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Short-head and long-tail distributed data are widely observed in the real world. The same is true of 
recommender systems (RSs), where a small number of popular items dominate the choices and feedback 
data while the rest only account for a small amount of feedback. As a result, most RS methods tend to learn 
user preferences from popular items since they account for most data. However, recent research in e-
commerce and marketing has shown that future businesses will obtain greater profit from long-tail selling. 
Yet, although the number of long-tail items and users is much larger than that of short-head items and 
users, in reality, the amount of data associated with long-tail items and users is much less. As a result, user 
preferences tend to be popularity-biased. Furthermore, insufficient data makes long-tail items and users 
more vulnerable to shilling attack. To improve the quality of recommendations for items and users in the 
tail of distribution, we propose a coupled regularization approach that consists of two latent factor models: 
C-HMF, for enhancing credibility, and S-HMF, for emphasizing specialty on user choices. Specifically, the 
estimates learned from C-HMF and S-HMF recurrently serve as the empirical priors to regularize one 
another. Such coupled regularization leads to the comprehensive effects of final estimates, which produce 
more qualitative predictions for both tail users and tail items. To assess the effectiveness of our model, we 
conduct empirical evaluations on large real-world datasets with various metrics. The results prove that our 
approach significantly outperforms the compared methods. 
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1. INTRODUCTION 

We are leaving the information age and entering the recommendation age [Anderson 
2006]. Because of this, recommender systems (RSs) are playing an increasingly 
important role than ever before. Collaborative filtering (CF) is a core component of 
modern RSs; it leverages feedback from other users and items to generate 
recommendations for a target user. However, CF techniques are still challenged by 
complicated real-world data characteristics [Su and Khoshgoftaar 2009]. On the one 
hand, some of the challenges arise from the distribution of real-world data in nature. 
It is known that a lot of real-world data can be observed following a long-tail—a.k.a., 
power-law—distribution. Due to a lack of sufficient data for most users and items, data 
sparsity and cold start are two of the most common research issues addressed by the 
study of RSs. On the other hand, other challenges may be caused by human behavior. 
For instance, shilling attack is one such typical issue; this refers to some users giving 
lots of positive feedback for their own items and negative feedback for their competitors’ 
items. Since the basic idea of CF is to predict ratings in terms of the related data 
associated with other users and items, insufficient data and spam data will obviously 
deteriorate recommendation results, especially for those users and items in the tail of 
distribution. 
 

  
 

Fig. 1. Items (left) and users (right) are ranked by the number of their ratings (truncated from 0 to 100) on 
Rich Epinions Dataset; they are both clearly distributed with short heads and long tails. 
 

To date, most research has focused on improving the accuracy of RSs. However, 
simply improving the accuracy by one or two percent will hardly result in a better user 
experience or a greater business benefit. Here, we give an intuitive interpretation from 
the long-tail distribution. A long-tail distribution implies skewed data that has a short 
head and a long tail, that is, a small number of popular items in the head part, which 
account for most of the data, whereas the large number of items in the tail only account 
for a small amount of data. Here, we use the experimental Rich Epinions Dataset (RED) 
[Meyffret et al. 2012] as a demonstration. This dataset was crawled from the well-
known online review Web site epinions.com, which contains a total of 1,127,673 
reviews given by 113,629 users on 317,755 items. Each review contains a user rating, 
and the density of this dataset is only 0.003%. The left- and right-hand sides of Fig. 1 
depict, respectively, the long-tail distribution for items and for users. We find that only 
a few items and users in the short head have sufficient ratings while a large number 
of items and users in the long tail have less than ten ratings each. Such a skewed data 
distribution causes RSs to learn users’ preferences largely from popular items because 
these items account for the majority of the data. As a result, the improvement of 
recommendations is largely determined by popular items. However, such improvement 
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for popular items is trivial because popular items are likely already known by most 
users who can make the decision to choose them or not. Moreover, Anderson’s well-
known research suggests that future businesses will obtain more profit from long-tail 
selling [Anderson 2006]. Motivated by these observations, we focus on improving the 
quality of recommendations for tail users and items, which we believe will be a great 
benefit for both business profits and the user’s experience. 

1.1 Challenges of Tail Users and Items 

In recent years, a lot of CF techniques have been developed [Su and Khoshgoftaar 
2009], where k nearest neighbor (kNN) [Candillier et al. 2008] and matrix factorization 
(MF) [Koren et al. 2009] are two examples. In particular, kNN is a representative, 
memory-based approach while MF is a representative, model-based approach. The 
simple form of user-based kNN can be given by: 

,

∑ ,∈ ,

∑ ,∈
																																																																 1  

where ,  is the predictive rating of user  on item ; ,  is the observation on  from a 
neighbor of ;  denotes the neighbor set of user ; and ,  is the weight between user 
 and user . Typically, ,  can be computed by Pearson correlation, cosine, or Jaccard 

similarity [Candillier et al. 2008].  
A probabilistic matrix factorization (PMF) [Salakhutdinov and Mnih 2008b] is a 

typical model to illustrate the MF approach from the probabilistic view. Given a data 
matrix ∈  with the index of each observed choice , ∈  on  users and  
items, we can obtain the following distributions with the Gaussian latent factors  of 
users and  of items: 

| , 																															 , 																																		 2  

, , 																																																																																									 3  

, | ∝ , , 	 ,
∈

	 																		 4  

where , ⋯ ,  is the user factor matrix; , ⋯ ,  is the item factor 
matrix; and , ,  are the variance parameters of the Gaussian distributions. We 
learn the user factors and the item factors through a maximum a posteriori (MAP) 
estimate. According to the Bayesian theorem, we have the posterior , | ∝

, ,  given in Eq. (4). The following objective function can then be obtained by 
minimizing the negative log-posterior. Without loss of generality, we easily obtain the 
classic objective of an MF model [Koren et al. 2009; Salakhutdinov and Mnih 2008b], 
when we set 1 and denote  as the regularization parameter:  

,

1
2 ∈

‖ ‖ ‖ ‖ 																														 5  

We can easily write the partial derivative ⁄  w.r.t. each . The optimization w.r.t. 
 is convex when  is fixed. A close-form update equation for  can be obtained by 

setting ⁄  to zero [Salakhutdinov and Mnih 2008b]: 
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←
∈ ∈

																																											 6  

where  indexes those users who have chosen item . Similarly, the optimization w.r.t. 
 is convex when  is fixed, and thus, we can obtain: 

←
∈ ∈

																																											 7  

where  indexes the items chosen by user . 
So far, we have briefly reviewed the kNN and MF models. Due to the skewness of 

the distributions of the users and items (cf. Fig. 1), the data pulled from long-tail users 
and items is much sparser than that of short-head users and items. As a result, the 
kNN and MF models are more vulnerable to the following challenges than long-tail 
users and items.  

Popularity Bias: Given any two users, their choices tend to overlap more with 
popular items but less so with long-tail items. Hence, the neighbor set in kNN is largely 
constructed from popular items. Furthermore, note that the data is very sparse in the 
tail, i.e., each tail item is chosen by very few users. As a result, a user often cannot find 
any feedback on those long-tail items from neighbors, so a prediction is unavailable (cf. 
Eq. (1)), which creates a situation where those items will never be recommended. As 
for popular items, they tend to have sufficient feedback, so kNN can more easily make 
predictions and recommend them. Although MF does not directly depend on neighbor 
data, it still suffers from the tail’s data-sparsity challenge. From Eq. (6) and Eq. (7), 
we find that the estimates of item factors and user-factors are largely determined by 
the amount of observed data w.r.t. item  and user . For items and users in the tail, 
the amount of observable data is small, so the quality of the estimates for them are 
naturally poorer than with short-head items and users. Accordingly, the predictions 
for short-head items and users are much more accurate than those for long-tail items 
and users. 

Cold Start: The long-tail distribution implies a number of users are cold start in 
nature. Cold-start users usually have provided little feedback on some popular items, 
or sometimes no feedback at all. Given a cold-start user, kNN does not have sufficient 
data to find suitable neighbors. As a result, the prediction results for long-tail items or 
users is poor. From Eq. (7), we find that the factors, , differentiate user preferences 
according to the feedback they have provided on different items. However, long-tail 
users have provided very little feedback on popular items so the learned factors of these 
users tend to be similar; for this reason, they are not able to clearly represent personal 
preferences. In extreme cases, we find that neither kNN nor MF can work, cf. Eq. (1) 
and (7), when we have only cold-start users without any feedback data.  

Shilling Attack: As mentioned, a shilling attack refers to a group of spam users 
intentionally providing fake feedback, e.g., much higher or lower ratings than a true 
rating to bias the ratings and the recommendations for them. Intuitively, short-head 
items are well known, and users either actively or passively learn information about 
them from many sources. For this reason, short-head items are less affected by shilling 
attack. In comparison, information on unpopular items is limited, and they are largely 
known by recommendations. Thus, these items can suffer more easily from shilling 
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attack. Moreover, the number of ratings on head items is much more than on tail items; 
as a result, it is much easier to attack tail items by imputing a few fake ratings. For 
example, given a head item that has 1,000 ratings and a tail item that has 5 ratings, 
and where both have an average score of 4, if a shilling attack gives five low ratings 
with a score of 1 on both items, the average rating of this head item is still close to 4, 
but the average rating of the tail item is reduced to 2.5. 

Since kNN depends on neighbors’ feedback to construct a prediction, it can suffer 
greatly from shilling attack on tail items due to the large proportion of fake feedback. 
As for the MF method, each item factor vector, , determines how this item would be 
preferred by users. If a shilling attack is conducted on a tail item ,  is learned largely 
only from fake feedback (cf. Eq. (6)). As a result, the prediction for a user’s preference 
for item  is biased by the fake . 

