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Abstract—Revealing complex relations between entities1

(e.g., items within or between transactions) is of great significance2

for business optimization, prediction, and decision making. Such3

relations include not only co-occurrence-based explicit relations4

but also nonco-occurrence-based implicit ones. Explicit relations5

have been substantially studied by rule mining-based approaches,6

including association rule mining and causal rule discovery. In7

contrast, implicit relations have received much less attention but8

could be more actionable. In this paper, we focus on the implicit9

relations between items which rarely or never co-occur while10

each of them co-occurs with other identical items (link items)11

with a high probability. A framework integrates both explicit12

and hidden item dependencies and a corresponding efficient algo-13

rithm IRRMiner captures such implicit relations with implicit14

rule inference. Experimental results show that IRRMiner not15

only infers implicit rules of various sizes consisting of both fre-16

quent and infrequent items effectively, it also runs at least four17

times faster than IARMiner, a typical indirect association rule18

mining algorithm which can only mine size-2 indirect association19

rules between frequent items. IRRMiner is applied to make rec-20

ommendations and shows that the identified implicit rules can21

increase recommendation reliability.22

Index Terms—Hidden dependency, implicit rules, pattern rela-23

tion analysis, rule inference.24

I. INTRODUCTION25

A. Target Problem and Motivation26

RULE mining is an important task and a key issue in27

knowledge discovery and data mining [1], [2]. The resul-28

tant rules are sometimes quite useful for business optimization,29

prediction and decision making [3]. Classic rule mining30

methods, e.g., association rule mining [4] and causal rule min-31

ing [5], are essentially based on explicit co-occurrences only,32

and focus on explicit and dependent relations (e.g., associa-33

tions and causal relationships) while ignoring more implicit34

relations [6]–[8]. For example, association rule mining relies35

on the support-confidence framework to select those items36

which co-occur frequently to generate rules to infer the explicit37

and straightforward associations between them, while causal38

discovery discovers the direct cause-effect relations between39
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TABLE I
INSTANCE OF THE ERD DATASET

two items (variables) by showing how the variations of one 40

item cause changes to the other [9]. 41

However, it is not trivial to capture implicit rela- 42

tions [10], [11] by analyzing rule relations (also called pattern 43

relation analysis) [8] to make the identified rules action- 44

able [12]. In this paper, implicit relations [8], [13] refer to 45

the connections between several items which do not co-occur 46

frequently but have a high probability of co-occurring with 47

the third-party identical items. Here, the third-party items are 48

called link itemset as they serve as bridges to connect those 49

rarely or never co-occurring items. Such implicit relations can- 50

not be identified by association rule mining or causal rule 51

discovery without pattern relation analysis. In some cases, 52

implicit relations are even more valuable for discovering novel 53

and unexpected rules to support business events, compared to 54

straightforward associations or causal relations. By taking the 55

third-party items (i.e., link items) into account, implicit rules 56

are also more informative than explicit ones, which only focus 57

on their main aspects (e.g., antecedent and consequent). 58

Researchers have realized the significance of implicit rela- 59

tions between items and have proposed indirect association 60

mining [14], [15]. However, it is built on association rule min- 61

ing [16], which only makes it applicable for frequent items 62

while ignoring infrequent ones. Furthermore, existing indirect 63

association mining only focuses on pairwise relations (e.g., 64

the relation between sprite and coke) while ignoring the com- 65

plex relations among multiple items (e.g., the relation among 66

sprite, coke, and pepsi). 67

Taking the ERD data1 as an example (Table I), the values 68

0 and 1 in the first and second rows of column 1 indicate that 69

pizza is not bought in transaction t1 but in t2. It is easy to 70

infer the implicit rule coke⊕ sprite|pizza, which indicates that 71

either coke or sprite, but not both, is quite likely to be bought 72

1An electronic retail transaction dataset from a Chinese E-commerce
platform.
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Fig. 1. Implicit rule inference framework which combines both explicit and hidden dependency.

with pizza. This rule reveals the shopping preferences that coke73

and sprite may not be usually bought together since they share74

the same function, whereas they are quite likely to be bought75

together with the same third-party goods like pizza. This kind76

of implicit connection between coke and sprite is conditional77

on the link itemset pizza. It can not only help with increas-78

ing profit through competitive product analysis [17] (coke and79

sprite are competitive products) but can also contribute to80

precise recommendations by reducing redundant items (coke81

and sprite are likely to be redundant if recommended to one82

consumer at the same time). Such implicit relations cannot be83

identified by traditional explicit co-occurrence-based rule min-84

ing approaches like association rule mining [18] or causal rule85

discovery [19] because of their extremely low co-occurrences86

and hidden relations between the items involved.87

In fact, although some items are implicitly related, it is88

possible to identify such relationships. For example, a per-89

son may buy pizza and coke for a lunch, but try pizza and90

sprite next time. In reality, such partial replacement in prod-91

uct combinations is quite popular in areas, such as commerce92

and medical services. Capturing such implicit and complex93

relations and then inferring implicit rules helps businesses to94

deeply understand customer consuming behaviors, which pro-95

vides more solid support for business optimization, prediction,96

and decision making [20], [21].97

B. Our Design and Main Contributions98

The above observation shows the importance of counting99

implicit relations between items and the feasibility of identi-100

fying implicit rules composed of infrequently or even never101

co-occurring items. Here, we propose a novel framework to102

mine implicit rules.103

A “three-step” framework is proposed to mine implicit rule104

x⊕y|Z (meaning items x and y are implicitly related with Z as105

the link itemset), which is illustrated in Fig. 1 and explained106

as follows.107

1) Identify all dependent itemsets of each item in the108

transactional dataset.109

2) For given items x and y, if they share at least one iden-110

tical dependent itemset Z, itemset {x, y} is chosen as a111

hidden dependent itemset.112

3) Compute the implicit relation strength (IRS) between x113

and y; if it is larger than a predefined threshold, itemset114

{x, y} is selected as an implicitly related itemset. Based 115

on this, an implicit rule x ⊕ y|Z is inferred. 116

The main contributions of this paper are as follows. 117

1) A novel implicit rule inference framework is proposed to 118

infer implicit relation-based rules (IRRs), which follows 119

a three-step strategy. We call the implicit IRR implicit 120

rules for simplification in this paper. 121

2) An implicit rule inference algorithm, IRRMiner, is 122

proposed, by which those items which rarely or never 123

co-occur but are implicitly closely related to each other 124

are detected. 125

3) IRRMiner is used in recommendation as a case study, 126

which enables the recommendations to be more reliable 127

and precise in real-world business. 128

II. RELATED WORK 129

Rule mining is an important research issue and has been 130

widely explored. Much progress has been achieved in various 131

subfields in this field. Here, we briefly review some of the work 132

which is closely related to our proposed implicit rule infer- 133

ence: association rule mining, correlation rule mining, causal 134

discovery, and indirect association mining. 135

A. Association Rule Mining 136

Well-known algorithms focusing on association rule mining 137

include AIS [22], Apriori [18], FP-Tree [23] and the linear 138

prefix tree-based algorithm [24]. All these methods focus on 139

the improvement of algorithm efficiency and much progress 140

has been achieved by utilizing more effective candidate gen- 141

eration methods and pruning strategies. However, they are all 142

based on the support-confidence framework and target explicit 143

“co-occurrence” based associations. As a result, they only 144

capture the explicit and straightforward relations while ignor- 145

ing implicit relations. They filter out infrequent items which 146

may be of significance and simply focus on the main aspects 147

(antecedent and consequent) while ignoring the influence of 148

other related aspects (e.g., link items). 149

B. Correlation Rule Mining 150

Correlation rule mining is another important branch in the 151

rule mining area. It tries to mine those statistically correlated 152

items driven by frameworks different from the “support- 153

confidence” one. Specifically, some measures to describe the 154
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correlations between distinct items are used as the selection155

