the Quality of
Recommendation over Users and Items in the Tail of Distribution. ACM Trans. Info Sys.
DOI: http://dx.doi.org/10.1145/0000000.0000000

Authors’ addresses: L. Hu (corresponding author, rainmilk@gmail.com), Advanced Analytics Institute,
University of Technology, Sydney, Australia; L. Cao (longbing.cao@uts.edu.au), Advanced Analytics
Institute, University of Technology, Sydney, Australia; J. Cao (corresponding author, cao-jian@sjtu.edu.cn),
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Z. Gu
(guzhiping@stiei.edu.cn), Department of Electronics Engineering, Shanghai Technical Institute of Electronic
Information, Shanghai, China; G. Xu (guandong.xu@uts.edu.au), Advanced Analytics Institute, University
of Technology, Sydney, Australia; J. Wang (jiewang@stanford.edu), Center for Sustainable Development and
Global Competitiveness, Stanford University.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credits permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-
0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI: http://dx.doi.org/10.1145/0000000.0000000

39

39:2 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

1. INTRODUCTION

We are leaving the information age and entering the recommendation age [Anderson
2006]. Because of this, recommender systems (RSs) are playing an increasingly
important role than ever before. Collaborative filtering (CF) is a core component of
modern RSs; it leverages feedback from other users and items to generate
recommendations for a target user. However, CF techniques are still challenged by
complicated real-world data characteristics [Su and Khoshgoftaar 2009]. On the one
hand, some of the challenges arise from the distribution of real-world data in nature.
It is known that a lot of real-world data can be observed following a long-tail—a.k.a.,
power-law—distribution. Due to a lack of sufficient data for most users and items, data
sparsity and cold start are two of the most common research issues addressed by the
study of RSs. On the other hand, other challenges may be caused by human behavior.
For instance, shilling attack is one such typical issue; this refers to some users giving
lots of positive feedback for their own items and negative feedback for their competitors’
items. Since the basic idea of CF is to predict ratings in terms of the related data
associated with other users and items, insufficient data and spam data will obviously
deteriorate recommendation results, especially for those users and items in the tail of
distribution.

Fig. 1. Items (left) and users (right) are ranked by the number of their ratings (truncated from 0 to 100) on
Rich Epinions Dataset; they are both clearly distributed with short heads and long tails.

To date, most research has focused on improving the accuracy of RSs. However,
simply improving the accuracy by one or two percent will hardly result in a better user
experience or a greater business benefit. Here, we give an intuitive interpretation from
the long-tail distribution. A long-tail distribution implies skewed data that has a short
head and a long tail, that is, a small number of popular items in the head part, which
account for most of the data, whereas the large number of items in the tail only account
for a small amount of data. Here, we use the experimental Rich Epinions Dataset (RED)
[Meyffret et al. 2012] as a demonstration. This dataset was crawled from the well-
known online review Web site epinions.com, which contains a total of 1,127,673
reviews given by 113,629 users on 317,755 items. Each review contains a user rating,
and the density of this dataset is only 0.003%. The left- and right-hand sides of Fig. 1
depict, respectively, the long-tail distribution for items and for users. We find that only
a few items and users in the short head have sufficient ratings while a large number
of items and users in the long tail have less than ten ratings each. Such a skewed data
distribution causes RSs to learn users’ preferences largely from popular items because
these items account for the majority of the data. As a result, the improvement of
recommendations is largely determined by popular items. However, such improvement

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0
10
20
30
40
50
60
70
80
90

100

Item Rank

#
 R

at
in

gs

Long-tail Distribution over Items

0 2 4 6 8 10 12

x 10
4

0
10
20
30
40
50
60
70
80
90

100

User Rank

Long-tail Distribution over Users

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

for popular items is trivial because popular items are likely already known by most
users who can make the decision to choose them or not. Moreover, Anderson’s well-
known research suggests that future businesses will obtain more profit from long-tail
selling [Anderson 2006]. Motivated by these observations, we focus on improving the
quality of recommendations for tail users and items, which we believe will be a great
benefit for both business profits and the user’s experience.

1.1 Challenges of Tail Users and Items

In recent years, a lot of CF techniques have been developed [Su and Khoshgoftaar
2009], where k nearest neighbor (kNN) [Candillier et al. 2008] and matrix factorization
(MF) [Koren et al. 2009] are two examples. In particular, kNN is a representative,
memory-based approach while MF is a representative, model-based approach. The
simple form of user-based kNN can be given by:

,

∑ ,∈ ,

∑ ,∈
																																																																 1

where , is the predictive rating of user on item ; , is the observation on from a
neighbor of ; denotes the neighbor set of user ; and , is the weight between user
 and user . Typically, , can be computed by Pearson correlation, cosine, or Jaccard

similarity [Candillier et al. 2008].
A probabilistic matrix factorization (PMF) [Salakhutdinov and Mnih 2008b] is a

typical model to illustrate the MF approach from the probabilistic view. Given a data
matrix ∈ with the index of each observed choice , ∈ on users and
items, we can obtain the following distributions with the Gaussian latent factors of
users and of items:

| , 																															 , 																																		 2

, , 																																																																																									 3

, | ∝ , , 	 ,
∈

	 																		 4

where , ⋯ , is the user factor matrix; , ⋯ , is the item factor
matrix; and , , are the variance parameters of the Gaussian distributions. We
learn the user factors and the item factors through a maximum a posteriori (MAP)
estimate. According to the Bayesian theorem, we have the posterior , | ∝

, , given in Eq. (4). The following objective function can then be obtained by
minimizing the negative log-posterior. Without loss of generality, we easily obtain the
classic objective of an MF model [Koren et al. 2009; Salakhutdinov and Mnih 2008b],
when we set 1 and denote as the regularization parameter:

,

1
2 ∈

‖ ‖ ‖ ‖ 																														 5

We can easily write the partial derivative ⁄ w.r.t. each . The optimization w.r.t.
 is convex when is fixed. A close-form update equation for can be obtained by

setting ⁄ to zero [Salakhutdinov and Mnih 2008b]:

39:4 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

←
∈ ∈

																																											 6

where indexes those users who have chosen item . Similarly, the optimization w.r.t.
 is convex when is fixed, and thus, we can obtain:

←
∈ ∈

																																											 7

where indexes the items chosen by user .
So far, we have briefly reviewed the kNN and MF models. Due to the skewness of

the distributions of the users and items (cf. Fig. 1), the data pulled from long-tail users
and items is much sparser than that of short-head users and items. As a result, the
kNN and MF models are more vulnerable to the following challenges than long-tail
users and items.

Popularity Bias: Given any two users, their choices tend to overlap more with
popular items but less so with long-tail items. Hence, the neighbor set in kNN is largely
constructed from popular items. Furthermore, note that the data is very sparse in the
tail, i.e., each tail item is chosen by very few users. As a result, a user often cannot find
any feedback on those long-tail items from neighbors, so a prediction is unavailable (cf.
Eq. (1)), which creates a situation where those items will never be recommended. As
for popular items, they tend to have sufficient feedback, so kNN can more easily make
predictions and recommend them. Although MF does not directly depend on neighbor
data, it still suffers from the tail’s data-sparsity challenge. From Eq. (6) and Eq. (7),
we find that the estimates of item factors and user-factors are largely determined by
the amount of observed data w.r.t. item and user . For items and users in the tail,
the amount of observable data is small, so the quality of the estimates for them are
naturally poorer than with short-head items and users. Accordingly, the predictions
for short-head items and users are much more accurate than those for long-tail items
and users.

Cold Start: The long-tail distribution implies a number of users are cold start in
nature. Cold-start users usually have provided little feedback on some popular items,
or sometimes no feedback at all. Given a cold-start user, kNN does not have sufficient
data to find suitable neighbors. As a result, the prediction results for long-tail items or
users is poor. From Eq. (7), we find that the factors, , differentiate user preferences
according to the feedback they have provided on different items. However, long-tail
users have provided very little feedback on popular items so the learned factors of these
users tend to be similar; for this reason, they are not able to clearly represent personal
preferences. In extreme cases, we find that neither kNN nor MF can work, cf. Eq. (1)
and (7), when we have only cold-start users without any feedback data.

Shilling Attack: As mentioned, a shilling attack refers to a group of spam users
intentionally providing fake feedback, e.g., much higher or lower ratings than a true
rating to bias the ratings and the recommendations for them. Intuitively, short-head
items are well known, and users either actively or passively learn information about
them from many sources. For this reason, short-head items are less affected by shilling
attack. In comparison, information on unpopular items is limited, and they are largely
known by recommendations. Thus, these items can suffer more easily from shilling

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

attack. Moreover, the number of ratings on head items is much more than on tail items;
as a result, it is much easier to attack tail items by imputing a few fake ratings. For
example, given a head item that has 1,000 ratings and a tail item that has 5 ratings,
and where both have an average score of 4, if a shilling attack gives five low ratings
with a score of 1 on both items, the average rating of this head item is still close to 4,
but the average rating of the tail item is reduced to 2.5.

Since kNN depends on neighbors’ feedback to construct a prediction, it can suffer
greatly from shilling attack on tail items due to the large proportion of fake feedback.
As for the MF method, each item factor vector, , determines how this item would be
preferred by users. If a shilling attack is conducted on a tail item , is learned largely
only from fake feedback (cf. Eq. (6)). As a result, the prediction for a user’s preference
for item is biased by the fake .

1.2 Our Proposal

Users’ choices for popular items are largely influenced by others. For example, seeing
a new movie with friends may not really reflect a particular user’s subjective
preference. On the other hand, choices for long-tail items can better reflect a user’s
taste since they are rarely due to the influence of others. To tackle the popularity-bias
challenge, we need to construct a model that can emphasize the choices of long-tail
items in order to learn users’ special preferences. However, only emphasizing long-tail
items is not enough because, as mentioned, long-tail items suffer more easily from
shilling attack. Therefore, we also need to construct a model that can weigh the
credibility of each piece of feedback. Moreover, an efficient way to deal with the cold-
start challenge is to borrow information from other relevant users. We argue that high-
quality, relevant users should be reputable and, thus, trusted. In summary, we need
to design an approach that jointly models both the objective to emphasize the specialty
of choices and the objective to assess the credibility of the feedback for each choice.

Heteroscedastic Matrix Factorization: In Eq. (3), the variance parameter, ,
does not vary with different observations , which is so-called “homoscedasticity”.
Now, if we model each observation with different variance, , as demonstrated in
Eq. (8), then these observations are assumed to be “heteroscedastic”. By minimizing
the negative log-form of Eq. (4), we immediately obtain the following objective (Eq. (9))
where the weighted squared loss is the log-form of Eq. (8) and

 serves as the weight to penalize the loss of fitting . As a result, we call this
variant MF model heteroscedastic MF (HMF). From a probabilistic view, the variance
parameter controls the confidence level [Hu et al. 2014]. Specifically, a smaller
implies higher confidence and less uncertainty of the observation , i.e. a large is
applied to more tightly fitting .

, , 																																																							 8

,

1
2

	

‖ ‖ ‖ ‖ 																														 9

Heteroscedastic Modeling: In order to emphasize the specialty of users’ choices
with long-tail items, we differentiate each user choice in terms of heteroscedastic

39:6 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

modeling. Specifically, we model the variance parameter by a variance function
∙ to score the specialty of this choice. As a result, we obtain specialty-specific

heteroscedastic MF (S-HMF), which more tightly fits the users’ choices for long-tail
items.

