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Learning Nonparametric Relational Models
by Conjugately Incorporating Node

Information in a Network
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Abstract—Relational model learning is useful for numerous
practical applications. Many algorithms have been proposed in
recent years to tackle this important yet challenging problem.
Existing algorithms utilize only binary directional link data to
recover hidden network structures. However, there exists far
richer and more meaningful information in other parts of a
network which one can (and should) exploit. The attributes asso-
ciated with each node, for instance, contain crucial information
to help practitioners understand the underlying relationships in
a network. For this reason, in this paper, we propose two mod-
els and their solutions, namely the node-information involved
mixed-membership model and the node-information involved
latent-feature model, in an effort to systematically incorporate
additional node information. To effectively achieve this aim, node
information is used to generate individual sticks of a stick-
breaking process. In this way, not only can we avoid the need to
prespecify the number of communities beforehand, the algorithm
also encourages that nodes exhibiting similar information have
a higher chance of assigning the same community membership.
Substantial efforts have been made toward achieving the appro-
priateness and efficiency of these models, including the use of
conjugate priors. We evaluate our framework and its inference
algorithms using real-world data sets, which show the generality
and effectiveness of our models in capturing implicit network
structures.

Index Terms—Bayesian nonparametrics, convergence rate,
node information, relational model.

I. INTRODUCTION

COMMUNITY detection and network partitioning is an
emergent topic in various areas including social-media

recommendation [1], customer partitioning [2], [3], social net-
work analysis [4], [5], and partitioning protein interaction
network tasks [6]–[10]. Many models have been proposed
in recent years to address this problem by using link data
(e.g., a person’s view toward others). Some examples include
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the stochastic blockmodel [11] and in the case of infinite com-
munities, the infinite relational model (IRM) [12], both aiming
at partitioning a network of nodes into different groups based
on their pairwise, directional binary observations. In most
existing approaches, the “internodes” link data are lone con-
tributors toward the understanding of the insights of social
structures. That is to say, in classical relational models, we
are given the nodes’ interaction data (usually an n × n binary
matrix, n is the number of nodes in a network, 0 for no inter-
action and 1 for interaction, and the task is then to infer the
nodes’s group belongings).

On the other hand, the “intranodes” information is a vital
source of additional information to complement the link infor-
mation. Let us take the Lazega data set [13] (detailed in
Section VI), which is a social network within a lawyer firm, as
an example. The node (i.e., attorney) here contains informa-
tion such as ages, offices (Boston, Hartford, or Providence),
and law schools (Harvard, Yale, Ucon, or other). Naturally, the
attorneys with similar information (e.g., the same office) tend
to have relationships and/or belong to same community. An
appropriate modeling which also incorporates this information
would provide us with a much more complete understanding
of the network.

While some recent efforts have been directed to incor-
porate the node information, they all face several short-
comings mainly in terms of appropriateness and efficiency.
For example, in terms of appropriateness, in latent feature
relational model (LFRM) [14], although the direct and lin-
ear combination of node information and the latent feature
have experimentally demonstrated its effectiveness in link pre-
diction, it is hard to interpret the recovered features and
their related social structure (also stated in [15]). In terms
of efficiency, taking nonparametric metadata dependent rela-
tional (NMDR) model [15] as example, the logistic-normal
transform was employed to integrate the node information
into each node’s mixed-membership distribution. However,
this integration complicates the original structure and results
in nonconjugacy during the inference. Especially, as we
should notice, all of the previous work incorporating these
node-information is utilized via an unconjugate way.

Two major branches of relational models have been devel-
oped in the last few years, namely the mixed-membership
stochastic blockmodel (MMSB) [16] and the LFRM [14],
where community memberships are modeled as mixed
memberships and latent features, respectively. In order to
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demonstrate the generality of our method, we have indi-
vidually adapted our method to both of these frameworks
and have produced two distinct models, which is the central
theme of this paper: the node-information involved mixed-
membership model (niMM) and the node-information involved
latent-feature model (niLF). In both cases, methods simi-
lar to the stick-breaking process [17], [18] are proposed
to model the unknown number of communities. In partic-
ular, niMM successfully obtains the conjugate property (in
Bayesian probability theory, conjugate property refers to the
case that the posterior distributions are in the same family as
the prior probability distributions) during the Markov chain
Monte Carlo (MCMC) inference procedure. This property
enables us to efficiently and effectively inference the model,
since the required posterior likelihoods can be presented as an
analytical form. As discussed later, through these efforts, the
existing models (MMSB and LFRM) can be seen as special
cases of our proposed models. In this way, our models cap-
ture much richer information embedded in a network; hence,
they result in better performance in modeling the communities’
memberships as illustrated in the experiments.

In summary, our contributions can be stated as follows.
1) We have naturally extended the existing benchmark

models (i.e., MMSB and LFRM) to incorporate the
nodes’ information. The experimental results seem quite
promising while the nodes’ information is closely related
to the link data.

2) Our extension to MMSB has retrieved the conjugate
property during the MCMC inference, which mixes
much faster in the Markov Chain than the previous
approaches. Also, we find that in the experiments, our
method converges much earlier than the previous one.

3) Our model is under the Bayesian nonparametrics set-
ting (achieved through the methods similar to the
stick-breaking constructions), which can deal with the
problem of an unknown number of communities.

The rest of this paper is organized as follows. We start with
an introduction to the notations and preliminary knowledge.
Then, we describe both our niMM and niLF models in details,
as well as the detail inference procedure and a “collapsed”
inference discussion of niMM. We also include the model’s
computational complexity analysis in the same section. In
Section VI, we compare our methods with the previous work to
validate the models performances. The conclusions and future
work are given in the last section.

II. NOTATIONS AND PRELIMINARY KNOWLEDGE

A. Notations

We first give all the notations in this paper in Table I.

B. Mixed-Membership Stochastic Blockmodel

A graphical model or probabilistic graphical model is a
probabilistic model for which a graph expresses the condi-
tional dependence structure between random variables. Among
its various presentation, the MMSB [16] aims at modeling each
node’s individual mixed-membership distribution. In MMSB,
each link data eij corresponds to two membership indicators:

TABLE I
NOTATIONS FOR OUR NIMM AND NILF MODELS

Fig. 1. Graphical model for the MMSB and the LFRM. Here, sij and rij in
the rectangular nodes represent the latent variable in MMSB, and zi and zj
are in the LFRM context.

1) sij from the sender i and 2) rij to the receiver j. (w.l.o.g.,
we assume sij = k and rij = l). The link data’s value is deter-
mined by the compatibility of two corresponding communities
k and l. Fig. 1 shows the graphical model, which expresses the
conditional dependence among these variables and the detailed
generative process can be described as follows.

