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Abstract—As an important tool for behavior informatics,
negative sequential patterns (NSPs) (such as missing a medical
treatment) are sometimes much more informative than positive
sequential patterns (PSPs) (e.g., attending a medical treatment)
in many applications. However, NSP mining is at an early stage
and faces many challenging problems, including (1) how to mine
an expected number of NSPs, (2) how to select useful NSPs,
and (3) how to reduce high time consumption. To solve the first
problem, we propose an algorithm Topk-NSP to mine the k
most frequent negative patterns. In Topk-NSP, we first mine
the top-k PSPs using the existing methods, and then we use an
idea which is similar to top-k PSPs mining to mine the top-k
NSPs from these PSPs. To solve the remaining two problems,
we propose three optimization strategies for Topk-NSP. The first
optimization strategy is that, in order to consider the influence
of PSPs when selecting useful top-k NSPs, we introduce two
weights, wP and wN , to express the user preference degree for
NSPs and PSPs respectively and select useful NSPs by a weighted
support wsup. The second optimization strategy is to merge wsup
and an interestingness metric to select more useful NSPs. The
third optimization strategy is to introduce a pruning strategy
to reduce the high computational costs of Topk-NSP. Finally, we
propose an optimization algorithm Topk-NSP`. To the best of our
knowledge, Topk-NSP` is the first algorithm that can mine the
top-k useful NSPs. The experimental results on four synthetic and
two real-life datasets show that the Topk-NSP` is very efficient
in mining the top-k NSPs in the sense of computational cost and
scalability.

Index Terms—top-k positive sequential patterns, top-k negative
sequential patterns, useful patterns, weighted support, interest-
ingness metric.

I. INTRODUCTION

BEHAVIOR permeates all aspects of our lives, and how
to understand a behavior, especially the non-occurring

behaviors (NOB) is a crucial issue in the behavior informatics
[1][2][3][4]. Negative sequential pattern (NSP) mining is one
of few methods available for understanding NOB [5]. NSPs
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refer to frequent sequences with non-occurring and occur-
ring behaviors (also called negative and positive behaviors
in behavior and sequence analysis). Sometimes, NSPs play
an important role in many real-world applications, such as
intrusion detection systems(IDS), intelligent transport systems
(ITS), network, health and medical management systems,
biomedical systems, risk management, and counter-terrorism.
For instance, in IDS, s1 “ă abcX ą is a positive sequential
pattern(PSP); s2 “ă ab␣cY ą is a NSP, where a, b and c
denote the alarm information codes indicating the alarms a
network device has issued, and X and Y denote the device
status. s1 dicates that devices which usually issue alarm
information a, b and then c are likely to have anomaly status
X, whereas s2 indicates that devices which issue alarms a and
b but NOT c have a high probability of having normal status
Y. In ITS, negative driving behavior patterns result in drivers
failing to follow certain traffic rules which could cause serious
traffic problems or even disasters. These situations cannot be
handled by the identification of PSP alone.

However, there have not been many recent advances in NSP
mining methods[6][7][8]. Most of them, except e-NSP [6], are
very inefficient because they calculate the support of negative
sequential candidates (NSCs) by additionally scanning the
database after identifying PSPs [9][10][11][12]. E-NSP is the
most time efficient method to date. It first defines negative
containment that is consistent with set theory, then converts
the negative containment problem to a positive containment
problem, and then rapidly calculates the support of NSCs only
using the corresponding PSP’s information, thereby avoiding
an additional scan of the database. As a result, e-NSP obtains
high time efficiency. Although e-NSP effectively improves
efficiency, it does not consider the following critical problems.

(1) how to mine an expected number of NSPs. Most
of the existing NSP algorithms are based on setting a
minimum threshold (such as the minimum support ms)
[6][10][11][12][13][14][15][16]. However, because of limited
professional knowledge, it is very difficult to set a rational
minimum threshold and obtain an expected number of patterns
[17][18][19][20]. A too small value of ms may lead to the
generation of thousands of patterns, whereas no answer is
found as a result of a too large value. Adjusting ms is very
time consuming.

A similar problem occurred in PSP mining and was solved
by top-k PSP mining, where k is the expected number of
PSPs [21][22][23][24][25]. The basic idea of top-k PSP mining
is as follows. First, it calculates the support of the first k
positive sequences and adds them in the order set, denoted by
ts1,s2,...sku, where suppsiq ă suppsi`1q (suppsiq denotes the
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support of si) and 1ăiăk. Second, it calculates suppsk`1q and
compares suppsk`1q with ms “ suppskq to update the order
set and raise ms. In this way, users can obtain the expected
number of PSP without setting ms. Several methods, such as
TSP [17], SkOPUS [20] and TKS [21], have been proposed
to mine top-k PSP. These methods, however, do not consider
negative sequences and cannot be used to mine top-k NSPs
due to the intrinsic properties caused by non-occurring items
in NSP mining [6]. In fact, we have not found any methods by
which to mine top-k NSPs so far. So, in this paper, we propose
a top-k NSP mining method, named Topk-NSP, to mine top-k
NSPs. We first mine top-k PSPs using the existing methods;
then we generate NSCs in the same way as in e-NSP; finally,
we use an idea which is similar to top-k PSP mining to mine
top-k NSPs only according to suppnspq.

(2) How to select useful NSPs. Although Topk-NSP can
obtain the expected number of patterns, it cannot guarantee
that these patterns are useful. In order to solve this problem,
several solutions have been proposed, such as SAP, SAPNSP
and SAPBN methods [7][8][31]. Although these methods can
be used to select useful NSPs to some degree, they do not
consider the influence of PSPs when selecting useful NSPs.
In real applications, some users prefer to get the NSP with
high support, while others want to get the corresponding PSP
with high support. For instance, suppose p1 “ă abc ą is a
PSP, and p2 “ă ab␣c ą is a NSP, and a, b, c denote the
insurance item codes in a customer database of an insurance
company. The larger the suppp1q, the greater probability that
customers will buy c after buying a and b. Therefore, in the
development of promotional programs, the insurance company
must consider the influence of suppp1q on suppp2q, rather than
simply use suppp2q to make decisions.

In order to consider the influence of PSPs when selecting
useful NSP, we propose our first optimization strategy to
optimize Topk-NSP in this paper. We introduce two weights,
wP and wN , to express a user preference degree for NSPs
and PSPs respectively and use a weighted support (wsup)
instead of suppnspq. wsup considers not only suppnspq but
also supppspq. Users can choose their preferred NSPs or PSPs
by changing wP and wN .

However, the value of wsup may be the same for different
PSPs and NSPs. For instance, suppose that wsuppnsp1q is
equal to wsuppnsp2q, but psp1 and nsp1 are different from
psp2 and nsp2, how to judge whether nsp1 or nsp2 is more
useful? In order to solve this problem, we propose the second
optimization strategy. We introduce an interestingness metric
to judge the interest between psp and nsp, as conducted in
[7][8][29][30] and we merge wsup and the interestingness
metric to a new metric, interest wsup, denoted by iwsup, to
select more useful NSPs.