On the other hand, we need to model the credibility of users’ feedback. Technically,
the parameters should be estimated by tightly fitting the more credible feedback while
loosely fitting the less credible feedback. Hence, we can construct another HMF model
using Eq. (8), where the variance parameter is modeled by a variance function ∙ ,
which scores the credibility of each review. We name this type of HMF as credibility-
specific HMF (C-HMF).

Coupling Objectives using Empirical Priors: So far, we have presented S-HMF
and C-HMF, which correspond to two independent objectives for optimization.
However, we need to jointly consider both objectives w.r.t. specialty and credibility
when learning user preference as stated previously. From the view of Bayesian
modeling, MAP trades off the estimation of parameters between prior and likelihood.
That is, the estimates are very close to the given prior when little data is available. In
PMF, the priors of user factors and item factors are modeled by uninformative priors,
i.e. zero-means as illustrated by Eq. (2). If we provide some informative priors, and

, pertaining to the user factors and the items factors as Eq. (10), then we obtain the
objective function illustrated by Eq. (11). In this objective, we find that the estimates
of and are regularized by the given priors and . As a result, the estimates of
user factors and items factors tend to shrink towards the given informative priors.

| , 																										 , 																																		 10

,

1
2

	

‖ ‖ 										 11

S-HMF

C-HMF

FactorsFactors

Fig. 2. A recurrent mutual regularization process couples S-HMF and C-HMF using the user and item-
factors learned from one another as the empirical priors to couple the objectives specialty and credibility.

The user factors and the item-factors learned from C-HMF target the objective of
credibility, so they can serve as good empirical priors for modeling the user factors and
the item factors of S-HMF. Symmetrically, the user factors and the item factors learned
from S-HMF target the objective of specialty, which contains information on the users’
intrinsic preferences. As a result, the user factors and the item factors learned from S-
HMF are good empirical priors for modeling the user factors and the item factors of C-
HMF. Thus, as shown in Fig. 2, it forms a mutual regularization process that couples

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

S-HMF and C-HMF using the empirical priors learned from each other recurrently.
Therefore, we name this coupled model for multi-objective optimization the recurrent
mutual regularization model (RMRM).

Moreover, we need to borrow information from other users’ preferences to deal with
cold-start users. Since user factors represent the features of user preference, we can
construct the prior using user factors from a group of relevant users. Specifically, we
design a sophisticated way to combine these Gaussian-distributed user factor vectors,
namely, by using the Product of Gaussian Experts (PoGE) [Hinton 2002; Williams and
Agakov 2002]. In fact, such a PoGE-prior can be regarded as playing the role of social
regularization [Ma et al. 2011]. This will be discussed further in the following sections.

1.3 Contributions

In this paper, we address the challenges of recommendations for long-tail items and
users. The main contributions of our work are summarized as follows:
— We present the potential requirements to improve recommendations for users and

items in the tail of distributions, which will significantly improve business profits
and improve a user’s experience.

— We show the vulnerabilities of current approaches for tail items and users as they
pertain to the challenges of popularity bias, cold start, and shilling attack. As a
result, we establish a pair of coupled objectives to jointly emphasize the specialty of
choices and assess the credibility of feedback.

— We design a recurrent mutual regularization process to couple the objectives
modeled by S-HMF and C-HMF. To implement the recurrent mutual regularization
process for RMRM, we design a scalable algorithm based on the variational
Bayesian method to efficiently learn its parameters.

— We conduct empirical evaluations on two real-world data sets. Based on various
metrics, the overall results prove that our approach significantly outperforms the
compared methods.

— Although we focus mainly on recommendation problems in this paper, the proposed
approach could potentially be applied to many other areas. RMRM provides a
general framework to couple multiple objectives and to learn the comprehensive
latent features regularized by empirical priors.

2. RELATED WORK

Basically, our work aims to improve the accuracy of recommendations for users and
items in the tail by considering both specialty and credibility. Note that some recent
research targets long-tail recommendations from different perspectives to improve
certain other metrics, such as diversity and serendipity [Herlocker et al. 2004; Vargas
and Castells 2011; Yin et al. 2012]. The focus of this research and its goals is quite
different from our own work, so our objectives should not be confused with theirs.

2.1 Technologies in Recommender Systems

Memory-based approaches, such as kNN, are the origins of CF systems [Su and
Khoshgoftaar 2009], and they have been applied successfully in real-world commercial
systems [Sarwar et al. 2001]. In general, kNN can be subdivided into two categories:
user-based nearest neighbor; and item-based nearest neighbor [Su and Khoshgoftaar
2009]. However, these approaches are not suitable when the data is sparse. They are
not able to deal with the challenges of long-tail items and users.

39:8 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

With the rapid development of machine learning, model-based approaches have
become more and more popular in recent years. Here, matrix factorization (MF) models
have gained dominance in the field of recommendation, as they have shown their
superiority to neighborhood-based techniques, ultimately winning the Netflix Prize
competition [Koren et al. 2009]. The basic idea of MF methods is to fit the user-item
rating matrix using low-rank approximations, and then to use these results for
prediction. Many MF methods have been proposed, including probabilistic MF (PMF)
[Salakhutdinov and Mnih 2008b] and maximum-margin MF (MMMF) [Srebro et al.
2005]. To achieve better performance, they need to carefully tune the hyperparameters
for MF. Hence, researchers have proposed Bayesian PMF (BPMF) [Salakhutdinov and
Mnih 2008a] and variational Bayesian MF (VBMF) [Lim and Teh 2007; Shan and
Banerjee 2010] to learn the hyperparameters.

Apart from the MF approach, some other models have also achieved success in this
field. For example, in the literature, choice modeling [Train 2003] is strongly related
to the recommendation problem, and Hu et al. [2014] proposed a latent-feature-based
Bayesian heteroscedastic choice model (BHCM) to represent heterogeneities between
users and items. Additionally, with the prevalence of deep learning techniques [Bengio
et al. 2013], restricted Boltzmann machines (RBM) have also been applied in RSs
[Georgiev and Nakov 2013]. This was reported to have achieved comparable
performance to MF in the Netflix Prize competition [Salakhutdinov et al. 2007].

Most current recommender systems are built on explicit feedback, e.g., ratings, to
differentiate users’ preferences. However, explicit feedback is not always available in
the real world while implicit feedback, e.g., click logs, can be obtained more easily.
Implicit feedback is often represented by binary values, that is, 1 for observed choices
and 0 for others [Hu et al. 2014; Pan et al. 2008]. These unobserved choices have zero
values, but they do not mean true negative instances. Therefore, a strategy that is
often used to assign a larger confidence level to the observed choices to represent the
high certainty of users’ explicit likes while a much smaller confidence level is assigned
to unobserved choices to represent the small certainty of dislike [Hu et al. 2014; Hu et
al. 2008; Pan et al. 2008]. For instance, Bayesian personalized ranking (BPR) [Rendle
et al. 2009] assumes that users show a stronger like for their chosen items than for
unobserved ones. Hence, the preference ordering relation can be constructed for each
pair of items. As a result, BPR learns the utility of choosing an item from the ordering
relationships.

2.2 Dealing with Data Sparsity in the Long Tail

The long tail was popularized by Anderson in 2004, who reported that Amazon, Apple,
and Yahoo! apply this strategy to realize significant profits when selling items in the
tail [Anderson 2006]. However, there is sparse data for long-tail items and users, which
greatly decreases the quality of recommendations. Park and Tuzhilin [2008] observed
this difficulty when recommending long-tail items with very few ratings. Thus, they
proposed to split the whole item set into head and tail parts, and then to group the tail
items into clusters. As a result, the clusters of the tail items are treated as virtual
items, which have relatively more ratings than just a single item. Levy and Bosteels
[2010] then studied music recommendations in the long tail using a conventional, item-
based CF approach. However, these methods cannot work well when the data is too
sparse to find similar items.

To tackle the data-sparsity challenge, one often needs to incorporate additional
information. It is expected that the additional side information about the users and
the items would be beneficial if it were to be incorporated into a model. Thus, Bayesian

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:9

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

matrix factorization with side information (BMFSI) [Porteous et al. 2010] is extended
from BPMF. It incorporates side information via linear regression. That is, the data is
modeled as a combination of MF terms with user and item latent factors and regression
against the side information of users and items. Further, the regression-based latent
factor model (RLFM) [Agarwal and Chen 2009] uses a different strategy to incorporate
side information. It assumes that the user latent factor matrix is generated from the
provided features (i.e., side information) of users via regression while the item latent
factor matrix is generated from the provided features of items via regression. Following
this, both the user and the item latent factor matrices are used as MF. However, side
information is not always available due to privacy and security. In addition, these
methods do not consider the credibility of the data and the side information, so they
can easily suffer from shilling attack for long-tail items.

2.3 Trust-aware Recommender Systems

Spam data can be found everywhere on the Internet, e.g., e-commerce and social
networking sites. Hence, trust and reputation systems (TRS) [Jøsang and Ismail 2002;
Jøsang et al. 2008] have been designed specifically to foster trusted behavior in these
domains. In recent years, with increasing attention placed on RS, researchers in the
TRS area have proposed to incorporate trust into RS [Jøsang et al. 2013], where a trust
score between two users serves as the weight to conduct the conventional neighbor-
based method. However, the neighbor-based method has its limitations when the data
is very sparse.

People in the RS area are also aware of the importance of trust, and they have
designed many MF-based methods. SoRec [Ma et al. 2008] incorporates trust networks
into RS where joint factorization is conducted over two matrices: user-item ratings and
user-user trust relationships. In recent years, researchers have utilized social relations,
i.e., trust relations, to perform regularization for users. SocialMF [Jamali and Ester
2010] and SoReg [Ma et al. 2011] are two representative models to regularize the user
factor vector of a target user via the user factor vectors of their trusters. Such
regularization plays the role of borrowing the preferences of the trusters to deal with
the cold-start issue.

In this paper, we also incorporate trust information into our framework. On the one
hand, we employ Bayesian reputation modeling to assess the reputation of users in
order to weight the credibility of their feedback. On the other hand, we place a PoGE-
prior that has been constructed via high-reputation trusters in order to better
regularize user factors learning as SocialMF and SoReg. As a result, our model has the
advantages of both, which enables it to better deal with the challenges of cold start and
shilling attack.

3. PRELIMINARIES

3.1 Notations

Before commencing a detailed discussion, we summarize the frequently used notations
used in this paper and their meanings in Table I to simplify the presentation in the
rest of the paper.

3.2 Reputation Modeling

One of the key components in our approach is modeling the reputation of users and the
credibility of their feedback. Intuitively, the reviews from high-reputation users tend
to be more trusted and helpful to other users, and thus, they more credibly discuss the

39:10 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

real features of items. In other words, the reputation of a user is highly relevant to the
credibility of her feedback. Bayesian reputation systems [Jøsang and Quattrociocchi
2009] have been proposed to model reputation from a probabilistic perspective, so this
can be integrated easily into our framework. In particular, in this work, we employ the
beta reputation model [Jøsang and Ismail 2002] to obtain the helpfulness scores for
user reviews.

