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Abstract—Dependence across multiple financial markets, such
as stock and foreign exchange rate markets, is high-dimensional,
contains various relationships, and often presents complicated
dependence structures and characteristics such as asymmetrical
dependence. Modeling such dependence structures is very chal-
lenging. Although copula has been demonstrated to be effective
in describing dependence between variables in recent studies,
building effective dependence structures to address the above
complexities significantly challenges existing copula models. In
this paper, we propose a new D vine-based model with a bottom-
up strategy to construct high-dimensional dependence structures.
The new modeling outcomes are applied to trade 15 stock
market indices and 10 currency rates over 16 years as a case
study. Extensive experimental results show that this model and
its intrinsic design significantly outperform typical models and
industry baselines, as shown by the log-likelihood and Vuong test,
and Value at Risk - a widely used industrial benchmark. Our
model provides interpretable knowledge and profound insights
into the high-dimensional dependence structures across data
sources.

I. INTRODUCTION

Dependence between financial markets (for short, cross-
market dependence) has long been an issue of interest in
both academia and industry. Effectively modeling cross-market
dependence can contribute to significant consequences in-
cluding the identification of opportunities for and barriers to
international portfolio investment with important implications
for portfolio allocation and asset pricing. In financial theory,
if financial markets are not integrated, entailing differential
investment and consumption opportunity sets across countries,
investment barriers will affect investor portfolio choices and
company financing decisions. Since exchange rates affect the
cost of consumption across countries, as a result, exchange
rate risk influences the price of assets to foreign investors.

Dependence between different countries can be easily seen
from Figure 1. Figure 1(a) shows the daily returns between
the United Kingdom comprehensive index FTSE100 and the
United States comprehensive index S&P500, which indicates
the strong positive correlation between them. Dependence
between the foreign exchange rate GBP against the USD and
the United Kingdom comprehensive index FTSE100 is shown
in Fig. 1(b), which indicates negative dependence. These
examples show that it is essential to realize that exchange rate
markets significantly affect asset markets. It means that stock
markets and exchange rate markets are dependent.

Modeling cross-market dependence involves the devel-
opment of proper dependence structures. Typically, a low
correlation coefficient between two markets implies a good

(a) FTSE100 and S&P500 (b) FTSE100 and GBP

Fig. 1. Dependence across Markets

opportunity for an investor to diversify investment and reduce
risk. For example, suppose that the return in a domestic market
and in a foreign market has a linear correlation coefficient
of 0.2. Under the Gaussian assumption, the probability that
the return in both markets is in their lowest 5! percentile
is less than 0.005. Thus, based on the Gaussian assumption,
an investor can significantly reduce the investment risk in the
domestic market by hedging in the foreign market. However, it
has been widely observed that market crash and financial crisis
often happen in different countries approximately around the
same time period, even when the correlation between these
markets is fairly low. Therefore, in cross-market studies, we
have to consider not only the degree of dependence, but also
the structure of dependence. The importance of dependence
structure is demonstrated in Fig. 2. The two graphs in Fig.
2 present two different dependence structures with the same
correlation.

The challenge of modeling cross-market dependence lies
in the three major aspects concerning us in this paper. Firstly,
as with any complex behavioral and social system, the cross-
market dependence structure is often embedded with strong
couplings on high dimensionality [1]; the dependence across
markets has been demonstrated to be significantly asymmetri-
cal and nonlinear. For example, return in stock markets will
have stronger correlation in a bear market downturn than in
a bull market. Secondly, financial variables, such as daily
return, have been shown to follow non-normal distributions,
which means they do not follow the Gaussian assumption.
For example, in [2], the empirical distribution of return from
developed stock markets tends to display more kurtosis and
have a pronounced higher peak than allowed under the normal-
ity hypothesis. The return on assets from emerging markets,
however, is more volatile, and one can expect that it will
be even more difficult to identify its distribution. This means
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Fig. 2. The Scatter Plot of Return with Correlation 0.17

that different markets have different characteristics. Finally, an
important issue in modeling cross-market dependence is high
dimensional data. The corresponding models have to handle
high dimensional financial variables (generally more than 20)
that always lead over ten thousand features for a group of time
series at one time window. However, it is difficult to deal with
high dimensional variables due to the curse of dimensionality.