1) ∀{k, l} ∈ N > 0, draw the communities’ compatibility
values Bk,l ∼ Beta(λ1, λ2).

2) ∀i ∈ {1, . . . , n}, draw node i’s mixed-membership
distribution πi ∼ Dirichlet(β).

3) ∀{i, j} ∈ {1, . . . , n}2, for link data eij.
a) Sender’s membership indicator sij ∼ Multi(πi).
b) Receiver’s membership indicator rij ∼ Multi(πj).
c) The link data eij ∼ Bernoulli(Bsij,rij).

It should be noted that each π i is responsible for generating
both the sender’s labels {sij}n

j=1 from node i and the receiver’s
labels {rji}n

j=1 to node i.

C. Latent Feature Relational Learning

The LFRM [14] provides an alternative modeling method to
infer the nodes’ latent features. Compared to MMSB, the main
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Fig. 2. Generative model for the niMM and niLF models.

difference of LFRM is that it assumes each node has links with
others under one single binary vector, and this vector indicates
the communities to which it belongs.

As shown in graphical model shown in Fig. 1, the detailed
generative process can be described as follows.

1) ∀{k, l} ∈ N > 0, draw the communities’ compatibility
values Bk,l ∼ Normal(0, 1).

2) ∀i ∈ {1, . . . , n}, draw node i’s stick-breaking represen-
tation πi ∼ Dirichlet(β).

3) ∀i ∈ {1, . . . , n}, draw node i’s binary latent feature
vector zi ∼ Bernoulli(πi).

4) ∀{i, j} ∈ {1, . . . , n}2, for link data eij.
a) The link data eij ∼ Bernoulli(1/1 + exp(−ziBzj)).

D. Bayesian Nonparametrics

Bayesian nonparametrics is a popular tool to fit a sin-
gle model that can adapt its complexity to the data, that
is to say, the model complexity would grow as more data
are observed. Upon this powerful technique, the hierarchical
Dirichlet process (HDP) [19] is further developed to model
the groups’ correlation in the Bayesian nonparametrics con-
texture. For instance, the Bayesian nonparametrics methods
can be used to infer the number of topics in one document in
latent Dirichlet allocation of topic models. The HDP is used
to model the topics’ behavior in different documents and the
topics are shared among these documents.

In our “dynamic” setting, we use the Bayesian nonparamet-
ric method allow the communities’ numbers to vary across
time and further use HDP to model the mixed-membership
distribution {πi}n

i=1, where ∀i ∈ {1, . . . , n}, πi ∼ DP(α,β)
and β is generated from a stick-breaking construction β =∑∞

k=1 βkδk, βk = β ′
k

∏k−1
l=1 (1 − β ′

l ), β
′
l ∼ beta(1, γ )) [20].

III. GENERATIVE MODEL

Fig. 2 depicts the graphical models of all the variables
used in this paper. As previously discussed, node infor-
mation is incorporated into both branches of the relational

models: iMMM and LFRM. Therefore, we illustrate both in
the same figure, as most nodes are common to both graphical
models.

A. Node-Information Involved Mixed-Membership Model

The generative process for the niMM model is defined as
follows (w.l.o.g. ∀i, j = 1, . . . , n, k ∈ N+).

C1: ψik ∼ Beta(1,
∏

f η
φif
f k ).

C2: πik = ψik
∏k−1

l=1 (1 − ψil).

C3: sij ∼ Multi(πi), rij ∼ Multi(πj).

C4: eij ∼ Bernoulli(Bsijrij).

Here, C1 and C2 constitute the stick-breaking representation
for our mixed-membership distribution πi, which is sim-
ilar to that of the Dirichlet process. While the Dirichlet
process employs one single γ parameter to finish its stick-
breaking construction, our representation uses different values
for each component. The values are computed through expo-
nential form η

φif
f k to further facilitate the conjugate design.

C3 and C4 correspond to the membership indicator and
link data generation, which follows the procedure as in
Section II-B.

Correspondingly, the graphical model is shown in Fig. 2.
Observational variables are colored in gray. {φi}n

i=1 is the
nodes’ attributes information (each node’s feature value is
transformed into one binary vector). For example, φi =
[1, 0, 0, 1, 1] presents node i occupies first, fourth, and fifth
features. {eij}i,j stands for the observational link data, where
eij = 1 represents node i has an interaction with node j
and eij = 0 represents node i does not interact with node j.
ψi refers node i’s weight values in constructing the stick-
breaking weights πi. sij and rij in the rectangular nodes
represent the latent label and Bk,l refers to the compatibility
value between community k and l.

On C1, we replace the fixed γ parameter in the stick-
breaking process (see in Section II-D) with

∏
f η

φif
f k , where

the positive, importance indicator ηf k is given a vague
gamma prior ηf k ∼ Gamma(αη, βη). Our method can success-
fully integrate the node information into the node’s mixed-
membership distribution and enjoy the conjugate property
during the inference procedure. On the other hand, the pre-
vious approach [15], [21] uses the logistic normal distribution
[with the mean value being the linear sum (i.e.,

∑
f φif ηf k)]

to construct a stick-breaking weight ψik, which makes the
inference inefficient (i.e., slow mixing rate during the MCMC
sampling).

We again use the attribute age (which will be “binarized”
before use) in the Lazega data set to further explain the impor-
tance indicator ηf k used in C1. w.l.o.g., we let f0th column
of φ matrix denotes the age attribute, φif0 = 1 implies that
node i has age > 40 (in our experimental setting), and 0
otherwise. From C1, one can easily see that when ηf0k � 1,
age would largely increase its impact on the kth commu-
nity. Likewise, ηf0k 	 1 reduces the influence of the age
attribute on the kth community. ηf0k = 1 means that age
does not have an impact on the kth community at all. Also,
φif0 = 0 makes age of the node i neutral toward all other
communities.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Both the importance indicator ηf k and stick-breaking weight
ψik can enjoy the conjugate property. More specifically, the
distributions of ηf k and ψik are

p
(
ηf k|αη, βη

) ∝ η
αη−1
f k e−βηηf k

p(ψik|η·k, φi) ∝
⎡

⎣
∏

f

η
φif
f k

⎤

⎦ · (1 − ψik)
∏

f η
φif
f k −1

. (1)

Thus, the posterior distribution of ηf k becomes

p
(
ηf k|αη, βη, ψ·k, φ

) ∝ p
(
ηf k|αη, βη

)∏

i

p(ψik|φi, η·k)

∝ η
αη+∑i φif −1
f k e

−
(
βη−∑i φif ln(1−ψik)

∏
F �=f η

φiF
F k

)
ηf k

=⇒ ηf k ∼ Gamma

(

αη +
∑

i

φif ,

βη −
∑

i

φif ln(1 − ψik)
∏

q�=f

η
φiq
qk

⎞

⎠.