1.2 Our Proposal 

Users’ choices for popular items are largely influenced by others. For example, seeing 
a new movie with friends may not really reflect a particular user’s subjective 
preference. On the other hand, choices for long-tail items can better reflect a user’s 
taste since they are rarely due to the influence of others. To tackle the popularity-bias 
challenge, we need to construct a model that can emphasize the choices of long-tail 
items in order to learn users’ special preferences. However, only emphasizing long-tail 
items is not enough because, as mentioned, long-tail items suffer more easily from 
shilling attack. Therefore, we also need to construct a model that can weigh the 
credibility of each piece of feedback. Moreover, an efficient way to deal with the cold-
start challenge is to borrow information from other relevant users. We argue that high-
quality, relevant users should be reputable and, thus, trusted. In summary, we need 
to design an approach that jointly models both the objective to emphasize the specialty 
of choices and the objective to assess the credibility of the feedback for each choice.  

Heteroscedastic Matrix Factorization: In Eq. (3), the variance parameter, , 
does not vary with different observations , which is so-called “homoscedasticity”. 
Now, if we model each observation  with different variance, , as demonstrated in 
Eq. (8), then these observations are assumed to be “heteroscedastic”. By minimizing 
the negative log-form of Eq. (4), we immediately obtain the following objective (Eq. (9)) 
where the weighted squared loss  is the log-form of Eq. (8) and 

 serves as the weight to penalize the loss of fitting . As a result, we call this 
variant MF model heteroscedastic MF (HMF). From a probabilistic view, the variance 
parameter  controls the confidence level [Hu et al. 2014]. Specifically, a smaller  
implies higher confidence and less uncertainty of the observation , i.e. a large  is 
applied to more tightly fitting . 

, , 																																																							 8  

,

1
2

	

‖ ‖ ‖ ‖ 																														 9  

Heteroscedastic Modeling:  In order to emphasize the specialty of users’ choices 
with long-tail items, we differentiate each user choice in terms of heteroscedastic 
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modeling. Specifically, we model the variance parameter  by a variance function 
∙  to score the specialty of this choice. As a result, we obtain specialty-specific 

heteroscedastic MF (S-HMF), which more tightly fits the users’ choices for long-tail 
items. 

On the other hand, we need to model the credibility of users’ feedback. Technically, 
the parameters should be estimated by tightly fitting the more credible feedback while 
loosely fitting the less credible feedback. Hence, we can construct another HMF model 
using Eq. (8), where the variance parameter  is modeled by a variance function ∙ , 
which scores the credibility of each review. We name this type of HMF as credibility-
specific HMF (C-HMF). 

Coupling Objectives using Empirical Priors: So far, we have presented S-HMF 
and C-HMF, which correspond to two independent objectives for optimization. 
However, we need to jointly consider both objectives w.r.t. specialty and credibility 
when learning user preference as stated previously. From the view of Bayesian 
modeling, MAP trades off the estimation of parameters between prior and likelihood. 
That is, the estimates are very close to the given prior when little data is available. In 
PMF, the priors of user factors and item factors are modeled by uninformative priors, 
i.e. zero-means as illustrated by Eq. (2). If we provide some informative priors,  and 

, pertaining to the user factors and the items factors as Eq. (10), then we obtain the 
objective function illustrated by Eq. (11). In this objective, we find that the estimates 
of  and  are regularized by the given priors  and . As a result, the estimates of 
user factors and items factors tend to shrink towards the given informative priors. 

| , 																										 , 																																		 10  

,

1
2

	

‖ ‖ 										 11  
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Fig. 2. A recurrent mutual regularization process couples S-HMF and C-HMF using the user and item-
factors learned from one another as the empirical priors to couple the objectives specialty and credibility. 
 

The user factors and the item-factors learned from C-HMF target the objective of 
credibility, so they can serve as good empirical priors for modeling the user factors and 
the item factors of S-HMF. Symmetrically, the user factors and the item factors learned 
from S-HMF target the objective of specialty, which contains information on the users’ 
intrinsic preferences. As a result, the user factors and the item factors learned from S-
HMF are good empirical priors for modeling the user factors and the item factors of C-
HMF. Thus, as shown in Fig. 2, it forms a mutual regularization process that couples 
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S-HMF and C-HMF using the empirical priors learned from each other recurrently. 
Therefore, we name this coupled model for multi-objective optimization the recurrent 
mutual regularization model (RMRM). 

Moreover, we need to borrow information from other users’ preferences to deal with 
cold-start users. Since user factors represent the features of user preference, we can 
construct the prior using user factors from a group of relevant users. Specifically, we 
design a sophisticated way to combine these Gaussian-distributed user factor vectors, 
namely, by using the Product of Gaussian Experts (PoGE) [Hinton 2002; Williams and 
Agakov 2002]. In fact, such a PoGE-prior can be regarded as playing the role of social 
regularization [Ma et al. 2011]. This will be discussed further in the following sections. 

1.3 Contributions 

In this paper, we address the challenges of recommendations for long-tail items and 
users. The main contributions of our work are summarized as follows: 
— We present the potential requirements to improve recommendations for users and 

items in the tail of distributions, which will significantly improve business profits 
and improve a user’s experience.  

— We show the vulnerabilities of current approaches for tail items and users as they 
pertain to the challenges of popularity bias, cold start, and shilling attack. As a 
result, we establish a pair of coupled objectives to jointly emphasize the specialty of 
choices and assess the credibility of feedback. 

— We design a recurrent mutual regularization process to couple the objectives 
modeled by S-HMF and C-HMF. To implement the recurrent mutual regularization 
process for RMRM, we design a scalable algorithm based on the variational 
Bayesian method to efficiently learn its parameters. 

— We conduct empirical evaluations on two real-world data sets. Based on various 
metrics, the overall results prove that our approach significantly outperforms the 
compared methods. 

— Although we focus mainly on recommendation problems in this paper, the proposed 
approach could potentially be applied to many other areas. RMRM provides a 
general framework to couple multiple objectives and to learn the comprehensive 
latent features regularized by empirical priors. 

2. RELATED WORK 

Basically, our work aims to improve the accuracy of recommendations for users and 
items in the tail by considering both specialty and credibility. Note that some recent 
research targets long-tail recommendations from different perspectives to improve 
certain other metrics, such as diversity and serendipity [Herlocker et al. 2004; Vargas 
and Castells 2011; Yin et al. 2012]. The focus of this research and its goals is quite 
different from our own work, so our objectives should not be confused with theirs.  

2.1 Technologies in Recommender Systems 

Memory-based approaches, such as kNN, are the origins of CF systems [Su and 
Khoshgoftaar 2009], and they have been applied successfully in real-world commercial 
systems [Sarwar et al. 2001]. In general, kNN can be subdivided into two categories: 
user-based nearest neighbor; and item-based nearest neighbor [Su and Khoshgoftaar 
2009]. However, these approaches are not suitable when the data is sparse. They are 
not able to deal with the challenges of long-tail items and users.  
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With the rapid development of machine learning, model-based approaches have 
become more and more popular in recent years. Here, matrix factorization (MF) models 
have gained dominance in the field of recommendation, as they have shown their 
superiority to neighborhood-based techniques, ultimately winning the Netflix Prize 
competition [Koren et al. 2009]. The basic idea of MF methods is to fit the user-item 
rating matrix using low-rank approximations, and then to use these results for 
prediction. Many MF methods have been proposed, including probabilistic MF (PMF) 
[Salakhutdinov and Mnih 2008b] and maximum-margin MF (MMMF) [Srebro et al. 
2005]. To achieve better performance, they need to carefully tune the hyperparameters 
for MF. Hence, researchers have proposed Bayesian PMF (BPMF) [Salakhutdinov and 
Mnih 2008a] and variational Bayesian MF (VBMF) [Lim and Teh 2007; Shan and 
Banerjee 2010] to learn the hyperparameters. 

Apart from the MF approach, some other models have also achieved success in this 
field. For example, in the literature, choice modeling [Train 2003] is strongly related 
to the recommendation problem, and Hu et al. [2014] proposed a latent-feature-based 
Bayesian heteroscedastic choice model (BHCM) to represent heterogeneities between 
users and items. Additionally, with the prevalence of deep learning techniques [Bengio 
et al. 2013], restricted Boltzmann machines (RBM) have also been applied in RSs 
[Georgiev and Nakov 2013]. This was reported to have achieved comparable 
performance to MF in the Netflix Prize competition [Salakhutdinov et al. 2007]. 

Most current recommender systems are built on explicit feedback, e.g., ratings, to 
differentiate users’ preferences. However, explicit feedback is not always available in 
the real world while implicit feedback, e.g., click logs, can be obtained more easily. 
Implicit feedback is often represented by binary values, that is, 1 for observed choices 
and 0 for others [Hu et al. 2014; Pan et al. 2008]. These unobserved choices have zero 
values, but they do not mean true negative instances. Therefore, a strategy that is 
often used to assign a larger confidence level to the observed choices to represent the 
high certainty of users’ explicit likes while a much smaller confidence level is assigned 
to unobserved choices to represent the small certainty of dislike [Hu et al. 2014; Hu et 
al. 2008; Pan et al. 2008]. For instance, Bayesian personalized ranking (BPR) [Rendle 
et al. 2009] assumes that users show a stronger like for their chosen items than for 
unobserved ones. Hence, the preference ordering relation can be constructed for each 
pair of items. As a result, BPR learns the utility of choosing an item from the ordering 
relationships. 

2.2 Dealing with Data Sparsity in the Long Tail 

The long tail was popularized by Anderson in 2004, who reported that Amazon, Apple, 
and Yahoo! apply this strategy to realize significant profits when selling items in the 
tail [Anderson 2006]. However, there is sparse data for long-tail items and users, which 
greatly decreases the quality of recommendations. Park and Tuzhilin [2008] observed 
this difficulty when recommending long-tail items with very few ratings. Thus, they 
proposed to split the whole item set into head and tail parts, and then to group the tail 
items into clusters. As a result, the clusters of the tail items are treated as virtual 
items, which have relatively more ratings than just a single item. Levy and Bosteels 
[2010] then studied music recommendations in the long tail using a conventional, item-
based CF approach. However, these methods cannot work well when the data is too 
sparse to find similar items.  