(3) How to avoid high time consumption. Although Topk-
NSP can obtain the expected number of useful NSPs with
the above two optimization strategies, it needs to calculate
the iwsup of all NSCs and compare them with the iwsup
in the current top-k NSC set one by one in the process of
selecting useful NSPs. This leads to high time consumption. To
solve this problem, we propose the third optimization strategy
that only the iwsup of part of NSCs needs to be calculated.

That is, some NSCs have been pruned before their iwsup are
calculated, which avoids high time consumption.

Based on the three optimization strategies, we obtain an
optimizing algorithm Topk-NSP`. To the best of our knowl-
edge, Topk-NSP` is the first algorithm that can mine the top-k
useful NSPs. The significant contributions of this paper are as
follows.

Firstly, we propose the Topk-NSP method to mine top-k
NSPs without a minimum threshold.

Secondly, in order to consider the influence of PSPs when
selecting useful NSPs, we propose an optimization strategy:
using two weights to express user preference and select useful
NSPs by a weighted support wsup.

Thirdly, in order to solve the problem of choosing which
NSP is more useful when their wsup are the same, we
propose the second optimization strategy. We introduce an
interestingness metric and merge it with wsup to iwsup, to
judge which one is more useful.

Fourthly, in order to avoid high time consumption, we
propose the third optimization strategy: we do not calculate
the iwsup of all NSCs, i.e., we prune some NSCs before their
iwsup are calculated.

Finally, we propose a corresponding algorithm Topk-NSP`.
The experiment results show that Topk-NSP` can obtain the
top-k useful NSPs efficiently.

The remainder of the paper is organized as follows. Section
II discusses the related work. Section III presents the pre-
liminaries. Section IV proposes the Topk-NSP algorithm. The
three optimization strategies and the Topk-NSP` algorithm
are detailed in Section V. Section VI presents the experiment
results. The conclusions and future work are detailed in
Section VII.

II. RELATED WORK

In this section, we summarize the related work from the
following four aspects: (1) the research status of top-k PSP
mining; (2) the research status of NSP mining; (3) the research
status of useful patterns mining; (4) the research status of
weighted sequential pattern mining.

A. The Research Status of Top-k PSP Mining

In real applications, because of limited professional knowl-
edge, users or researchers experience difficulty in directly
setting a rational minimum threshold to discover an expected
number of patterns [17][18][19][20][47]. A too small value
for the minimum threshold may lead to the generation of
thousands of patterns, whereas no answer is found as a result
of a too large value. Adjusting the minimum threshold is very
time-consuming. In order to solve this problem, the concept
of top-k PSP mining is proposed [17][18][19][20].

The concept of top-k PSP mining first evolved from frequent
item set mining to solve the difficulty in obtaining the expected
number of patterns without setting ms [17][30][33]. TSP is a
multi-pass search space traversal algorithm to mine the top-
k closed PSPs of minimum length in a sequence database
[17]. It is based on PrefixSpan [26]which can find the most
frequent patterns early in the mining process and allows the
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dynamic raising of ms which is then used to prune unpromising
branches in the search space. Although this approach considers
the patterns appearing in the database unlike ”generate-and-
test” algorithms, it cannot be applied to dense databases
[18][19]. To solve this problem, the TKS algorithm is proposed
[18]. It uses the same vertical database representation and
basic candidate generation procedure as SPAM [26]. Also,
TKS involves three optimization strategies, namely extending
the most promising patterns, discarding infrequent items in
candidate generation and candidate pruning with a precedence
map to improve efficiency. SkOPUS is another algorithm to
mine top-k PSPs under a given measure of interest [20]. It can
extract the k sequential patterns with the highest leverage.

The frequent sequential patterns tend to be similar to each
other because they are only composed of limited items and
do not always correspond to the interests of analysts. In
order to solve the problem, the authors of [21] propose a
method to mine various top-k PSPs. This method decides on
the redundant sequential patterns by evaluating and deleting
a variety of items. GepDSP and kDSP-miner are the top-k
PSP mining algorithms with gap constraint, but the gap con-
straint of GepDSP is more flexible than kDSP-miner [22][23].
GepDSP not only allows the gap constraints between different
pairs of adjacent elements in a pattern to be different but also
allows different patterns to use different gap constraints. TUS
is a novel method by which to avoid setting the minimum
utility value of mining top-k high utility PSPs [24].

B. The Research Status of NSP Mining

Discovering NSPs is very important and sometimes plays
a pivotal role in the analysis of occurring behaviors in many
intelligent systems and applications [6]. Unlike PSP mining,
which has been widely explored, there have not been many
recent advancements in NSP mining methods [6]. Next, we
briefly introduce the status of NSP mining.

NegGSP is a negative version of the GSP algorithm for NSP
mining [15]. It calculates the support of NSCs by re-scanning
the database and generates NSPs by comparing the support of
NSCs with ms. PNSP is another NSP mining algorithm which
also uses the re-scanned database to calculate the support of
NSCs and compares the support of NSCs with ms to generate
NSPs [12]. NSPM only deals with the last element in the NSP
[34]. The authors of [16] proposed a GA algorithm to mine
NSPs. Their idea was derived from biological evolution, and
it is generated by crossover and mutation operations, which
avoids NSCs generation. The method in [35] only identifies
NSPs in the form of p␣A,Bq, pA,␣Bq and p␣A,␣Bq and
it requires A X B “ H, which is a normal constraint in
association rule mining but a very strict constraint in sequential
pattern mining [6].

The e-NSP algorithm is the most time efficient method
for mining NSPs to date. It transforms the negative contain-
ment problem into the positive containment problem to avoid
database re-scanning [6]. E-NSPFI, E-msNSP and e-RNSP
algorithms are three improved versions of e-NSP [10][11][50].
E-NSPFI mines NSPs from both frequent and infrequent
positive sequences. E-msNSP adds the concept of multiple

minimum supports (MMS) in e-NSP and e-RNSP mines repet-
itive sequence patterns.

C. The Research Status of Useful Pattern Mining

It is very difficult to select useful patterns from the large
number of mining results. To solve this difficulty, many meth-
ods are proposed. A method for discovering useful patterns
is proposed in [36], which first builds an action tree for the
specific application, and then assigns useful patterns to the
corresponding nodes of the tree using data mining queries. A
framework in [38] is proposed to study sequences of interest-
ingness. The patterns are obtained by this framework to study
statistical dependencies to rank the serial patterns interesting-
ness. The authors of [39] apply a domain-independent method
to model the domain knowledge and propose several methods
to mine useful patterns as well as the top-k useful patterns. The
author of [43] applies multivariate variable-length sequences
to a similarity search.The author of [49] propose a distributed
programming model for mining business-oriented transactional
datasets by using an improved MapReduce framework on
Hadoop, which overcomes not only the single processor and
main memory-based computing, but also highly scalable in
terms of increasing database size. The authors of [48] propose
a new problem: multiple-instance association rule mining,
and mine robust and useful patterns from multiple instance
datasets. The authors of [49] propose an approach to select
useful patterns from a set of patterns by using multi criteria
approach.