criteria. In particular, lift and χ2 correlation were introduced156

in 1997 to mine correlation rules [25]. Approximate similarity157

measures have to be proposed to explore efficient compu-158

tation due to the lack of the downward closure property159

for lift and χ2. Another two interesting measures for cor-160

relation rule mining, all confidence and bond, which were161

introduced in 2003 [26], follow the downward closure prop-162

erties and can be used to mine correlation rules efficiently.163

Some other related work includes mining both associated and164

correlated rules [27], the efficient mining of correlation rules165

with multiple all-confidence thresholds and so on [28]. The166

progress achieved in correlation rule mining can leverage some167

of the drawbacks of association rule mining illustrated above168

by including infrequent items. However, correlation rules still169

only focus on explicit relations while ignoring implicit ones.170

In addition, similar to association rules, correlation rules do171

not take the influence of related aspects (e.g., link items)172

into account when capturing the relations between the main173

aspects.174

C. Causal Discovery175

The three main approaches for causal discovery are:176

1) graphical causal modeling; 2) constraint-based approaches;177

and 3) association rule-based approaches. Causal relationships178

are represented by Bayesian networks or similar probabilis-179

tic graphical models in graphical causal modeling [29]. These180

methods cannot handle high dimensional data and often incur181

high computational cost. To be more efficient, constraint-based182

approaches learn several fixed local causal structures, e.g.,183

CCC [30] and CCU [31] rather than the complete Bayesian184

network [32]. Such methods cannot identify causal relations,185

which cannot be represented by these fixed structures and can-186

not identify combined causal factors. Association rule mining187

has recently been combined with a cohort study to discover188

causal association rules and has proven to be quite effec-189

tive [33]. However, similar to association rule mining, these190

approaches tend to target direct and explicit causal relations,191

while more implicit and indirect relations are ignored.192

D. Indirect Association Mining193

Identifying implicit rules has rarely been explored to the194

best of our knowledge. The most related work is indirect195

association rule mining. The concept of indirect association196

rules infers the relation between two items which are not197

associated with each other directly but both of them are198

associated with identical third-party itemsets, called media-199

tors. Hamano and Sato [14] proposed a framework to mine200

indirect association rules to analyze targeting consumers and201

competitors. Specifically, given an item pair which co-occurs202

infrequently and a mediator itemset, a dependency constraint203

μ is used to ensure the strong direct associations between each204

item from the item pair and the mediator itemset, and then the205

indirect association between the pair of items is derived based206

on the strong direct associations. Another algorithm called207

IPMA [15] uses a new dependency measure, called critical208

relative support, to replace μ while retaining the same other209

procedures as the Hamano and Sato framework. Other variants 210

of indirect association mining include mining temporal indirect 211

associations [34], mining direct and indirect fuzzy sequen- 212

tial patterns [35], and mining indirect associations in Web 213

data for Web recommendation [36]. Although different algo- 214

rithms and techniques as well as their variants are developed 215

to capture indirect associations, essentially, their frameworks 216

are the same as the typical one proposed in [14]. All of these 217

algorithms take a step forward in capturing implicit relations; 218

however, they basically extend the association rule mining 219

framework by simply putting two association rules together 220

to derive an indirect one [16], which limits them to frequent 221

items while filtering out infrequent ones. As a result, they can 222

only discover the indirect associations between two frequent 223

items. However, implicit relations may also exist between sev- 224

eral infrequent items and between some infrequent items and 225

frequent ones. Such two kinds of implicit relations involving 226

infrequent items are ignored by all the existing methods. This 227

is caused by frequency-based association rule mining, which 228

is the foundation of current indirect association mining frame- 229

works. Another drawback of existing broadly used frameworks 230

is that they only focus on the relations between two items (e.g., 231

i1, i2), which makes them inapplicable for itemsets with more 232

than two items (e.g., i1, i2, i3 . . .). In addition, most of the 233

existing work in this area only focus on rule mining algorithm 234

development while ignore the application mechanisms [37] of 235

the resultant rules. 236

In summary, existing work cannot effectively derive implicit 237

rules from analyzing the explicit and implicit combinations of 238

items and consider nonoccurring and novel items. In addition, 239

more recent work highlights the need of discovering actionable 240

knowledge from data [12], [38] that can support decision- 241

making. However, quite limited empirical studies have been 242

conducted to show why the above resultant rules are useful 243

and how they benefit real-world businesses. To address this 244

issue, pattern relation analysis [8] is undertaken in this paper 245

to learn the explicit and implicit item dependency and infer 246

implicit rules. 247

III. FRAMEWORK FOR IMPLICIT RULE INFERENCE 248

We first give the precondition and then illustrate the three- 249

step framework discussed in the introduction. The three steps 250

refer to explicit dependency discovery, hidden dependency 251

derivation, and implicit rule inference by integrating both 252

explicit and hidden item dependency. 253

A. Precondition 254

To identify the implicit rules in which items infrequently 255

or never co-occur, the first step is to remove those item com- 256

binations of frequently co-occurring items like {pizza, coke}, 257

i.e., itemsets with high frequency (e.g., {pizza, coke}). This is 258

because these items are explicitly associated and can be easily 259

and efficiently mined using frequent pattern mining techniques 260

like Apriori, which is out of the scope of this paper. Note 261

that frequent items are still kept to form implicit rules. For 262

example, both coke and sprite are frequent, but they rarely 263

co-occur within one transaction, i.e., Sup(coke, sprite) is low, 264
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and they constitute a typical implicit rule. The precondition265

for a given itemset to be implicitly related is that its support266

is not larger than a minimum threshold. This precondition267

greatly benefits our proposed algorithm by pruning those268

frequently co-occurring items thus reducing the search269

space.270

Precondition 1: It is possible for a given itemset I =271

{i1 · · · ij} to be an implicitly related itemset only if it meets272

the following precondition:273

Sup(I) ≤ minsup (1)274

where Sup(I) is the support of itemset I and minsup is the275

predefined minimal support.276

B. Explicit Item Dependency Discovery277

Given a transactional dataset as shown in Table I, each row278

indicates a transaction, such as t1, t2, and all the transactions279

constitute the transactional set T , T = {t1, t2 . . . t|T|}. Each280

column indicates an item like pizza and coke while the value281

1 means that an item occurs in the corresponding transaction,282

otherwise the value is 0. All the items in the transactional table283

constitute the full itemset U, U = {i1, i2 . . . i|U|}. Each transac-284

tion t is a subset of U, t ⊆ U. For example, the first transaction285

t1 includes two distinct items: 1) napkins and 2) sprite.286

With the transactional information, the explicit dependency287

between an item and itemsets is identified using point-wise288

mutual information (PMI) [39] for its strong ability to capture289

both nonlinear and linear dependencies [40], [41]. The PMI290

between item i and itemset I is calculated as291

PMI(i, I) = log
p(i, I)