3.2.1. Beta Reputation Model. Let ≝ , denote the evidence that contains positive
feedback and negative feedback w.r.t. a target entity. The probability of evidence
can be described by a group of Bernoulli events, which follows a binomial distribution:

| 1 																																																									 12

Then, we can obtain the following definition of a reputation function given the beta-
prior with the probability density function (pdf) defined by a gamma function Γ ∙ :

Table I. Summary of Frequently Used Notations in of the Paper

Symbol Description

 ∈ 1,⋯ , is used to index a user

 ∈ 1,⋯ , is used to index an item

 ,⋯ , is the user factor matrix, where is the user factor vector of user

 , ⋯ , is the item factor matrix, where is the item factor vector of item

 is the data matrix, and ∈ is an entry with the index ,

 is the index set of all modeled data points, is the index set of data w.r.t. user

 is the index set of data w.r.t. item

 is the variance parameter of observation

 is the empirical prior placed on the user factors

 is the empirical prior placed on the item factors

 is the weight matrix, and ∈ is the weight to scale the loss of fitting

 is the reputation score of user

 is the credibility score on a user review

 is the specialty score on a user choice

 is the top-K neighbors of user

 denotes the top-R high-reputation experts in the system

 Superscript to indicate S-HMF related model parameters

 Superscript to indicate C-HMF related model parameters

‖ ‖ The 2-norm of a vector

 Generate a diagonal matrix using a vector

 Product of Gaussian experts

.∗ Element-wise product (MATLAB-style)

. Element-wise square (MATLAB-style)

. Element-wise inverse (MATLAB-style)

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:11

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

| ,
Γ
Γ Γ

1

Definition 1. (Reputation Function) [Jøsang and Ismail 2002]:

≝ | | , , .

Obviously, the reputation function is defined as the posterior of the beta distribution,
where the hyperparameters and can be thought of as a certain amount of pseudo
positive and negative feedback—in practice, this is often set 1. Next, we can
obtain the expectation of this reputation function, i.e., the mean of , :

≝ 																																																			 13

We find that is bounded within (0, 1), and that it approaches the upper bound 1
only if the user has a large amount of positive feedback. Clearly, we can employ such
a beta reputation model to assess the reputation of a user by the score in RSs.

3.2.2. Data for Modeling Reputation. For most online shopping and review Web sites, a
user’s review of an item consists of a rating and a free message. In order to find helpful
reviews and to display them on the first page, some of the most well-known Web sites,
e.g., Amazon.com 1 , Epinions.com 2 , Ciao.com 3 , have designed a scoring system to
evaluate the helpfulness of each review.

Fig. 3. The screen snapshots of reviews from Amazon.com (left) and Ciao.com (right), where the red, dotted
boxes show the helpfulness score

Fig. 3 demonstrates two screen snapshots of reviews found on Amazon.com and

Ciao.com. These Web sites have integrated several algorithms to score the helpfulness
of each review in terms of other users’ feedback or experts’ judgments of this review.
As a result, each review is generally associated with a multilevel helpfulness score,
from Not Helpful to Most Helpful, as shown in Fig. 3. Obviously, we can employ the
beta reputation model to assess the reputation of each user: if a user gives a lot of
reviews that mostly receive high helpfulness scores, then this user tends to be a high-

1 http://www.amazon.com
2 http://www.epinions.com
3 http://www.ciao.com

39:12 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

reputation user. On the contrary, the reputation score will be low if a spam user gives
a lot of fake reviews. The mathematical representation of the reputation score will be
discussed along with our model in the following subsections.

3.3 Explicit and Implicit Rating

Rating data is typical feedback that represents the preferences of users. Typically,
rating data can be divided into two categories: explicit and implicit.

Explicit Rating: The multilevel rating scores, e.g., five-star ratings, can explicitly
differentiate user preferences, so they are typical explicit rating data. Therefore, we
only model observed ratings, while the remaining entries are treated as missing. From
the HMF view, we have no information on these missing entries to tell us whether
users have liked the items or not, so we assign positive confidence, 0, to the
observed ratings and zeros to the remaining ones.

, 	indexes	an	observation		
0 otherwise

																																										 14

If we set all 1, then we obtain a binary-weight matrix [Acar et al. 2010;
Srebro and Jaakkola 2003]. Using this in Eq. (14), we can immediately obtain the
traditional unweighted MF objective, as shown in Eq. (5), from the objective of HMF.
In this case, the index set , 0 only consists of observed entries.

Implicit Rating: In the real world, explicit ratings are not always provided by
users, but implicit rating data, such as purchase records and number of clicks, can be
obtained more easily. This implicit rating data is usually modeled as a unary
preference because the blank entries do not necessarily indicate user dislike, but,
instead, are a result of the users’ lack of awareness [Herlocker et al. 2004]. Hence, we
can assign a higher confidence level to observed entries and a much lower confidence
level to blank entries [Hu et al. 2014; Hu et al. 2008]. Recall that the confidence level
is associated with the variance parameter, i.e., the inverse of weight (cf. Eq. (14)), when
a Gaussian distribution is assumed. As a result, the weighting strategy [Hu et al. 2008;
Pan et al. 2008] of implicit ratings is often established as follows:

, 	indexes	an	observation
otherwise

																																										 15

where is a small constant to denote the low confidence representing users’ likes or
dislikes for blank entries while denotes relatively higher confidence
representing users’ likes of observed entries. In this case, we need to model both likes
and dislikes so the index set consists of all entries of the data matrix.

4. MODEL AND LEARNING

4.1 Overview of RMRM

To implement more reliable recommendations for tail users and tail items, we propose
to model two coupled objectives for joint optimization, namely, the specialty of user
choices and the credibility of user feedback. To achieve this goal, we design a recurrent
mutual regularization model (RMRM) to couple these two objectives together.

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:13

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

4.1.1. The Framework. As illustrated in Fig. 4, the objective of specialty is modeled by
S-HMF (the right model shown in Fig. 4) while the objective of credibility is modeled
by C-HMF (the left model shown in Fig. 4). RMRM couples these two objective models
in terms of the empirical priors induced from one another.

The C-HMF focuses on modeling the credibility of each user review. This is
implemented using two means. First, C-HMF assigns different levels of confidence, i.e.,
variance, for each observation, , where the variance is modeled by a variance
function ∙ , which is devised based on the Bayesian reputation model as presented
in Section 3.2. As a result, the estimation of the item-factors is more dependent on
credible feedback. Second, a PoGE-prior is imposed on the user factors of each user,
which plays the role of regularizing user behavior in terms of relevant, high-reputation
experts. Here, such a PoGE-prior can regularize both the preference learning of cold-
start users and the behavior of spam users. Therefore, the item factor vectors
learned from C-HMF represents more authentic features of items than those learned
from classic MF models. At the same time, the user factor vectors of tail users
contain knowledge from relevant experts.

The S-HMF focuses on emphasizing the specialty of choices. The choices of tail
items are much less influenced by others, thus they better reflect personal preferences.
In S-HMF, the variance function ∙ assigns greater confidence to the choice of items
in a deeper tail. As a result, S-HMF tends to fit the observations of tail items more
tightly than those of head items. Therefore, the user factor vectors that are
estimated from C-HMF can better reflect users’ personal preferences than those
learned using classic MF methods.

As discussed in previous sections, long-tail items and users with little data are more
easily affected by shilling attack and cold-start issues, which leads to unreliable
estimates and learned from S-HMF. According to Bayesian probabilistic
modeling, a prior plays an important role when there is limited data. Therefore,
and learned from the credibility-oriented objective model, i.e., C-HMF, are good
empirical priors to regularize S-HMF to relieve both shilling attack and cold start. In
turn, learned from S-HMF are refined user features so they can serve as the
empirical priors for C-HMF in order to deal with popularity bias. Therefore, we
designed a RMRM framework that consists of the recurrent dependencies between C-
HMF and S-HMF to handle these challenges.

Legend

I

Ui
C

f C

J

a

b

PoGEi

C-HMF S-HMF

Vj
C

μj
C

Yij

I

Ui
S

f S

J

c

dVj
S

μj
S

Yij

Recurrent
Dependence

U

Parameter

Yij

Observation

rt

PoGEi

Fig. 4. The graphical representation of the RMRM framework, where S-HMF and C-HMF are recurrently
regularized by the empirical priors, induced from one another.

39:14 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

4.1.2. Geometric Illustration. To give an intuitive understanding of the working
mechanism of RMRM, we provide the geometric illustration depicted in Fig. 5. Here,
we demonstrate the data fitting process of RMRM from the perspective of a given user,
as well as a similar process that can be conducted from an item perspective. The axes
arrange items (denoted as small circles) according to their popularity. More specifically,
those items where the user provides credible feedback are marked with solid circles
whereas hollow circles denote items receiving less credible feedback. The colored lines
indicate fitting curves; the closer the curve is to a circle indicates the tighter the
parameters to fit the choice of the corresponding item.

Fig. 5 (a) depicts S-HMF, which is regularized by the parameters learned from C-
HMF. Given a user , the top fitting curve of Fig. 5 (a) reflects the parameters learned
from C-HMF, which tend to tightly fit user ’s choices with credible feedback whereas
they are loosely fit with others without credible feedback. The middle fitting curve of
Fig. 5 (a) reflects the parameters learned directly by maximizing the heteroscedastic
likelihood of the choices of user , i.e., minimizing the weighted loss of fitting user ’s
choices (cf. Eq. (14)). When the parameters learned from C-HMF are employed as
empirical priors for S-HMF, we obtain a regularized S-HMF model, as depicted in the
right part of RMRM. The parameters can be estimated by maximizing the posterior,
i.e., minimizing the objective given in Eq. (14), where the regularization term brings
estimates closer to the given priors. As a result, the bottom fitting curve of Fig. 5 (a)
represents the regularization results of the parameters, which more aggressively fit
those choices in the tail with a high degree of credibility.

In turn, the parameters learned from this regularized S-HMF serve as the empirical
priors to regularize C-HMF, as shown in the top curve of Fig. 5 (b). The parameters
learned directly by maximizing the heteroscedastic likelihood of C-HMF tend to fit
more tightly with the choices with credible feedback, as shown by the middle curve of
Fig. 5 (b). When the empirical priors are imposed for regularization, the parameters
learned from the posterior of C-HMF contain the information of the specialty of choices
from the priors. Therefore, the bottom fitting curve shown in Fig. 5 (b) tends to fit more
tightly the choices of tail items than the one produced by the maximum heteroscedastic
likelihood estimation.

Now, let us move to the next iteration, as shown in Fig. 5 (c). As in the previous
iteration, the parameters learned from the regularized C-HMF serve as the empirical
priors to regularize S-HMF. As a result, the coupled recurrent regularizing process of
RMRM converges the parameters to the region that represents the specialty of user
choices and, simultaneously, enhances its credibility.

Head Tail

Head Tail

Head Tail Head

Head

Head

Tail

Tail

Tail
Parameters Learned from C-HMF as Priors of S-HMF

Parameters Learned from Likelihood of S-HMF

Parameters Learned from the Posterior of S-HMF

Parameters Learned from S-HMF as Priors of C-HMF

Parameters Learned from the Posterior of C-HMF

(a) S-HMF Regularized by C-HMF Priors
(T=t)

(b) C-HMF Regularized by S-HMF Priors
(T=t)

Head Tail

Head Tail

Parameters Learned from Likelihood of S-HMF

Parameters Learned from the Posterior of S-HMF

(c) S-HMF Regularized by C-HMF Priors
(T=t+1)

Head Tail
Parameters Learned from C-HMF as Priors of S-HMF

Parameters Learned from Likelihood of C-HMF

Fig. 5. The geometric illustration of the recurrent mutual regularization process, where the estimates of S-
HMF and C-HMF are recurrently regularized by the empirical priors induced from one another.