To tackle the data-sparsity challenge, one often needs to incorporate additional 
information. It is expected that the additional side information about the users and 
the items would be beneficial if it were to be incorporated into a model. Thus, Bayesian 
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matrix factorization with side information (BMFSI) [Porteous et al. 2010] is extended 
from BPMF. It incorporates side information via linear regression. That is, the data is 
modeled as a combination of MF terms with user and item latent factors and regression 
against the side information of users and items. Further, the regression-based latent 
factor model (RLFM) [Agarwal and Chen 2009] uses a different strategy to incorporate 
side information. It assumes that the user latent factor matrix is generated from the 
provided features (i.e., side information) of users via regression while the item latent 
factor matrix is generated from the provided features of items via regression. Following 
this, both the user and the item latent factor matrices are used as MF. However, side 
information is not always available due to privacy and security. In addition, these 
methods do not consider the credibility of the data and the side information, so they 
can easily suffer from shilling attack for long-tail items. 

2.3 Trust-aware Recommender Systems 

Spam data can be found everywhere on the Internet, e.g., e-commerce and social 
networking sites. Hence, trust and reputation systems (TRS) [Jøsang and Ismail 2002; 
Jøsang et al. 2008] have been designed specifically to foster trusted behavior in these 
domains. In recent years, with increasing attention placed on RS, researchers in the 
TRS area have proposed to incorporate trust into RS [Jøsang et al. 2013], where a trust 
score between two users serves as the weight to conduct the conventional neighbor-
based method. However, the neighbor-based method has its limitations when the data 
is very sparse.  

People in the RS area are also aware of the importance of trust, and they have 
designed many MF-based methods. SoRec [Ma et al. 2008] incorporates trust networks 
into RS where joint factorization is conducted over two matrices: user-item ratings and 
user-user trust relationships. In recent years, researchers have utilized social relations, 
i.e., trust relations, to perform regularization for users. SocialMF [Jamali and Ester 
2010] and SoReg [Ma et al. 2011] are two representative models to regularize the user 
factor vector of a target user via the user factor vectors of their trusters. Such 
regularization plays the role of borrowing the preferences of the trusters to deal with 
the cold-start issue.  

In this paper, we also incorporate trust information into our framework. On the one 
hand, we employ Bayesian reputation modeling to assess the reputation of users in 
order to weight the credibility of their feedback. On the other hand, we place a PoGE-
prior that has been constructed via high-reputation trusters in order to better 
regularize user factors learning as SocialMF and SoReg. As a result, our model has the 
advantages of both, which enables it to better deal with the challenges of cold start and 
shilling attack. 

3. PRELIMINARIES 

3.1 Notations 

Before commencing a detailed discussion, we summarize the frequently used notations 
used in this paper and their meanings in Table I to simplify the presentation in the 
rest of the paper. 

3.2 Reputation Modeling 

One of the key components in our approach is modeling the reputation of users and the 
credibility of their feedback. Intuitively, the reviews from high-reputation users tend 
to be more trusted and helpful to other users, and thus, they more credibly discuss the 
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real features of items. In other words, the reputation of a user is highly relevant to the 
credibility of her feedback. Bayesian reputation systems [Jøsang and Quattrociocchi 
2009] have been proposed to model reputation from a probabilistic perspective, so this 
can be integrated easily into our framework. In particular, in this work, we employ the 
beta reputation model [Jøsang and Ismail 2002] to obtain the helpfulness scores for 
user reviews.   

3.2.1. Beta Reputation Model. Let ≝ ,  denote the evidence that contains  positive 
feedback and  negative feedback w.r.t. a target entity. The probability of evidence  
can be described by a group of Bernoulli events, which follows a binomial distribution: 

| 1 																																																									 12  

Then, we can obtain the following definition of a reputation function given the beta-
prior with the probability density function (pdf) defined by a gamma function Γ ∙ : 

Table I. Summary of Frequently Used Notations in of the Paper 

Symbol Description 

 ∈ 1,⋯ ,  is used to index a user 

 ∈ 1,⋯ ,  is used to index an item 

 ,⋯ ,  is the user factor matrix, where  is the user factor vector of user  

 , ⋯ ,  is the item factor matrix, where  is the item factor vector of item  

  is the data matrix, and ∈  is an entry with the index ,  

   is the index set of all modeled data points,  is the index set of data w.r.t. user  

   is the index set of data w.r.t. item  

  is the variance parameter of observation  

  is the empirical prior placed on the user factors  

  is the empirical prior placed on the item factors  

  is the weight matrix, and ∈  is the weight to scale the loss of fitting  

  is the reputation score of user  

  is the credibility score on a user review 

  is the specialty score on a user choice 

  is the top-K neighbors of user  

  denotes the top-R high-reputation experts in the system 

 Superscript to indicate S-HMF related model parameters 

 Superscript to indicate C-HMF related model parameters 

‖ ‖  The 2-norm of a vector  

 Generate a diagonal matrix using a vector  

 Product of Gaussian experts 

.∗ Element-wise product (MATLAB-style) 

.  Element-wise square (MATLAB-style) 

.  Element-wise inverse (MATLAB-style) 

 
 



Improving the Quality of Recommendation over Users and Items in the Tail of Distribution                           39:11  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

| ,
Γ
Γ Γ

1  

Definition 1. (Reputation Function) [Jøsang and Ismail 2002]: 

≝ | | , , . 

Obviously, the reputation function is defined as the posterior of the beta distribution, 
where the hyperparameters  and  can be thought of as a certain amount of pseudo 
positive and negative feedback—in practice, this is often set 1. Next, we can 
obtain the expectation of this reputation function, i.e., the mean of , : 

≝ 																																																			 13  

We find that  is bounded within (0, 1), and that it approaches the upper bound 1 
only if the user has a large amount of positive feedback. Clearly, we can employ such 
a beta reputation model to assess the reputation of a user by the score  in RSs. 

3.2.2. Data for Modeling Reputation. For most online shopping and review Web sites, a 
user’s review of an item consists of a rating and a free message. In order to find helpful 
reviews and to display them on the first page, some of the most well-known Web sites, 
e.g., Amazon.com 1 , Epinions.com 2 , Ciao.com 3 , have designed a scoring system to 
evaluate the helpfulness of each review. 
 

 
 

Fig. 3. The screen snapshots of reviews from Amazon.com (left) and Ciao.com (right), where the red, dotted 
boxes show the helpfulness score 

 
Fig. 3 demonstrates two screen snapshots of reviews found on Amazon.com and 

Ciao.com. These Web sites have integrated several algorithms to score the helpfulness 
of each review in terms of other users’ feedback or experts’ judgments of this review. 
As a result, each review is generally associated with a multilevel helpfulness score, 
from Not Helpful to Most Helpful, as shown in Fig. 3. Obviously, we can employ the 
beta reputation model to assess the reputation of each user: if a user gives a lot of 
reviews that mostly receive high helpfulness scores, then this user tends to be a high-

 
1 http://www.amazon.com 
2 http://www.epinions.com 
3 http://www.ciao.com 
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reputation user. On the contrary, the reputation score will be low if a spam user gives 
a lot of fake reviews. The mathematical representation of the reputation score will be 
discussed along with our model in the following subsections. 

3.3 Explicit and Implicit Rating 

Rating data is typical feedback that represents the preferences of users. Typically, 
rating data can be divided into two categories: explicit and implicit. 

Explicit Rating: The multilevel rating scores, e.g., five-star ratings, can explicitly 
differentiate user preferences, so they are typical explicit rating data. Therefore, we 
only model observed ratings, while the remaining entries are treated as missing. From 
the HMF view, we have no information on these missing entries to tell us whether 
users have liked the items or not, so we assign positive confidence, 0, to the 
observed ratings and zeros to the remaining ones. 

, 	indexes	an	observation		
0 otherwise

																																										 14  

If we set all 1, then we obtain a binary-weight matrix  [Acar et al. 2010; 
Srebro and Jaakkola 2003]. Using this  in Eq. (14), we can immediately obtain the 
traditional unweighted MF objective, as shown in Eq. (5), from the objective of HMF. 
In this case, the index set , 0  only consists of observed entries. 

Implicit Rating: In the real world, explicit ratings are not always provided by 
users, but implicit rating data, such as purchase records and number of clicks, can be 
obtained more easily. This implicit rating data is usually modeled as a unary 
preference because the blank entries do not necessarily indicate user dislike, but, 
instead, are a result of the users’ lack of awareness [Herlocker et al. 2004]. Hence, we 
can assign a higher confidence level to observed entries and a much lower confidence 
level to blank entries [Hu et al. 2014; Hu et al. 2008]. Recall that the confidence level 
is associated with the variance parameter, i.e., the inverse of weight (cf. Eq. (14)), when 
a Gaussian distribution is assumed. As a result, the weighting strategy [Hu et al. 2008; 
Pan et al. 2008] of implicit ratings is often established as follows: 

, 	indexes	an	observation
otherwise

																																										 15  

where  is a small constant to denote the low confidence representing users’ likes or 
dislikes for blank entries while  denotes relatively higher confidence 
representing users’ likes of observed entries. In this case, we need to model both likes 
and dislikes so the index set  consists of all entries of the data matrix. 

4. MODEL AND LEARNING 

4.1 Overview of RMRM 

To implement more reliable recommendations for tail users and tail items, we propose 
to model two coupled objectives for joint optimization, namely, the specialty of user 
choices and the credibility of user feedback. To achieve this goal, we design a recurrent 
mutual regularization model (RMRM) to couple these two objectives together.  
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4.1.1. The Framework. As illustrated in Fig. 4, the objective of specialty is modeled by 
S-HMF (the right model shown in Fig. 4) while the objective of credibility is modeled 
by C-HMF (the left model shown in Fig. 4). RMRM couples these two objective models 
in terms of the empirical priors induced from one another. 

The C-HMF focuses on modeling the credibility of each user review. This is 
implemented using two means. First, C-HMF assigns different levels of confidence, i.e., 
variance, for each observation, , where the variance is modeled by a variance 
function ∙ , which is devised based on the Bayesian reputation model as presented 
in Section 3.2. As a result, the estimation of the item-factors is more dependent on 
credible feedback. Second, a PoGE-prior is imposed on the user factors of each user, 
which plays the role of regularizing user behavior in terms of relevant, high-reputation 
experts. Here, such a PoGE-prior can regularize both the preference learning of cold-
start users and the behavior of spam users. Therefore, the item factor vectors  
learned from C-HMF represents more authentic features of items than those learned 
from classic MF models. At the same time, the user factor vectors  of tail users 
contain knowledge from relevant experts.  