p(i)p(I)
(2)292

where p(i) and p(I) are the marginal probabilities of i and I,293

respectively, while p(i, I) is their joint probability.294

Definition 1 (Dependent Itemset): An itemset I is defined as295

a dependent itemset of a given item i(i /∈ I) (denoted as Si = I)296

if the PMI between them is positive, that is, PMI(i, I) > 0. It297

is denoted as Si1, Si2, . . . if item i has more than one dependent298

itemset.299

Note that generally PMI(i, I) ∈300

(−∞, min [− log p(i),− log p(I)]], however, PMI(i, I) ∈301

(0, min [− log p(i),− log p(I)]] in our algorithm to ensure the302

positive dependency between i and I.303

Based on the dependent itemset concept, the dependent304

itemset group is defined as follows.305

Definition 2 (Dependent Itemset Group): For a given item i,306

all its dependent itemsets (Si1, Si2 . . . ) constitute its dependent307

itemset group, denoted as Ai308

Ai = {Si1, Si2 · · · }. (3)309

Example 1: Taking item coke in Table I as an exam-310

ple, its dependent itemset group Acoke = {Scoke1, Scoke2} =311

{{pizza}, {pizza, napkins}}.312

C. Hidden Item Dependency Derivation 313

Given an itemset I = {i1, i2 . . . ij}, the dependent itemset 314

group Ai1, Ai2 . . . Aij of each item from I is, respectively, iden- 315

tified. Aij = {Sij1, Sij2 . . . Sijk}, where Sijk is the kth dependent 316

itemset of ij. 317

Definition 3 (Link Itemset and Link Itemset Group): Given 318

an itemset I = {i1, i2 . . . ij} and the dependent itemset group 319

Aij of each item ij from I, the link itemset group of I is defined 320

as the intersection set of all dependent itemset groups of items 321

within I, denoted as GI . Each element of GI is defined as a 322

link itemset of I, denoted as HI . It is denoted as HI1, HI2 . . . 323

when itemset I has more than one link itemset 324

GI = Ai1 ∩ Ai2 . . . Aij = {HI1, HI2 . . .}. (4) 325

Definition 4 (Hidden Dependent Itemset): Given an itemset 326

I, it is defined as hidden dependent if its link itemset group is 327

not empty. Formally 328

GI 	= ∅. (5) 329

Example 2: Let us take itemset {coke, sprite} from Table I 330

as an example. The dependent itemset groups of items coke 331

and sprite are Acoke = {{pizza}, {pizza, napkins}} and Asprite = 332

{{pizza}, {pizza, napkins}}, respectively. Hence, the link item- 333

set group of {coke, sprite} is G{coke,sprite} = Acoke
⋂

Asprite = 334

{{pizza}, {pizza, napkins}} 	= ∅. Accordingly, {coke, sprite} is 335

a hidden dependent itemset with two link itemsets {pizza} and 336

{pizza, napkins}. 337

D. Implicit Rule Inference 338

Given a hidden dependent itemset, we first compute its IRS 339

and then select those itemsets whose IRS is larger than a min- 340

imum threshold as implicitly related itemsets. Lastly, we infer 341

implicit rules based on these itemsets. 342

Given a hidden dependent itemset I = {i1, i2 . . . ij} together 343

with its link itemset group GI(GI 	= ∅), its IRS is calcu- 344

lated under the intuition that if I has more link itemsets and 345

the items (i1, i2 . . . ij) within I have stronger dependencies on 346

them, these items are more strongly implicitly connected. As 347

a result, the IRS of I is larger. 348

Definition 5 [Conditional IRS (CIRS)]: Given a hidden 349

dependent itemset I = {i1, i2 . . . ij} and a link itemset HI , its 350

IRS conditional on HI is computed as 351

CIRS(I|HI) = min
(
PMI(i1, HI) · · · PMI

(
ij, HI

))
(6) 352

where CIRS(I|HI) ∈ (0, min(− log p(i1), . . . − log p(ij), 353

− log(HI)). 354

Definition 6 (IRS): Given an hidden dependent itemset I = 355

{i1, i2 . . . ij} and its link itemset group GI , its IRS is computed 356

by summing its CIRS on all link itemsets. Formally 357

IRS(I) =
∑

HI∈GI

CIRS(I|HI) (7) 358

where IRS(I) ∈ (0,
∑

HI∈GI
min(− log p(i1), . . . − 359

log p(ij),− log(HI)). The larger IRS(I) is, the stronger 360

the implicit relation that exists between the items within I. 361
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Definition 7 (Implicitly Related Itemset): An implicitly362

related itemset candidate is implicitly related if its IRS is larger363

than the minimum threshold. Formally364

IRS(I) ≥ minIRS (8)365

where minIRS is a predefined threshold to ensure that strong366

enough implicit relations exist between the items within I.367

Definition 8 (Implicit Rules): Given an implicitly related368

itemset I = {i1, i2 · · · ij} and its link itemset group GI =369

{HI1 . . . HIn}(n = |GI |), n implicit rules are inferred, which370

constitute an implicit rule cluster R0371

R0

⎧
⎪⎪⎨

⎪⎪⎩

r01 : i1 ⊕ i2 ⊕ · · · ij|HI1
r02 : i1 ⊕ i2 ⊕ · · · ij|HI2
· · ·
r0n : i1 ⊕ i2 ⊕ · · · ij|HIn.