The number of NSPs is much greater than PSPs. Therefore,
it is much more difficult to select useful patterns after mining
NSPs [7][8][32]. Next, we briefly introduce the status of useful
NSP mining. SAPNSP is a method to select these useful
positive and negative sequential patterns [8]. It improved the
Wu’s method [31][33] to analyze the correlation between
elements in a sequential pattern. SAP uses the correlation
coefficient to select useful positive and negative sequential
patterns and SAPBN uses a Bayesian network (BN) to select
useful positive and negative sequential patterns[7][31].

D. The Research Status of Weighted Sequential Pattern Mining

Weights are very important for expressing users’ interest
and selecting accurate patterns[40][41]. We briefly introduce
weighted sequential pattern mining. The authors of [40] first
proposed the problem of weighted sequential pattern mining
to find weighted PSPs from sequence database. IUA finds
weighted PSPs from sequence databases [41]. It proposes a
tightening strategy to obtain more accurate weighted upper-
bounds for subsequences in mining. In [42], a method is
proposed to mine interest weighted negative association rules
from large databases and deletes contrary rules. The authors
of [45] propose PCA-WSVM (principal component analysis-
weighted support vector machine ) to solve the load forecast-
ing problem and [46] propose a novel building cooling load
forecasting approach by combining support vector regression
(SVR) and the ant colony algorithm (ACO) is proposed.
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III. PRELIMINARY

A. Positive Sequential Patterns - PSPs

Let I “ tx1, x2, ..., xnu be a set of items. An itemset is
a subset of I, and it is an unordered set of distinct items. A
sequence is an ordered list of itemsets. A sequence s is denoted
by ă s1s2...sl ą, where sjĎI (1ď jď l). sj is also called an
element of the sequence, and denoted as px1x2...xmq, where
xk is an item, xkPI (1ď kď m), j is the id of the element. For
simplicity, the bracket is omitted if an element only has one
item, i.e., element pxq is coded x.

The size of sequence s, denoted as sizepsq, is the total
number of elements in s. s is a k-size sequence if sizepsq “ k.
For example, a given sequence s “ă pabqcd ą is composed
of 3 elements pabq, c and d. Therefore, s is a 3-size sequence,
i.e., sizepsq “ 3.

Sequence sα “ă α1α2...αn ą is called a sub-sequence of
sequence sβ “ă β1β2...βm ą and sβ is a super-sequence of
sα, denoted as sα Ď sβ , if there exists 1 ď j1 ă j2 ă ... ă
jn ď m such that α1 Ď βj1, α2 Ď βj2, ..., αn Ď βjn. We
also say that sβ contains sα. For example, ă b ą,ă ad ąand
ă pabqd ą are all subsequences of ă pabqcd ą.

A sequence database D is a set of tuples ă sid, ds ą,
where sid is the sequence id and ds is the data sequence.
The number of tuples in D is denoted as |D|. The set of tuples
containing sequence s is denoted as tă s ąu. The support of s,
denoted as suppsq, is the number of tuples that are contained
in tă s ąu, where tă s ąu is the set of all tuples that
contains sequence s in D. That is, suppsq “ |tă s ąu| “ |tă
sid, ds ą, ă sid, ds ąP D ^ ps Ď dsqu|. ms is a minimum
support threshold predefined by users. Sequence s is called
a frequent (positive) sequential patterns if suppsq ě ms. By
contrast, s is infrequent if suppsq ă ms. Sequence s is called
a frequent (positive) sequential patterns if suppsq ě ms. By
contrast, s is infrequent if sup(s)ăms.

PSP mining aims to discover all positive sequences that
satisfy a given minimum support. For simplicity, we often omit
’positive’ when discussing positive items, positive elements
and positive sequences in mining PSPs.

B. Negative Sequential Patterns - NSPs

In a negative sequence, a non-occurring item/element is
called a negative item/element. The number of negative el-
ements in ns is denoted by neg-size(ns). ns is a m-size
and n-neg-size negative sequence if sizepnsq “ m and
neg ´ sizepnsq “ n.

1) Three Constraints: In real applications, the number of
NSCs and the identified negative sequences are often large, and
many of them are meaningless [6]. The number of NSCs may
be huge or even infinite if no constraints are added. This makes
NSP mining very challenging. In order to solve this problem,
some constraints are introduced in many existing methods. E-
NSP uses three constraints and gives corresponding reasons.
In fact, these constraints are a bit strict and not necessary
in real applications. We will loosen these constraints in our
future work. This paper also uses the same constraints which
are introduced in details in the following subsections. We first

introduce the definition of a positive partner which is used in
the constraints.

Definition 1. Positive Partner. The positive partner of a
negative element ␣e is e, denoted as pp␣eq, i.e., pp␣eq “ e;
the positive partner of positive element e is e itself, i.e.,
ppeq “ e. The positive partner of a negative sequence
ns “ă s1...sk ą can be obtained by converting all negative
elements in ns to their positive partners, denoted as ppnsq,
i.e.,ppnsq “ tă s11...s

1
k ą |s

1
i “ ppsiq, si P nsu. For example,

ppă ␣pabqc␣d ąq “ă pabqcd ą.
Constraint 1. Frequency constraint. For simplicity, this pa-

per only focuses on the negative sequences ns whose positive
partners are frequent, i.e., suppppnsqq ě ms.

Constraint 2. Format constraint. Continuous negative ele-
ments in an NSC are not allowed.

Example 1. ă ␣pabqc␣d ą satisfies Constraint 2, but
ă ␣pabq␣cd ą does not.

Constraint 3. Negative element constraint. The smallest
negative unit in an NSC is an element. If an element consists
of more than one item, either all or none of the items are
allowed to be negative.

Example 2. ă ␣pabqcd ą satisfies constraint 3, but
ă p␣abqcd ą does not, because in element p␣abq, only ␣a
is negative while b is not.

2) NSP Concepts: The definition of negative containment is
very important to improve the efficiency of NSP mining algo-
rithm because it affects the efficiency of calculating the support
of NSCs. In e-NSP, the definition of negative containment
is consistent with set theory. This paper also uses the same
definitions, but we simplify them in an easily understandable
way. Before we formally define negative containment, two
preparatory definitions should be given first. One is a max-
imum positive subsequence that contains all positive elements
of a negative sequence. The other is 1-neg-size maximum
subsequence that contains a maximum positive subsequence
and one negative element. The definitions are as follows.

Definition 2. Maximum Positive Subsequence. Let ns “ă
s1s2...sm ą be a m-size and n-neg-size negative sequence
(m ´ n ą 0), the subsequence that contains all positive
elements with the same order as ns is called the maximum
positive subsequence, denoted as MPSpnsq.

Example 3. Given a negative sequence ns “ă

a␣bb␣apcdeq ą, its MPSpnsq “ă abpcdeq ą.
Definition 3. 1-neg-size Maximum Subsequence. Let

ns “ă s1s2...sm ą be a m-size and n-neg-size negative
sequence, the subsequence that contains all positive elements
and one negative element with the same order as ns is called a
1-neg-size maximum subsequence, denoted as 1´negMSns.
The subsequence set including all 1-neg-size maximum subse-
quences of ns is called 1-neg-size maximum subsequence set,
denoted as 1´ negMSSns.