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:15

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

4.2 Learning Regularized C-HMF Model

Given observations , ∈ , we can obtain the probabilistic model according to
the graphical representation of C-HMF, as shown in the left part of Fig. 4:

, ∈ 																																																										 16

						 , 																																																																			 17

, , 																																																				 18

where and are the user and the item factor vectors induced from, and , i.e.
the counterparts in S-HMF. The details of using PoGE to construct the prior on will
be discussed later in this section. stands for diagonal variance matrices of
Gaussian priors. as a whole denotes the variance of likelihood, where is a
confidence score obtained by heteroscedastic modeling w.r.t. credibility of feedback and
 is a scale parameter to be learned.

4.2.1. Heteroscedastic Modeling on Credibility. The key component of C-HMF is to model
the credibility of feedback on the items that a user has chosen. Intuitively, users with
higher reputations tend to give more credible feedback. Therefore, we can employ the
reputation model presented in Sect. 3.2.1 to access the reputation of each user.

Reputation Modeling: As demonstrated in Sect. 3.2.2, each review of a particular
item is associated with a helpfulness score. Typically, a five-level score set, e.g.,

	 , 	 , , 	 , 	 , is often
applied to measure the helpfulness of a review. Here, we extend the beta reputation
model (cf. Sect. 3.2.1) to assess the reputation of each user. Intuitively, if a user gives
a lot of reviews that mostly receive high helpfulness scores, then this user tends to be
a high-reputation user.

As the helpfulness scores for user reviews are not binary feedback, i.e., positive or
negative, as presented in Sect. 3.2.2, they cannot directly serve as evidence. However,
five-level helpfulness scores are very suitable to be represented as a typical fuzzy set
[Jøsang et al. 2008]. First, we can assign values 0,1,2,3,4 to the corresponding
five-level helpfulness scores. Then, the membership functions of helpful (+) and
unhelpful (-) can be given as follows:

	
		

1 	
																																																																	 19

where is the maximum score in , e.g., 4 in the five-level score set above,
and 0 is a smooth parameter that bounds the degree of membership in

, 1⁄ , e.g., the 	 score has the smallest helpfulness 0 for a
review. Then, we represent the evidence for user through all their helpfulness
scores as follows:

≝ 〈 , 〉| ∈

39:16 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

As a result, we can still use Eq. (12) to denote the probability of evidence , where we
have positive feedback where ∑ , and negative feedback where
∑ . Then, we define the reputation score of a user based on Eq. (13):

Definition 2. (Reputation Score): Given the helpfulness scores of a user , the
reputation score of this user is defined by:

| ≝ 																																																		 20

In practice, we can set a priori. That is, we assign a relatively low score,
⁄ 0.5, to a new user without any observed helpful ratings, because spam

users often create a new account when conducting an attack to avoid being tracked by
the system. Obviously, arrives at the upper bound only if a user receives a lot of
high helpfulness scores for their reviews. This implies that high-reputation users are
also experienced users. On the contrary, becomes lower if a user always gives false
reviews.

Credibility Scoring: We assign the feedback credibility for an item choice in terms
of two scores: the reputation of a user (a global score), and the helpfulness of the review
(a local score). Thus, we obtain the following:

≝ , 	is	an	observed	entry
otherwise

																																	 21

That is, the observation is associated with a high credibility score only if a high-
reputation user gives a helpful review. In particular, we set 0 for explicit rating
data while is set to a small constant for implicit rating data (cf. Sect. 3.3).

Since a higher credibility score means a higher confidence of that item choice, the
variance function of a feedback can be given by (recall that lower
variance means higher confidence), where is a scale parameter to learn.

4.2.2. PoGE-Prior. In particular, we use PoGE to construct the prior for each user in
order to incorporate the knowledge of a set of experts indexed by .

, ∈ ,
∈

																												 22

where is a weight parameter. In general, PoE (Product of Experts) [Hinton 2002]
has an intractable form. Fortunately, the product of Gaussian densities has a closed
form, that is, a new Gaussian density [Williams and Agakov 2002]. Therefore, we can
obtain the following Gaussian distribution from Eq. (22):

, ∈ , 																																		 23

	
∑ ∈

	 	
∈

Obviously, the mean parameter, , of the PoGE distribution is a weighted average of
the user factor vectors of all related experts.

In this paper, we construct the related expert set as follows:

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:17

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

∪ ∪ ∪ 																																																											 24

In Eq. (24), stands for the target user itself. is the top-K neighbors of user ; the
neighbors could be a set of users with an explicit relationship with , e.g., trusters [Ma
et al. 2008] or followers [Yang et al. 2011]; they can also be constructed from the data
[Koren 2010] if no explicit relation is available. denotes the top-R high-reputation
experts in the system. Moreover, is an optional expert with a zero-mean Gaussian
prior to avoid overfitting. As illustrated in Eq. (16), we use the reputation score (cf.
Eq. (20)) of a user as the weight of an expert in PoGE (cf. Eq. (22)). By taking the
log-form of PoGE over this expert set , we easily obtain the following summation
form:

log , ∈ 																																																																																																																						 25

log , log ,
∈

log ,
∈

log ,

.∗
	

.∗
∈

	

.∗
∈

	

.∗ ∙
	 	 	 	

From the above equation, we find that is respectively regularized by four types of
experts as specified in . In the first term, is the user factor vector of the target
user itself so it serves for self-based regularization. Since the majority of users are tail
users with limited data, it is useful to borrow information from their neighbors. As a
result, the user factor vectors from ’s neighbors are employed for neighbor-
based regularization. Moreover, we involve a set of high-reputation experts 	in the
system to conduct expert-based regularization because effective self-based
regularization and neighbor-based regularization are often not available, e.g., a fully
cold-start user who has no data available and no neighbors or a spam user who only
links other spam users as his neighbors. The last regularization term is simply the
most frequently used -norm regularizer when is set , which penalizes the
complexity to prevent overfitting. Due to the equivalence between Eq. (22) and Eq. (23),
Eq. (25) can be reformed to Eq. (26):

log , ∈ log , .∗ ∙

	
∑ ∈

	 	
∈

																																						 26

From the perspective of Eq. (25), controls the penalty of loss for fitting , i.e. a
higher reputation expert has a larger regularization effect. From the perspective of Eq.
(26), the empirical prior mean is a weighted average user factor vector over , so

 receives more contributions from higher reputation experts with a larger . Note

39:18 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

that is not a reputation score but a common regularization parameter as in Eq.
(9), and it can be determined by usual regularization parameter selection methods,
such as cross-validation.

4.2.3. Parameter Learning. We can obtain the marginal log-likelihood by integrating
, from the joint distribution:

log log , , 																																															 27

	 , , ,
∈

	

However, the computation of Eq. (27) is generally intractable. To enable it to run
efficiently on large-scale data and the precise learning parameters for our model, we
use the variational Bayesian (VB) method, which provides a good balance between
efficiency and accuracy in learning latent features [Kim and Choi 2013; Lim and Teh
2007; Shan and Banerjee 2010]. Now, if we let , be the variational distribution,
we can then obtain the lower bound by applying Jensen’s inequality [Shan and
Banerjee 2010].

log , log
, ,
,

≡ 																													 28

The lower bound	 can be rewritten using the expectation conditional on ,
from Eq. (28), and it becomes tight only when , , | .

≡ log | , log log , 																	 29

Generally, it usually assumes , has a factorial form [Kim and Choi 2013; Lim
and Teh 2007; Shan and Banerjee 2010]:

, 																																			 30

Here, and are variational Gaussian distributions with diagonal variance
matrices:

, 														 , 																							 31

Then, we can write Eq. (29) as the following form by using the Eq. (16), (17), (18) and
(30):

log ,
∈

log 												 32

log

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:19

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

			 log ,
∈

log , ,

log , ,

				
1
2

log2 , . . .
∈

1
2

log‖2 . ‖ . . log 2

1
2

log‖2 . ‖ . . log 2

 Let us denote , , , as the variational parameters and , , as the
model parameters where stands for a matrix consisting of mean vectors
and denotes a matrix consisting of the variance vectors of , and

Table II. Parameter updating scheme for C-HMF

In the following equations, we denote

— Update parameters , of distribution in parallel, for each :

← ,: ,: . .∗ 																																																																										 33

	 . ,: ,:

← . ,:

— Update parameters , of the distribution in parallel, for each :

← :, :, . .∗ 																																																																													 34

	 . :, :,

← . :,

— Update model parameters , , :

←
∑ .

←
∑ .

←
∑ , . . .∈

| |

39:20 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

, are defined similarly w.r.t. . To maximize , we can use coordinate
ascend, i.e. iteratively optimizing by searching for a solution for one parameter
at a time and fixing the others. Table II summarizes the updating scheme for each
parameter.

4.2.4. The Tricks for Complexity Reduction. The data matrix and its corresponding
weight matrix are very sparse as they pertain to explicit rating data, where
non-zero entries in these two matrices are associated with observed ratings. Due to the
factorial variational distribution , , the parameter updating scheme of Table II
is naturally parallelizable. The updating scheme in Table II can be implemented in the
same way as that used by Kim and Choi [2013] who designed a scalable parameter
updating scheme for variational Bayesian MF. Accordingly, the time complexity is
O 3 ∑ ,: ∑ :, O 6 | | as illustrated in [Kim and Choi 2013], where

,: equals the number of observed ratings for user , :, equals the number of
observed ratings for item , and | | is the total number of observed ratings. In practice,
the length of the latent factor vector, , is small, and in our experiments, it yields good
results for 10. Normally, the data density, | |⁄ , of most explicit rating data
sets is very small, i.e. large sparsity, in the real world, usually 0.01% (e.g., the RED
dataset). Therefore, this updating scheme is executed very efficiently.

In the case of implicit rating data, the blank entries in data matrix are also
modeled as implicit feedback [Hu et al. 2014; Hu et al. 2008]. Accordingly, in this case,
the weight matrix is a full matrix, i.e. | | | |, having the space complexity
O (cf. Eq. (15) and Eq. (21)). Normally, it is impractical to load such a full matrix

 into memory. From the analysis above, the time for running this updating scheme
on implicit rating data is 1⁄ (i.e., often more than 10,000) times slower than running
it on explicit rating data. To improve the running performance on the implicit rating
data, we can apply the following trick to reduce the complexity. If we let ,: ,:
and , we write each row of as ,: 	 ,: . According to Eq. (21), it is easy
to see that ,: only has non-zero entries on observed ratings. Now, let us take
updating for , as an example. In Eq. (33), ,: can be rewritten as

,: ; obviously, the term is not dependent on the user
index , so it can be pre-computed in time at most O and less than O using
parallel multiplication. Similarly, ,: ,: can be written as ,: ,:

,:, where the term ,: can be computed in time less than O due to the
sparse ,:. Moreover, ,: can be written as ,: , where the term	 can
be computed in less time than O because is equivalent to summing by
rows. Using the same trick, the additional time in parallel computing is also
O . Therefore, the overall additional time cost is O 4 when learning , in
this parallel fashion. When applying this trick to updating , , the overall
additional time cost is O 4 . Moreover, we can compute by summing over in a
parallel way, where the additional time cost is also O since ,: ,:. As a result,
the overall additional time cost for implicit rating data is O , so the whole
time complexity is O 6 O 4 O 4 O O 6
5 O 6 . Normally, ≪ , so O 6

 is within the same order as O 6 .
By applying this trick, updating the equations depends on the sparse weight matrix

 instead of the full matrix , so the space complexity to store is the same as the
sparse weight matrix in the case of explicit rating data. Therefore, it can be concluded

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:21

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

that the time and space complexities of the learning parameters on the implicit rating
data is a little higher than those on the explicit rating data, but still in the same order.