(9)372

All the rules from R0 share the same implicitly related item-373

set ({i1, i2, . . . , ij}) but take different link itemsets (e.g., HI1374

or HI2) as their conditions. The first rule i1 ⊕ i2 ⊕ · · · ⊕ ij|HI1375

implies that once HI1 has been bought, there is great proba-376

bility that one out of i1, i2 . . . ij will be bought.377

Example 3: Following the implicitly related378

itemset candidate {coke, sprite} in Example 2, its379

conditional IRS (CIRS) conditional on its link380

itemset {pizza} is CIRS({coke, sprite}|{pizza}) =381

min(PMI(coke, {pizza}), PMI(sprite, {pizza})) = 0.12.382

Similarly, CIRS({coke, sprite}|{pizza, napkins}) = 0.12.383

Accordingly, IRS({coke, sprite}) = 0.24. If we set384

minIRS = 0.1, {coke, sprite} is an implicitly related385

itemset. Based on this, two implicit rules coke ⊕ sprite|pizza386

and coke ⊕ sprite|{pizza, napkins} are derived. In reality, such387

rules indicate that coke and sprite are rarely bought together,388

whereas they are much more likely to be bought together389

with other itemsets {pizza} or {pizza, napkins}. This can be390

seen from the transactions in Table I. These observations391

are consistent with customer shopping behaviors, whereby392

one may prefer to buy a basket of products with different393

functions rather than the same function.394

IV. IRRMINER ALGORITHM395

Following the framework illustrated in the previous section,396

the IRRMiner algorithm is developed to mine implicit rules.397

The following anti-monotonous Property 1 is used to gener-398

ate size-L implicit itemset candidates from size-(L-1) ones399

directly to reduce the search space. The size of an implicit400

rule is defined in (10) in Section V. Applying this property401

from lines 16 to 22 in Algorithm 1 guarantees to find all rules402

satisfying the given constraints efficiently. Next, we first give403

and prove such a property theoretically and then describe the404

implicit rule inference algorithm below.405

Property 1: Given a candidate itemset I = {i1 · · · ij} and its406

IRS (IRS(I)), any subset I′(I′ ⊆ I, |I′| ≥ 2) must not have a407

lower IRS, namely IRS(I′) ≥ IRS(I).408

Proof: Given a candidate itemset I = {i1, i2 . . . il . . . ij}(|I| ≥409

3) and one of its subset I′ = {i1, i2 . . . il}(l < j, |I′| ≥ 2),410

according to Definition 3, their link itemset groups are411

GI = Ai1 ∩ Ai2 . . . Ail . . . Aij and G′
I = Ai1 ∩ Ai2 . . . Ail ,412

Algorithm 1 Implicit Rule Inference
Require: T: binary transaction matrix; minsup: support

threshold; minIRS: IRS threshold; MaxSize: the maximum
size of implicitly related itemsets;

Ensure: P: implicitly related itemsets; H: link itemsets;
1: Mine dependent itemset group Ai of each item i according

to Definition 2 and store items with nonempty Ai in D;
2: while L=2 do
3: Generate all possible size-L itemsets on D and store

them in Q{L};
4: for each itemset I ∈ Q{L} do
5: if GI 	= ∅ then
6: Select I as size-L hidden dependent itemset and

store it in C{L};
7: end if
8: end for
9: for each itemset Ic in C{L} do

10: if IRS(Ic) ≥ minIRS then
11: Store Ic in CC{L};
12: if Sup(Ic) ≤ minsup then
13: Select Ic as implicitly related itemset and store

it in P{L}, and store all its link itemsets in H{L};
14: end if
15: end if
16: end for
17: end while
18: while L=3 :MaxSize do
19: for m = 1 : Size(CC{L − 1}) do
20: for n = m + 1 : Size(CC{L − 1}) do
21: if CC{L − 1}(m)([1 : L − 2]) == CC{L −

1}(n)([1 : L − 2]) and CC{L − 1}(m)(L − 1) 	=
CCL − 1(n)(L − 1) then

22: Store [CC{L − 1}(m), CC{L − 1}(n)(L − 1)] into
Q{L} as size-L itemset ;

23: end if
24: end for
25: end for
26: for each size-L itemset I in Q{L} do
27: if all size-(L-1) sub-itemsets of I are in CC{L − 1}

then
28: Execute the same operations from Lines 4 to 16;
29: end if
30: end for
31: end while

respectively. So GI = G′
I ∩ Ail+1 . . . Aij ⊆ G′

I . 413

Assume GI = {H1, H2 · · · Hk} while G′
I = 414

{H1, H2 · · · Hk · · · Hm}(m > k), based on Definitions 5 and 6, 415

IRS(I) = CIRS(I|H1) + CIRS(I|H2) + · · · CIRS(I|Hk) while 416

IRS(I′) = CIRS(I′|H1) + CIRS(I′|H2) + · · · CIRS(I′|Hk) + 417

· · · + CIRS(I′|Hm). Now we compare CIRS(I|H1) and 418

CIRS(I′|H1), CIRS(I|H1) = min{PMI(i1, H1), PMI(i2, 419

H1) · · · PMI(il, H1), PMI(il+1, H1) · · · PMI(ij, H1)} 420

and CIRS(I′|H1) = min{PMI(i1, H1), PMI(i2, H1) · · · 421

PMI(il, H1)}, it’s clear that CIRS(I|H1) = 422

min{min{PMI(i1, H1), PMI(i2, H1) · · · PMI(il, H1)}, min 423
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{PMI (i1+1, H1) · · · PMI(ij, H1)}} = min{CIRS(I′|H1),424

min{PMI(i1+1, H1) · · · PMI(ij, H1)}} ≤ CIRS(I′|H1).425

Similarly, CIRS(I|H2) ≤ CIRS(I′|H2), . . . , CIRS(I|Hk) ≤426

CIRS(I′|Hk), hence IRS(I) ≤ CIRS(I′|H1) + CIRS(I′|H2) +427

· · · CIRS(I′|Hk). Recall that CIRS(I|HI) > 0 as illus-428

trated in Definition 5, it is easy to conclude that429

IRS(I) ≤ CIRS(I′|H1) + CIRS(I′|H2) + · · · CIRS(I′|Hk) +430

· · ·+ CIRS(I′|Hm) = IRS(I′). Hence, Property 1 is proved.431

Combining Property 1 and Definition 7, it is easy to con-432

clude that any subset I′(I′ ⊆ I, |I′| ≥ 2) of an implicitly433

related itemset I is also an implicitly related itemset if I′ meets434

the precondition Sup(I′) ≤ minsup. Such conclusion not only435

reduces the search space in the candidate generation process436

but also helps to identify whether a size-L candidate itemset is437

implicitly related or not by checking all its size-(L-1) subsets.438

This contributes a lot to the space and time efficiency of the439

whole IRRMiner algorithm.440

Algorithm 1 is divided into three parts: 1) discover depen-441

dent itemset groups (line 1); 2) mine size-2 implicit rules and442

prepare to mine implicit rules of larger sizes (lines 2–17);443

and 3) discover implicit rules with a size larger than 2444

(lines 18–31). Specifically, all dependent itemsets are identi-445

fied and possible size-2 itemsets are generated on those items446

whose dependent itemset group is not empty (blueLines 1–3).447

Then the link itemset group, IRS and support of these gen-448

erated itemsets are checked one by one to filter out those449

nonpotential implicitly related itemsets step by step while450

keeping implicitly related itemsets together with their corre-451

sponding link itemsets as the output (blueLines 4–17). When452

the size of an itemset grows larger than 2, the anti-monotonous453

Property 1 is utilized to generate larger candidate item-454

sets more efficiently based on the pattern growth method455

(lines 19–25) and to conduct prefiltering on these itemsets456

(lines 26–27). Finally, the implicitly related itemsets and their457

link itemsets are achieved by undertaking the same filtering458

operations (line 28) as those used in the mining of size-2459

implicit rules.460

V. EXPERIMENTS AND EVALUATION461

A. Experiment Set Up462

No existing work can exactly mine our proposed implicit463

rules, to the best of our knowledge, and only a typical464

indirect association rule mining algorithm (IARMiner) [14]465

can partially discover rules similar to ours. The rules mined466

by IARMiner are in the form of (M; {x, y}), where item-467

set M is the mediator itemset for connecting items x and y.468

These rules can be transferred to our implicit rules, such as469

x ⊕ y|M. To evaluate our proposed algorithm, we compare470

our proposed IRRMiner with the representative indirect asso-471

ciation rule mining algorithm IARMiner on four real-world472

transactional datasets: ERD, Bookcross,2 MovieLens_1 and473

MovieLens_2. Such comparison has some limitations due to474

the nonexactly identical goals of the compared algorithms.475

Specifically, we can only make a comparison on the capa-476

bility of mining size-2 rules instead of larger ones (rules477

2Available on http://grouplens.org/datasets/book-crossing/.

