UTS:A수 theadanced ANALYTICS INSTITUTE

Behavior Informatics:

Modeling, Analysis and Mining of Complex Behaviors

Longbing Cao

University of Technology Sydney, Australia

Behavior informatics - Concept Map

http://www.behaviorinformatics.org/

Outline

What is Behavior?

What is Behavior Informatics \& Computing?

Related Work

Behavior Model/Representation
High Impact Behavior Analysis

7 Impact-oriented Combined Behavior Analysis

High Utility Behavior Analysis

Negative Behavior Analysis

Coupled/Group Behavior Analysis
Challenges and Prospects of Complex Behavior Computing

References \& Slides

- http://www-
staff.it.uts.edu.au/~Ibcao/publication/behavio r-informatics-tutorial-slidesx.pdf
- http://www-
staff.it.uts.edu.au/~Ibcao/publication/publicat ions.htm
- www.behaviorinformatics.org

Selected Works

- Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 30673085, 2010.
- Can Wang,Longbing Cao, Chi-Hung Chi. Formalization and Verification of Group Behavior Interactions. IEEE T. Systems, Man, and Cybernetics: Systems 45(8): 1109-1124 (2015).
- Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on Knowledge and Data Engineering, 20(8): 1053-1066, 2008.
- Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations for Discovering and Constructing Complex but Actionable Patterns, WIREs Data Mining and Knowledge Discovery.
- Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications (KDD2010 extension), IEEE Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).

Selected Works

- Longbing Cao, Philip S. Yu, Vipin Kumar. Nonoccurring Behavior Analytics: A New Area. IEEE Intelligent Systems 30(6): 4-11 (2015).
- Xiangjun Dong, Zhigang Zhao, Longbing Cao, Yanchang Zhao, Chengqi Zhang, Jinjiu Li, Wei Wei, Yuming Ou. e-NSP: Efficient Negative Sequential Pattern Mining Based on Identified Positive Patterns Without Database Rescanning, CIKM 2011, 825-830.
- Longbing Cao. Non-IIDness Learning in Behavioral and Social Data, The Computer Journal, 57(9): 1358-1370 (2014).
- Longbing Cao. Coupling Learning of Complex Interactions, Journal of Information Processing and Management, 51(2): 167-186 (2015).
- Longbing Cao, Xiangjun Dong, Zhigang Zhao. e-NSP: Efficient Negative Sequential Pattern Mining. Artificial Intelligence, 2016.

Behavior Informatics-IEEE Task Force!

http://www.behaviorinformaties.org/

Part I.
 Concepts \& Representation

- Why behavior informatics?
- What is behavior?
- What are the key behavioral factors?
- What is the conceptual map of behavior informatics?
- How to represent/model behavior?
- How to check the behavior model?

Information Sciences

journal homepage: www.elsevier.com/locate/ins

In-depth behavior understanding and use: The behavior informatics approach
Longbing Cao
Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia

ARTICLE INFO

Article history:

Received 10 May 2009
Received in revised form 20 March 2010 Accepted 24 March 2010

Keywords:
Informatics
Behavior analysis
Behavior informatics
Behavior computing
Decision making

Abstract

The in-depth analysis of human behavior has been increasingly recognized as a crucial means for disclosing interior driving forces, causes and impact on businesses in handling many challenging issues such as behavior modeling and analysis in virtual organizations, web community analysis, counter-terrorism and stopping crime. The modeling and analysis of behaviors in virtual organizations is an open area. Traditional behavior modeling mainly relies on qualitative methods from behavioral science and social science perspectives. On the other hand, so-called behavior analysis is actually based on human demographic and business usage data, such as churn prediction in the telecommunication industry, in which behavior-oriented elements are hidden in routinely collected transactional data. As a result, it is ineffective or even impossible to deeply scrutinize native behavior intention, lifecycle and impact on complex problems and business issues. In this paper, we propose the approach of behavior informatics (BI), in order to support explicit and quantitative behavior involvement through a conversion from source data to behavioral data, and further conduct genuine analysis of behavior patterns and impacts. Bl consists of key components including behavior representation, behavioral data construction, behavior impact analysis, behavior pattern analysis, behavior simulation, and behavior presentation and behavior use. We discuss the concepts of behavior and an abstract behavioral model, as well as the research tasks, process and theoretical underpinnings of BI. Two real-world case studies are demonstrated to illustrate the use of BI in dealing with complex enterprise problems, namely analyzing exceptional market microstructure behavior for market sur veillance and mining for high impact behavior patterns in social security data for governmental debt prevention. Substantial experiments have shown that BI has the potential to greatly complement the existing empirical and specific means by finding deeper and more nformative patterns leading to greater in-depth behavior understanding. BI creates new directions and means to enhance the quantitative, formal and systematic modeling and analysis of behaviors in both physical and virtual organizations.