(2)

The joint probability of {sij, rji}n
j=1 becomes

p
({

sij
}n

j=1,
{
rji
}n

j=1|ψi·
)

∝
K∏

k=1

[
ψ

Nik
ik (1 − ψik)

∑K
l=k+1 Nil

]
(3)

here Nik = #{ j : sij = k} + #{ j : rji = k}.
The posterior distribution of ψik becomes

p
(
ψik|φ, η·k,

{
sij, rji

}n
j=1

)

∝ ψ
Nik
ik (1 − ψik)

∑K
l=k+1 Nil+∏f η

φif
f k −1

=⇒ ψik ∼ Beta

⎛

⎝Nik + 1,
K∑

l=k+1

Nil +
∏

f

η
φif
f k

⎞

⎠. (4)

The posterior distribution of ψik in (4) is consistent with the
result in [20] and [22], where their result is conditioned on a
single concentration parameter α instead of

∏
f η

φif
f k .

Another interesting comparison is the placing of prior infor-
mation for communities within different models. In iMMM,
although the author claimed to use different αi to model indi-
vidual πi, the stick-breaking weights {ψik}∞k=1 within one πi

are generated identically, i.e., from beta(1, αi). This is obvi-
ously insufficient as each community may expect an individual
prior in real application. Accordingly, NMDR has incorporated
node information using a logistic normal function, as stated
above. In a way, this approach has further generalized the
model, such that each ψik differs in their distributions.

Despite the model relaxation, empirical results show that
NMDR has a slow convergence. It is therefore imperative for
us to search for a more efficient way to incorporate the node
information. Compared to iMMM, our niMM model replaces
the simple set {αi} with

∏
f η

φif
f k for the generation of ψik. Its

conjugate property makes our model appealing in terms of
mixing efficiency, which is confirmed in the results shown in
Section VI. What is more, our model can be seen as a natural
extension of the popular iMMM model. By letting ηf k = α1/F

and φif = 1, we obtain the classical iMMM. This makes sense,
as without the presence of metadata, each feature is assumed
to be counted equally, which implies that the model becomes
the classical iMMM.

B. Node-Information Involved Latent Feature Model

The generative process for the niLF model is defined as
follows.

C1: ψik ∼ Beta(
∏

f η
φif
f k , 1).

C2: πik = ∏k
l=1 ψil.

C3: zik ∼ Bernoulli(πik).
C4: eij ∼ Bernoulli(1/(1 + exp(−ziBzT

j ))).
C1 and C2 here also constitute our specialized stick-breaking
representation πi. However, we should note that these two are
different from those of the niMM model while here they are
based on the traditional stick-breaking process for the Indian
buffet process [17], [18]. The πis are used to generate the
latent feature matrix z in C3. C4 corresponds to the link data
generation, which is the same as the LFRM model. Similar to
the niMM model, this paper can be seen as an extension of
the traditional LFRM [14].

Correspondingly, the graphical model of niLF is similar
to the one in niMM. One major difference is the setting of
zi and zj, which is to replace sij and rij in the rectangular
nodes. That is to say, the niLF model uses the binary vector of
zi and zj (also B) to determine the probability of generating eij.

However, the structure of the stick-breaking representation
in our niLF model differs from that of the LFRM model. In our
niLF model, each ith node’s latent feature is motivated by their
own stick-breaking representation πi, i.e., there are n stick-
breaking representations in total. In this way, the individual
node information of node i is contained in each correspond-
ing representation πi, which will consequently be reflected in
the latent feature. On the contrary, the LFRM model uses one
specialized beta process π as the underlying representation
for all the n nodes’ latent feature z. This process can be eas-
ily marginalized out πi, beneficiated from the Beta-Bernoulli
conjugacy [23].

We use the new transform, i.e.,
∏

f η
φif
f k , as the mass parame-

ter [23] in the construction of the stick-breaking representation,
as stated in C1. The importance indicator η here plays an oppo-
site role when compared to the niMM model, i.e., a larger
value of ηf k would make the presence of attribute f promote
the kth community.

An interesting notation is that the stick-breaking represen-
tations in both our niMM and niLF models are no longer
the Dirichlet process and Beta process individually, as the
single-valued α parameter is replaced by a set of individually
different valued {∏f η

φif
f k }.

IV. INFERENCE

A. Node-Information Involved Mixed-Membership Model

In niMM’s sampling Algorithm 1, the variables of interest in
our slice sampling are: node information weight {ηf k}f ,k, stick-
breaking weight {ψik}i,k, latent feature indicator {sij, rij}i,j,
compatibility value Bkl, and the hyperparameters. Also, we
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Algorithm 1 Inference Work for niMM
Input: {eij}n×n: observed relational binary matrix;
φ·: feature matrix indicates the feature value for each node
T: the given iteration number.

Output: samples of {ηf k}f ,k, {ψik}i,k, {sij, rij}i,j and hyper-
parameters αη, βη, αB, βB

Initialize variables {ηf k}f ,k, {ψik}i,k, {sij, rij}i,j and hyper-
parameters αη, βη, αB, βB

for t ∈ {1, · · · ,T} do
Updating {ηf k}f ,k according to Eq. (5)
Updating {ψik}i,k according to Eq. (6)
Updating {sij, rij}i,j according to Eq. (8)
Updating αη, βη, αB, βB according to Eq. (9)(10)(11)(12)

end for

discuss here the Beta distribution as the generation distribution
and the other ones can be trivially derived.

1) Sampling ηf k: ∀f , k, ηf k’s posterior distribution relies on
node information {φif }n

i=1, stick-breaking weights {ψik}n
i=1, the

other attribute importance indicator {ηF k}F �=f , and its hyper-
parameters αη and βη

ηf k ∼ Gamma

⎛

⎝αη+
∑

i

φif , βη −
∑

i

φif ln(1 − ψik)
∏

F �=f

η
φiF
F k

⎞

⎠.