of size-3 and size-4) between IRRMiner and IARMiner as 478

IARMiner can only mine size-2 rules; the mined rules may 479

not always be completely identical as the constraints used 480

in IARMiner and IRRMiner are not completely the same. 481

However, empirical results show that most of the resultant 482

size-2 rules from both algorithms are the same. MovieLens_1 483

and MovieLens_2 are extracted from the MovieLens 10M3
484

dataset by including different parts of transactions. A detailed 485

description of these datasets is given in Table II. Items, books, 486

and movies in the experimental datasets are called items uni- 487

formly in this paper to simplify the terms. Note that all the 488

four transactional datasets are transferred into 0-1 encodings 489

as Table I and the density shown in Table II is quantified 490

by Density = (#entries valued 1/#entries), for instance, the 491

density of transaction Table I is (15/24) = 62.5%. 492

Both IRRMiner and IARMiner have two key parameters: 493

minsup (called t_r in [14]) is shared by the two algorithms 494

while minIRS and t_μ are used in IRRMiner and IARMiner, 495

respectively. To be specific, minsup is a frequency-constraint 496

to ensure the implicitly related or indirect associated items do 497

not co-occur frequently [e.g., sup(x, y) ≤ minsup]. minIRS 498

is used to guarantee strong IRS between implicitly related 499

items [e.g., IRS(x, y) ≥ minIRS] in IRRMiner while t_μ is to 500

ensure strong dependency between each of the indirectly asso- 501

ciated items and the corresponding mediate itemset M [e.g., 502

μ(x, M) ≥ t_μ]. In addition, two extra parameters t_ f and t_m 503

are also used in IARMiner, where t_ f is to make sure each 504

item in an indirectly associated item pair is frequent [e.g., 505

sup(x) ≥ t_ f ] and t_m is to guarantee that it co-occurs with 506

the mediate itemset frequently [e.g., sup(x, M) ≥ t_m]. In all 507

the experiments, we keep the common parameter minsup(t_r) 508

identical for both algorithms to ensure fair comparisons while 509

empirically tuning other noncommon parameters. 510

In order to show the capacity of IRRMiner to cover infre- 511

quent items and to mine implicit rules larger than size-2, we 512

conduct comparisons between IARMiner and IRRMiner in 513

terms of rule coverage, rule size, and rule number in the fol- 514

lowing Parts B and C, respectively. To test the efficiency of our 515

proposed IRRMiner, we compare the run time of IRRMiner 516

and that of IARMiner in the following Part D. A data factor 517

test is conducted in Part E to test the outcome difference of our 518

proposed IRAMiner on datasets with different characteristics. 519

B. Rule Coverage Comparison 520

Nearly all the indirect rule mining approaches including 521

IARMiner can only mine size-2 rules, to make a fair com- 522

parison, we also limit the size of rules from IRRMiner to 2 523

when comparing rule coverage. The coverage of the size-2 524

rules resulting from IARMiner and IRRMiner together with 525

the average frequency of their covered items are given in 526

Fig. 2(a) and (b), respectively. Here, coverage is defined 527

as the ratio of items covered by all the mined rules with 528

respect to the whole item population, while the frequency 529

of a certain item is its occurrence times divided by the total 530

number of transactions in a dataset. On one hand, Fig. 2(a) 531

shows that the coverage of IRRMiner is obviously larger 532

3Available on http://grouplens.org/datasets/movielens/.



IEE
E P

ro
of

WANG AND CAO: INFERRING IMPLICIT RULES BY LEARNING EXPLICIT AND HIDDEN ITEM DEPENDENCY 7

TABLE II
STATISTICS OF EXPERIMENTAL DATASETS

(a) (b)

Fig. 2. Rule coverage and average covered item frequency on different
datasets.