Example 4. For ns “ă a␣bb␣apcdeq ą, its 1 ´
negMSSns “ tă a␣bbpcdeq ą,ă ab␣apcdeq ąu.

Definition 4. Negative containment. Given a data sequence
ds and a negative sequence ns, ds contains ns if and only if
two conditions hold: (1) MPS(ns)Ďds; and (2) @1´negMS P
1´ negMSSns, pp1´ negMSq Ę ds.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Given ds “ă apbcqdpcdeq ą and ns “ă a␣bb␣apcdeq ą,
ds contains ns if and only if ds contains MPSpnsq “ă
abpcdeq ą and ds does not contain ppă a␣bbpcdeq ą“ă
abbpcdeq ą and ppă ab␣apcdeq ą“ă abapcdeq ą, i.e., 1 ´
negMSSăa␣bb␣apcdeqą “ tă a␣bbpcdeq ą,ă ab␣apcdeq ą
u.

From Definition 4, we can see that the negative containment
now is converted to positive containment: a data sequence
contains a positive sequence but does not contain some other
related positive sequences. In this way, we can calculate the
support of negative sequences by only using the information
of corresponding positive sequences.

Definition 5. Negative Sequential Pattern. A negative se-
quence ns is a negative sequential pattern (NSP) if suppnsq ě
ms.

In this paper, we only mine top-k NSPs from the top-k PSPs.
Hence, we avoid setting ms.

IV. TOPK-NSP ALGORITHM

In this section, the definition of top-k NSPs is proposed.
The steps of Topk-NSP are given. Finally, the corresponding
pseudo code is given.

A. Top-k NSP Mining Definition

Because the definition of top-k NSPs and top-k PSPs are
closely related, we first introduce the definition of top-k PSPs.

Definition 6. top-k PSPs. Top-k PSPs is a set that contains
the k most frequent PSPs in a sequence database D. That is,
for each pattern sPtop-k PSP, there does not exist a PSP s1 R
top´ kPSPs|supps1q ą suppsq.

Definition 7. top-k NSPs. Top-k NSPs is a set that contains
the k most frequent NSPs mined from top-k PSPs. That is, for
each pattern sPtop-k NSPs, there does not exist an NSP s1 R
top´ kNSPs and pps1q P top´ kPSPs|supps1q ą suppsq.

Note that k in top-k PSP and top-k NSP may be different
value.

B. Steps of Topk-NSP

Step 1: use existing algorithms to mine the top-k PSPs. In
this paper, we improve GSP to mine the top-k PSPs;

Step 2: use NSCgeneration method to generate NSCs from
these PSPs as follows:

For a k-size PSP, its NSCs are generated by changing any
m non-contiguous elements to their negative elements, m =1,
2, ...,rk{2s, where rk{2s is a minimum integer that is not less
than k{2.

Example 5. The NSC based on ă pabqcd ąinclude:
m=1, ă ␣pabqcd ą, ă pabq␣cd ą, ă pabqc␣d ą; m=2,
ă ␣pabqc␣d ą.

Step 3: use equations in e-NSP to calculate the support of
all NSCs as follows:

Given a m-size and n-neg-size negative sequence ns, for
@1 ´ negMSi P 1 ´ negMSSnsp1 ď i ď nq, the support of
ns in sequence database D is:

suppnsq “ suppMPSpnsqq ´ | Yn
i“1 pp1´ negMSiq| (1)

where p(1-negMSi) is a sid set of ds that contains p(1-negMSi),
Yn

i“1tpp1´negMSiqu is the union of all sid of 1´negMSSns

and |Yn
i“1 tpp1´negMSiqu| the sid numbers of Yn

i“1tpp1´
negMSiqu.

If ns only contains a negative element, the support of ns is:

suppnsq “ suppMPSpnsqq ´ suppppnsqq (2)

In particular, for negative sequence ă ␣e ą,

suppă ␣e ąq “ |D| ´ suppă e ąq (3)

Step 4: add the first k NSC to top-k NSP, denoted by tnsc1,
nse2,. . . , nscku, where suppnsc1q ą suppnsc2q ą . . . ą
suppnsckq and then compare the other sup(nsc) with nsck to
update top-k NSP. If suppnscq ą suppnsckq, delete nsck and
add the nsc in top-k NSP.

Step 5: output the maximum support of the first k NSC,
i.e., top-k NSP. Algorithm 1. Topk-NSP Algorithm.

Input: Sequence dataset D and Parameter k;
Output: top-kNSP: a set that contains k negative sequential

patterns, where the sequences are arranged in descending order
of support;

(1) top-kPSP=H,NSC=H,top-kNSP=H;
(2)top-kPSP=minePSP();
{{ improved GSP algorithm to mine top-k PSP;

(3) For (each psp in top-kPSP){
(4) Generating NSC by using NSCgeneration from psp;
(5) For (each nsc in NSC){
(6) If (sizepnscq=1) {
(7) suppnscq is calculated by equation (3);}
(8) else if (n´ sizepnscq=1){
(9) suppnscq is calculated by equation (2);
(10) }
(11) else {
(12) suppnscq is calculated by equation (1);
(13) }
(14) If (|ttop-kNSPu| ă k){{˚ ttop-kNSPu is the

number of sequences in top-kNSP;˚{
(15) Insert tnscu to {top-kNSP};

{{@nspiϵttop-kNSPu,suppnspiq ě suppnspi´1q;
(16) uelse if (suppnscq ą suppnsckq){
(17) Delete tnscku from ttop-kNSPu;
(18) Insert tnscu to ttop-kNSPu;
(19) }
(20) }
(21) }
(22) return top-kNSP;
1) Line 2 finds the top-k PSPs from sequence database

D using existing methods. To efficiently calculate the
union set, we first improve the GSP algorithm to deal
with a data structure that contains PSPs, their support
values and tsidu, where tsidu represents the set of tuples
that contain the corresponding PSPs. Second, we set k to
constrain the number of NSPs.

2) Line 4 generates NSCs from those PSPs using the
NSCgeneration method.

3) Lines 5 to 13 calculate the support of nsc by equations
(1), (2) and (3).
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4) Lines 14 to 17 add the first k NSC in top-k NSP and from
lines 17 to 20, the top-k NSP is updated only according
to sup(nsc).

5) Line 22 returns the results and ends the algorithm.
Example 6. Suppose k=10. A customer database of an

insurance company containing five data sequences is shown
in Fig.1(a). Fig.1 shows the process of Topk-NSP.