(5)

This part requires O(FKn) operations in each iteration.
2) Sampling ψik: ∀i, k, ψik’s posterior distribution relies on

{Nik}n
k=1, {ηf k}f ,k, {φif }q

q=1

ψik ∼ Beta

⎛

⎝Nik + 1,
K∑

l=k+1

Nil +
∏

f

η
φif
f k

⎞

⎠. (6)

This part contains O(FKn) operations in the sampling of ψik.
3) Sampling sij, and rij: eij′s posterior distribution is a

Bernoulli distribution due to the Beta-Bernoulli conjugate,
in front of Eq. (7) ηij′s posterior distribution is a Gamma
distribution, in front of Eq. (13)

Pr
(
eij|Z\eij , αB, βB

) = m
1,−eij
kl + αB

m
−eij
kl + αB + βB

(7)

here we assume sij = k, rij = l and m
1,−eij
kl =

∑
i′j′ �=ij,si′ j′=k,ri′ j′=l ei′j′ ,m

−eij
kl = ∑

i′j′ �=ij,si′ j′=k,ri′ j′=l 1.
Thus, we get

Pr
(
sij = k, rij = l

) ∝ πikπjl · m
1,−eij
kl + αB

m
−eij
kl + αB + βB

. (8)

When we sample K + 1 to sij or rij, we need to resam-
ple the corresponding {ηfK+1}F

f =1, ψiK+1(or ψjK+1) to the new
(K + 1)th component.

Since we have used the blocked sampling version of sam-
pling (sij, rij) together, the computational cost [O(N2K2)] is
a bit higher than the alternating sampling scheme [separately
sample sij and rij, which is O(N2K2)]. However, we should
note that this blocked sampling version provides a significant

Algorithm 2 Inference Work for niLF
Input: {eij}n×n: observed relational binary matrix;
φ·: feature matrix indicates the feature value for each node
T: the given iteration number.

Output: Samples of {ηf k}f ,k, {ψik}i,k, {ui}i, {zik}i,k, {Bkl}k,l

and hyper-parameters μf , λf , λv, λB

Initialize variables {ηf k}f ,k, {ψik}i,k, {ui}i, {zik}i,k, {Bkl}k,l

and hyper-parameters μf , λf , λv, λB

for t ∈ {1, · · · ,T} do
Updating {ηf k}f ,k according to Eq. (13)
Updating {ψik}i,k according to Eq. (14)
Updating {ui}i according to Eq. (15)
Updating {zik}i,k according to Eq. (17)
Updating {Bkl}k,l according to Eq. (18)
Updating μf , λf , λv, λB according to Eq. (19)(20)(21)(22)

end for

running time speed up and better convergence behavior. This
part occupies the majority of the computational cost.

4) Sampling Hyper-Parameters αη, βη, αB, and βB: The
hyper-parameters we are sampling are αη, βη, αB, and βB.

For αη, we set a vague prior Gamma(ααη , βαη )

p
(
αη|{ηf k}f ,k, βη, ααη , βαη

)

∝
∏

f ,k

[
βη
αη

Gamma
(
αη
)η
αη−1
f k

]

· αααη−1
η e−βαηαη . (9)

As (9) is log-concave in αη, we use adaptive rejection
sampling (ARS) to finish its update.

For βη, we set a vague prior Gamma(αβη , ββη )

p
(
βη|
{
ηf k
}

f ,k, αη, αβη , ββη

)

∝
∏

f ,k

[
βη
αηe−βηηf k

] · βααη−1
η e−βαηβη

∝ βη
KF·αη+ααη−1 · e

−
(∑

f ,k ηf k+βαη
)
βη

=⇒ βη ∼ Gamma

⎛

⎝KF · αη + ααη ,
∑

f ,k

ηf k + βαη

⎞

⎠ (10)

where αB and βB is similar as above, we set a vague prior
Gamma(ααB , βαB)

p
(
αB|{Bkl}k,l, βB, ααB , βαB

)

∝
∏

k,l

[
βB

αB

Gamma(αB)
BαB−1

kl

]

· αααB −1
B e−βαBαB . (11)

As (11) is log-concave in αB, we use ARS to finish its update.
For βB, we set a vague prior Gamma(αβB , ββB)

p
(
βB|{Bkl}k,l, αB, αβB , ββB

)

∝
∏

k,l

[
βB

αB e−βBBkl
] · βααB −1

B e−βαBβB

∝ βB
K2·αB+ααB−1 · e−(∑kl Bkl+βαB)βB

=⇒ βB ∼ Gamma

(

K2 · αB + ααB ,
∑

kl

Bkl + βαB

)

. (12)
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B. Node-Information Involved Latent Feature Model

In niLF’s sampling Algorithm 2, the variables of interest in
our slice sampling are node information weight {ηf k}f ,k, stick-
breaking weight {ψik}i,k, latent feature indicator {sij, rij}i,j,
compatibility vale Bkl, and the hyperparameters.

1) Sampling ηf k: ηij′s posterior distribution is a Gamma
distribution

ηf k ∼ Gamma

⎛

⎝αη +
∑

i

φif , βη −
∑

i

φif lnψik

∏

F �=f

η
φiF
F k

⎞

⎠.

(13)

This part requires O(FKn) operations in each iteration.
2) Sampling ψik: We use Metropolis–Hastings sampling to

obtain the ψik’s value, so the acceptance ratio becomes that of
(πik = ∏k

l=1 ψil)

A
(
ψ∗

ik, ψ
(τ)
ik

)
= π

∗,zik
ik

(
1 − π∗

ik

)1−zik

π
(τ),zik
ik

(
1 − π

(τ)
ik

)1−zik
. (14)

This part requires O(Kn) operations in each iteration.
3) Sampling ui: We introduce an auxiliary slice variable ui

for each node i

ui|zi, π ∼ Uniform[0, π∗
i ] (15)

where π∗
i = mink:zik=1{πik}.

This part requires O(n) operations in each iteration.
4) Sampling zik: We let z1

i = zi,zik=1 and z0
i = zi,zik=0, the

likelihood term becomes

Pr
(

eij|Z\i, z1
i ,B

)
= σ

(
z1

i Bzj

)eij
(

1 − σ
(

z1
i Bzj

))1−eij
. (16)

Thus, we get

Pr
(

zik|πi,
{
eij
}n

j=1,Z\i,B
)

∝
{
πik
∏

j

[
Pr
(
eij|Z\i, z1

i ,B
)

Pr
(
eji|Z\i, z1

i ,B
)]
, zik = 1

(1 − πik)
∏

j

[
Pr
(
eij|Z\i, z0

i ,B
)

Pr
(
eji|Z\i, z0

i ,B
)]
, zik = 0.