2010 Elsevier Inc. All rights reserved

Longbing Cao: In-depth behavior understanding and use: The behavior informatics approach. Inf.
Sci. 180(17): 3067-
UTSP85: (20io)
THE ADVANCED ANALYTICS INSTITUTE

Behavior Informatics: A New Perspective

Longbing Cao, University of Technology, Sydney

Behavior is a concept increasingly recognized in broad communities spreading from social to business, online, mobile, economic, and cultural domains. However, systematic and comprehensive methodologies, theories, tools, and systems aren't ready for deeply, fully, and effectively capturing, representing, quantifying, analyzing, learning, and measuring the semantics, sequencing, networking, evolution, utility and impact of individual, group, and cohort behaviors taking place in the real world. This is becoming fundamental and critical in the age of Big Data. Here, in this installment of "Trends \& Controversies," we look at how behavior informatics targets the development of effective methodologies and techniques to tackle these issues.
social and collaborative searching activities is needed. Gabriella Pasi presents insights on engaging behaviors in information seeking, especially considering coupled behaviors within certain contexts.
Nowadays, an increasing number of users are interested in IPTV programs online, and generate massive amounts of activities. Ya Zhang and her colleagues lead a discussion about the behaviors of IPTV users that are related to system efficiency, personalization, recommendation, and targeted advertisement.
Finally, Edoardo Serra and V.S. Subrahmanian raise an interesting question: Should behavior models of terror groups be disclosed? They share their research and arguments on strategic disclosures and consequences in tackling today's terrorism.

Longbing Cao, Thorsten Joachims, Can Wang, Éric Gaussier, Jinjiu Li, Yuming Ou, Dan Luo, Reza Zafarani, Huan Liu, Guandong Xu, Zhiang Wu,Gabriella Pasi, Ya Zhang, Xiaokang Yang, Hongyuan Zha, Edoardo Serra, V. S. Subrahmanian: Behavior Inforngh ${ }^{5}$ SNewA. Perspective. IEEE Intelligent Systems 29(4): 62-80 (2014)

Business Case

1 Develop your business case

Before you start this learning and discussion journey, please think of a business case that is familiar to you, and we will use it for discussions and exercises in the course. The best way is probably for you to choose something happening to your daily business.

2 Toy business case

I here include a toy business case for you to think or customize for the course use, if you like.

1. Why Behavior Informatics \& Computing?

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 3067-3085, 2010.
www.behaviorinformatics.org

Argument 1: Behavior is ubiquitous

- Behavior is an important analysis object in
- Consumer analysis
- Marketing strategy design
- Business intelligence
- Customer relationship management
- Social computing
- Intrusion detection
- Fraud detection
- Event analysis
- Risk analysis
- Group decision-making, etc.
>Customer behavior analysis
$>$ Consumer behavior and market strategy
$>$ Web usage and user preference analysis
- Exceptional behavior analysis of terrorist and criminals
$>$ Trading pattern analysis of investors in capital markets

Argument 2: Major work focuses on Behavior exterior-driven analysis

- Example 1: Price movement as market behavior

Argument 3: Behavior interiordriven analysis can make difference

- Example 2: Announcement as market behavior driver

(a)

(b)