4.3 Learning Regularized S-HMF Model

When the parameter set, , , , , is learned from C-HMF, we obtain the
distribution of and approximated by the variational distributions and

. Therefore, we can sample ~ , ~ 	as the means of empirical prior
distributions for S-HMF. To avoid unnecessary sampling noise, the expectations,

 and are often used as the means of empirical prior
distributions. As a result, we can write the probabilistic model of S-HMF, shown in the
right part of RMRM in Fig. 4 as follows:

, ∈ 																																																										 35

, 																																																																			 36

, , 	 																																																				 37

where and are diagonal covariance matrices. Additionally,
denotes the variance of likelihood, where is a novelty score given by the variance
model and is a scale parameter to be learned.

4.3.1. Heteroscedastic Modeling on Specialty. As discussed previously, popular items tend
to be widely known by users and have more interaction, so both the choices of and the
feedback for these items may largely be influenced by others, whereas tail items tend
to be chosen more independently, thus the choices of these items can better reflect the
personal preferences of users [Vargas and Castells 2011]. As a result, we model the
specialty of user choices on the basis of the popularity of items.

Specialty Modeling: If we denote the probability of choosing item as , then we
have the multinomial distribution over all the items, where ∙ is the gamma function
and denotes the number of observed choices of item :

∑ 1

∏ 1
	

Moreover, we place a symmetric Dirichlet-prior, | on , where the hyper-
parameter can be interpreted as the number of pre-given, pseudo-choices of each
item. Then, we can obtain the posterior for all observations:

∝ | 	

The expectation of this posterior on choosing item is:

∑
≡ ̅ | 																																					 38

39:22 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

where ̅ | is the smoothed version of the probability of choosing item to avoid zero
probability—a.k.a. Laplace smoothing—of the new items or the items with uncounted
choice in a given dataset. In information theory, self-information is a measure of the
information content associated with an event in a probability space. Here, a choice is
such an event. As analyzed previously, choices on tail items can reflect users’ special
preferences, i.e., these choices contain more information content. As a result, we give
the following definition of specialty of choice in terms of self-information:

Definition 3. (Specialty of Choice): Given all observed choices, the specialty of a
choice on an item is measured by self-information:

̅ | 																																																								 39

Specialty Score: We assign the credibility of feedback on a choice in terms of two
scores: the reputation of a user (a global score), and the helpfulness of the review (a
local score), thus we obtain:

≝
, 	is	an	observed	choice

otherwise
																														 40

That is, the observation is associated with a high credibility score only if a high-
reputation user gives a helpful review. In particular, we set 0 for explicit rating
data while is set to a small constant for implicit rating data (cf. Sect. 3.3).

Since a higher credibility score means a higher level of confidence in that choice,
the variance function of a piece of feedback can be given by (note that
lower variance means higher confidence), where is a scale parameter to be learned.

4.3.2. Parameter Learning. Similar to the derivation of VB on C-HMF, we can easily
obtain the lower bound of marginal log-likelihood of S-HMF:

log , log
, ,
,

≡ 																											 41

where , ∏ ∏ ∏ , ∏ , is a
factorized variational Gaussian distribution. The parameter updating scheme is given
in Table III; here, the variational parameters , , , and the model parameters
, , are updated in turn to maximize , where denotes a matrix

consisting of mean vectors and denotes a matrix consisting of variance
vectors w.r.t. , and where , are defined similarly w.r.t. . With the same
trick as that applied to C-HMF, we can efficiently implement this parameter updating
scheme on the implicit rating data.

After the parameters of S-HMF are learned, we can either sample ~ 	 or use
the expectations of the variational Gaussian distribution, , to
construct the PoGE-based empirical priors for the coupled model, C-HMF (cf. Eq. (22)).

4.4 Algorithm and Prediction

So far, we have presented the details of RMRM and the parameter learning schemes
w.r.t. C-HMF and S-HMF, respectively. Algorithm I summarizes the whole learning
process with recurrent regularization in terms of coupled empirical priors.

In Algorithm 1, we run k-step variational updating for both C-HMF (cf. Line 6) and
S-HMF (cf. Line 9). In practice, this works well with a small k (less than 10). This type

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:23

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

of updating strategy can be viewed as k-step, mean-field, contrastive divergence
[Welling and Hinton 2002], which has proved its effectiveness theoretically.

Moreover, we use PoGE to approximate the distribution of user factors of those who
are fully cold-start users without any feedback (cf. Lines 7 and 10). Since there is no
data available for a fully cold-start user to update his/her user factors, we post-update
them using the updated user factors from their mostly related trusters when the sub-
iterations of C-HMF and S-HMF are finished.

Prediction: After the parameters of RMRM are learned, we obtain the regularized
estimates , for C-HMF and , for S-HMF. We can predict the missing
entries of the user-item matrix using the MF reconstruction form using these estimates.
According to the variational approximation, we have ~ , and ~ , ;
the means of 	and are just and which can be obtained from Eq. (33) and Eq.
(34). Therefore, we can reconstruct the value of entry , as follows:

																																	 44

Similarly, we can reconstruct the value of entry , using 	and :

Table III. Parameter updating scheme for S-HMF

In the following equations, we denote .

— Update parameters , of the distribution in parallel, for each :

← ,: ,: . .∗ 																																																																											 42

	 . ,: ,:

← . ,:

— Update parameters , of the distribution in parallel, for each :

← :, :, . .∗ 																																																																													 43

	 . :, :,

← . :,

— Update model parameters , , :

←
∑ .

←
∑ .

←
∑ , . . .∈

| |

39:24 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

																																	 45

Whether to choose the prediction result from Eq. (44) or Eq. (45) is dependent on
specific data sets. In general, the prediction results from Eq. (45) place more emphasis
on the personal taste for specific choices, so-called RMRM-S, whereas the prediction
result from Eq. (44) may achieve better performance in a system with a large amount
of spam feedback, so-called RMRM-C. In practice, we choose one of these dependent on
a real-world environment.

5. DISCUSSION

So far, we have presented RMRM and the corresponding learning algorithm. In fact,
the idea and the methods adopted by RMRM have direct connections with other
methods. Hence, we discuss these connections in this section.

5.1 Social Regularization from PoGE Perspective

In recent years, one prevalent approach of recommender systems has been to
incorporate social relationships for regularization [Jamali and Ester 2010; Ma et al.
2011]. This method is built on the basic idea that users’ preferences are mostly

Algorithm 1: Parameter Learning for RMRM
Pre-computing:

1: Compute credibility score for each entry using Eq.(21);

2: Compute specialty score for each entry using Eq.(40);

Model Learning:
3: ← 0

4: while MAX_ITERATION

- Learning C-HMF:

5: Construct empirical priors via Eq. (16, 17) using , from S-HMF;

6: Run k-step parameter updating as Table II;

7: For each fully cold-start user c

, ∈ ∪ ;

- Learning S-HMF:

8: Construct empirical priors via Eq. (35, 36) using , from C-HMF;

9: Run k-step parameter updating as Table III;

10: For each fully cold-start user c

, ∈ ∪ ;

- Checking Convergence:

11: If the performance over validation set is not improved in some consecutive
iterations, then break;

12: ← 1;

13: end

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:25

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

influenced by others with the strongest social relationships, typically, their trusters.
In general, the social regularization on a user often leads to the following two forms
of the regularization term, and we denote them as SR1 [Ma et al. 2011] and SR2
[Jamali and Ester 2010; Ma et al. 2011], respectively.

1:																			
∑ ∈

∑ ∈

2:																		 ‖ ‖
∈

where denotes ’s truster set, is the strength or similarity between and [Ma et
al. 2011], or where we can simply use 1 to denote an observed link [Jamali and
Ester 2010].

 It is interesting to find that, in fact, both SR1 and SR2 are identical from the PoGE
perspective, as both of them actually correspond to the same PoGE-prior. Now, let us
set up the PoGE-prior for user as follows:

, ∈ | ,
∈

																												 46

Obviously, we can obtain SR2 by taking the negative log-form of Eq. (46). According to
Eq. (23), we can obtain the following equivalent form from Eq. (46):

, ∈
∑ ∈

∑ ∈
, 																																		 47

where ∑ ∈ . By taking the negative log-form of Eq. (47), we immediately
obtain SR1. Therefore, SR1 and SR2 are actually derived from the same PoGE-prior,
so we prove the identity between them. In fact, by using SR1 and SR2, the evaluation
results are very close [Ma et al. 2011]. The small difference is probably caused by the
settings of the regularization parameters and and by the random initialization of
the parameters.

5.2 Multi-objective Optimization

RMRM consists of two main components, where C-HMF models user choices by
emphasizing credibility and S-HMF models user choices by emphasizing specialty.
Each component leads to an objective for optimization, so RMRM can be viewed
partially as a multi-objective optimization (MOO) [Deb 2014] problem. However, the
conventional MOO problem often has two independent objectives, thus it needs to
obtain solutions using higher-level information, whereas the two objectives of RMRM
are coupled by the empirical priors induced from each other. In fact, the two objectives
of RMRM are constructed from the same data, and we use a recurrent algorithm to
learn the parameters that are regularized by the empirical priors induced from each
other objective model. Therefore, RMRM is a variant case of MOO.

In general, the optimal solution of MOO is not unique, and it often uses a genetic
algorithm to search the solution space [Deb 2014]. The recurrent learning algorithm of
RMRM induces new empirical priors in each iteration, and S-HMF and C-HMF are
reset using the new priors, which leads to new objectives for optimization, cf. Eq. (28)

39:26 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

and Eq. (41). Hence, an iteration of RMRM corresponds to a generation of a genetic
algorithm to search for the optimal solution. Taking Eq. (41) as an example, the new
objective may find better estimates of the parameters, provided that we have learned
better priors and , leading to better | , . As a result, the marginal
likelihood is improved (cf. Eq. (41)). Moreover, the new empirical priors from the
peer model can help to find a better optimal solution in the next iteration. In
comparison, the objective function of a single-objective model, such as MF, does not
change with iterations so they more easily become stuck in local minima.

6. EXPERIMENTS

We conduct empirical evaluations using two real-world datasets that cover the cases
of, respectively, explicit rating data and implicit rating data. We compare RMRM with
a set of state-of-the-art methods gauged by various metrics. The overall results prove
that our approach significantly outperforms all the compared methods.

6.1 A Comparison of the State-of-the-Art Methods

In the following experiments, a group of state-of-the-art methods are employed for
comparison; some are used for explicit rating data and others for implicit rating data.
— PMF [Salakhutdinov and Mnih 2008b]: The conventional probabilistic MF model

learns the factors of users and items from a rating matrix without taking additional
information into account.

— Trust-kNN [Jøsang et al. 2013]: This method takes the top-k, high-reputational
trusters of a user as the neighbors, and then predicts the user’s rating of an item by
averaging the available neighbors’ ratings for that item.