The S-HMF focuses on emphasizing the specialty of choices. The choices of tail 
items are much less influenced by others, thus they better reflect personal preferences. 
In S-HMF, the variance function ∙  assigns greater confidence to the choice of items 
in a deeper tail. As a result, S-HMF tends to fit the observations of tail items more 
tightly than those of head items. Therefore, the user factor vectors  that are 
estimated from C-HMF can better reflect users’ personal preferences than those 
learned using classic MF methods.  

As discussed in previous sections, long-tail items and users with little data are more 
easily affected by shilling attack and cold-start issues, which leads to unreliable 
estimates  and  learned from S-HMF. According to Bayesian probabilistic 
modeling, a prior plays an important role when there is limited data. Therefore,  
and  learned from the credibility-oriented objective model, i.e., C-HMF, are good 
empirical priors to regularize S-HMF to relieve both shilling attack and cold start. In 
turn,  learned from S-HMF are refined user features so they can serve as the 
empirical priors for C-HMF in order to deal with popularity bias. Therefore, we 
designed a RMRM framework that consists of the recurrent dependencies between C-
HMF and S-HMF to handle these challenges.  
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Fig. 4. The graphical representation of the RMRM framework, where S-HMF and C-HMF are recurrently 
regularized by the empirical priors, induced from one another.  
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4.1.2. Geometric Illustration. To give an intuitive understanding of the working 
mechanism of RMRM, we provide the geometric illustration depicted in Fig. 5. Here, 
we demonstrate the data fitting process of RMRM from the perspective of a given user, 
as well as a similar process that can be conducted from an item perspective. The axes 
arrange items (denoted as small circles) according to their popularity. More specifically, 
those items where the user provides credible feedback are marked with solid circles 
whereas hollow circles denote items receiving less credible feedback. The colored lines 
indicate fitting curves; the closer the curve is to a circle indicates the tighter the 
parameters to fit the choice of the corresponding item.  

Fig. 5 (a) depicts S-HMF, which is regularized by the parameters learned from C-
HMF. Given a user , the top fitting curve of Fig. 5 (a) reflects the parameters learned 
from C-HMF, which tend to tightly fit user ’s choices with credible feedback whereas 
they are loosely fit with others without credible feedback. The middle fitting curve of 
Fig. 5 (a) reflects the parameters learned directly by maximizing the heteroscedastic 
likelihood of the choices of user , i.e., minimizing the weighted loss of fitting user ’s 
choices (cf. Eq. (14)). When the parameters learned from C-HMF are employed as 
empirical priors for S-HMF, we obtain a regularized S-HMF model, as depicted in the 
right part of RMRM. The parameters can be estimated by maximizing the posterior, 
i.e., minimizing the objective given in Eq. (14), where the regularization term brings 
estimates closer to the given priors. As a result, the bottom fitting curve of Fig. 5 (a) 
represents the regularization results of the parameters, which more aggressively fit 
those choices in the tail with a high degree of credibility.  

In turn, the parameters learned from this regularized S-HMF serve as the empirical 
priors to regularize C-HMF, as shown in the top curve of Fig. 5 (b). The parameters 
learned directly by maximizing the heteroscedastic likelihood of C-HMF tend to fit 
more tightly with the choices with credible feedback, as shown by the middle curve of 
Fig. 5 (b). When the empirical priors are imposed for regularization, the parameters 
learned from the posterior of C-HMF contain the information of the specialty of choices 
from the priors. Therefore, the bottom fitting curve shown in Fig. 5 (b) tends to fit more 
tightly the choices of tail items than the one produced by the maximum heteroscedastic 
likelihood estimation.  

Now, let us move to the next iteration, as shown in Fig. 5 (c). As in the previous 
iteration, the parameters learned from the regularized C-HMF serve as the empirical 
priors to regularize S-HMF. As a result, the coupled recurrent regularizing process of 
RMRM converges the parameters to the region that represents the specialty of user 
choices and, simultaneously, enhances its credibility.  
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Head Tail Head
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Tail
Parameters Learned from C-HMF as Priors of S-HMF
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Fig. 5. The geometric illustration of the recurrent mutual regularization process, where the estimates of S-
HMF and C-HMF are recurrently regularized by the empirical priors induced from one another.  
 



Improving the Quality of Recommendation over Users and Items in the Tail of Distribution                           39:15  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

4.2 Learning Regularized C-HMF Model 

Given observations , ∈ , we can obtain the probabilistic model according to 
the graphical representation of C-HMF, as shown in the left part of Fig. 4: 

, ∈ 																																																										 16  

						 , 																																																																			 17  

, , 																																																				 18  

where  and  are the user and the item factor vectors induced from,  and , i.e. 
the counterparts in S-HMF. The details of using PoGE to construct the prior on  will 
be discussed later in this section.  stands for diagonal variance matrices of 
Gaussian priors.  as a whole denotes the variance of likelihood, where  is a 
confidence score obtained by heteroscedastic modeling w.r.t. credibility of feedback and 
 is a scale parameter to be learned.  

4.2.1. Heteroscedastic Modeling on Credibility. The key component of C-HMF is to model 
the credibility of feedback on the items that a user has chosen. Intuitively, users with 
higher reputations tend to give more credible feedback. Therefore, we can employ the 
reputation model presented in Sect. 3.2.1 to access the reputation of each user. 

Reputation Modeling: As demonstrated in Sect. 3.2.2, each review of a particular 
item is associated with a helpfulness score. Typically, a five-level score set, e.g., 

	 , 	 , , 	 , 	 ,  is often 
applied to measure the helpfulness of a review. Here, we extend the beta reputation 
model (cf. Sect. 3.2.1) to assess the reputation of each user. Intuitively, if a user gives 
a lot of reviews that mostly receive high helpfulness scores, then this user tends to be 
a high-reputation user. 

As the helpfulness scores for user reviews are not binary feedback, i.e., positive or 
negative, as presented in Sect. 3.2.2, they cannot directly serve as evidence. However, 
five-level helpfulness scores are very suitable to be represented as a typical fuzzy set 
[Jøsang et al. 2008]. First, we can assign values 0,1,2,3,4  to the corresponding 
five-level helpfulness scores. Then, the membership functions of helpful (+) and 
unhelpful (-) can be given as follows: 

	
		

1 	
																																																																	 19  

where  is the maximum score in , e.g., 4 in the five-level score set above, 
and 0  is a smooth parameter that bounds the degree of membership in 

, 1⁄ , e.g., the 	  score has the smallest helpfulness 0  for a 
review. Then, we represent the evidence  for user  through all their helpfulness 
scores  as follows: 

≝ 〈 , 〉| ∈  
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As a result, we can still use Eq. (12) to denote the probability of evidence , where we 
have  positive feedback where ∑ , and  negative feedback where 
∑ . Then, we define the reputation score of a user based on Eq. (13): 

Definition 2. (Reputation Score): Given the helpfulness scores  of a user , the 
reputation score of this user is defined by: 

| ≝ 																																																		 20  

In practice, we can set  a priori. That is, we assign a relatively low score, 
⁄ 0.5, to a new user without any observed helpful ratings, because spam 

users often create a new account when conducting an attack to avoid being tracked by 
the system. Obviously,  arrives at the upper bound only if a user receives a lot of 
high helpfulness scores for their reviews. This implies that high-reputation users are 
also experienced users. On the contrary,  becomes lower if a user always gives false 
reviews. 

Credibility Scoring: We assign the feedback credibility for an item choice in terms 
of two scores: the reputation of a user (a global score), and the helpfulness of the review 
(a local score). Thus, we obtain the following: 

≝ , 	is	an	observed	entry
otherwise

																																	 21  

That is, the observation is associated with a high credibility score only if a high-
reputation user gives a helpful review. In particular, we set 0 for explicit rating 
data while  is set to a small constant for implicit rating data (cf. Sect. 3.3). 

Since a higher credibility score means a higher confidence of that item choice, the 
variance function of a feedback can be given by  (recall that lower 
variance means higher confidence), where  is a scale parameter to learn. 

4.2.2. PoGE-Prior. In particular, we use PoGE to construct the prior for each user in 
order to incorporate the knowledge of a set of experts indexed by .  

, ∈ ,
∈

																												 22  

where  is a weight parameter. In general, PoE (Product of Experts) [Hinton 2002] 
has an intractable form. Fortunately, the product of Gaussian densities has a closed 
form, that is, a new Gaussian density [Williams and Agakov 2002]. Therefore, we can 
obtain the following Gaussian distribution from Eq. (22): 

, ∈ , 																																		 23  

	
∑ ∈

	 	
∈

 

Obviously, the mean parameter, , of the PoGE distribution is a weighted average of 
the user factor vectors of all related experts.  

In this paper, we construct the related expert set as follows: 
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∪ ∪ ∪ 																																																											 24  

In Eq. (24),  stands for the target user itself.  is the top-K neighbors of user ; the 
neighbors could be a set of users with an explicit relationship with , e.g., trusters [Ma 
et al. 2008] or followers [Yang et al. 2011]; they can also be constructed from the data 
[Koren 2010] if no explicit relation is available.  denotes the top-R high-reputation 
experts in the system. Moreover,   is an optional expert with a zero-mean Gaussian 
prior to avoid overfitting. As illustrated in Eq. (16), we use the reputation score  (cf. 
Eq. (20)) of a user as the weight  of an expert in PoGE (cf. Eq. (22)). By taking the 
log-form of PoGE over this expert set , we easily obtain the following summation 
form: 

log , ∈ 																																																																																																																						 25  

log , log ,
∈

log ,
∈

log ,  

.∗
	

.∗
∈

	

.∗
∈

	

.∗ ∙
	 	 	 	

 

From the above equation, we find that  is respectively regularized by four types of 
experts as specified in . In the first term,  is the user factor vector of the target 
user itself so it serves for self-based regularization. Since the majority of users are tail 
users with limited data, it is useful to borrow information from their neighbors. As a 
result, the user factor vectors  from ’s neighbors  are employed for neighbor-
based regularization. Moreover, we involve a set of high-reputation experts 	in the 
system to conduct expert-based regularization because effective self-based 
regularization and neighbor-based regularization are often not available, e.g., a fully 
cold-start user who has no data available and no neighbors or a spam user who only 
links other spam users as his neighbors. The last regularization term is simply the 
most frequently used -norm regularizer when  is set , which penalizes the 
complexity to prevent overfitting. Due to the equivalence between Eq. (22) and Eq. (23), 
Eq. (25) can be reformed to Eq. (26): 

log , ∈ log , .∗ ∙  

	
∑ ∈

	 	
∈

																																						 26  

From the perspective of Eq. (25),  controls the penalty of loss for fitting , i.e. a 
higher reputation expert has a larger regularization effect. From the perspective of Eq. 
(26), the empirical prior mean  is a weighted average user factor vector over , so 

 receives more contributions from higher reputation experts with a larger . Note 
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that  is not a reputation score but a common regularization parameter as  in Eq. 
(9), and it can be determined by usual regularization parameter selection methods, 
such as cross-validation. 