(17)

This part requires O(K2n2) operations in each iteration.
5) Sampling Bkl: Due to the nonconjugacy of σ(·) function,

we use the Metropolis–Hastings method to do the sam-
pling. Setting the proposal distribution, the same as the prior
distribution Normal(0, σB), we have the acceptance ratio as

A
(
B∗

kl,Bτkl

) = min

{

1,
f
(
B∗

kl

)

f
(
Bτkl

)

}

. (18)

This part requires O(K2) operations in each iteration.
6) Sampling Hyper-Parameters λf , μf , λv, and λB: For μf ,

we set the prior as Gaussian prior Normal(0, λμ), which
leads to

p
(
μf |λμ, η, λf

) ∝ Normal
(
μf ; 0, λμ

)∏

k

Normal
(
ηf k;μf , λf

)

∝ Normal

(

μf ;
∑

k ηf k

λ2
f + K

, 1 + K

λ2
f

)

. (19)

For the rest of the hyperparameters, we set the vague gamma
prior G(a·, b·) on them and the corresponding update can be
done accordingly.

For λf , we give the prior on λ−2
f

p
(
λf |af , bf , η,μf

) ∝ G
(
λ−2

f ; af , bf

)∏

f

∏

k

Normal
(
ηf k; μf , λf

)

∝ G
⎛

⎝λ−2
f ; af + 1

2
KF, bf + 1

2

∑

k

∑

f

(
ηf k − μf

)2

⎞

⎠. (20)

For λv, we give the prior on λ−2
v

p(λv|av, bv, η, φ) ∝ G
(
λ−2

v ; av, bv

)∏

i

Normal
(
vi:; ηφT

i: , λv
)

∝ G
(

λ−2
v ; av + 1

2
KN, bv + 1

2

∑

k

∑

i

(
vik − ηkφi

)2
)

.

(21)

For λB, we give the prior on λ−2
B

p(λB|aB, bB,B) ∝ G
(
λ−2

B ; aB, bB

)∏

k

∏

l

Normal(Bkl; 0, λB)

∝ Gamma

(

λ−2
B ; aB + 1

2
K2, bB + 1

2

∑

k

∑

i

B2
kl

)

. (22)

C. πi-Collapsed Sampling for the niMM Model

When the community number is know in advance, infer-
encing the niMM model by collapsing the mixed-membership
distributions {πi}n

i is a promising solution. W.l.o.g., the mem-
bership indicators’ joint probability for node i is

Pr
({

sij
}n

j=1,
{
rji
}n

j=1|φ, η
)

∝
∏

k Gamma
(

Gamma
(

Nik +∏
f η

φif
f k

))

Gamma
(

2n +∑
k
∏

f η
φif
f k

) . (23)

∀k ∈ {1, . . . ,K}, the conditional probability of the member-
ship indicator sij (the same to rij) is

Pr
(

sij = k|{sij0

}
j0 �=j,

{
rji
}n

j0=1, φ, η
)

∝ N
\sij
ik +

∏

f

η
φif
f k . (24)

Compared to its counterpart in MMSB

Pr
(

sij = k|{sij0

}
j0 �=j,

{
rji
}n

j0=1, α,K
)

∝ N
\sij
ik + α

K
. (25)

Our collapsed niMM (cniMM) model replaces the term of
(α/K) in (25) with {∏f η

φif
f k }K

k=1. In fact, while the MMSB
generates the mixed-membership distribution πi through the
Dirichlet distribution with parameters ((α/K), . . . , (α/K)), our
cniMM’s corresponding one is the Dirichlet distribution with
unequal parameter (

∏
f η

φif
f 1 , . . . ,

∏
f η

φif
f k ).

Due to the unknown information on the undiscovered com-
munities, we limit our cniMM model into this finite communi-
ties’ number case. The extension on the infinite communities’
case remains an interesting future task.
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TABLE II
COMPUTATIONAL COMPLEXITY

FOR DIFFERENT MODELS

D. Computational Complexity

We estimate the computational complexities for each model
and present the results in Table II. Our niMM and niLF are
O(K2n2 + 2FKn) and O(K2n2 + Kn + FKn), respectively,
with O(Kn) for the sampling of {πi}n

i=1 and O(FKn) for the
incorporation of node information.

V. RELATED WORK

A. Relational Models

The stochastic blockmodel [11] assumes that each node has
a latent variable that directly represents its community mem-
bership. Each of the fixed number of communities is associated
with a weight, and the whole weight vector can be seen as a
draw from a K-dimensional Dirichlet distribution. Naturally,
the community memberships are realized from the multinomial
distribution parameterized by this weight vector. The binary
link data between two nodes are determined by the commu-
nities to which they belong. This model has been extended to
an infinite K community, i.e., IRM [12], where the Dirichlet
distribution has been replaced by a Dirichlet process.

Various recent work has been proposed to capture the
complex link data among nodes based on the stochastic block-
model, which can be categorized into two notable branches.
The first branch features the LFRM [14]: instead of associ-
ating a node with only a single feature, it allows a binary
features vector to be associated with each node. All the pre-
sented features will be used to generate the link data. The
second branch follows the MMSB, in which each node has
its own community distribution. In the link data between two
nodes, each node chooses one membership indicator from its
community distribution and these two indicators consequently
fix the parameters to generate the link data.

The LFRM-like work was originated from [25] and [26],
while it assumes a latent real-valued feature vector for each
node. The LFRM in [14] uses a binary vector to represent the
latent features of each node, and the number of features of
all the nodes can potentially be infinite by using an Indian
buffet process prior [27]. The work in [24] further uncovers
the substructure within each feature and uses the “coactive”
features from two nodes during the generation of their link
data. On the MMSB-type work, a few variants have been
subsequently proposed, including infinite mixed membership
models (iMMM) [28] which extends the MMSB into the infi-
nite community case with a Dirichlet process prior and [29]
which uses the nested Chinese restaurant process [30] to build
the hierarchical structure of communities. In this paper, we
use iMMM to replace MMSB as our discussion is within the

HDP [19] prior. This paper can be trivially applied to the
MMSB case.

The idea of modeling an individual mixed-membership
distribution for each node bears some resemblance to the
author-topic model [31], [32]. However, their model cannot
distinguish the differences between components, due to the
absence of design in involving node information, as well as a
different mechanism in terms of link data generation.

B. Stick-Breaking Process Review

The stick-breaking method [17], [20] has provided us an
explicit construction of a draw G from a Dirichlet process

G =
∞∑

k

πkδθk , πk = ψk

k−1∏

l=1

(1 − ψl)

ψk
iid∼ Beta(1, γ ), θk

iid∼ G0. (26)

The concentration parameter γ controls the diversity of θ
in G, whereas G0 is regarded as the base measure generat-
ing {θk}∞k=1. A larger γ encourages the weights distribution to
be more “flat,” whereas a smaller γ stimulates the weights to
be “sharper,” i.e., only a few weights have appreciable values
and the others are relatively small. As an indication of the
importance of this concentration parameter γ , a vague gamma
prior distribution is usually placed on it.