— SoRec [Ma et al. 2008]: This method jointly models the trust-link matrix and a user-
item rating matrix, which shares user factors to propagate the interaction between
two matrices.

— SoReg [Ma et al. 2011]: This method utilizes the trust relationships to construct the
regularizer to learn user factors.

— SocialMF [Jamali and Ester 2010]: This method is very similar to SoReg. The main
difference lies in the setting of similarities for trusters (cf. Sect. 5.1).

— MF-IR [Hu et al. 2008; Pan et al. 2008]: This is a zero-mean, regularized, MF model,
which is able to deal with implicit rating data.

— SoRec-IR, SoReg-IR, SocialMF-IR: The original versions of SoRec, SoReg, and
SocialMF were designed for learning preferences from explicit rating data. To enable
them to deal with implicit rating data, we extend them using weight modeling, as
in MF-IR (cf. Eq. (14)).

— C-HMF: One of the main components of RMRM, as presented in Sect. 4.2, is to
enhance credibility-based modeling. Moreover, we use zero-mean regularization
since the single model does not have the empirical priors learned through S-HMF.

— S-HMF: One of the main components of RMRM, as presented in Sect. 4.3, is to
enhance specialty-based modeling. Moreover, we use zero-mean regularization since
the single model does not have the empirical priors learned through C-HMF.

— RMRM: RMRM is the main model proposed in this paper. Since C-HMF and S-HMF
can model both explicit rating data and implicit rating data in a unified way, RMRM
naturally has an advantage. In particular, we use RMRM-C to denote the prediction

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:27

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

results generated using Eq. (44), and RMRM-S to denote the prediction result
generated using Eq. (45).

6.2 Evaluation Metric

In the following experiments, we use rating metrics to evaluate the performance of the
explicit rating data while using ranking metrics to assess the performance of implicit
rating data.

6.2.1. Rating Metrics. To measure the accuracy of rating prediction, we utilize the most
widely used evaluation metrics, namely, mean absolute error (MAE) [Herlocker et al.
2004].

∑ ∈

| |
	

where denotes a true rating in the testing set and is the predicted rating.

6.2.2. Ranking Metrics. The common way to assess the performance of prediction on
implicit feedback data is to measure whether relevant items are placed in the top
positions of a recommendation list. Therefore, information retrieval metrics are often
employed to evaluate the ranking performance of recommender systems. Here,

1 if the item at position is relevant, and 0 otherwise.

— @ : This considers the fraction of relevant items for all relevant items:

@
∑

— @ : This considers the fraction of relevant items for top recommended
items:

@
∑

— @ : Average precision (AP) is the average result over @1~ , which is
defined as:

@
∑ @

,

— 	 @ : Normalized discounted cumulative gain (nDCG) [Burges et al. 2005] is a
measure of ranking quality, which places greater emphasis on relevant items:

@
@
@

where IDCG means ideal DCG, and where we have:

@
2 1

1
, @

1
1

39:28 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

6.3 Explicit Rating Data Evaluation

6.3.1. Data Preparation. We construct a truncated dataset from the RED dataset
[Meyffret et al. 2012], as mentioned in the introduction by filtering both users and
items with fewer than three ratings. This is because no data will be available for
training if a user or an item only accounts for one or two ratings that are held out for
testing. In addition, we need at least two testing items for a user in order to evaluate
the accuracy of the ranking for these items. The statistics of this evaluation dataset
are illustrated in Table IV.

Table IV. Statistics of the Epinions Dataset

users: 39,902 # items: 63,027
trust links: 43,8965 # trusters / users: 11
max # of trusters: 1,713 # users with zero truster: 14,202
ratings: 734,441 density: 0.029%
ratings / users: 18 # ratings / items: 11
max # ratings of user: 1,809 max # ratings of item: 2,112

Fig. 6. Long-tail distributions for the number of ratings of items and users (truncated from 0 to 500)

Fig. 7. The distributions for the number of helpful scores w.r.t. items and users (truncated from 0 to 200)

Fig. 6 demonstrates the long-tail distributions for the number of ratings w.r.t. items

and users. We find that a large number of both items and users in the tail have very
few ratings. Therefore, this dataset is suitable to evaluate the performance of
recommendations for users and items in the tail of distributions. The hyperparameters
of the compared methods are tuned by cross-validation. Here, we find that the length
of the latent factor vector can produce good results with this dataset by setting 5.

0 1 2 3 4 5 6 7

x 10
4

0
50

100
150
200
250
300
350
400
450
500

Item Rank

R

at
in

gs

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0
50

100
150
200
250
300
350
400
450
500

User Rank

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Item Rank

#
 H

e
lp

fu
l S

co
re

s

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

20

40

60

80

100

120

140

160

180

200

User Rank

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:29

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 7 illustrates the distributions of the number of helpful scores w.r.t. items and
users in this evaluation dataset. We find that they have similar long-tail distributions
with those in Fig. 6. This is a natural phenomenon because helpful scores are based on
reviews—more reviews tend to receive more helpful scores. Thus, these helpful scores
are used for the reputation model. In this experiment, we set 1 and 	 3 in Eq.
(20) to compute the reputation scores. That is, the initial reputation score is 0.25 for
new users.

6.3.2. Prediction of Long-tail Distributed Items. Improving the prediction performance of
long-tail items would obviously bring more business profit to a company by precisely
targeting a specific group of users. To evaluate the prediction performance of long-tail
items, we randomly hold out 20% of the data from the evaluation dataset as the ground
truths for testing, denoted as . Then, as shown below, we split into four parts
according to the popularity of the items so that we can compare the performance of
different methods using both short-head items and long-tail items.

—Most Popular: The items in the headmost 5% of the distribution, as shown in the
left-hand image of Fig. 6.

—Less Popular: The items in the 5~20% interval of the distribution.
—Shallow Tail: The items in the 20~50% interval of the distribution.
—Deep Tail: The items in the endmost 50% of the distribution.

We evaluate the MAE of all comparative methods of these four parts of the
distribution. Note that the data becomes extremely sparse in the deep tail, and, as a
result, Trust-kNN is barely effective, as all of the neighbors tend never to rate the
testing items. In such a case, we simply predict the ratings of an item as Mean+ε,

39:30 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

where Mean denotes the mean rating for all items, and ε is a small random value,
following standard Gaussian distribution.

Fig. 8 reports the results of the comparison of all methods for the four parts of the
distribution. We find the performance of Trust-kNN decreases when the data become
sparser since the tail items are rarely rated, which results in the random prediction
mentioned above. Obviously, such neighborhood-based methods have a limitation
when conducting recommendations in the long tail. We find that PMF outperforms
Trust-kNN, as it does not need to search the neighborhood; instead, similarity is
implicitly represented by latent factors. However, PMF suffers from the three
aforementioned typical issues in long-tail recommendations. As illustrated by the four
cases shown in Fig. 8, we find that PMF achieves a relatively higher accuracy in the
cases of Most Popular and Less Popular, but that the performance becomes worse when
the available ratings for items become fewer, especially in the case of Deep Tail. In
comparison, C-HMF improves the ability to alleviate shilling attacks, and it enables
user preference for the long-tail items that are to be targeted in terms of
heteroscedasticity modeling. As a result, C-HMF significantly outperforms PMF.

The remaining models involve trust relationships as the secondary information
aspect, which addresses data insufficiency in the tail of distribution. Comparing SoRec
with PMF, we find that the involved truster relationships are helpful to improve the
accuracy of long-tail items. However, both the rating matrix and the trust matrix
convey heterogeneous information, but SoRec cannot find a best trade-off point for all
users. To overcome this deficiency, SoReg and SocialMF incorporate the context of
trusters to regularize user factor learning. The results prove that SoReg is more
effective than SoRec. In particular, RMRM-S is selected in this experiment since we
would like to more aggressively emphasize users’ special preferences over tail items.

Fig. 8. MAEs of rating prediction for the long-tail item distribution

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Most Popular

Trust-kNN

PMF

SoRec

SoReg

SocailMF

C-HMF

S-HMF

RMRM-S

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Less Popular

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Shallow Tail

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Deep Tail

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:31

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

From the results, we easily find that RMRM-S achieves the best performance for all
four cases. Note that the performance of Deep Tail is even better than Most Popular,
which demonstrates that our model is able to better learn users’ preferences from the
long tail. Moreover, the deviations of the MAEs in the four cases are small. Such stable
performance over the whole distribution may be attributed to the fusion of reliability
and novelty, brought about by the coupled recurrent regularization. Therefore, we can
conclude that RMRM-S is the most accurate model for recommending long-tail items.

6.3.3. Prediction on Long-tail Distributed Users. Accurate recommendations for long-tail
users can significantly improve users’ experiences and users’ retention rates. In the
next experiment, we conduct an evaluation on the testing set . As in the previous
experiment, we split into four parts according to the activity of the users to
compare the performance of both the short-head and long-tail users.
—Most Active: The users in the headmost 5% of the distribution, as shown in the right-

hand image of Fig. 6.
—Less Active: The users in the 5~20% interval of the distribution.
—Shallow Tail: The users in the 20~50% interval of the distribution.

—Deep Tail: The endmost 50% users of the distribution of the distribution.
Fig. 9 shows the comparative results of all of the methods for the long-tail user

distribution. We observe similar results to those in the previous experiment. Actually,
conducting accurate predictions for deep-tail users is more difficult than for deep-tail
items because almost all deep-tail users have both few ratings and few trust
relationships. For those models that do not use trust relationships, S-HMF achieves
the best performance since the heteroscedasticity modeling of user choices enables it
to learn users’ personal preferences better.

In particular, we found that more than one-third of the users have no links, as
illustrated in Table IV. Consequently, SoRec cannot obtain secondary information for
these users due to the lack of links in the trust matrix. Similarly, no truster is available
to conduct regularization for SoReg and SocialMF. As a result, these methods cannot
learn user factors when there is no trust link available for a cold-start user. To
overcome this deficiency, RMRM-S incorporates top-N high-reputation experts into the
system, cf. Eq. (24). Hence, RMRM-S can still conduct regularization, even when no
direct trusters are available. Since RMRM-S takes the advantages of C-HMF, S-HMF,
and SoReg, it results in a significant improvement in recommendations for long-tail
users.

6.3.4. Impact of the Number of Involved Trusters. The previous experiments show that
borrowing knowledge from trusters can be very helpful to address the challenges of
recommendations for long-tail items. In RMRM, the truster set consists of two parts:
the trusters that a user actively follows, and the experts with the highest reputation
in the system, cf. Eq. (24). We next illustrate the impact of the number of user trusters

39:32 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

and the number of system trusters, respectively. In this experiment, we use the same
testing set as in the previous experiments.

MAEs for Different Numbers of Involved User Trusters: We fix five high-
reputation system experts and vary the number of top-K trusters, where ∈
5,10,20,50, , to compare the performances. Fig. 10 (a) displays the results when the

number of trusters changes. We find that increasing the number of trusters improves
the performance of tail users. This is because they account for very little data, so there
is a need to incorporate more trusters for regularization. In comparison, we find that
the performance of head users is not improved, and even becomes worse when K
increases. This can be attributed to the fact that head users account for sufficient data,
which enables RSs to learn their preferences without borrowing information from
others. Moreover, we find that involving too many trusters does not improve
performance. It can thus be interpreted that the priors from too many trusters over-
regularize the user preferences learning.