4.2.3. Parameter Learning. We can obtain the marginal log-likelihood by integrating 
,  from the joint distribution: 

log log , , 																																															 27  

	 , , ,
∈

	  

However, the computation of Eq. (27) is generally intractable. To enable it to run 
efficiently on large-scale data and the precise learning parameters for our model, we 
use the variational Bayesian (VB) method, which provides a good balance between 
efficiency and accuracy in learning latent features [Kim and Choi 2013; Lim and Teh 
2007; Shan and Banerjee 2010]. Now, if we let ,  be the variational distribution, 
we can then obtain the lower bound by applying Jensen’s inequality [Shan and 
Banerjee 2010].  

log , log
, ,
,

≡ 																													 28  

The lower bound	  can be rewritten using the expectation conditional on ,   
from Eq. (28), and it becomes tight only when , , | .  

≡ log | , log log , 																	 29  

Generally, it usually assumes ,  has a factorial form [Kim and Choi 2013; Lim 
and Teh 2007; Shan and Banerjee 2010]: 

, 																																			 30  

Here,  and  are variational Gaussian distributions with diagonal variance 
matrices:  

, 														 , 																							 31  

Then, we can write Eq. (29) as the following form by using the Eq. (16), (17), (18) and 
(30): 

log ,
∈

log 												 32

log  
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			 log ,
∈

log , ,

log , ,  

				
1
2

log2 , . . .
∈

1
2

log‖2 . ‖ . . log 2

1
2

log‖2 . ‖ . . log 2  

 Let us denote , , ,  as the variational parameters and , ,  as the 
model parameters where  stands for a matrix consisting of mean vectors 
and  denotes a matrix consisting of the variance vectors of , and 

 

Table II. Parameter updating scheme for C-HMF 

In the following equations, we denote   

— Update parameters ,  of distribution  in parallel, for each : 

← ,: ,: . .∗ 																																																																										 33

	 . ,: ,:  

← . ,:  

— Update parameters ,  of the distribution  in parallel, for each : 

← :, :, . .∗ 																																																																													 34  

	 . :, :,  

← . :,  

— Update model parameters , , : 

←
∑ .

 

←
∑ .

 

←
∑ , . . .∈

| |
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,  are defined similarly w.r.t. .  To maximize , we can use coordinate 
ascend, i.e. iteratively optimizing  by searching for a solution for one parameter 
at a time and fixing the others. Table II summarizes the updating scheme for each 
parameter.  

4.2.4. The Tricks for Complexity Reduction. The data matrix  and its corresponding 
weight matrix  are very sparse as they pertain to explicit rating data, where 
non-zero entries in these two matrices are associated with observed ratings. Due to the 
factorial variational distribution , , the parameter updating scheme of Table II 
is naturally parallelizable. The updating scheme in Table II can be implemented in the 
same way as that used by Kim and Choi [2013] who designed a scalable parameter 
updating scheme for variational Bayesian MF. Accordingly, the time complexity is 
O 3 ∑ ,: ∑ :, O 6 | |  as illustrated in [Kim and Choi 2013], where 

,:  equals the number of observed ratings for user , :,  equals the number of 
observed ratings for item , and | | is the total number of observed ratings. In practice, 
the length of the latent factor vector, , is small, and in our experiments, it yields good 
results for 10. Normally, the data density, | |⁄ , of most explicit rating data 
sets is very small, i.e. large sparsity, in the real world, usually 0.01% (e.g., the RED 
dataset). Therefore, this updating scheme is executed very efficiently.  

In the case of implicit rating data, the blank entries in data matrix  are also 
modeled as implicit feedback [Hu et al. 2014; Hu et al. 2008]. Accordingly, in this case, 
the weight matrix  is a full matrix, i.e. | | | |, having the space complexity 
O  (cf. Eq. (15) and Eq. (21)). Normally, it is impractical to load such a full matrix 

 into memory. From the analysis above, the time for running this updating scheme 
on implicit rating data is 1⁄  (i.e., often more than 10,000) times slower than running 
it on explicit rating data. To improve the running performance on the implicit rating 
data, we can apply the following trick to reduce the complexity. If we let ,: ,:  
and , we write each row of  as ,: 	 ,: . According to Eq. (21), it is easy 
to see that ,:  only has non-zero entries on observed ratings. Now, let us take 
updating for ,  as an example. In Eq. (33), ,:  can be rewritten as 

,: ; obviously, the term  is not dependent on the user 
index , so it can be pre-computed in time at most O  and less than O  using 
parallel multiplication. Similarly, ,: ,: can be written as ,: ,:

,:, where the term ,: can be computed in time less than O  due to the 
sparse ,:. Moreover, ,: can be written as ,: , where the term	  can 
be computed in less time than O  because  is equivalent to summing  by 
rows. Using the same trick, the additional time in parallel computing  is also 
O . Therefore, the overall additional time cost is O 4  when learning ,  in 
this parallel fashion. When applying this trick to updating , , the overall 
additional time cost is O 4 . Moreover, we can compute  by summing over  in a 
parallel way, where the additional time cost is also O  since ,: ,:. As a result, 
the overall additional time cost for implicit rating data is O , so the whole 
time complexity is O 6 O 4 O 4 O O 6
5 O 6 . Normally, ≪ , so O 6

 is within the same order as O 6 . 
By applying this trick, updating the equations depends on the sparse weight matrix 

 instead of the full matrix , so the space complexity to store  is the same as the 
sparse weight matrix in the case of explicit rating data. Therefore, it can be concluded 
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that the time and space complexities of the learning parameters on the implicit rating 
data is a little higher than those on the explicit rating data, but still in the same order. 

4.3 Learning Regularized S-HMF Model 

When the parameter set, , , , , is learned from C-HMF, we obtain the 
distribution of  and  approximated by the variational distributions  and 

. Therefore, we can sample ~ , ~ 	as the means of empirical prior 
distributions for S-HMF. To avoid unnecessary sampling noise, the expectations, 

 and  are often used as the means of empirical prior 
distributions. As a result, we can write the probabilistic model of S-HMF, shown in the 
right part of RMRM in Fig. 4 as follows:  

, ∈ 																																																										 35  

, 																																																																			 36  

, , 	 																																																				 37  

where  and  are diagonal covariance matrices. Additionally,  
denotes the variance of likelihood, where  is a novelty score given by the variance 
model and  is a scale parameter to be learned.  

4.3.1. Heteroscedastic Modeling on Specialty. As discussed previously, popular items tend 
to be widely known by users and have more interaction, so both the choices of and the 
feedback for these items may largely be influenced by others, whereas tail items tend 
to be chosen more independently, thus the choices of these items can better reflect the 
personal preferences of users [Vargas and Castells 2011]. As a result, we model the 
specialty of user choices on the basis of the popularity of items.  

Specialty Modeling:  If we denote the probability of choosing item  as , then we 
have the multinomial distribution over all the items, where ∙  is the gamma function 
and  denotes the number of observed choices of item : 

∑ 1

∏ 1
	

Moreover, we place a symmetric Dirichlet-prior, |  on , where the hyper-
parameter  can be interpreted as the number of pre-given, pseudo-choices of each 
item. Then, we can obtain the posterior for all observations: 

∝ | 	

The expectation of this posterior on choosing item  is: 

∑
≡ ̅ | 																																					 38  
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where ̅ |  is the smoothed version of the probability of choosing item  to avoid zero 
probability—a.k.a. Laplace smoothing—of the new items or the items with uncounted 
choice in a given dataset. In information theory, self-information is a measure of the 
information content associated with an event in a probability space. Here, a choice is 
such an event. As analyzed previously, choices on tail items can reflect users’ special 
preferences, i.e., these choices contain more information content. As a result, we give 
the following definition of specialty of choice in terms of self-information: 

Definition 3. (Specialty of Choice): Given all observed choices, the specialty of a 
choice on an item  is measured by self-information: 

̅ | 																																																								 39  

Specialty Score: We assign the credibility of feedback on a choice in terms of two 
scores: the reputation of a user (a global score), and the helpfulness of the review (a 
local score), thus we obtain: 

≝
, 	is	an	observed	choice

otherwise
																														 40  

That is, the observation is associated with a high credibility score only if a high-
reputation user gives a helpful review. In particular, we set 0 for explicit rating 
data while  is set to a small constant for implicit rating data (cf. Sect. 3.3). 

Since a higher credibility score means a higher level of confidence in that choice, 
the variance function of a piece of feedback can be given by  (note that 
lower variance means higher confidence), where  is a scale parameter to be learned.  

4.3.2. Parameter Learning. Similar to the derivation of VB on C-HMF, we can easily 
obtain the lower bound of marginal log-likelihood of S-HMF:   

log , log
, ,
,

≡ 																											 41  

where , ∏ ∏ ∏ , ∏ ,  is a 
factorized variational Gaussian distribution. The parameter updating scheme is given 
in Table III; here, the variational parameters , , ,  and the model parameters 
, ,  are updated in turn to maximize , where  denotes a matrix 

consisting of mean vectors and  denotes a matrix consisting of variance 
vectors w.r.t. , and where ,  are defined similarly w.r.t. . With the same 
trick as that applied to C-HMF, we can efficiently implement this parameter updating 
scheme on the implicit rating data. 