In Fig.1, (a) presents dataset, (b) presents top-k PSPs, (c)
presents the NSCs and their sup and (d) presents top-k NSPs
with sup. From (a) to (b), we use the improved GSP to
mine top-k PSPs and from (b) to (c), we generate NSCs
from each psp and calculate their support. At the same time,
we constantly update the set of NSPs (top-k NSP)from (c)
to (d). Now we take ă ad ą, suppă ad ąq “ 0.6 and
ă bd ą, suppă bd ąq “ 0.8 (in Fig.1(b)) for example, to
explain the process (b) to (c). By step 2, the NSCs generated
from ă ad ą are: ă ␣ad ą,ă a␣d ą and suppă ␣ad ą
q “ suppMPSpă ␣ad ąqq ´ suppă ad ąq “ 1´ 0.6 “ 0.4;
the NSCs generated from ă bd ą are: ă ␣bd ą,ă b␣d ą
and suppă ␣bd ąq “ suppMPSpă ␣bd ąqq ´ suppă bd ą
q “ 1´ 0.8 “ 0.2. The result of top-k NSPs is shown in (d),
which is updated by sup(nsp).

Although the Topk-NSP method can obtain the expected
number of patterns, it does not consider the influence of PSPs
when selecting useful NSPs. In addition, it needs to calculate
the iwsup of all NSCs one by one which leads to high time
consumption. Therefore, we propose three optimizations to
Topk-NSP and based on these, we propose an optimized Topk-
NSP`.

V. TOPK-NSP`: THE OPTIMIZATION OF TOPK-NSP

The three optimizations are as follows. (1) We introduce two
weights, wP and wN , to express the user preference degree
for NSPs and PSPs respectively and select useful NSPs by
a weighted average support wsup. (2) We merge wsup and
an interestingness metric to select more useful NSPs. (3) We
propose a pruning strategy to improve the efficiency of Topk-
NSP.

A. The First Optimization: Weighted Support

As introduced in section I, in order to consider the influence
of PSPs when selecting useful NSPs, we use two weights, wP

and wN , to express a user preference values for NSPs and
PSPs respectively and use a weighted support wsup instead of
suppnspq. We use the following equation to calculate wsup.

wsupppsp, nspq “ wP ˚ supppspq ` wN ˚ suppnspq, (4)

where wP +wN=1.
Because psp “ ppnspq in wsupppsp, nspq, we use

iwsuppnspq instead of iwsupppsp, nspq for simplicity. That
is,

wsuppnspq “ wP ˚ suppppnspqq ` wN ˚ suppnspq (5)

In the process of selecting useful NSPs, when wP is large, the
influence of PSPs is strong, i.e., the user preference degree for
PSPs is high, and when wP is small, the influence of PSPs
is weak, i.e., the user preference degree for PSPs is low. In

particular, when wP =0, the influence of PSPs is none and
wsuppnspq “ suppnspq, which is the Topk-NSP algorithm.
Here we use an example to illustrate the effectiveness of wsup.

Example 7. Suppose wP =0.5, wN=0.5 and k=10, Fig.2
shows the process of Topk-NSP with wsup.

In Fig.2, (e) presents dataset, (f) presents top-k PSPs, (g)
presents the NSCs and their wsup and (h) presents top-k NSPs
with wsup. The difference between Fig.1 and Fig.2 is that the
last column of Fig.2(g) calculates the wsup of all NSCs using
equation (5) and the top-k NSP are ordered by wsuppnspq
in Fig.2(h). From Fig.1(d) and Fig.2(h), we can see that ă
a␣b ą,ă ␣ba ą andă a␣ba ą are in (d), but not in (h);
ă ␣d ą,ă b␣d ą andă ␣aa ą are in (h), but not in (d);
although ă ␣a ą,ă ␣b ą,ă ␣ad ą,ă ␣bd ą,ă ␣ab ą,ă
b␣a ą and ă ␣ab␣a ą are in Fig.1(d) and Fig.2(h), their
orders are different, except ă ␣a ą. Obviously, wsuppnspq
has a great influence on the mining results.

According to example 7, the support of ă ad ą and ă
␣ad ą are 0.6 and 0.4 respectively. For ă ␣ad ą, wsuppă
␣ad ąq “ wP ˚ suppă ad ąq ` wN ˚ suppă ␣ad ąq “
0.5 ˚ 0.6 ` 0.5 ˚ 0.4 “ 0.5. The support of ă bd ą and
ă ␣bd ą are 0.8 and 0.2 respectively. For ă ␣bd ą, wsuppă
␣bd ąq “ wP ˚ suppă bd ąq ` wN ˚ suppă ␣bd ąq “
0.5 ˚ 0.8` 0.5 ˚ 0.2 “ 0.5. So we cannot judge which one is
the more useful from ă ␣ad ą and ă ␣bd ą by equation
3. Therefore, we propose the second optimization strategy to
improve wsup.

B. The Second Optimization: Interestingness Metric

In order to solve the above problem, we need to find
a method to judge the interest between two patterns. The
authors of [32] first proposed an interestingness metric
interestpX,Y q “ |spX Y Y q ´ spXqspY q| to judge the
interest between itemsets, where X and Y express different
itemsets respectively. It is a good metric to express the
interestingness of two variables and we also use this metric
in this paper by simply replacing X and Y with NSP and
PSP. According to the NSC generation method in topk-NSP,
ppnspq “ psp, so suppnspYpspq “ 0. Therefore, we improve
the interestingness metric to judge the interest between NSPs
and PSPs as follows.

interestppsp, nspq“|supppspY nspq ´ supppspq ˚ suppnspq|

“supppspq ˚ suppnspq (6)

We merge wsup(nsp) and interest(psp,nsp), denoted by iw-
sup(nsp), as follows:

iwsuppnspq “ suppppnspqq ˚ suppnspq ` wP

˚suppppnspqq ` wN ˚ suppnspq (7)

Here, we use an example to illustrate the effectiveness of
iwsup(nsp).

Example 8. Suppose wP =0.5, wN=0.5 and k=10, Fig.3
shows the process of Topk-NSP with iwsuppnspq.

In Fig.3, (i) presents dataset, (j) presents top-k PSPs, (k)
presents the NSCs and their iwsup and (l) presents top-k NSPs
with iwsup. The difference between Fig.2 and Fig.3 is that the
last column of Fig.3(k) calculates the iwsup of all NSCs by
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Fig. 1: The process of Topk-NSP with sup.

Fig. 2: The process of Topk-NSP with wsup.

Fig. 3: The process of Topk-NSP with iwsup.
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equation (7) and the top-k NSPs are ordered by iwsuppnspq in
Fig.3(l). From Fig.2(h) and Fig.3(l) we can see that ă ␣aa ą
is in Fig.2(h), but not in Fig.3(l);ă a␣b ąis in Fig.3(l), but not
in Fig.2(h); although ă ␣a ą,ă ␣ad ą,ă ␣b ą,ă ␣bd ą
,ă ␣ab ą,ă b␣a ą,ă ␣ab␣a ą,ă ␣d ą and ă b␣d ą
are in Fig.2(h) and Fig.3(l), their orders are different, except
ă ␣a ą. Obviously, iwsup(nsp) has a greater influence on the
mining results.