MAEs for Different Number of Involved System Experts: We fix the top five
trusters of each user, and vary the number of top-K high-reputation system experts,
where ∈ 5,10,20,50,100 . From Fig. 10 (b), we find that the performance is very close
under different K, becoming a little worse when K reaches 100. That is, it involves too
many experts, which may over-regularize the user factors learning. As a result, we
only need to involve a small group of system experts in practice.

Fig. 9: MAEs of rating prediction for the long-tail user distribution

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Most Active

Trust-kNN
PMF
SoRec
SoReg
SocailMF
C-HMF
S-HMF
RMRM-S

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Less Active

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Shallow Tail

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Deep Tail

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:33

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 10. MAEs varying the numbers of involved (a) user trusters, and (b) system experts

6.3.5. Shilling Attack Simulation. In this experiment, we attempted to test the robustness
of each model in a shilling attack environment. To simulate such an environment, we
created 1,000 virtual spam users to conduct the attack, and we respectively selected
100 items from the head (0%~20%) and the tail (20%~100%) as the attack targets. In
this experiment, we conducted nuke attack in the case of the average attack model
[Burke et al. 2015]. More specifically, we first randomly selected the 50 most popular
items from the head of distribution to serve as the filler item set [Burke et al. 2015].
Before conducting the attack, we assigned each item in the filter item set with the
mean rating of that item for each spam user. As a result, we built a fake profile for
these spam users who have average preferences that are similar to most users. Then,
we simulated the nuke attack on each target item by injecting fifty minimum ratings,
i.e. 1, from fifty out of 1,000 spam users by random selection. Thus, we constructed a
user-item rating matrix with fake ratings and spam users.

Fig. 11. MAEs for head items and tail items with shilling attack

We retrained all the comparison models on this attacked rating matrix and then
made predictions. Fig. 11 illustrates the prediction results for the head items (left) and
the tail items (right). Obviously, the MAEs of the head items are lower overall than
those of the tail items, which reveals the fact that the tail items are more easily biased
by fake ratings due to the few ratings they receive. PMF achieves poor performance
because it is completely based on the ratings for each user without incorporating any
other information, whereas SoReg and SocialMF are more robust to shilling attack due

5 10 20 50 All
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Top K Trusters

M
A

E

5 10 20 50 100
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Top K Experts

M
A

E

Deep Tail Users

Shallow Tail Users

Less Active Users

Most Active Users

0.5

1

1.5

2

2.5

Head Items

M
A

E

PMF

SoRec

SoReg

SocialMF

S-HMF

C-HMF

RMRM-S

RMRM-C

0.5

1

1.5

2

2.5

Tail Items

M
A

E

39:34 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

to the regularization from trusters or experts. In comparison, SoRec does not achieve
comparable performance with SoReg and SocialMF, which illustrates that the impact
from the fake rating matrix overwhelms that from the trust-link matrix, especially
when the trust-link matrix is very sparse. RMRM-S achieves better performance than
that of the single S-HMF model because S-HMF in RMRM-S is regularized by the
empirical priors from C-HMF. Finally, we find that C-HMF and RMRM-C achieve
much better performance than other models. In particular, the results of C-HMF and
RMRM-C do not become worse as do the other models in the case of tail items, which
proves that the heteroscedastic modeling for credibility is a very effective way to defend
against shilling attack.

6.4 Implicit Rating Data Evaluation

6.4.1. Data Preparation. With the popularity of mobile phones, millions of apps have
been published online, covering all aspects of daily life, including food, shopping, sports,
games, and so on. Popular apps (head items) are known by most users, so
recommending unpopular apps (tail items) to users is a more meaningful task. Here,
we use a publicly available data set of apps for Android from Amazon [McAuley et al.
2015] to evaluate all the compared methods. Since the installation history is always
available in the app store, for our experiment, we take the installation record as the
implicit rating (with the observed installation of an item as 1). From the raw data, we
remove users who have less than three installations and items that have less than four
installations. The statistics of this evaluation dataset are illustrated in Table V.

Table V. Statistics of Apps for Android Dataset

users: 234,347 # Apps: 24,141
installations: 1,274,896 density: 0.023%
installations / users: 5.44 # installations / items: 52.81
max # installations of user: 565 max # installations of item: 11,801

Fig. 12. Long-tail distributions over the number installations w.r.t. users and items (truncated)

Fig. 12 shows the distributions of the number of installations w.r.t. users and items

of this evaluation set. We see that the number of installations w.r.t. both items and
users have obvious long-tail distributions. The hyperparameters of all the compared
methods have been tuned by cross-validation. We find that the length of the latent
factor vector can produce good results with this dataset by setting 50. Moreover,
we set 1, 1 for the reputation score, defined by Eq. (20).

This dataset does not provide explicit relationships between the users. Intuitively,
the number of choices of common apps between two users can be used to measure their

0 0.5 1 1.5 2 2.5

x 10
5

0

50

100

150

200

User Rank

In

st
al

la
tio

ns

0 0.5 1 1.5 2 2.5

x 10
4

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Item Rank

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:35

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

similarity. Moreover, the choices on tail items better reflect user preferences. Therefore,
we find the top-K neighbors of user by ranking the weighted sum ∑ ∈ ,
for all users except , where is defined by Eq. (39) and , is the set of common
apps between and in the training set.

6.4.2. Evaluation of Tail Items Recommendation. For a real-world recommender system,
generating an accurate list of attractive items for each user is more meaningful than
accurately predicting ratings because, of course, the final goal of recommender systems
is to find items desired by different users. In this experiment, we randomly hold out
20% of the observations from each item as the testing set, denoted as , and use the
remainder for the training set. As in the previous experiments, we split into four
item groups according to the number of installations, namely Most Popular, Less
Popular, Shallow Tail, and Deep Tail.

Table VI reports the mean AP@10, AP@20, nDCG@10, and nDCG@20 for testing
the items in each group. In the case of Most Popular, the results from all models are
relative close; this is due to the sufficient data of the head items. Overall, RMRM
models achieve better performance than the other models, which proves that RMRM
can better capture user preferences for tail items. In particular, RMRM-S and S-HMF
achieve better performance than the other models in the cases of Most Popular and
Less Popular, whereas RMRM-C and C-HMF outperform the others in the cases of
Shallow Tail and Deep Tail. This reflects the fact that the apps in the tail are known
by very few people, so that their installation and corresponding feedback mainly come
from two types of users: (a) users who really have interest in these apps (i.e., valuable
feedback), and (b) Internet marketers (i.e., valueless feedback). Accordingly, the
designs of RMRM-C and C-HMF emphasize the feedback from the former and de-
emphasize the feedback from the latter. Furthermore, RMRM-C incorporates the
empirical priors from S-HMF for regularization, thus it achieves the best performance
for recommending items in the tail.

Table VI. Mean AP@5, AP@10, nDCG@10, and nDCG@20 of item recommendations

Most Popular Less Popular
Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20

MF-IR 0.0135 0.0144 0.0160 0.0195 0.0112 0.0121 0.0187 0.0222
SoRec-IR 0.0135 0.0140 0.0162 0.0182 0.0111 0.0119 0.0180 0.0216
SoReg-IR 0.0133 0.0141 0.0163 0.0191 0.0119 0.0128 0.0191 0.0231
SocialMF-IR 0.0144 0.0150 0.0177 0.0200 0.0119 0.0128 0.0195 0.0232
S-HMF 0.0149 0.0156 0.0184 0.0211 0.0123 0.0131 0.0199 0.0237
C-HMF 0.0126 0.0131 0.0157 0.0174 0.0107 0.0115 0.0175 0.0208
RMRM-S 0.0153 0.0159 0.0187 0.0212 0.0125 0.0132 0.0202 0.0239
RMRM-C 0.0131 0.0136 0.0161 0.0180 0.0109 0.0116 0.0182 0.0213

Shallow Tail Deep Tail
Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20

MF-IR 0.0108 0.0096 0.0305 0.0331 0.0120 0.0077 0.0362 0.0342
SoRec-IR 0.0108 0.0095 0.0302 0.0328 0.0120 0.0076 0.0364 0.0338
SoReg-IR 0.0116 0.0103 0.0322 0.0349 0.0134 0.0086 0.0408 0.0383
SocialMF-IR 0.0111 0.0099 0.0315 0.0342 0.0128 0.0082 0.0396 0.0369
S-HMF 0.0129 0.0110 0.0355 0.0373 0.0160 0.0101 0.0475 0.0428
C-HMF 0.0171 0.0140 0.0438 0.0438 0.0238 0.0151 0.0654 0.0578
RMRM-S 0.0130 0.0110 0.0356 0.0374 0.0165 0.0105 0.0485 0.0448
RMRM-C 0.0175 0.0142 0.0453 0.0445 0.0240 0.0154 0.0659 0.0592

39:36 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 13 depicts the recall@20~50 curves for all compared models for recommending
tail items (Shallow Tail and Deep Tail). Similar to the performance shown in Table VI,
RMRM-based methods outperform the other approaches. Therefore, we find that the
curve of RMRM-C is above all the other models with obvious margins, which, again,
proves that RMRM-C can better capture users’ special preferences and provide more
robust protection against shilling attack.

Fig. 13. Recall@20~50 of tail-item recommendations for users

6.4.3. Evaluation of Tail-users’ Recommendations. For a company, finding an accurate list
of potential users to deliver the information about their apps can reduce large
promotion costs. In this experiment, as before, we randomly hold out 20% of the
observations from the users as the testing set, denoted as , and use the remainder
as the training set. In the same way as the previous experiments, we split into
four user groups, i.e., Most Active, Less Active, Shallow Tail, and Deep Tail, according
to the number of apps that a user has installed.

Table VII reports the mean AP@10, AP@20, nDCG@10, and nDCG@20 when testing
the users in each group. It is easily observed that RMRM-based models are superior to
the other models, and that RMRM-S achieves the best performance in the case of Most
Active while RMRM-C shows its advantage in the other cases. Both heteroscedasticity
modeling on credibility and regularization with coupled empirical priors enable
RMRM-C to capture the preferences of tail users more precisely, thus RMRM-C more
effectively recommends attractive apps to tail users.

Fig. 14 shows the recall@20~50 curves of all of the compared models when
recommending items for tail users (Shallow Tail and Deep Tail). Similar to the
prediction performance for tail users, as shown in Table VII, the recall curves of the
RMRM approach are above those of other models, which proves that the features
learned from RMRM can more reliably represent the traits of items and the personal
preferences of users.

7. CONCLUSION

In this paper, we address the challenges of improving the recommendations of items
and for users in long-tail distributions, and analyze the ineffectiveness of current
approaches. As a result, we propose RMRM, which consists of two coupled components,
namely, C-HMF which emphasizes the credibility of ratings and S-HMF which
emphasizes the specialty of choices, where the parameters of C-HMF and S-HMF are
regularized in terms of the empirical priors induced from each other. The empirical

20 25 30 35 40 45 50
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

{Recall} @K

R
ec

al
l

Shallow Tail

MF-IP

SoRec-IP

SoReg-IP

SocialMF-IP
S-HMF

C-HMF

RMRM-S

RMRM-C

20 25 30 35 40 45 50
0.005

0.01

0.015

0.02

0.025

0.03

0.035

{Recall} @K

Deep Tail

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:37

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

evaluations of two real-world datasets illustrate that RMRM is capable of conducting
more reliable predictions than the other compared methods, especially for both items
and users in the tail of distributions.