After the parameters of S-HMF are learned, we can either sample ~ 	 or use 
the expectations of the variational Gaussian distribution, , to 
construct the PoGE-based empirical priors for the coupled model, C-HMF (cf. Eq. (22)).    

4.4 Algorithm and Prediction 

So far, we have presented the details of RMRM and the parameter learning schemes 
w.r.t. C-HMF and S-HMF, respectively. Algorithm I summarizes the whole learning 
process with recurrent regularization in terms of coupled empirical priors.  

In Algorithm 1, we run k-step variational updating for both C-HMF (cf. Line 6) and 
S-HMF (cf. Line 9). In practice, this works well with a small k (less than 10). This type 
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of updating strategy can be viewed as k-step, mean-field, contrastive divergence 
[Welling and Hinton 2002], which has proved its effectiveness theoretically.  

Moreover, we use PoGE to approximate the distribution of user factors of those who 
are fully cold-start users without any feedback (cf. Lines 7 and 10). Since there is no 
data available for a fully cold-start user to update his/her user factors, we post-update 
them using the updated user factors from their mostly related trusters when the sub-
iterations of C-HMF and S-HMF are finished.   

Prediction: After the parameters of RMRM are learned, we obtain the regularized 
estimates ,  for C-HMF and ,  for S-HMF. We can predict the missing 
entries of the user-item matrix using the MF reconstruction form using these estimates. 
According to the variational approximation, we have ~ ,  and ~ , ; 
the means of 	and  are just  and  which can be obtained from Eq. (33) and Eq. 
(34). Therefore, we can reconstruct the value of entry ,  as follows:  

																																	 44  

Similarly, we can reconstruct the value of entry ,  using 	and : 

Table III. Parameter updating scheme for S-HMF 

In the following equations, we denote .  

— Update parameters ,  of the distribution  in parallel, for each : 

← ,: ,: . .∗ 																																																																											 42

	 . ,: ,:  

← . ,:  

— Update parameters ,  of the distribution  in parallel, for each : 

← :, :, . .∗ 																																																																													 43

	 . :, :,  

← . :,  

— Update model parameters , , : 

←
∑ .

 

←
∑ .

 

←
∑ , . . .∈

| |
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																																	 45  

Whether to choose the prediction result from Eq. (44) or Eq. (45) is dependent on 
specific data sets. In general, the prediction results from Eq. (45) place more emphasis 
on the personal taste for specific choices, so-called RMRM-S, whereas the prediction 
result from Eq. (44) may achieve better performance in a system with a large amount 
of spam feedback, so-called RMRM-C. In practice, we choose one of these dependent on 
a real-world environment. 

5. DISCUSSION 

So far, we have presented RMRM and the corresponding learning algorithm. In fact, 
the idea and the methods adopted by RMRM have direct connections with other 
methods. Hence, we discuss these connections in this section.  

5.1 Social Regularization from PoGE Perspective  

In recent years, one prevalent approach of recommender systems has been to 
incorporate social relationships for regularization [Jamali and Ester 2010; Ma et al. 
2011]. This method is built on the basic idea that users’ preferences are mostly 

Algorithm 1: Parameter Learning for RMRM 
Pre-computing: 

1: Compute credibility score  for each entry using Eq.(21); 

2: Compute specialty score  for each entry using Eq.(40); 

Model Learning: 
3: ← 0 

4: while MAX_ITERATION 

- Learning C-HMF: 

5: Construct empirical priors via Eq. (16, 17) using ,  from S-HMF; 

6: Run k-step parameter updating as Table II;  

7: For each fully cold-start user c 

, ∈ ∪ ; 

- Learning S-HMF: 

8: Construct empirical priors via Eq. (35, 36) using ,  from C-HMF; 

9: Run k-step parameter updating as Table III; 

10: For each fully cold-start user c 

, ∈ ∪ ; 

- Checking Convergence: 

11: If the performance over validation set is not improved in some consecutive 
iterations, then break; 

12: ← 1; 

13: end 
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influenced by others with the strongest social relationships, typically, their trusters. 
In general, the social regularization on a user  often leads to the following two forms 
of the regularization term, and we denote them as SR1 [Ma et al. 2011] and SR2 
[Jamali and Ester 2010; Ma et al. 2011], respectively. 

1:																			
∑ ∈

∑ ∈
 

2:																		 ‖ ‖
∈

 

where  denotes ’s truster set,  is the strength or similarity between  and  [Ma et 
al. 2011], or where we can simply use 1 to denote an observed link [Jamali and 
Ester 2010]. 

 It is interesting to find that, in fact, both SR1 and SR2 are identical from the PoGE 
perspective, as both of them actually correspond to the same PoGE-prior. Now, let us 
set up the PoGE-prior for user  as follows: 

, ∈ | ,
∈

																												 46  

Obviously, we can obtain SR2 by taking the negative log-form of Eq. (46). According to 
Eq. (23), we can obtain the following equivalent form from Eq. (46): 

, ∈
∑ ∈

∑ ∈
, 																																		 47  

where ∑ ∈ . By taking the negative log-form of Eq. (47), we immediately 
obtain SR1. Therefore, SR1 and SR2 are actually derived from the same PoGE-prior, 
so we prove the identity between them. In fact, by using SR1 and SR2, the evaluation 
results are very close [Ma et al. 2011]. The small difference is probably caused by the 
settings of the regularization parameters  and  and by the random initialization of 
the parameters. 

5.2 Multi-objective Optimization 

RMRM consists of two main components, where C-HMF models user choices by 
emphasizing credibility and S-HMF models user choices by emphasizing specialty. 
Each component leads to an objective for optimization, so RMRM can be viewed 
partially as a multi-objective optimization (MOO) [Deb 2014] problem. However, the 
conventional MOO problem often has two independent objectives, thus it needs to 
obtain solutions using higher-level information, whereas the two objectives of RMRM 
are coupled by the empirical priors induced from each other. In fact, the two objectives 
of RMRM are constructed from the same data, and we use a recurrent algorithm to 
learn the parameters that are regularized by the empirical priors induced from each 
other objective model. Therefore, RMRM is a variant case of MOO. 

In general, the optimal solution of MOO is not unique, and it often uses a genetic 
algorithm to search the solution space [Deb 2014]. The recurrent learning algorithm of 
RMRM induces new empirical priors in each iteration, and S-HMF and C-HMF are 
reset using the new priors, which leads to new objectives for optimization, cf. Eq. (28) 
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and Eq. (41). Hence, an iteration of RMRM corresponds to a generation of a genetic 
algorithm to search for the optimal solution. Taking Eq. (41) as an example, the new 
objective may find better estimates of the parameters, provided that we have learned 
better priors  and , leading to better | , . As a result, the marginal 
likelihood  is improved (cf. Eq. (41)). Moreover, the new empirical priors from the 
peer model can help to find a better optimal solution in the next iteration. In 
comparison, the objective function of a single-objective model, such as MF, does not 
change with iterations so they more easily become stuck in local minima. 

6. EXPERIMENTS 

We conduct empirical evaluations using two real-world datasets that cover the cases 
of, respectively, explicit rating data and implicit rating data. We compare RMRM with 
a set of state-of-the-art methods gauged by various metrics. The overall results prove 
that our approach significantly outperforms all the compared methods. 

6.1 A Comparison of the State-of-the-Art Methods 

In the following experiments, a group of state-of-the-art methods are employed for 
comparison; some are used for explicit rating data and others for implicit rating data.  
— PMF [Salakhutdinov and Mnih 2008b]: The conventional probabilistic MF model 

learns the factors of users and items from a rating matrix without taking additional 
information into account. 

— Trust-kNN [Jøsang et al. 2013]: This method takes the top-k, high-reputational 
trusters of a user as the neighbors, and then predicts the user’s rating of an item by 
averaging the available neighbors’ ratings for that item. 

— SoRec [Ma et al. 2008]: This method jointly models the trust-link matrix and a user-
item rating matrix, which shares user factors to propagate the interaction between 
two matrices. 

— SoReg [Ma et al. 2011]: This method utilizes the trust relationships to construct the 
regularizer to learn user factors. 

— SocialMF [Jamali and Ester 2010]: This method is very similar to SoReg. The main 
difference lies in the setting of similarities for trusters (cf. Sect. 5.1). 

— MF-IR [Hu et al. 2008; Pan et al. 2008]: This is a zero-mean, regularized, MF model, 
which is able to deal with implicit rating data. 

— SoRec-IR, SoReg-IR, SocialMF-IR: The original versions of SoRec, SoReg, and 
SocialMF were designed for learning preferences from explicit rating data. To enable 
them to deal with implicit rating data, we extend them using weight modeling, as 
in MF-IR (cf. Eq. (14)). 

— C-HMF: One of the main components of RMRM, as presented in Sect. 4.2, is to 
enhance credibility-based modeling. Moreover, we use zero-mean regularization 
since the single model does not have the empirical priors learned through S-HMF.  

— S-HMF: One of the main components of RMRM, as presented in Sect. 4.3, is to 
enhance specialty-based modeling. Moreover, we use zero-mean regularization since 
the single model does not have the empirical priors learned through C-HMF. 

— RMRM: RMRM is the main model proposed in this paper. Since C-HMF and S-HMF 
can model both explicit rating data and implicit rating data in a unified way, RMRM 
naturally has an advantage. In particular, we use RMRM-C to denote the prediction 
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results generated using Eq. (44), and RMRM-S to denote the prediction result 
generated using Eq. (45). 

6.2 Evaluation Metric 

In the following experiments, we use rating metrics to evaluate the performance of the 
explicit rating data while using ranking metrics to assess the performance of implicit 
rating data. 

6.2.1. Rating Metrics. To measure the accuracy of rating prediction, we utilize the most 
widely used evaluation metrics, namely, mean absolute error (MAE) [Herlocker et al. 
2004].  

∑ ∈

| |
	

where  denotes a true rating in the testing set  and  is the predicted rating. 

6.2.2. Ranking Metrics. The common way to assess the performance of prediction on 
implicit feedback data is to measure whether relevant items are placed in the top 
positions of a recommendation list. Therefore, information retrieval metrics are often 
employed to evaluate the ranking performance of recommender systems. Here, 

1 if the item at position  is relevant, and 0 otherwise. 