For ă ␣ad ą, iwsuppă ␣ad ąq “ interestpppă ␣ad ą
q,ă ␣ad ąq`wP ˚ suppppă ␣ad ąqq`wN ˚ suppă ␣ad ą
q “ 0.24 ` 0.5 ˚ 0.6 ` 0.5 ˚ 0.4 “ 0.74, and for ă ␣bd ą,
iwsuppă ␣bd ąq “ interestpppă ␣bd ąq,ă ␣bd ąq`wP ˚

suppppă ␣bd ąqq`wN ˚suppă ␣bd ąq “ 0.16`0.5˚0.8`
0.5˚0.2 “ 0.66. Obviously ă ␣ad ą is more actionable than
ă ␣bd ą.

From Fig.1 to Fig.3, we can see that the metrics weighted
support and interestingness can effectively change the top-k
useful NSPs, but this cannot be seen in experiments. Therefore,
in section VI (experiment results), we do not verify the
efficiency of these metrics.

Fig. 4: Schematic Diagram of Generating Seed Sets.

Fig. 5: Generating Seed Set.

C. The Third Optimization: Pruning Strategy

From the above description we can see that, if we want to
get k useful NSPs, we must calculate all iwsuppnscq. This
is very time consuming. To solve this problem, we propose a
pruning strategy where only part of iwsuppnscq needs to be

Fig. 6: Schematic Diagram of Pruning Seed Sets(1).

Fig. 7: Schematic Diagram of Pruning Seed Sets(2).

calculated. The strategy is divided into two parts, detailed as
follows.

The first part is to build a seed set. After obtaining
top-k PSPs, to each psppsizeppspq ą 1q, we
generate all its NSCs and put them in a set. Suppose
the number of NSCs is l, the set is devoted by
tnscp1, pspiq, nscp2, pspiq, . . . , nscpm, pspiq, . . . , nscpl, pspiqu,
where suppnscp1, pspiqq ą suppnscp2, pspiqq ą . . . ą
suppnscpm, pspiqq ą . . . ą suppnscpl, pspiqq. This set is
called a seed set.

In order to prune the seed sets, we must find the
key code of each seed set. Suppose the number of
PSPs (sizeppspq ą 1) is y. In Fig.4, the ordNSP
presents key codes and The arrow points to their
corresponding seed set. The nscp1, pspiqp0 ď i ď yq
can identify a unique seed set. So, we set the ordered
NSP set(denoted by ordNSP) that contains all key codes
tnscp1, psp1q, nscp1, psp2q, . . . , nscp1, pspyqu of the seed
sets. In particular, ordNSP satisfies iwsuppnscp1, psp1qq ą
iwsuppnscp1, psp2qq . . . ą iwsuppnscp1, pspyqq and
sizeppspq ą 1ppspϵtpsp1, . . . , pspyuq.

The schematic diagram of the seed sets is shown in Fig.4.
In particular, if sizeppspq “ 1, we calculate the iwsuppnscq

of its NSC and add it into a useful NSP set (denoted by
useNSP). The NSCs in the useNSP are sorted by iwsuppnscq
in descending order. Suppose wP =0.5, wN=0.5 and k=10,
Fig.5 shows the generation of the seed sets. Fig.5(c) expresses
the situation of sizeppspq “ 1.

In Fig.5, (m) presents top-k PSPs, (n) presents seed sets
and (0) presents 1-size useNSP. From (m) to (n), for each
psppsizeppspq ą 1q, we generate all its NSCs and put them
in the corresponding seed set. The NSCs in the seed set are
sorted by sup(nsc) in descending order. Now we take ă ab ą
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in Fig.5 (m) for example to explain the process (m) to (n). It
is all NSCs ă ␣ab ą and ă a␣b ą. The support of ă ␣ab ą
and ă a␣b ą are 0.4 and 0.2 respectively, so the seed set of
ă ab ą is ă ␣ab ą,ă a␣b ą. Fig.5(o) is the useNSP that
contains the NSCs corresponding to PSPs (sizeppspq “ 1).

The second is to prune the seed set.
Step 1: calculate the iwsup of the first nsc1 for each seed

set, and then add them to ordNSP and useNSP simultaneously;
The useNSP is denoted by tnsp1, nsp2, . . . , nspku, where
suppnsp1q ą suppnsp2q ą . . . ą suppnspkq.

Step 2: start from the seed set corresponding to the first nsc
of ordNSP.

Step 3: compare iwsuppnsc2q with iwsuppnspkq of useN-
SP. If iwsuppnsc2q ą iwsuppnspkq, delete the nspk and
add the nsc2 to useNSP, then delete all the nsc of ordNSP
that satisfy iwsuppnscq ď iwsuppnspkq. The schematic
diagram of this situation is shown in Fig.6. If this seed set
is not empty, calculate the iwsuppnsc3q and repeat Step 3. If
iwsuppnsc2q ď iwsuppnspkq or this seed set is empty, start
from a new seed set that corresponds to the next nsc of ordNSP
and repeat Step 3. Fig.7 shows the schematic diagram of the
situation piwsuppnscq ď iwsuppnsp2qq.

Fig.6 and Fig.7 show two cases of pruning, where the
dashed line presents the pruned parts. Fig.6 shows that
iwsuppnscpm, pspiqq ą iwsuppnspkq (m ě 2, nspk Pthe
useful NSP set), iwsuppnscp1, pspx´1qq ą iwsuppnspkqq and
iwsuppnscp1, pspxqq ď iwsuppnspkq. We prune the seed sets
of which the key codes are nscp1, pspx`1q...nscp1, pspyq by
deleting tnscp1, pspx`1q...nscp1, pspyqu from ordNSP, then
delete nscpn, pspkq from useNSP (deleting is represented by
a dashed line), and add the nscpm, pspiq to useNSP.

Fig.7 shows that iwsuppnscpm, pspiqq ď iwsuppnspkq
(m ě 2, nspk P the useful NSP set), we do not calculate
the iwsup of the other NSCs in the seed set of pspi (this part
is represented by a dashed line)and find the next seed set that
has the nscp1, pspi`1q of ordNSP.

Step 4: end until the last one of ordNSP has been traversed.
Fig.8 shows the pruning seed set. Fig.8(p) illustrates Step

1. Fig.8(q) and Fig.8(r) illustrate Step 2 and Step 3.

D. Topk-NSP` Algorithm analysis

Algorithm 2. Topk-NSP` Algorithm.
Input: Sequence dataset D and Parameters wP , wN , k;
Output: useNSP: a set that contains k useful negative

sequential patterns, where
the sequences are arranged in descending order of iwsup;

(1) top-kPSP=H, NSC=H, ordNSP=H, useNSP=H,
Seedset=H;

(2) top-kPSP=minePSP();
(3) For (each psp in top-kPSP){
(4) Generating NSC by using NSCgeneration from psp;
{{@pnsciϵtNSCu, suppnsciq ě suppnsci´1qq;

(5) If(sizeppspq “ 1){
(6) iwsup(nsc) is calculated by equation (7);
(7) Insert tnscu to {useNSP};

{{@nspiϵtuseNSPu, iwsuppnspiq ě iwsuppnspi´1q;
(8) }

(9) else{
(10) Insert {NSC} to {Seedset};
(11) }
(12) }
(13) For(each seedset in SeedSet){
(14) For(each nsc1 in tNSCu){
(15) iwsup(nsc1) is calculated by equation (7);
(16) Insert tnsc1u to {ordNSP};

{{@nsciϵtordNSPu, iwsuppnsciq ě iwsuppnsci´1q;
(17) Insert tnsc1u to useNSP;
(18) } }
(19) For(each nsc in ordNSP){
(20) For(each {NSC} in SeedSet){
(21) if(iwsuppnscq ą nspk){
(22) Delete tnspkqu from {useNSP};
(23) Insert tnscu to {useNSP};
(24) Delete tnscu from {ordNSP};
(25) }
(26) }
(27) };
(28) return useNSP;
1) Line 2 is the same as section 4.3.
2) Line 3 to line 12, we generate corresponding NSC seed

sets for each psp.
3) Line 5 to line 8, we calculate the iwsup of NSCs

correspond to PSP sizeppspq “ 1 and add it into
useNSP .