Based on this ingenious construction, more flexible con-
structions have been proposed, the recent examples being the
logistic stick-breaking process [33], the probit stick-breaking
process [34], the kernel stick-breaking process [35], and the
discrete infinite logistic normal process [36]. While being
elastic in describing the Bayesian nonparametric prior in
different situations, one common problem is that they can-
not form a prior-posterior conjugate design, which caused
difficulties for both the MCMC sampling inference (using
Metropolis–Hastings sampling instead would greatly slow
down the mixing rate) and variational inference (having to
find an approximate distribution to replace this distribution).

Another interesting topic is the stick-breaking construction
of the Indian buffet process [27] and its underlying Beta pro-
cess [23], [37]. As we have already seen, the underlying
representation under the Indian buffet process is one Beta
process, with the concentration parameter specialized to 1.
Teh et al. [18] gave us a stick-breaking construction for this
specialized Beta process as

G =
∞∑

k

πkδθk , πk =
k∏

l=1

ψl, ψk
iid∼ Beta(γ, 1), θk

iid∼ G0.

(27)

Regarding to this special construction for a simplified beta
process, a construction of a general Beta process was proposed
by Paisley et al. [37], which was later followed by an improved
version [38].

VI. EXPERIMENTS

We analyze the performance of our models (niMM and
niLF) on two real-world data sets: 1) the Lazega data set [13]
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TABLE III
PERFORMANCE ON REAL-WORLD DATA SETS (MEAN ∓ STANDARD DEVIATION)

and 2) the MIT reality mining data set [39]. The compar-
ison models we are using include IRM [12], LFRM [14],
iMMM [28] (an infinite community case of MMSB [16]), and
NMDR [15].

We have independently implemented the above baseline
models to the best of our understanding. There has been a
slight variation to NMDR, in which we have employed Gibbs
sampling to sample the unknown cluster number, instead of
the retrospective MCMC [40] used in the original paper. This
setting is to ensure a fair comparison as all of our sampling
schemes are under the Gibbs sampling pipeline.

To validate our models’ link prediction performance, we use
a tenfold cross-validation strategy. For each node’s link data,
we randomly select one out of ten from them as the test data.
Then, we remove these test data and keep the remaining ones
as the training data. The corresponding evaluation criteria [15]
are the training error (0−1 loss) on the training data, the testing
error (0−1 loss), the testing log likelihood, and the area under
the ROC curve (AUC) score on the test data. Specifically,
AUC values indicate the expectation that a uniformly drawn
random positive is ranked before a uniformly drawn random
negative. That is to say, the AUC equals to the probability that
our model will rank a randomly chosen interaction 1 higher
than a randomly chosen interaction 0. Apart from this, we also
conduct a study on learning the node information’s importance
indicator in the Lazega data set.

At the beginning of the learning process, we set the
vague Gamma prior Gamma(1, 1) for the hyperparameters
αη, βη, αB, and βB. For B’s setting, we set Beta(1, 1) as the
prior distribution. For the attributes values that are not in
binary form, we have to do the binary transform. The initial
states are of random guesses on the hidden labels (member-
ship indicators in MMSB and latent feature in LFRM). For
all the experiments, we run chains of 10 000 MCMC sam-
ples 30 times, assuming the first 5000 samples are used for
burn-in. The average statistics of the remaining 5000 samples
are reported.

A. Lazega Data Set [13], [41]

The Lazega data set is on the social network links within
a U.S. firm from 1988 to 1991. The data set contains a
cowork network for 71 attorneys, in which each directional
link data are labeled as 1 (exist) or 0 (absent). Apart from

TABLE IV
IMPORTANCE INDICATOR η IN THE LAZEGA DATA SET

this 71×71 binary asymmetric matrices, the data set also pro-
vides information on each node (i.e., attorneys), including the
status (partner or associate), gender, office (Boston, Hartford,
or Providence), years (with the firm), age, practice (litigation
or corporate), and law school (Harvard, Yale, Ucon, or other).
After binarizing these attributes, we obtain a 71 × 11 binary
information matrix.

We start the link prediction task here and the result is shown
in Table III. Notably, the performance of our implementation
of the NMDR model is inferior compared to its original per-
formance in [15]. The reason for this may due to a suboptimal
metadata binarization process. However, we have shown that
with the same attributes, our niMM model performs better
than the NMDR model, as well as the other relational models
without the involvement of node information. On the cniMM,
its performance is also quite competitive.

1) Node-Information Importance Learning: Another inter-
esting topic here is the learning of the importance indicator
η for the node-information. We fix the communities and
use the cniMM model to observe the node-information’s
effect on each individual community. The number of com-
munities is set as 4 and the detail result is shown in
Table IV. Also, we should note smaller value indicates larger
influence.

Each feature value here represents a column of binary
values. Thus, the feature matrix is n×11, where n denotes the
number of attorneys and 11 feature values are boston(office),
harford(office), young(age), middle(age), long(year), mid-
dle(year), Yale(school), UCon(school), partner(status), litiga-
tion(practice), and man(gender). If a middle-aged women
attorney comes from Yale, office in boston, long year
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Fig. 3. Trace plot of the AUC value versus iteration time in different MMSB type models (left: Lazega data set and right: MIT reality data set).

TABLE V
MIXING RATE (MEAN ∓ STANDARD DEVIATION) FOR DIFFERENT MODELS,

WITH THE BOLD TYPE DENOTING THE BEST WITHIN EACH ROW

service in the company, is not a partner in status and
is a practice in litigation, then her feature vector φi =
[1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0].

As we can see, the attributes office, long years with firm,
and litigation in practice are the smallest among all these
attributes. This implies that they are more important than
others. Most of this is consistent with our common sense.
For instance, people in the same office would usually have
more communications in everyday life; the employees would
be more familiar with each other if they together have a long
time with the firm. An explanation for the surprised result
of the importance of the litigation in practice is that it needs
corporation.

B. MIT Reality Mining [39]

Based on the MIT reality mining data set, we obtain a
proximity matrix describing each node’s proximity toward the
others, i.e., eij represents the proximity from i to j based on
participant i’s opinion. With the same setting of the previous
model [28], we manually set the proximity value to be larger
than 10 min per day as 1, and 0 otherwise. We hence obtain
a 73 × 73 asymmetric matrix.

Alongside this directional link data, we also have survey
data on the participants’ information (i.e., node information),
including the transport choice to work, social activity, the com-
munication method, and satisfaction of university life. As we
can see in Table III, we find our niMM and niLF models’ per-
formances are competitive in relation to the ones in iMMM;
however, we do not achieve a significant improvement com-
pared to the baseline models. When we trace back to the node
information, we find it does not have a direct correlations with
the link data. This may be the main reason for our models’
less significant result.