Dependence across markets has been studied by different
communities, including statistics and machine learning. The
typical approaches in the statistical community are joint distri-
bution with Gaussian assumption and conditional correlation.
The first method has been demonstrated that Gaussian assump-
tion is inappropriate when studying either stock markets or
exchange rate markets. The second one is to use conditional
correlation to calculate the covariance, which is generally used
in empirical studies. As the current correlation depends on
previous one, the dependence structure is not flexible. The
dependence studies in machine learning community consist of
hidden Markov models and graphical probability models. The
hidden Markov models, however, could have a large number
of hidden states when applying to a high dimensional case,
which invariably leads to computational intractability in the
algorithms for inferring the hidden states from observations.
The graphical probability models, such as Bayesian logic
program [3], impose unrealistic assumptions in constructing
dependence structures. As a result, they cannot capture the
complex and asymmetrical dependence structures with high-
dimensional variables [4].

The typical framework for dependence modeling is the
copula-based models, such as [5], [6], [7], [8]. A copula-
based model is a more convenient tool for studying dependence
structures. A copula is a function that connects the marginal
distributions to restore the joint distribution and various copula
functions representing various dependence structures between
variables. In a copula-based model, the primary task is to
choose an appropriate copula function and a corresponding
estimation procedure. Marginal distributions are treated as
nuisance functions. This reorientation has desirable advantages
in empirical finance where one of the primary goals is to
investigate dependence in order to better understand issues
like portfolio allocation and where the marginal distributions of
asset return in individual markets may be very complicated and
may not easily fit existing parametric models. Existing copula-
based models, however, neither apply in high-dimensional
cases [5], nor have the ‘best’ dependence structure to capture
the asymmetrical and complex dependence structure across
markets [9].

Since the existing copula models do not address all the

challenges mentioned above, we here propose a new cop-
ula model: a Weighted Partial Vine Copula model (WPVC).
WPVC is more powerful, because: (1) A partial D vine tree
structure is created to capture the asymmetrical dependence
across financial markets to construct complex and asymmetri-
cal dependence structures. The advantage of the partial D vine
dependence tree structure is that it can uniquely determine
the correlation matrix and be algebraically independent, thus
capable of handling the complex and asymmetrical dependence
across markets. (2) Various time series models are used to
capture the characteristics of different financial markets, which
do not impose any Gaussian assumption on data. For example,
we use AR(1)-GARCH(1,1) with skewed student t innovation
to capture the volatility clustering of stock markets, and use
ARMA(1,1)-GARCH(1,1) with inverse normal innovation to
capture the fat tail of currency markets. (3) A truncated
method replaces weak correlations in dependence structure
with conditional independence but does not affect the structure,
which thus effectively resolves the high dimensional issues.

The rest of this paper is organized as follows: Section
2 presents the related work. Section 3 introduces the basic
concepts and the foundation of copula, the vine copula model
and partial correlation. Sections 4 and 5 present WPVC, in-
cluding D vine dependence structure building, bivariate copula
selection, marginal distribution specification, and parameter
estimation. The evaluation methods are discussed in Section
6 to verify the performance of high-dimensional financial
variables. Section 7 shows the case study results. Section 8
concludes this work.

II. RELATED WORK

Dependence across financial markets has been studied in
the past decades. Several typical alternatives are available in
multivariate analysis for studying dependence across markets
in both statistics and machine learning communities. One
approach is to use a joint distribution, typically the multivariate
normal distribution. Under the Gaussian assumption, inference
is then conducted based on the mean-variance analysis. How-
ever, there is increasing evidence indicating that the Gaussian
assumption is inappropriate in the real world, as both stock and
exchange rate markets face significant non-Gaussian character-
istics [10]. Another issue of the joint distribution methods is
that they only consider dependence, but ignore the dependence
structure. As discussed in Section 1, we have to consider both
the dependence degree and dependence structure. For example,
given a copula, for the same correlation (dependence degree),
it can show different dependence structures.

The second approach that has been used in empirical
studies is to compute conditional correlations, such as the
Dynamic Conditional Correlation (DCC) model [11]. It has
been found that correlations computed with different condi-
tions could differ dramatically. The correlations conditioned
on large movements are higher than that conditional on small
movements. The reason for this is that even a stationary
Gaussian process predicts stronger dependence in volatile
periods and weaker dependence in tranquil periods. Hence, the
results are sometimes misleading and need to be interpreted
carefully. In addition, another drawback of the DCC models
is that if restriction on the covariance matrix (dependence
structure) is not imposed, then the number of parameters are