- Short-term manipulation behavior as cause

- Associated accounts

Argument 4: Need to consider

 behavior context- Microstructure data

Big Data-based Behaviour Analysis

1. Advertising

1. Advertising Agencies
2. Advertising Systems
3. Architecture for the Future
4. Multi-Media Publications
5. Publish and Subscribe (Basic)
6. Publish and Subscribe (Financial Portal)
7. Publish and Subscribe (using Tags)
8. Web Site Analytics
9. Air Transport
10. Aircraft Parts and Orders
11. Airline Bookings in Africa
12. Airline Operations
13. Airline Reservations
14. Airline Travel Routes

NEW
6. Airport in a Box
7. Airport Management
8. BAA (British Airports Authority)
9. Enterprise Data Model for Air Trave
10. Heathrow Airport
3. Assets

1. Asset Management
2. Assets
3. Assets and Locations
4. Assets Maintenance
5. Assets Schedules
6. Banks
7. Banking Acquisitions
8. Bank and Branches
9. Banking Data Warehouses
10. Investment Banks
11. Online Banking
12. Retail Banks
13. Retail Bank Accounts for Husbands and Wives

1. Customers

1. Clients and Fees
2. Clients and Locations
3. Clients, Services and Fees
4. CRM

Call Centers

- Customer Metrics
- Marketing Data
- Marketing Data Architecture

Microsoft Dynamics CRM

- Personalization
- Top-Level Data Model
- Template for a Source Systems Data Dictionary

5. Customer Experience Management
6. Customer Management Systems
7. Customers with multi-lingual B 2 C
8. Customers at a Bank
9. Customers at a Bank (retail)
10. Customers at a Bookstore
11. Customers at a Call Center
12. Customers and Addresses
13. Customers and Campaigns
14. Customers and Car Hire
15. Customers and Car Parts
16. Customers and Car Sales
17. Customers and Car Servicing
18. Customers and Credit Cards
19. Customers and Dept Stores
20. Customers and Deals (UML)
21. Customers and Deliveries
22. Customers and e-Commerce
23. Customers and Financial Services
24. Customers and Frozen Yoghurt Shops
25. Customers and Games Shops
26. Customers and Hairdressers
27. Parties
28. Parties, Roles and Customers
29. Party - IIA Insurance
30. Party Master Index
31. Pharmaceuticals
32. Pharma and Biotechnology Information
33. Pharmacies and Generics
34. Pharmacies and Medical Clinics
35. Pharmacies and Prescriptions
36. Pharmaceuticals Data Warehouse
37. Pharmaceutical Companies
38. Pharmaceutical Vendors Visits
39. Pharmaceutical Supplies
40. Payments
41. Customers and Payments (e-Gov't)
42. Invoices and Payments
43. Future of Payments
44. Medical Laboratories with Payments
45. Payments Subject Area
46. Tracking Multiple Job Payments
47. People
48. Police
49. Baltimore Police Department
50. Police Canonical Data Model
51. Police Departments
52. Police Generalized Data Model
53. Police Information Reports
54. Police MDM Data Model
55. Police Mobile Application
56. Tracking Evidence
57. Traffic Cops and Tickets
58. Products
59. Bill of Materials

Observation: Traditional analysis on behavior

- Empirical, qualitative, psychological, social etc
- Behavior-oriented analysis was usually conducted on customer demographic and transactional data directly
- Telecom churn analysis, customer demographic data and service usage data are analyzed to classify customers into loyal and non-loyal groups based on the dynamics of usage change
- Outlier mining of trading behavior, price movement is usually focused to detect abnormal behavior
so-called behavior-oriented analysis is actually not on customer behavior-oriented elements, rather on straightforward customer demographic data and business usage related appearance dqta (traz4sactions)

Problems with traditional behavior analysis

- Customer demographic and transactional data is not organized in terms of behavior but entity relationships
- Human behavior is implicit in normal transactional data: behavior implication
- cannot support in-depth analysis on behavior interior: focus on behavior exterior
- Cannot scrutinize behavioral actor's belief, desire, intention and impact on business appearance and problems

Such behavior implication indicates the limitation or even ineffectiveness of supporting behavior-oriented analysis on transactional data directly.