4) Line 9 to line 11, to each psppsizeppspq ą 1q,
we generate all its NSCs and put them in a seed set
tnsc1, nsc2, . . . nscyu, where suppnsc1q ą suppnsc2q ą
. . . ą suppnscyq.

5) Line 13 to line 18, calculate the iwsup of the first nsc1
for each seed set, and then add them to ordNSP and
useNSP simultaneously.

6) Line 19 to line 27, we prune the seed sets. We start
from the seed set corresponding to the first nsc of
ordNSP , and calculate iwsuppnsc2q. Then we compare
iwsuppnsc2q with iwsuppnspkq of useNSP to prune
the seed sets.

7) Line 28 returns the results and ends the algorithm.
The core idea of Topk-NSP` algorithm is to mine top-k

useful NSP from top-k PSP. It is to discover a set useNSP
containing k NSP in a sequence database D such that for
each pattern nsPuseNSP and p(ns)Ptop-k PSP, there does
not exist an NSP ns1 R useNSP and ppns1q P top ´
kPSP |iwsuppns1q ą iwsuppnsq. The definition of top-k PSP
has been specifically given in the IV section.

From line 3 to line 12, Topk-NSP` algorithm first generates
NSC by using NSCgeneration method.

NSCgeneration: For a k-size PSP, its NSC are generated
by changing any m non-contiguous elements to their negative
elements, m =1, 2, ...,rk{2s, where rk{2s is a minimum integer
that is not less than k{2.

Secondly, if sizeppspq “ 1, Topk-NSP` algorithm calcu-
lates the iwsup of NSC and add it into useNSP ; otherwise,
Topk-NSP` algorithm builds the seed set and adds NSC to it.

Definition 8. seed set. A seed set is a NSC set from which
all NSC are generated from a psppsizeppspq ą 1q in top-
k PSPs. Suppose the number of NSC is l, seed set is devoted by
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Fig. 8: pruning Seed Set.

tnscp1, pspiq, nscp2, pspiq, . . . , nscpm, pspiq, . . . , nscpl, pspiqu,
where suppnscp1, pspiqq ą suppnscp2, pspiqq ą . . . ą
suppnscpm, pspiqq ą . . . ą suppnscpl, pspiqq.

From line 13 to line 18, Topk-NSP` algorithm build
ordNSP that contains the key code of each seed set to prune
seed sets. At the same time, the earliest k NSPs in useNSP are
generated. And From Line 19 to line 28, Topk-NSP` prunes
seed sets. The process is described in the Third Optimization.
In particular, the support and iwsup of NSCs are calculated by
equations (1), (2), (3) and (7). Among them, equations (1), (2)
and (3) give a rigorous proof in the e-NSP algorithm. Equation
(7) is explanation in the Second Optimization.

The relationship between Topk-NSP and Topk-NSP` is as
follows. Topk-NSP is only used to mine top-k NSPs, doesn’t
consider its efficiency and whether the mined NSPs are useful
or not. Topk-NSP` adds three optimizations to solve these
problems. The first two optimizations let Topk-NSP` mine
more useful NSPs than Topk-NSP. The third one let Topk-
NSP` be more time efficient than Topk-NSP.

E. Theoretical Analysis
So far we have not found an algorithm for mining top-k N-

SPs. The same two algorithms Topk-NSP and Topk-NSP` are
used for mining PSPs, generating NSCs and calculating NSCs’
support. The difference is that the Topk-NSP` algorithm uses
a pruning strategy when selecting useful NSPs. Therefore, we
theoretically analyse the ability of the two algorithms to select
useful NSPs. Let |NSCc,m| denote the number of m-neg-size
NSCs generated from a c-size PSP. According to definition
of e-NSP candidate generation and the related properties of
permutations and combinations, |NSCc,m| can be recognized
as the combinations of taking m elements from pc ´m ` 1q
elements and can be calculated by equation (8).

|NSCc,m| “ Cm
pc´m`1q “

pc´m` 1q!

m! ˚ pc´ 2m` 1q!
p1 ď m ď rc{2sq

(8)
The number of NSCs from the top-k PSPs is as follows:

k ˚ |NSCc̄,@m| “ k ˚

rc̄{2s
ÿ

m“1

|NSCc̄,m| (9)

where c̄ represents the average number of elements contained
in PSPs. In this experiment, we use tinsert to express the time

it takes to insert an NSC into the top-kNSP. Therefore, the
total time spent by the Topk-NSP algorithm can be expressed
as

TTopk´NSP “ k ˚

rc̄{2s
ÿ

m“1

|NSCc̄,m| ˚ tinsert (10)

We did not analyze the time to generate the seed sets because
the average length of the seed sets is c̄, and c̄ is negligible
compared to k. The total time spent by Topk-NSP` algorithm
can be expressed as

TTopk´NSP`
“ α ˚ k ˚

rc̄{2s
ÿ

m“1

|NSCc̄,m| ˚ tinsert (11)

The ratio of equation (10) to (11) is 1
α , where α represents

the ratio of the number of NSCs after pruning to the total
number of NSC α ă 1. Its value is influenced by parameters
k,wP , wN , and the datasets.

The algorithm only mines the top-k NSPs from the top-k
PSPs without scanning the database. So, the runtime is mainly
influenced by k, independent of the size of the datasets. The
size of the datasets only affects the mining of the top-k PSPs,
which is not the focus of this paper. Therefore, this paper does
not involve too datasets which are too large.

VI. EXPERIMENTAL RESULTS

In order to test the proposed methods, five experiments are
undertaken.

1) Test the efficiency of the Topk-NSP algorithm.
2) Test the effectiveness of the weighted support.
3) Test the effectiveness of the interestingness metric.
4) Test the efficiency of the Topk-NSP` algorithm.
5) Test the scalability of the Topk-NSP` algorithm.
From section V, we can see that wsup and iwsup can

influence the experimental results, but this influence is only re-
flected in that the mined NSPs are different (we have described
these differences in Fig.2 and Fig.3.) and they are difficult
to express well through experiments because the number of
mined NSPs are the same. So we do not conduct experiments
on (2) and (3). In subsection B, we describe the experiments
on (1). In subsection C, we describe the experiments on (4).
The scalability test of the Topk-NSP` algorithm is described
in subsection D.
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Fig. 9: Runtime of Topk-NSP on datasets DS1–DS6.