In fact, RMRM provides a general framework for learning latent features that are
regularized by multi-objective empirical priors. Therefore, RMRM and its extension
could be applied in many areas outside of recommender systems, such as computer
vision, audio processing, and multimedia clustering, all of which depend largely on the
MF technique and thus could benefit from multi-objective regularization.

ACKNOWLEDGMENTS

Table VII. Mean AP@5, AP@10, nDCG@10 and nDCG@20 of user recommendation

Most Active Less Active
Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20

MF-IR 0.0516 0.0555 0.0693 0.0834 0.0484 0.0522 0.0646 0.0787
SoRec-IR 0.0515 0.0553 0.0693 0.0832 0.0472 0.0510 0.0632 0.0768
SoReg-IR 0.0572 0.0614 0.0762 0.0917 0.0516 0.0555 0.0692 0.0835
SocialMF-IR 0.0567 0.0609 0.0762 0.0916 0.0511 0.0551 0.0690 0.0836
S-HMF 0.0608 0.0650 0.0805 0.0959 0.0554 0.0594 0.0735 0.0882
C-HMF 0.0600 0.0640 0.0790 0.0936 0.0556 0.0594 0.0734 0.0874
RMRM-S 0.0614 0.0655 0.0820 0.0970 0.0551 0.0593 0.0737 0.0893
RMRM-C 0.0607 0.0648 0.0800 0.0950 0.0564 0.0604 0.0744 0.0891

Shallow Tail Deep Tail

Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20
MF-IR 0.0414 0.0455 0.0637 0.0793 0.0313 0.0352 0.0631 0.0802
SoRec-IR 0.0419 0.0459 0.0644 0.0798 0.0312 0.0351 0.0631 0.0800
SoReg-IR 0.0459 0.0502 0.0711 0.0876 0.0347 0.0390 0.0699 0.0881
SocialMF-IR 0.0466 0.0508 0.0713 0.0876 0.0355 0.0400 0.0711 0.0899
S-HMF 0.0503 0.0546 0.0764 0.0930 0.0389 0.0433 0.0768 0.0950
C-HMF 0.0520 0.0559 0.0779 0.0943 0.0420 0.0466 0.0832 0.1025
RMRM-S 0.0500 0.0545 0.0763 0.0932 0.0384 0.0430 0.0774 0.0964
RMRM-C 0.0522 0.0563 0.0786 0.0946 0.0421 0.0468 0.0833 0.1030

Fig. 14. Recall@20~50 of item recommendations for tail users

20 25 30 35 40 45 50

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

{Recall} @K

R
e

ca
ll

Shallow Tail

MF-IP

SoRec-IP

SoReg-IP

SocialMF-IP
S-HMF

C-HMF

RMRM-S

RMRM-C

20 25 30 35 40 45 50
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

{Recall} @K

Deep Tail

39:38 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

This work is partially sponsored by the Australian Research Council Discovery Grant (DP130102691), and
China National Science Foundation (Granted Number 61272438 and 61472253).

REFERENCES

Acar, E., Dunlavy, D.M., Kolda, T.G. and Morup, M. 2010. Scalable tensor factorizations with missing data.

In Proceedings of the 2010 SIAM International Conference on Data Mining, Columbus, Ohio(2010)

SIAM, 701-712.

Agarwal, D. and Chen, B.-C. 2009. Regression-based latent factor models. Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, 19-28.

Anderson, C. 2006. The long tail: Why the future of business is selling less of more. Hachette Digital, Inc.

Bengio, Y., Courville, A. and Vincent, P. 2013. Representation learning: A review and new perspectives.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 1798-1828.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N. and Hullender, G. 2005. Learning

to rank using gradient descent. In Proceedings of the 22nd international conference on Machine learning,

Bonn, Germany(2005) ACM, 1102363, 89-96.

Burke, R., O’mahony, M.P. and Hurley, N.J. 2015. Robust collaborative recommendation. In Recommender
systems handbook, F. RICCI, L. ROKACH and B. SHAPIRA Eds. Springer US, Boston, MA, 961-995.

Candillier, L., Meyer, F. and Fessant, F. 2008. Designing specific weighted similarity measures to improve

collaborative filtering systems. In Advances in data mining. Medical applications, e-commerce,
marketing, and theoretical aspects Springer, 242-255.

Deb, K. 2014. Multi-objective optimization. In Search methodologies Springer, 403-449.

Georgiev, K. and Nakov, P. 2013. A non-iid framework for collaborative filtering with restricted boltzmann

machines. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia,

USA(2013) JMLR: W&CP.

Herlocker, J.L., Konstan, J.A., Terveen, L.G. and Riedl, J.T. 2004. Evaluating collaborative filtering

recommender systems. ACM Trans. Inf. Syst. 22, 5-53.

Hinton, G.E. 2002. Training products of experts by minimizing contrastive divergence. Neural Computation
14, 1771-1800.

Hu, L., Cao, W., Cao, J., Xu, G., Cao, L. and Gu, Z. 2014. Bayesian heteroskedastic choice modeling on non-

identically distributed linkages. In Data Mining (ICDM), 2014 IEEE International Conference on, 14-17

Dec. 2014 (2014), 851-856.

Hu, Y., Koren, Y. and Volinsky, C. 2008. Collaborative filtering for implicit feedback datasets. In Eighth IEEE
International Conference on Data Mining, 15-19 Dec. 2008 (2008), 263-272.

Jøsang, A., Guo, G., Pini, M., Santini, F. and Xu, Y. 2013. Combining recommender and reputation systems

to produce better online advice. In Modeling decisions for artificial intelligence, V. TORRA, Y.

NARUKAWA, G. NAVARRO-ARRIBAS and D. MEG AS Eds. Springer Berlin Heidelberg, 126-138.

Jøsang, A. and Ismail, R. 2002. The beta reputation system. In Proceedings of the 15th bled electronic
commerce conference(2002), 41-55.

Jøsang, A., Luo, X. and Chen, X. 2008. Continuous ratings in discrete bayesian reputation systems. In Trust
management ii Springer, 151-166.

Jøsang, A. and Quattrociocchi, W. 2009. Advanced features in bayesian reputation systems. In Trust, privacy
and security in digital business, S. FISCHER-H BNER, C. LAMBRINOUDAKIS and G. PERNUL Eds.

Springer Berlin Heidelberg, 105-114.

Jamali, M. and Ester, M. 2010. A matrix factorization technique with trust propagation for recommendation

in social networks. In Proceedings of the fourth ACM conference on Recommender systems, Barcelona,

Spain(2010) ACM, 1864736, 135-142.

Kim, Y.-D. and Choi, S. 2013. Scalable variational bayesian matrix factorization In 1st Workshop on Large-
Scale Recommender Systems(2013).

Koren, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl.
Discov. Data 4, 1-24.

Improving the Quality of Recommendation over Users and Items in the Tail of Distribution 39:39

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Koren, Y., Bell, R. and Volinsky, C. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 30-37.

Levy, M. and Bosteels, K. 2010. Music recommendation and the long tail. In 1st Workshop On Music
Recommendation And Discovery (WOMRAD), Barcelona, Spain(2010) ACM RecSys.

Lim, Y.J. and Teh, Y.W. 2007. Variational bayesian approach to movie rating prediction. In Proceedings of
KDD Cup and Workshop(2007) ACM, 15-27.

Ma, H., Yang, H., Lyu, M.R. and King, I. 2008. Sorec: Social recommendation using probabilistic matrix

factorization. In Proceeding of the 17th ACM conference on Information and knowledge management,
Napa Valley, California, USA(2008) ACM, 1458205, 931-940.

Ma, H., Zhou, D., Liu, C., Lyu, M.R. and King, I. 2011. Recommender systems with social regularization. In

Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong,

China(2011) ACM, 1935877, 287-296.

Mcauley, J., Pandey, R. and Leskovec, J. 2015. Inferring networks of substitutable and complementary

products. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, NSW, Australia(2015) ACM, 2783381, 785-794.

Meyffret, S., Guillot, E., Médini, L. and Laforest, F. 2012. Red: A rich epinions dataset for recommender

systems.

Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M. and Yang, Q. 2008. One-class collaborative

filtering. In Eighth IEEE International Conference on Data Mining(2008) IEEE, 502-511.

Park, Y.-J. and Tuzhilin, A. 2008. The long tail of recommender systems and how to leverage it. In

Proceedings of the 2008 ACM conference on Recommender systems, Lausanne, Switzerland(2008) ACM,

1454012, 11-18.

Porteous, I., Asuncion, A.U. and Welling, M. 2010. Bayesian matrix factorization with side information and

dirichlet process mixtures. In AAAI(2010).

Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L. 2009. Bpr: Bayesian personalized ranking

from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, Montreal, Quebec, Canada(2009) AUAI Press, 1795167, 452-461.

Salakhutdinov, R. and Mnih, A. 2008a. Bayesian probabilistic matrix factorization using markov chain

monte carlo. In Proceedings of the 25th international conference on Machine learning, Helsinki,

Finland(2008a) ACM, 1390267, 880-887.

Salakhutdinov, R. and Mnih, A. 2008b. Probabilistic matrix factorization. In Advances in neural information
processing systems(2008b), 1257-1264.

Salakhutdinov, R., Mnih, A. and Hinton, G. 2007. Restricted boltzmann machines for collaborative filtering.

In Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon(2007) ACM,

1273596, 791-798.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. 2001. Item-based collaborative filtering recommendation

algorithms. In Proceedings of the 10th international conference on World Wide Web, Hong Kong, Hong

Kong(2001) ACM, 372071, 285-295.

Shan, H. and Banerjee, A. 2010. Generalized probabilistic matrix factorizations for collaborative filtering.

In Data Mining (ICDM), 2010 IEEE 10th International Conference on, 13-17 Dec. 2010 (2010), 1025-

1030.

Srebro, N. and Jaakkola, T. 2003. Weighted low-rank approximations. In Proceedings of the Twentieth
International Conference on Machine Learning, Washington DC(2003), 720.

Srebro, N., Rennie, J.D.M. and Jaakkola, T. 2005. Maximum-margin matrix factorization. In Advances in
neural information processing systems(2005), 1329-1336.

Su, X. and Khoshgoftaar, T.M. 2009. A survey of collaborative filtering techniques. Advances in Artificial
Intelligence 2009, 19.

Train, K. 2003. Discrete choice methods with simulation. Cambridge university press.

Vargas, S. and Castells, P. 2011. Rank and relevance in novelty and diversity metrics for recommender

systems. In Proceedings of the fifth ACM conference on Recommender systems(2011) ACM, 109-116.

39:40 L. Hu et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Welling, M. and Hinton, G. 2002. A new learning algorithm for mean field boltzmann machines. In Artificial
neural networks — icann 2002, J. DORRONSORO Ed. Springer Berlin Heidelberg, 351-357.

Williams, C.K. and Agakov, F.V. 2002. Products of gaussians and probabilistic minor component analysis.

Neural Computation 14, 1169-1182.

Yang, S.-H., Long, B., Smola, A., Sadagopan, N., Zheng, Z. and Zha, H. 2011. Like like alike: Joint friendship

and interest propagation in social networks. In Proceedings of the 20th international conference on
World wide web, Hyderabad, India(2011) ACM, 1963481, 537-546.

Yin, H., Cui, B., Li, J., Yao, J. and Chen, C. 2012. Challenging the long tail recommendation. Proc. VLDB
Endow. 5, 896-907.