C. Convergence Behavior

1) Trace Plot for AUC: Since the AUC value assesses the
model’s predictability over unseen links, it is natural to use
its trace plot to diagnose the inference’s convergence behav-
ior, which could also help us choose an appropriate burn-in
length. An earlier reach to the stable status of MCMC is desir-
able as it indicates fast convergence. Fig. 3 shows the detailed
results. As we can see, except for NMDR, all the other mod-
els reach the stable status quite fast. On the Lazega data set,
our niMM and cniMM outperform all the others. On the MIT
reality data set, our niMM and cniMM’s performances are still
quite competitive.

2) Mixing Rate for Stable MCMC: In addition to the
MCMC trace plot, another interesting observation is the mix-
ing rate of the stable MCMC chains. We use the number of
active communities K as a function of the updated variable
to monitor the mixing rate of the MCMC samples, whereas
the efficiency of the algorithms can be measured by estimat-
ing the integrated autocorrelation time τ and effective sample
size (ESS) for K. τ is a good performance indicator as it mea-
sures the statistical error of Monte Carlo approximation on a
target function f . The smaller the τ , the more efficient the
algorithm. Also, the ESS of the stable MCMC chains informs
the quality of the Markov chains, i.e., a larger ESS value indi-
cates more independent useful samples, which is our desired
property.

On estimating the integrated autocorrelation time, dif-
ferent approaches are proposed in [42]. Here, we use an
estimator τ̂ [22] and the ESS value is calculated based
on τ̂ as

τ̂ = 1

2
+

C−1∑

l=1

ρ̂l; ESS = 2M

1 + τ̂
. (28)
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Here, ρ̂l is the estimated autocorrelation at lag l and C is a cut-
off point which is defined as C := min{l : |ρ̂l| < 2/

√
M}, and

M is equal to half of the original sample size, as the first half
is treated as a burn in phase. The detailed results are shown in
Table V. As we can see, our model niMM performs the best
among all the models.

VII. CONCLUSION

Increasing applications with natural and social networking
behaviors request the effective modeling of hidden relations
and structures. This is beyond the currently available models,
which only involve limited link information in binary set-
tings. In this paper, we have proposed a unified approach
to incorporate the rich node information into the relational
models. The proposed niMM model and niLF model have
been demonstrated to be effective in learning the structure
and have shown advanced performance on learning implicit
relations and structures.

We are extending this paper to investigate the following.
1) How to integrate the multirelational networks and unify

them into the niMM framework to deeply understand
network structures.

2) As there are more advanced constructions for the beta
process [37], [38], what are more flexible ways to
incorporate the node information into LFRM.

3) When the node information goes beyond the binary
scope and becomes the continuous form, how can we
utilize such information.

4) Since the multiagent-based method can be used to model
the node autonomy in the networks [43], how can we
incorporate this node autonomy into the community
detection problem.

APPENDIX

ACRONYMS AND THEIR EXPLANATIONS

REFERENCES

[1] L. Tang and H. Liu, “Community detection and mining in social media,”
Synth. Lect. Data Mining Knowl. Disc., vol. 2, no. 1, pp. 1–137,
2010.

[2] B. Li, Q. Yang, and X. Xue, “Transfer learning for collaborative filtering
via a rating-matrix generative model,” in Proc. 26th Annu. Int. Conf.
Mach. Learn. (ICML), Montreal, QC, Canada, 2009, pp. 617–624.

[3] B. Li, X. Zhu, R. Li, and C. Zhang, “Rating knowledge sharing in cross-
domain collaborative filtering,” IEEE Trans. Cybern., vol. 45, no. 5,
pp. 1068–1082, May 2015.

[4] X. Fan, L. Cao, and R. Y. D. Xu, “Dynamic infinite mixed-membership
stochastic blockmodel,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 9, pp. 2072–2085, Sep. 2015.

[5] X. Fan, B. Li, Y. Wang, Y. Wang, and F. Chen, “The Ostomachion
process,” in Proc. AAAI Conf. Artif. Intell., Phoenix, AZ, USA, 2016.

[6] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proc. Nat. Academy Sci., vol. 99, no. 12,
pp. 7821–7826, 2002.

[7] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, 2010.

[8] P. De Meo, E. Ferrara, D. Rosaci, and G. M. L. Sarne, “Trust and
compactness in social network groups,” IEEE Trans. Cybern., vol. 45,
no. 2, pp. 205–216, Feb. 2015.

[9] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Distributed
fault detection and isolation resilient to network model uncertainties,”
IEEE Trans. Cybern., vol. 44, no. 11, pp. 2024–2037, Nov. 2014.

[10] W. Wang and Y. Jiang, “Community-aware task allocation for social
networked multiagent systems,” IEEE Trans. Cybern., vol. 44, no. 9,
pp. 1529–1543, Sep. 2014.

[11] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for
stochastic blockstructures,” J. Amer. Stat. Assoc., vol. 96, no. 455,
pp. 1077–1087, 2001.

[12] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and U. Naonori,
“Learning systems of concepts with an infinite relational model,” in
Proc. 21st Nat. Conf. Artif. Intell. (AAAI), Boston, MA, USA, Jul. 2006,
pp. 381–388.

[13] E. Lazega, The Collegial Phenomenon: The Social Mechanisms of
Cooperation Among Peers in a Corporate Law Partnership. Oxford,
U.K.: Oxford Univ. Press, 2001.

[14] K. Miller, M. I. Jordan, and T. L. Griffiths, “Nonparametric latent feature
models for link prediction,” in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2009, pp. 1276–1284.

[15] D. I. Kim, M. Hughes, and E. Sudderth, “The nonparametric meta-
data dependent relational model,” in Proc. 29th Annu. Int. Conf. Mach.
Learn., Edinburgh, U.K., 2012 pp. 1559–1566.

[16] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed
membership stochastic blockmodels,” J. Mach. Learn. Res., vol. 9,
pp. 1981–2014, Sep. 2008.

[17] J. Sethuraman, “A constructive definition of Dirichlet priors,”
Stat. Sinica, no. 4, pp. 639–650, 1994.

[18] Y. W. Teh, D. Görür, and Z. Ghahramani, “Stick-breaking construction
for the Indian buffet process,” in Proc. Int. Conf. Artif. Intell. Stat.,
vol. 11. San Juan, PR, USA, 2007, pp. 556–563.

[19] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
Dirichlet processes,” J. Amer. Stat. Assoc., vol. 101, no. 476,
pp. 1566–1581, 2006.

[20] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-
breaking priors,” J. Amer. Stat. Assoc., vol. 96, no. 453, pp. 161–173,
2001.