than IARMiner on all the four datasets, which means our533

proposed algorithm can discover implicit relations between534

more items than IARMiner. On the other hand, Fig. 2(b)535

illustrates that the average frequency of the covered items536

by IRRMiner is clearly lower than that by IARMiner, which537

means our algorithm can discover implicit relations between538

more infrequent items. Combining these two figures, it is easy539

to conclude that IRRMiner discovers not only the implicit540

rules between frequent items as the existing indirect associ-541

ation mining approaches do, but also implicit rules between542

infrequent items. The reason behind this is easy to find by543

looking at the algorithm design, which is different from most544

indirect association mining algorithms, which are limited to545

frequent items only, due to their base (frequent association546

mining). However, our algorithm goes beyond such a base,547

and it is not necessary for the items to be frequent.548

C. Rule Size and Number Comparison549

To make a fair comparison, the corresponding constraints550

in IARMiner and IRRMiner are set to be equivalent to each551

other. Specifically, the common parameter minsup(t_r) is set552

to 10%, 1%, 15%, and 1.5% empirically on ERD, Bookcross,553

MovieLens_1, and MovieLens_2, respectively, both in554

IARMiner and IRRMiner algorithms. Both minIRS and t_μ555

are set to 0 as it is only in this case that these two constraints556

are essentially equivalent to each other as proved below.557

Proof: Suppose implicitly related itemset I = {x, y}, item-558

set M is a link itemset to connect x and y. According to559

(2) and (6)–(8), minIRS = 0 indicates IRS(x, y) ≥ 0, which560

means there exists at least one link itemset HI which makes561

CIRS(I|HI) ≥ 0. Suppose CIRS(I|M) ≥ 0, according to562

(6), PMI(x, M) ≥ 0 and PMI(y, M) ≥ 0, namely p(x, M) ≥563

p(x)p(M) and p(y, M) ≥ p(y)p(M). On the other hand, accord-564

ing to the definition of μ(x, M) in [14], t_μ = 0 means565

μ(x, M) = ([p(Mx) − p(M)p(x)]/[p(Mx)(1 − p(x))]) ≥ 0,566

which also indicates p(x, M) ≥ p(x)p(M), for the same reason,567

p(y, M) ≥ p(y)p(M). So the key constraints IRS(x, y) ≥ 568

minIRS in IRRMiner and μ(x, M) ≥ t_μ in IARMiner are 569

actually the same when their thresholds are set to 0. 570

The size of an implicit rule “r : i1 ⊕ i2 ⊕ · · · ij|HI(I = 571

{i1, i2 · · · ij})” is defined as the size of itemset I, which mea- 572

sures how many items are implicitly related conditioned on 573

H_I. Formally 574

Size(r) = ∣
∣
{
i1, i2 · · · ij

}∣
∣. (10) 575

Table III shows the number of indirect association rules 576

mined by IARMiner (IAR. for short) and implicit rules mined 577

by IRRMiner (IRR). Two main conclusions can be drawn from 578

this. 579

1) IRRMiner can mine more size-2 rules than IARMiner 580

(i.e., 4243 versus 2226 on the ERD dataset). By check- 581

ing the rules more deeply, we find the rules mined by 582

IARMiner are a subset of rules from IRRMiner. This 583

is because IRRMiner targets not only the implicit rules 584

between frequent items but also the infrequent ones, 585

as stated in the introduction. Therefore, IRRMiner can 586

cover more items and generate more rules, which is con- 587

sistent with the results of the coverage comparison in 588

Part B. 589

2) IRRMiner can mine implicit rules with a size larger 590

than 2 while IARMiner cannot. Theoretically, IRRMiner 591

can output rules as large as the number of items in the 592

transaction as long as the dataset supports such rules. 593

Note that rules with a size larger than 4 are not shown 594

due to space limitations. Thanks to the design behind 595

IRRMiner, which considers the implicit relations among 596

all possible items rather than just the indirect association 597

between a pair of frequent items as IARMiner does, the 598

complex implicit relations among multiple items discov- 599

ered by IRRMiner are more general and more consistent 600

with the real-world cases compared to the indirect asso- 601

ciation rules of size-2. In summary, IRRMiner goes far 602

beyond IARMiner by returning more rules of larger 603

sizes. Implicit rules of a large size reveal much more 604

hidden information between multiple items than size-2 605

rules which only reflect pairwise relations between every 606

two items. Taking a sample from the ERD dataset as an 607

example, the triad implicit relation among three books 608

An Introduction to Secondary Data Analysis, Python 609

Data Science Handbook, and Microsoft Excel 2013 Data 610

Analysis is richer than the pair-wised indirect association 611

between any two of them. 612

Essentially, the indirect association rule mining framework 613

is a special case of our proposed framework. When we only 614

focus on the implicit relations between frequent items and limit 615
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TABLE III
NUMBER OF MINED RULES BY IARMINER (IAR.)

AND IRRMINER (IAR.)

the rule size to 2, our framework is simplified to the existing616

indirect association mining one, and can mine the same rules617

as indirect association mining does.618

D. Run Time Comparison619

To evaluate the efficiency of the developed IRRMiner algo-620

rithm, two sets of experiments are organized. One is to621

compare the run time of IARMiner and IRRMiner to mine622

the same size-2 rules, in which both the rules and rule num-623

bers resultant from both algorithms are exactly the same. The624

other is to compare the run time of both algorithms to mine625

the same number of size-2 rules, where the rules may not be626

completely identical.627

Recall that IRRMiner can be simplified to indirect associa-628

tion mining algorithms and can mine the same rules as them,629

as discussed in the last paragraph in Part C. We add an extra630

frequency constraint on IRRMiner and limit the rule size to 2631

to make sure it only discovers the same rules or the same num-632

ber of rules as IARMiner. We keep the values of corresponding633

parameters the same in both algorithms for a fair comparison,634

namely minIRS and minsup in IRRMiner are equal to t_μ and635

minsup in IARMiner, respectively. In addition, we keep both636

minIRS and t_μ unchanged (minIRS = t_μ = 0, according to637

the proof in Part C) while change minsup in two algorithms638

synchronously in the first set of experiments; in the second set639

of experiments, the minsup in IARMiner and IRRMiner are640

kept equal and unchanged (empirically 10% in ERD, 1% in641

Bookcross, 15% in MovieLens_1, and 1.5% in MovieLens_2642

for both algorithms) while minIRS in IRRMiner and t_μ in643

IARMiner are adjusted accordingly to mine the same number644

of rules. The results of these two sets of experiments are given645

in Tables IV and V, respectively, in which the symbol “*” rep-646

resents the time spent by IARMiner under certain t_μ values.647

Note that in the second set of experiments, to achieve the iden-648

tical number of rules, t_μ in IARMiner does not necessarily649

need to be equal to minIRS in IRRMiner.650

It is clear that, in mining either the same implicit size-2 rules651

in Table IV or the identical number of size-2 implicit rules in652

Table V, our proposed IRRMiner is much more efficient than653

IARMiner. The run time is reduced by around 80% on the654

ERD dataset and around 90% on the other three datasets by655

IRRMiner, compared to IARMiner.656

One main contribution to efficiency improvement is the657

first step (explicit dependency discovery) in our proposed658

IRRMiner, which only exists in our algorithm. It checks659

whether an item has dependent itemsets; items without660

dependent itemsets are not considered in the subsequent steps. 661

Many items without dependent itemsets but are frequent are 662

filtered out in an early stage. However, such items cannot be 663

removed in the beginning of IARMiner which uses a support 664

threshold to filter out nonfrequent items in its first step. This 665

partly explains why IRRMiner is clearly more efficient than 666

IARMiner. 667

The time complexity analysis of Algorithm 1 is detailed 668

in this paragraph. Assume the total number of items in the 669

transactional matrix is N. Given an implicit rule mining task, 670

the total process of the IRRMiner algorithm is divided into 671

two stages: 1) the preparation stage illustrated by lines 1 and 672

2) the implicit rule mining stage described from line 2 to the 673

end of the algorithm. Please note that the preparation stage 674

is a preprocessing operation, once it is ready, various sizes 675

of implicit rules under different minIRS values can be mined 676

without the need to conduct the preparation stage again, which 677

means it is not necessary to run line 1 every time when we 678

mine implicit rules. Hence, the run time of IRRMiner mainly 679

depends on the second stage. Specifically, suppose a percent- 680

age of α of all the N items have dependent itemsets, so C2
αN 681

possible size-2 itemsets will be generated in line 2, which 682

result in C2
αN = ([(αN) ∗ (αN − 1)]/2) times of compu- 683

tation from lines 3 to 7, accordingly, the time complexity 684

of these lines is O((αN)2). Meanwhile, at most C2
αN hidden 685

dependent itemsets will be selected in line 5, which results 686

in the maximum computational times being also C2
αN from 687

lines 8–15. The time complexity of lines 8–15 is O((αN)2) 688

too. Overall, the time complexity of the implicit rule mining 689

stage is O((αN)2) in mining size-2 implicit rules. Similarly, 690

the time complexity of mining size-3, size-4, . . . , etc. implicit 691

rules are O((αN)4), O((αN)8), . . ., etc. For the preparation 692

stage, when we set the maximum length of link itemset to 1, 2, 693

3, etc., the time complexity is O((αN)), O((αN)2), O((αN)4), 694

etc. In IARMiner, the time complexity is O((βN)3), O((βN)4), 695

O((βN)6), etc., when the maximum length of the mediate 696

itemset is set to 1, 2, 3, etc., where parameter β is the percent- 697

age of frequent items with respect to all items. To summarize, 698

when mining size-2 rules, the time complexity of IRRMiner is 699

O((αN)2), compared to O((βN)3), O((βN)4), O((βN)6), etc., 700

of IARMiner if we do not consider the preparation stage of 701

IRRMiner. Even if we take the preparation into consideration, 702

the time complexity of IRRMiner is O((αN)2), O((αN)2), 703

O((αN)4) compared to O((βN)3), O((βN)4), O((βN)6) of 704

IARMiner, respectively, by setting the maximum length of the 705

dependent itemsets in IRRMiner to the same as that of the 706

mediate itemset in IARMiner. Accordingly, IRRMiner reduces 707

the time complexity of O((N)) and O(N2), respectively, when 708

we set the maximum length of link itemset to 1 and larger 709

than 1 with the consideration of preparation. This explains 710

why IRRMiner is always much more efficient than IARMiner, 711

especially in a dataset with a large number of items. This is 712

consistent with the empirical results in Tables IV and V. 713

E. Data Factor Test 714

To test the performance of the proposed algorithm on 715

datasets of different characteristics, we conduct data factor test. 716
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TABLE IV
RUN TIME (IN SECOND) UNDER DIFFERENT minsup(m.s.)