Fig. 10: Runtime of Topk-NSP` on datasets DS1–DS6.
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TABLE I: Summary of datasets
Dataset sequence Numbers distinct item Numbers file size

DS1 100K 100 137.9K
DS2 10K 100 5.7K
DS3 100K 200 8.26K
DS4 20,450 17 2.6M
DS5 59,601 497 0.8M
DS6 5,269 Around 4K 5.1M

We conduct experiments on four synthetic and two real-
life datasets to compare the efficiency of the two algorithms.
The synthetic datasets generated by IBM and the real datasets
were used for the e-NSP algorithm [6]. All the algorithms
are implemented in Eclipse, running on Windows 10 PC
with 32GB memory, Inter Core i7 3.4GHz CPU and all the
programs are written in Java. In the experiments, sup and
ms are expressed in terms of the percentage of the frequency
|tă s ąu| compared to the number of sequences |D| in the
database, i.e., |tă s ąu|{|D|.

A. Datasets

Definition 9. Data Factor. A data factor describes the
characteristic of underlying data from a particular perspective.
We specify the following data factors: C, T, S, I, DB and N
to describe the characteristics of sequential data.

C: Average number of elements per sequence;
T: Average number of items per element;
S: Average length of potentially maximal sequences;
I: Average size of items per element in potentially maximal

large sequences;
DB: Number of sequences in a database;
N: Number of items.
Dataset 1 (DS1) is C12.T6.S10.I8.DB100k.N100.
Dataset 2 (DS2) is C8.T4.S8.I8.DB10k.N100.
Dataset 3 (DS3) is C10.T4.S8.I12.DB100k.N200.
Dataset 4 (DS4) is a dataset of 20,450 sequences of click

stream data from the FIFA World Cup 98 website. It has 2990
distinct items (web pages). The average sequence length is
34.74 items with a standard deviation of 24.08 items. This
dataset was created by processing a section of the World Cup
web log.

Dataset 5 (DS5) is a KDD-CUP 2000 dataset which contains
59,601 sequences of e-commerce click streams. It contains
497 distinct items. The average length of each sequence is
2.42 items with a standard deviation of 3.22. The dataset
contains some long sequences, for example, 318 sequences
contain more than 20 items.

Dataset 6 (DS6) is C12.T8.S10.I12.DB10k.N300.
Table I summarizes the characteristics of all of the datasets.

B. The Efficiency of Topk-NSP

In this experiment, we use the same k on the top-k PSPs
and top-k NSPs. The execution time of mining the top-k PSPs
and top-k NSPs is shown in Fig.9. From Fig.9, we can see
that mining the top-k NSPs always takes much less time than

the top-k PSPs on all datasets. For example, mining the top-
k NSPs costs 0.06 % to 0.26% of mining the top-k PSPs
runtime on DS6 when k increases from 1000 to 3000. In
general, mining the top-k NSPs only takes 0.01-3% of the
runtime of mining the top-k PSPs on all datasets DS1 to DS6.
This is because we use equations to calculate the supports of
NSCs and do not need to re-scan the database. Compared with
scanning databases, using equations to calculate support takes
little time.

C. The Efficiency of Topk-NSP`

In Fig.10, we set different wP and wN for DS1 to DS6.
This is because different wP and wN can obtain the different
result. The point can prove in the section V. From Fig.10,
we can see that with the increase of k, Topk-NSP` takes less
time than Topk-NSP. This is consistent with our theoretical
analysis. Although the Topk-NSP` needs to order the seed
set, the length of each seed set is negligible compared to
k. Topk-NSP` can effectively prune seed sets and avoid
many unnecessary operations. Thus the time efficiency of the
algorithm is improved.

Fig. 11: Scalability test on datasets DS1 and DS2.

D. Scalability and Memory Test

Topk-NSP` calculates the support of NSC based on the
sid sets of the corresponding positive patterns. Thus, its
performance is sensitive to the size of the sid sets. If a
dataset is huge, it produces large sid sets. A scalability test
is conducted to evaluate Topk-NSP`’s performance on large
datasets. Fig.11 shows the results of Topk-NSP` on datasets
DS1, DS2 and in terms of different data sizes: from 5 (i.e.,
73M) to 25 (227M) times of DS1, from 10 (26M) to 50(130M)
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times of DS2, with various k 2500 and 3000 on DS1, as well
as 2000 and 2500 on DS2, respectively.

On DS2, for example, when the sampled data size increases
to 50 times its original size (see the results corresponding to
label X50), the Topk-NSP` takes 117 seconds to obtain the
results. This is around thirty times of the runtime on the 10
times (X10) data size. This indicates that the increase of 5
times the data size leads to about 30 times runtime growth.

Fig.12 shows the memory occupied by the Topk-NSP`

when it runs on DS1 and DS2 and in terms of different data
sizes: from 5 (i.e., 73M) to 25 (227M) times of DS1, from 10
(26M) to 50(130M) times of DS2, with various k 2500 and
3000 on DS1, as well as 2000 and 2500 on DS2, respectively.
On DS1, the increase of 5 times the data size leads to about
2.3 times memory growth. On DS2, the increase of 5 times the
data size leads to about 2 times memory growth. This shows
that with the increase of data sets, the memory consumption
increase little.

Fig. 12: Memory test on datasets DS1 and DS2.

VII. CONCLUSIONS
NSP is an important tool for understanding complex NOB.

Mining NSP is very challenging due to the problems: (1)
how to mine an expected number of patterns, (2) how to
select useful NSP, and (3) how to reduce the high time
consumption. However, NSP discovery is becoming increas-
ingly important for many intelligent systems and applications,
as traditional PSP and association rule mining approaches
cannot effectively detect such patterns and exceptions that
are associated with non-occurring sequences. NSP mining
has achieved very limited research outcomes and most of
existing methods focus on how to design a mining algorithm
and how to improve the algorithm’s efficiency. In this paper,

we have studied the above problems and proposed a method
Topk-NSP to mine top-k NSP. Next, we have proposed three
optimization strategies to Topk-NSP. First, we have proposed
a weighted support method to select useful NSP. Second, we
have proposed an interestingness metric optimization strategy
to select more useful NSP. Finally, we have proposed a pruning
strategy to reduce the high time consumption of Topk-NSP. At
last, we obtained an optimizing algorithm Topk-NSP`. The
experimental results on real-life and synthetic datasets show
that Topk-NSP` is more effective in runtime.

Topk-NSP` is mainly used in behavioral analysis such as
shopping behavior analysis, insurance behavior analysis and
software users behavior analysis, etc. it not only avoids setting
ms, but also considers the influence of PSPs on NSPs mining.
To our best knowledge, it is the first algorithm to mine the top-
k NSPs and consider the influence of PSPs on NSPs mining.

Our future work is to find a more effective method to
mine useful NSPs not only from top-k PSPs. In addition, in
pattern mining, it is an open issue to verify the correctness
and completeness of patterns discovered by a pattern mining
algorithm. We will explore this further in the NSP research.
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