[21] D. I. Kim and E. B. Sudderth, “The doubly correlated nonparametric
topic model,” in Proc. Adv. Neural Inf. Process. Syst., Granada, Spain,
2011, pp. 1980–1988.

[22] M. Kalli, J. E. Griffin, and S. G. Walker, “Slice sampling mixture
models,” Stat. Comput., vol. 21, no. 1, pp. 93–105, 2011.

[23] R. Thibaux and M. I. Jordan, “Hierarchical beta processes and the Indian
buffet process,” in Proc. Int. Conf. Artif. Intell. Stat., San Juan, Puerto
Rico, USA, 2007, pp. 564–571.

[24] K. Palla, D. A. Knowles, and Z. Ghahramani, “An infinite latent attribute
model for network data,” in Proc. 29th Int. Conf. Mach. Learn. (ICML),
Edinburgh, U.K., Jul. 2012, pp. 1607–1614.

[25] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches
to social network analysis,” J. Amer. Stat. Assoc., vol. 97, no. 460,
pp. 1090–1098, 2002.

[26] P. D. Hoff, “Bilinear mixed-effects models for dyadic data,” J. Amer.
Stat. Assoc., vol. 100, no. 469, pp. 286–295, 2005.

[27] T. L. Griffiths and Z. Ghahramani, “Infinite latent feature models and
the Indian buffet process,” in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2006, pp. 475–482.

[28] P.-S. Koutsourelakis and T. Eliassi-Rad, “Finding mixed-memberships
in social networks,” in Proc. AAAI Spring Symp. Soc. Inf. Process.,
Palo Alto, CA, USA, 2008, pp. 48–53.

[29] Q. Ho, A. P. Parikh, and E. P. Xing, “A multiscale community block-
model for network exploration,” J. Amer. Stat. Assoc., vol. 107, no. 499,
pp. 916–934, 2012.

[30] D. M. Blei, T. L. Griffiths, and M. I. Jordan, “The nested Chinese restau-
rant process and Bayesian nonparametric inference of topic hierarchies,”
J. ACM, vol. 57, no. 2, pp. 1–30, Feb. 2010.

[31] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-topic
model for authors and documents,” in Proc. 20th Conf. Uncertainty Artif.
Intell., Banff, AB, Canada, 2004, pp. 487–494.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FAN et al.: LEARNING NONPARAMETRIC RELATIONAL MODELS BY CONJUGATELY INCORPORATING NODE INFORMATION 11

[32] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths, “Probabilistic
author-topic models for information discovery,” in Proc. 10th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Mining, New York, NY, USA,
2004, pp. 306–315.

[33] L. Ren, L. Du, L. Carin, and D. B. Dunson, “Logistic stick-breaking
process,” J. Mach. Learn. Res., vol. 12, pp. 203–239, Jan. 2011.

[34] A. Rodríguez and D. B. Dunson, “Nonparametric Bayesian models
through probit stick-breaking processes,” Bayesian Anal., vol. 6, no. 1,
pp. 145–177, 2011.

[35] D. B. Dunson and J.-H. Park, “Kernel stick-breaking processes,”
Biometrika, vol. 95, no. 2, pp. 307–323, 2008.

[36] J. Paisley, C. Wang, and D. M. Blei, “The discrete infinite logistic normal
distribution,” Bayesian Anal., vol. 7, no. 4, pp. 997–1034, 2012.

[37] J. Paisley, A. Zaas, C. W. Woods, G. S. Ginsburg, and L. Carin, “A stick-
breaking construction of the beta process,” in Proc. Int. Conf. Mach.
Learn., Haifa, Israel, 2010, pp. 847–854.

[38] J. Paisley, D. M. Blei, and M. I. Jordan, “Stick-breaking beta processes
and the poisson process,” in Proc. Int. Conf. Artif. Intell. Stat., 2012,
pp. 850–858.

[39] N. Eagle and A. Sandy, “Reality mining: Sensing complex social
systems,” Pers. Ubiquit. Comput., vol. 10, no. 4, pp. 255–268, 2006.

[40] O. Papaspiliopoulos and G. O. Roberts, “Retrospective Markov chain
Monte Carlo methods for Dirichlet process hierarchical models,”
Biometrika, vol. 95, no. 1, pp. 169–186, 2008.

[41] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock,
“New specifications for exponential random graph models,” Sociol.
Methodol., vol. 36, no. 1, pp. 99–153, 2006.

[42] C. J. Geyer, “Practical Markov chain Monte Carlo,” Stat. Sci., vol. 7,
no. 4, pp. 473–483, 1992.

[43] Y. Jiang and J. Jiang, “Understanding social networks from a multiagent
perspective,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 10,
pp. 2743–2759, Oct. 2014.

Xuhui Fan received the bachelor’s degree in math-
ematical statistics from the University of Science
and Technology of China, Hefei, China, in 2010,
and the Ph.D. degree in computer science from
the University of Technology Sydney, Chippendale,
NSW, Australia, in 2015.

His current research interests include stochastic
random partition and Bayesian nonparametrics.

Richard Yi Da Xu received the B.Eng. degree
in computer engineering from the University of
New South Wales, Sydney, NSW, Australia, in
2001, and the Ph.D. degree in computer sciences
from the University of Technology Sydney (UTS),
Chippendale, NSW, Australia, in 2006.

He is currently a Senior Lecturer with the School
of Computing and Communications, UTS. His cur-
rent research interests include machine learning,
computer vision, and statistical data mining.

Longbing Cao (SM’06) received the Ph.D. degree
in pattern recognition and intelligent systems from
Chinese Academy of Science, Beijing, China,
and the Ph.D. degree in computing sciences
from the University of Technology, NSW, Sydney,
Australia.

He is currently a Professor, the Founding Director
of the Advanced Analytics Institute, and the Data
Mining Research Leader of the Australian Capital
Markets Cooperative Research Center, University of
Technology Sydney, Chippendale, NSW, Australia.

His current research interests include big data analytics, data mining, machine
learning, behavior informatics, complex intelligent systems, agent mining,

and their applications.

Yin Song received the bachelor of science degree
in science and technology of electronic informa-
tion from Beijing Normal University, Beijing, China,
the master’s degree of engineering in integrated cir-
cuit engineering from Tsinghua University, Beijing,
and the Ph.D. degree in computer science from the
University of Technology Sydney, Ultimo, NSW,
Australia, in 2014.

He is a Data Scientist with Brandscreen Ltd.,
Sydney, NSW, Australia, a world-leading online
advertising agency. He is currently focusing on data

science applications in real world. He is leading research and development of
analytics system and predictive modeling on computational advertising. His
current research interests include machine learning, pattern recognition, and
data mining.