TABLE V
RUN TIME (IN SECOND) UNDER DIFFERENT minIRS(m.I.)

Specifically, two data factors: density (D) and the total num-717

ber of items (N) are selected. Recall the number of possible718

size-2, size-3, etc., itemsets are C2
αN , C3

αN , etc., respectively,719

as illustrated in the fourth paragraph of Section V-D, it is obvi-720

ous that α and N can substantially affect the number of mined721

implicit rules by first deciding the number of possible gener-722

ated itemsets and candidate itemsets. Furthermore, α is greatly723

affected by data density, because the items in a dense dataset724

are more likely to be dependent on each other than those in a725

sparse one. In other words, data density closely relates to the726

number of resultant rules via α.727

To make a fair comparison, when one data factor is tested,728

we ensure the other data factor is identical on all the datasets729

by conducting necessary processing on them. For example,730

when testing the effect of density, the number of items in the731

three datasets used in 1) is kept the same.732

1) Density Test: We test the effect of dataset density on the733

number of implicit rules mined by IRRMiner by running it on734

three real-world datasets with various density degrees but with735

the same number of items. The number of obtained rules is736

shown in Fig. 3(a).737

It is quite obvious that under the same experimental settings,738

the number of rules is significantly influenced by the data739

density. Fig. 3(a) shows that the denser a dataset is, the more740

rules are obtained. The number of rules of all sizes for the741

dataset with a density of 20.6% is much larger than that for742

the dataset with density of 10.3%, the latter is also much larger743

than that on the dataset with density of 5.2%. In addition, it is744

much more likely that larger rules will be obtained for denser745

datasets, for instance, only the densest dataset (D = 20.6%)746

results in rules of size larger than 9. This is consistent with747

the statement in the first paragraph of this section that items748

in a dense dataset are more likely to depend on each other and749

lead to a higher α for the dataset, and produce more rules.750

2) Item Number Test: We test the effect of item number751

(N) on the number of implicit rules mined by IRRMiner by752

running it on three real-world datasets with different number of753

items but with the same density. The number of rules obtained754

is shown in Fig. 3(b). The results are also consistent with the755

analysis in the first paragraph in this section. When the data756

density is unchanged, larger N implies more candidate itemsets757

generated and also more rules mined.758

(a) (b)

Fig. 3. Rule number comparisons with respect to different data density
degrees (D) or item numbers (N). (a) Test on data density. (b) Test on item
number.

VI. CASE STUDY: IMPLICIT RULES-BASED 759

RECOMMENDATION 760

IRRMiner can be applied to different cases, such as product 761

promotion and cross-saling by exploring the implicit rela- 762

tions hidden behind various products. Here, we show how 763

the mined implicit rules assist in pattern-based recommen- 764

dation [42] to increase recommendation reliability. We first 765

analyze the theoretical benefits and then justify them with 766

real-world case studies. Note that the implicit rules used for 767

recommendations are mined on transactional data, hence we 768

can only make recommendations based on transactional infor- 769

mation, which is the typical scenario, where pattern-based 770

recommendation is applicable. This is quite different from the 771

well-known content-based or collaborative filtering [43] based 772

recommendations which are built on the rating data. 773

One of the most important applications of association rules 774

or correlation rules is to increase product sales by recom- 775

mending some items associated with the items that a customer 776

has just bought. To apply these rules to the recommendation 777

domain, we introduce the concept of recommendation rules in 778

the form of X → Y to describe the recommendation strategy, 779

whereby itemset Y is recommended to those consumers who 780

have just bought itemset X. In this case, a direct method to 781

evaluate recommendation quality is to check whether the rec- 782

ommended items have actually been bought by the customers 783

or not. The higher possibility of Y to be bought together with 784

X, the more reliable the recommendation rule X → Y . Based 785

on such observation, the recommendation reliability of a typ- 786

ical recommendation rule X → Y is defined as the percentage 787
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TABLE VI
MEAN RECOMMENDATION RELIABILITY USING IMPLICIT RULES (IM_RULE) AND