— @ : This considers the fraction of relevant items for all  relevant items: 

@
∑

 

— @ : This considers the fraction of relevant items for top  recommended 
items: 

@
∑

 

— @ : Average precision (AP) is the average result over @1~ , which is 
defined as: 

@
∑ @

,
 

— 	 @ : Normalized discounted cumulative gain (nDCG) [Burges et al. 2005] is a 
measure of ranking quality, which places greater emphasis on relevant items: 

@
@
@

 

where IDCG means ideal DCG, and where we have: 

@
2 1

1
, @

1
1
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6.3 Explicit Rating Data Evaluation 

6.3.1. Data Preparation. We construct a truncated dataset from the RED dataset 
[Meyffret et al. 2012], as mentioned in the introduction by filtering both users and 
items with fewer than three ratings. This is because no data will be available for 
training if a user or an item only accounts for one or two ratings that are held out for 
testing. In addition, we need at least two testing items for a user in order to evaluate 
the accuracy of the ranking for these items. The statistics of this evaluation dataset 
are illustrated in Table IV. 

 
Table IV. Statistics of the Epinions Dataset 

# users: 39,902  # items: 63,027 
# trust links: 43,8965 # trusters / users: 11 
max # of trusters: 1,713 # users with zero truster: 14,202 
# ratings: 734,441 density: 0.029% 
# ratings / users: 18 # ratings / items: 11 
max # ratings of user: 1,809 max # ratings of item: 2,112 

 
 

  
 

Fig. 6. Long-tail distributions for the number of ratings of items and users (truncated from 0 to 500) 
 

 
 

Fig. 7. The distributions for the number of helpful scores w.r.t. items and users (truncated from 0 to 200) 
 
Fig. 6 demonstrates the long-tail distributions for the number of ratings w.r.t. items 

and users. We find that a large number of both items and users in the tail have very 
few ratings. Therefore, this dataset is suitable to evaluate the performance of 
recommendations for users and items in the tail of distributions. The hyperparameters 
of the compared methods are tuned by cross-validation. Here, we find that the length 
of the latent factor vector can produce good results with this dataset by setting 5.  
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Fig. 7 illustrates the distributions of the number of helpful scores w.r.t. items and 
users in this evaluation dataset. We find that they have similar long-tail distributions 
with those in Fig. 6. This is a natural phenomenon because helpful scores are based on 
reviews—more reviews tend to receive more helpful scores. Thus, these helpful scores 
are used for the reputation model. In this experiment, we set 1 and 	 3 in Eq. 
(20) to compute the reputation scores. That is, the initial reputation score is 0.25 for 
new users. 

6.3.2. Prediction of Long-tail Distributed Items. Improving the prediction performance of 
long-tail items would obviously bring more business profit to a company by precisely 
targeting a specific group of users. To evaluate the prediction performance of long-tail 
items, we randomly hold out 20% of the data from the evaluation dataset as the ground 
truths for testing, denoted as . Then, as shown below, we split  into four parts 
according to the popularity of the items so that we can compare the performance of 
different methods using both short-head items and long-tail items.  

—Most Popular: The items in the headmost 5% of the distribution, as shown in the 
left-hand image of Fig. 6. 

—Less Popular: The items in the 5~20% interval of the distribution. 
—Shallow Tail: The items in the 20~50% interval of the distribution.  
—Deep Tail: The items in the endmost 50% of the distribution. 

We evaluate the MAE of all comparative methods of these four parts of the 
distribution. Note that the data becomes extremely sparse in the deep tail, and, as a 
result, Trust-kNN is barely effective, as all of the neighbors tend never to rate the 
testing items. In such a case, we simply predict the ratings of an item as Mean+ε, 
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where Mean denotes the mean rating for all items, and ε is a small random value, 
following standard Gaussian distribution.  

Fig. 8 reports the results of the comparison of all methods for the four parts of the 
distribution. We find the performance of Trust-kNN decreases when the data become 
sparser since the tail items are rarely rated, which results in the random prediction 
mentioned above. Obviously, such neighborhood-based methods have a limitation 
when conducting recommendations in the long tail. We find that PMF outperforms 
Trust-kNN, as it does not need to search the neighborhood; instead, similarity is 
implicitly represented by latent factors. However, PMF suffers from the three 
aforementioned typical issues in long-tail recommendations. As illustrated by the four 
cases shown in Fig. 8, we find that PMF achieves a relatively higher accuracy in the 
cases of Most Popular and Less Popular, but that the performance becomes worse when 
the available ratings for items become fewer, especially in the case of Deep Tail. In 
comparison, C-HMF improves the ability to alleviate shilling attacks, and it enables 
user preference for the long-tail items that are to be targeted in terms of 
heteroscedasticity modeling. As a result, C-HMF significantly outperforms PMF.   

The remaining models involve trust relationships as the secondary information 
aspect, which addresses data insufficiency in the tail of distribution. Comparing SoRec 
with PMF, we find that the involved truster relationships are helpful to improve the 
accuracy of long-tail items. However, both the rating matrix and the trust matrix 
convey heterogeneous information, but SoRec cannot find a best trade-off point for all 
users. To overcome this deficiency, SoReg and SocialMF incorporate the context of 
trusters to regularize user factor learning. The results prove that SoReg is more 
effective than SoRec. In particular, RMRM-S is selected in this experiment since we 
would like to more aggressively emphasize users’ special preferences over tail items. 

 
 

  
 

 
 

Fig. 8. MAEs of rating prediction for the long-tail item distribution 
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From the results, we easily find that RMRM-S achieves the best performance for all 
four cases. Note that the performance of Deep Tail is even better than Most Popular, 
which demonstrates that our model is able to better learn users’ preferences from the 
long tail. Moreover, the deviations of the MAEs in the four cases are small. Such stable 
performance over the whole distribution may be attributed to the fusion of reliability 
and novelty, brought about by the coupled recurrent regularization. Therefore, we can 
conclude that RMRM-S is the most accurate model for recommending long-tail items.  

6.3.3. Prediction on Long-tail Distributed Users. Accurate recommendations for long-tail 
users can significantly improve users’ experiences and users’ retention rates. In the 
next experiment, we conduct an evaluation on the testing set . As in the previous 
experiment, we split  into four parts according to the activity of the users to 
compare the performance of both the short-head and long-tail users.  
—Most Active: The users in the headmost 5% of the distribution, as shown in the right-

hand image of Fig. 6. 
—Less Active: The users in the 5~20% interval of the distribution. 
—Shallow Tail: The users in the 20~50% interval of the distribution.  

—Deep Tail: The endmost 50% users of the distribution of the distribution.  
Fig. 9 shows the comparative results of all of the methods for the long-tail user 

distribution. We observe similar results to those in the previous experiment. Actually, 
conducting accurate predictions for deep-tail users is more difficult than for deep-tail 
items because almost all deep-tail users have both few ratings and few trust 
relationships. For those models that do not use trust relationships, S-HMF achieves 
the best performance since the heteroscedasticity modeling of user choices enables it 
to learn users’ personal preferences better. 

In particular, we found that more than one-third of the users have no links, as 
illustrated in Table IV. Consequently, SoRec cannot obtain secondary information for 
these users due to the lack of links in the trust matrix. Similarly, no truster is available 
to conduct regularization for SoReg and SocialMF. As a result, these methods cannot 
learn user factors when there is no trust link available for a cold-start user. To 
overcome this deficiency, RMRM-S incorporates top-N high-reputation experts into the 
system, cf. Eq. (24). Hence, RMRM-S can still conduct regularization, even when no 
direct trusters are available. Since RMRM-S takes the advantages of C-HMF, S-HMF, 
and SoReg, it results in a significant improvement in recommendations for long-tail 
users.  

6.3.4. Impact of the Number of Involved Trusters. The previous experiments show that 
borrowing knowledge from trusters can be very helpful to address the challenges of 
recommendations for long-tail items. In RMRM, the truster set consists of two parts: 
the trusters that a user actively follows, and the experts with the highest reputation 
in the system, cf. Eq. (24). We next illustrate the impact of the number of user trusters 
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and the number of system trusters, respectively. In this experiment, we use the same 
testing set as in the previous experiments.  

MAEs for Different Numbers of Involved User Trusters: We fix five high-
reputation system experts and vary the number of top-K trusters, where ∈
5,10,20,50, , to compare the performances. Fig. 10 (a) displays the results when the 

number of trusters changes. We find that increasing the number of trusters improves 
the performance of tail users. This is because they account for very little data, so there 
is a need to incorporate more trusters for regularization. In comparison, we find that 
the performance of head users is not improved, and even becomes worse when K 
increases. This can be attributed to the fact that head users account for sufficient data, 
which enables RSs to learn their preferences without borrowing information from 
others. Moreover, we find that involving too many trusters does not improve 
performance. It can thus be interpreted that the priors from too many trusters over-
regularize the user preferences learning.  

MAEs for Different Number of Involved System Experts: We fix the top five 
trusters of each user, and vary the number of top-K high-reputation system experts, 
where ∈ 5,10,20,50,100 . From Fig. 10 (b), we find that the performance is very close 
under different K, becoming a little worse when K reaches 100. That is, it involves too 
many experts, which may over-regularize the user factors learning. As a result, we 
only need to involve a small group of system experts in practice. 

 

  
 

 
 

Fig. 9: MAEs of rating prediction for the long-tail user distribution 
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Fig. 10. MAEs varying the numbers of involved (a) user trusters, and (b) system experts 
 

6.3.5. Shilling Attack Simulation. In this experiment, we attempted to test the robustness 
of each model in a shilling attack environment. To simulate such an environment, we 
created 1,000 virtual spam users to conduct the attack, and we respectively selected 
100 items from the head (0%~20%) and the tail (20%~100%) as the attack targets. In 
this experiment, we conducted nuke attack in the case of the average attack model 
[Burke et al. 2015]. More specifically, we first randomly selected the 50 most popular 
items from the head of distribution to serve as the filler item set [Burke et al. 2015]. 
Before conducting the attack, we assigned each item in the filter item set with the 
mean rating of that item for each spam user. As a result, we built a fake profile for 
these spam users who have average preferences that are similar to most users. Then, 
we simulated the nuke attack on each target item by injecting fifty minimum ratings, 
i.e. 1, from fifty out of 1,000 spam users by random selection. Thus, we constructed a 
user-item rating matrix with fake ratings and spam users. 

 

      
 

Fig. 11. MAEs for head items and tail items with shilling attack 
 

We retrained all the comparison models on this attacked rating matrix and then 
made predictions. Fig. 11 illustrates the prediction results for the head items (left) and 
the tail items (right). Obviously, the MAEs of the head items are lower overall than 
those of the tail items, which reveals the fact that the tail items are more easily biased 
by fake ratings due to the few ratings they receive. PMF achieves poor performance 
because it is completely based on the ratings for each user without incorporating any 
other information, whereas SoReg and SocialMF are more robust to shilling attack due 
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to the regularization from trusters or experts. In comparison, SoRec does not achieve 
comparable performance with SoReg and SocialMF, which illustrates that the impact 
from the fake rating matrix overwhelms that from the trust-link matrix, especially 
when the trust-link matrix is very sparse. RMRM-S achieves better performance than 
that of the single S-HMF model because S-HMF in RMRM-S is regularized by the 
empirical priors from C-HMF. Finally, we find that C-HMF and RMRM-C achieve 
much better performance than other models. In particular, the results of C-HMF and 
RMRM-C do not become worse as do the other models in the case of tail items, which 
proves that the heteroscedastic modeling for credibility is a very effective way to defend 
against shilling attack. 

6.4 Implicit Rating Data Evaluation 

6.4.1. Data Preparation. With the popularity of mobile phones, millions of apps have 
been published online, covering all aspects of daily life, including food, shopping, sports, 
games, and so on. Popular apps (head items) are known by most users, so 
recommending unpopular apps (tail items) to users is a more meaningful task. Here, 
we use a publicly available data set of apps for Android from Amazon [McAuley et al. 
2015] to evaluate all the compared methods. Since the installation history is always 
available in the app store, for our experiment, we take the installation record as the 
implicit rating (with the observed installation of an item as 1). From the raw data, we 
remove users who have less than three installations and items that have less than four 
installations. The statistics of this evaluation dataset are illustrated in Table V. 
 

Table V. Statistics of Apps for Android Dataset 

# users: 234,347  # Apps: 24,141 
# installations: 1,274,896 density: 0.023% 
# installations / users: 5.44 # installations / items: 52.81 
max # installations of user: 565 max # installations of item: 11,801 

 
 

  
 

Fig. 12. Long-tail distributions over the number installations w.r.t. users and items (truncated) 
 
Fig. 12 shows the distributions of the number of installations w.r.t. users and items 

of this evaluation set. We see that the number of installations w.r.t. both items and 
users have obvious long-tail distributions. The hyperparameters of all the compared 
methods have been tuned by cross-validation. We find that the length of the latent 
factor vector can produce good results with this dataset by setting 50. Moreover, 
we set 1, 1 for the reputation score, defined by Eq. (20).  

This dataset does not provide explicit relationships between the users. Intuitively, 
the number of choices of common apps between two users can be used to measure their 
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similarity. Moreover, the choices on tail items better reflect user preferences. Therefore, 
we find the top-K neighbors of user  by ranking the weighted sum ∑ ∈ ,  
for all users except , where  is defined by Eq. (39) and ,  is the set of common 
apps between  and  in the training set.   

6.4.2. Evaluation of Tail Items Recommendation. For a real-world recommender system, 
generating an accurate list of attractive items for each user is more meaningful than 
accurately predicting ratings because, of course, the final goal of recommender systems 
is to find items desired by different users. In this experiment, we randomly hold out 
20% of the observations from each item as the testing set, denoted as , and use the 
remainder for the training set. As in the previous experiments, we split  into four 
item groups according to the number of installations, namely Most Popular, Less 
Popular, Shallow Tail, and Deep Tail.  

Table VI reports the mean AP@10, AP@20, nDCG@10, and nDCG@20 for testing 
the items in each group. In the case of Most Popular, the results from all models are 
relative close; this is due to the sufficient data of the head items. Overall, RMRM 
models achieve better performance than the other models, which proves that RMRM 
can better capture user preferences for tail items. In particular, RMRM-S and S-HMF 
achieve better performance than the other models in the cases of Most Popular and 
Less Popular, whereas RMRM-C and C-HMF outperform the others in the cases of 
Shallow Tail and Deep Tail. This reflects the fact that the apps in the tail are known 
by very few people, so that their installation and corresponding feedback mainly come 
from two types of users: (a) users who really have interest in these apps (i.e., valuable 
feedback), and (b) Internet marketers (i.e., valueless feedback). Accordingly, the 
designs of RMRM-C and C-HMF emphasize the feedback from  the former and de-
emphasize the feedback from the latter. Furthermore, RMRM-C incorporates the 
empirical priors from S-HMF for regularization, thus it achieves the best performance 
for recommending items in the tail.  

 

Table VI. Mean AP@5, AP@10, nDCG@10, and nDCG@20 of item recommendations 

Most Popular Less Popular 
Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20 

MF-IR 0.0135 0.0144 0.0160 0.0195 0.0112 0.0121 0.0187 0.0222 
SoRec-IR 0.0135 0.0140 0.0162 0.0182 0.0111 0.0119 0.0180 0.0216 
SoReg-IR 0.0133 0.0141 0.0163 0.0191 0.0119 0.0128 0.0191 0.0231 
SocialMF-IR 0.0144 0.0150 0.0177 0.0200 0.0119 0.0128 0.0195 0.0232 
S-HMF 0.0149 0.0156 0.0184 0.0211 0.0123 0.0131 0.0199 0.0237 
C-HMF 0.0126 0.0131 0.0157 0.0174 0.0107 0.0115 0.0175 0.0208 
RMRM-S 0.0153 0.0159 0.0187 0.0212 0.0125 0.0132 0.0202 0.0239 
RMRM-C 0.0131 0.0136 0.0161 0.0180 0.0109 0.0116 0.0182 0.0213 
 

Shallow Tail Deep Tail 
Method AP@10 AP@20 nDCG@10 nDCG@20 AP@10 AP@20 nDCG@10 nDCG@20 

MF-IR 0.0108 0.0096 0.0305 0.0331 0.0120 0.0077 0.0362 0.0342 
SoRec-IR 0.0108 0.0095 0.0302 0.0328 0.0120 0.0076 0.0364 0.0338 
SoReg-IR 0.0116 0.0103 0.0322 0.0349 0.0134 0.0086 0.0408 0.0383 
SocialMF-IR 0.0111 0.0099 0.0315 0.0342 0.0128 0.0082 0.0396 0.0369 
S-HMF 0.0129 0.0110 0.0355 0.0373 0.0160 0.0101 0.0475 0.0428 
C-HMF 0.0171 0.0140 0.0438 0.0438 0.0238 0.0151 0.0654 0.0578 
RMRM-S 0.0130 0.0110 0.0356 0.0374 0.0165 0.0105 0.0485 0.0448 
RMRM-C 0.0175 0.0142 0.0453 0.0445 0.0240 0.0154 0.0659 0.0592 
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Fig. 13 depicts the recall@20~50 curves for all compared models for recommending 
tail items (Shallow Tail and Deep Tail). Similar to the performance shown in Table VI, 
RMRM-based methods outperform the other approaches. Therefore, we find that the 
curve of RMRM-C is above all the other models with obvious margins, which, again, 
proves that RMRM-C can better capture users’ special preferences and provide more 
robust protection against shilling attack.  
 

  
 

Fig. 13. Recall@20~50 of tail-item recommendations for users 
 

6.4.3. Evaluation of Tail-users’ Recommendations. For a company, finding an accurate list 
of potential users to deliver the information about their apps can reduce large 
promotion costs. In this experiment, as before, we randomly hold out 20% of the 
observations from the users as the testing set, denoted as , and use the remainder 
as the training set. In the same way as the previous experiments, we split  into 
four user groups, i.e., Most Active, Less Active, Shallow Tail, and Deep Tail, according 
to the number of apps that a user has installed. 

Table VII reports the mean AP@10, AP@20, nDCG@10, and nDCG@20 when testing 
the users in each group. It is easily observed that RMRM-based models are superior to 
the other models, and that RMRM-S achieves the best performance in the case of Most 
Active while RMRM-C shows its advantage in the other cases. Both heteroscedasticity 
modeling on credibility and regularization with coupled empirical priors enable 
RMRM-C to capture the preferences of tail users more precisely, thus RMRM-C more 
effectively recommends attractive apps to tail users. 

Fig. 14 shows the recall@20~50 curves of all of the compared models when 
recommending items for tail users (Shallow Tail and Deep Tail). Similar to the 
prediction performance for tail users, as shown in Table VII, the recall curves of the 
RMRM approach are above those of other models, which proves that the features 
learned from RMRM can more reliably represent the traits of items and the personal 
preferences of users.  

7. CONCLUSION 

In this paper, we address the challenges of improving the recommendations of items 
and for users in long-tail distributions, and analyze the ineffectiveness of current 
approaches. As a result, we propose RMRM, which consists of two coupled components, 
namely, C-HMF which emphasizes the credibility of ratings and S-HMF which 
emphasizes the specialty of choices, where the parameters of C-HMF and S-HMF are 
regularized in terms of the empirical priors induced from each other. The empirical 
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evaluations of two real-world datasets illustrate that RMRM is capable of conducting 
more reliable predictions than the other compared methods, especially for both items 
and users in the tail of distributions.     

In fact, RMRM provides a general framework for learning latent features that are 
regularized by multi-objective empirical priors. Therefore, RMRM and its extension 
could be applied in many areas outside of recommender systems, such as computer 
vision, audio processing, and multimedia clustering, all of which depend largely on the 
MF technique and thus could benefit from multi-objective regularization. 
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Table VII. Mean AP@5, AP@10, nDCG@10 and nDCG@20 of user recommendation 

Most Active Less Active 
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Fig. 14. Recall@20~50 of item recommendations for tail users 
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