CORRELATION RULE (CORE_RULE) WITH RESPECT TO DIFFERENT minIRS

TABLE VII
MEAN RECOMMENDATION RELIABILITY OF TOP-K RULES WHEN minIRS = 1

of transactions with X and Y included with respect to those788

including X. Formally789

Reliability(X → Y) = #transactions including X and Y

#transactions including X
.790

(11)791

Usually, different patterns lead to different recommendation792

strategies and recommendation rules in pattern-based recom-793

mendation [44], which result in different levels of recommen-794

dation reliability. Note that here, pattern is a general concept;795

implicit rules, association rules, and correlation rules [45]796

are all specific forms of patterns. To be specific, association797

rule-based recommendation suggests those explicitly associ-798

ated items; correlation rule-based recommendation suggests799

explicitly correlated items; while implicit rule-based recom-800

mendation makes recommendations by considering not only801

explicit dependency but also implicit dependency between802

items. Since our mined implicit rules are built on the basis803

of dependency between items, which is similar to correlation804

rules, we compare implicit relation-based recommendation805

with correlation rule-based recommendation in terms of relia-806

bility. Next, we analyze the recommendation strategies in the807

form of recommendation rules based on implicit rules and cor-808

relation rules [25], respectively, and then compare these two809

kinds of rule-based recommendations in terms of reliability.810

Suppose x and y are two distinct items while Z is an itemset811

and an implicit rule x⊕y|Z is mined among them. Accordingly,812

a recommendation rule Z ∧¬y → x (Z ∧y 	→ x) is derived for813

recommending a related item x to those who have just bought814

itemset Z based on the explicit dependency between x and Z,815

and at the same time the effect of the implicitly related item y816

of x is considered. Specifically, when a business plan to pro-817

mote or recommend item x to a customer, if the customer has818

bought Z but not y (and x), it can be proceeded. However, if the819

customer has already bought Z and y, the planed recommen-820

dation action should be terminated. In this way, the conditions821

(antecedents of recommendation rules) to recommend an item822

are more precise, and accordingly, recommendation reliabil-823

ity is improved. On the other hand, for items x and y and824

itemset Z, two correlation rules [x, Z] and [y, Z] can be easily825

obtained due to the strong explicit dependency between x(y)826

and Z. Here, [x, Z] infers that x and Z are positively correlated. 827

Based on these correlation rules, two recommendation rules 828

Z → x and Z → y are derived for recommending correlated 829

item x and y to those who have just bought Z. Technically, such 830

recommendations are less reliable than implicit rule-based rec- 831

ommendations due to the lack of consideration of the implicit 832

relations between items (e.g., the implicit relation between x 833

and y). Unfortunately, both the existing association rule-based 834

recommendation and correlation rule-based recommendation 835

do not take such kind of implicit relations into account. 836

Taking the ERD data as an example, let us consider 837

under which conditions recommending item coke is more 838

reliable. Two recommendation rules r1 : pizza → coke and 839

r2 : pizza ∧ ¬sprite → coke can be derived based on correla- 840

tion rules and implicit rules, respectively. The left-hand side 841

of each rule indicates the conditions in which to recommend 842

the right-hand side items. The first rule r1 infers that once 843

customers buy pizza we can recommend coke to them while 844

the second rule means when customers have bought pizza, we 845

need to check if the other items implicitly related to coke have 846

already been bought, if they have not been bought, we would 847

recommend coke. In practice, when we go back to the trans- 848

actions in Table I, it is obvious that the conditions in which 849

to recommend coke described by r2 are more precise and reli- 850

able than that of r1, which can also be illustrated by a higher 851

reliability of 100% of r2 than a lower reliability of 66.67% 852

of r1. This shows that taking into account implicit relations 853

between items contributes to reliable recommendations. 854

In addition to the above theoretical benefits of implicit rules 855

in increasing recommendation reliability, we also calculate 856

the reliability of both implicit rule-based recommendations 857

and correlation rule-based recommendations on two real-world 858

datasets: ERD and MovieLens_1. The results are given in 859

Tables VI and VII, where the mean values of the corresponding 860

recommendation rules based on implicit rules and correla- 861

tion rules, respectively, are given. Please note that here the 862

parameter minIRS only exists in the implicit rule-based rec- 863

ommendation algorithm (IRRMiner), and under each minIRS 864

value setting, the identical number of implicit rules and corre- 865

lation rules are selected to compare their average reliability. It 866

is obvious that, under all the minIRS value settings, implicit 867
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rule-based recommendation always has higher reliability than868

the correlation rule-based one, as shown in the first column869

in Table VI (35.54% for the Im_Rule compared to 33.7% for870

the Core_Rule), and in the first column in Table VII (49.41%871

for the Im_Rule compared to 43.98% for Core_Rule). It is872

clear that the reliability of all implicit rules (shown in the first873

column) increases with an increase in the minIRS. This is874

because, the implicit rules with weak implicit relations are875

filtered out during the increase of minIRS, and fewer and876

stronger implicit rules are selected. Such strong rules have877

higher reliability. Also less strong correlation rules are selected878

to guarantee the identical number of rules as implicit rules, so879

the reliability of the correlation rules also increases with an880

increase in minIRS. Please note that the top 10, top 5, and top881

3 rules are rarely affected by the increase of minIRS as the882

IRS of these rules is usually much higher than minIRS.883

In addition, some specific recommendation rules based on884

implicit rules and correlation rules are selected below. To dif-885

ferentiate these from recommendation rules, we use p′
1 and p′

2886

to represent two implicit rules mined from the ERD dataset.887

Based on the relations between the items included in these888

implicit rules, some recommendation rules based on corre-889

lation rules (e.g., r′
11, r′

21) and implicit rules (e.g., r′
13, r′

23)890

are derived. In addition, to show the significant effect of the891

implicitly related items on recommendation reliability, we also892

add another rules (r′
12, r′

22). The name of each item is given893

R′
1

⎧
⎪⎪⎨

⎪⎪⎩

p′
1 : i′11 ⊕ i′48|i′12

r′
11 : i′11 → i′12 reliability(r′

11) = 42.4%
r′

12 : i′11 ∧ i′48 → i′12 reliability(r′
12) = 36.3%

r′
13 : i′11 ∧ ¬i′48 → i′12 reliability(r′

13) = 45.1%

894

R′
2

⎧
⎪⎪⎨

⎪⎪⎩

p′
2 : i′19 ⊕ i′48|i′12

r′
21 : i′19 → i′12 reliability(r′

21) = 41.5%
r′

22 : i′19 ∧ i′48 → i′12 reliability(r′
22) = 38.69%

r′
23 : i′19 ∧ ¬i′48 → i′12 reliability(r′

23) = 43.5%

(12)895

i′11: a book titled “An Introduction to Secondary Data896

Analysis with IBM SPSS Statistics” (Book 1);897

i′12: Philips Peripherals SWR2122/27 Retractable USB898

Cable;899

i′16: Tableau software for data analysis;900

i′19: a book titled “Python Data Science Handbook:901

Essential Tools for Working with Data” (Book 2);902

i′48: a book titled “Microsoft Excel 2013 Data Analysis903

and Business Modeling (Introducing)” (Book 3);904

i′61: San-Disk Memory Card.905

Please note that we target the scenario that, for a given item,906

in what conditions (described by the antecedent of the recom-907

mendation rules) it should be recommended to achieve greater908

reliability. In practice, a given item can be recommended in909

all the different conditions described by different rules (e.g.,910

r′
11, r′

12, and r′
13), but usually the market wants to make a rec-911

ommendation as reliable as possible. It is quite clear, given912

the same item (e.g., retractable USB cable), more reliable rec-913

ommendation rules (r′
13, r′

23) can be achieved if more implicit914

relations (the relations between Books 3 and 1 and 2, respec-915

tively) are taken into consideration. This reflects the common916

shopping behavior that customers do not prefer to buy two917

similar items within one transaction. For the other dataset918

MovieLens_1, the movie name is not given in the source data 919

MovieLens10M, so we do not show the specific rules mined 920

on it. 921

VII. CONCLUSION 922

Identifying implicit relation-based complex rules is demand- 923

ing but challenging and extends far beyond the traditional rule 924

mining framework, such as association rule, causal rule, and 925

correlation rule mining. In this paper, we have proposed a 926

new approach which first captures the dependency between 927

items and then links those items that share the same depen- 928

dent items (or itemsets) to infer implicitly related rules. 929

Thanks to the special new structures of implicit rules, the 930

complex relations between multiple items are comprehen- 931

sively revealed. Experimental results on real-world datasets 932

show that our proposed implicit rule mining algorithm is very 933

promising and can generate implicit rules which cannot be 934

discovered by existing algorithms. Further, it runs much faster 935

than an indirect association rule mining algorithm. Case stud- 936

ies demonstrate that it greatly benefits recommendation by 937

increasing its reliability and reducing the number of redundant 938

recommendations. In the future, we will explore the possibility 939

of incorporating item features into our rule inference frame- 940

work to reveal low-level intrinsic interitem relations (e.g., 941

similarity). Hopefully, more informative implicit rules can be 942

achieved to better help with real-world business. 943
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