Genuine behavior analysis does matter

- Behavior plays the role as internal driving forces or causes for business appearance and problems
- Complement traditional pattern analysis solely relying on demographic and transactional data
- Disclose extra information and relationship between behavior and target business problem-solving

> A multiple-dimensional viewpoint and solution may exist that can uncover problem-solving evidence from not only demographic and transactional but behavioral (including intentional, social, interactive and impact aspects) perspectives

Support genuine behavior analysis

- Make behavior 'explicit' by squeezing out behavior elements hidden in transactional data
- A conversion from transactional space to behavior feature space is necessary
- Behavioral data:
- behavior modeling and mapping
- organized in terms of behavior, behavior relationship and impact

Explicitly and more effectively analyze behavior patterns and behavior impacts than on transactional data

Behavior: soft vs. hard

Discussion 1: Behaviour in your organisatign

1 List the business lines (drill down to specific business areas) in your organization where behaviour could be an important aspect/asset

2 Use a few keywords in a dot point format to describe behaviour analytics tasks conducted at your organization

2. What is Behavior?

1. What is Behavior and Behavior Computing

What is Behavior?

Actions Operations

Events
Sequences

Context and
Environment

Activities

Abstract Behavior Model

Definition 1. A behavior (\mathbb{B}) is described as a four-ingredient tuple $\mathbb{B}=$ $(\mathscr{E}, \mathscr{O}, \mathscr{C}, \mathscr{R})$,

- Actor $\mathscr{E}=\langle\mathcal{S E}, \mathcal{O E}\rangle$ is the entity that issues a behavior (subject, $\mathcal{S E}$) or on which a behavior is imposed (object, $\mathcal{O E}$).
- Operation $\mathscr{O}=\langle\mathcal{O} \mathcal{A}, \mathcal{S} \mathcal{A}\rangle$ is what an actor conducts in order to achieve certain goals; both objective $(\mathcal{O} \mathcal{A})$ and subjective $(\mathcal{S A})$ attributes are associated with an operation. Objective attributes may include time, place, status and restraint; while subjective aspects may refer to action and its actor's belief and goal etc of the behavior and the behavior impact on business.
- Context \mathscr{C} is the environment in which a behavior takes place.
- Relationship $\mathscr{R}=\langle\theta(\cdot), \eta(\cdot)\rangle$ is a tuple which reveals complex interactions within an actor's behaviors (named intra-coupled behaviors, represented by function $\theta(\cdot))$ and that between multiple behaviors of different actors (inter-coupled behaviors by relationship function $\eta(\cdot)$).

What is behavior?

- An abstract behavior model
- Demographics and circumstances of behavioral subjects and objects
- Associates of a behavior may form into certain behavior sequences or network;
- Social behavioral network consists of sequences of behaviors that are organized in terms of certain social relationships or norms.
- Impact, costs, risk and trust of behavior/behavior network

Figure 1. An Abstract Behavioral Model

- Behavior instance: behavior vector

$$
\vec{\gamma}=\{s, o, e, g, b, a, l, f, c, t, w, u, m\}
$$

- basic properties
- social and organizational factors
- Vector-based behavior sequences

$$
\vec{\Gamma}=\left\{\vec{\imath}_{1}, \vec{\gamma}_{2}, \ldots, \vec{\gamma}_{n}\right\}
$$

- Vector-oriented patterns

- Vector-oriented behavior pattern analysis

- Behavior performer:
- Subject (s), action (a), time (t), place (w)
- Social information:
- Object (o), context (e), constraints (c), associations (m)
- Intentional information:
- Subject's: goal (g), belief (b), plan (I)
- Behavior performance:
- Impact (f), status (u)
> New methods for vector-based behavior pattern analysis

Behavioral data

- Behavioral elements hidden or dispersed in transactional data
- behavioral feature space
> Behavioral data modeling
> Behavioral feature space
> Mapping from transactional to behic

> Behavioral data processing
> Behavioral data transformation

3. What is

Behavior Informatics and Computing?

[^0]

Behavior analysis process

$B I A: \Psi(D B) \xrightarrow{\Theta(\vec{\Gamma})} \vec{\Gamma} \xrightarrow{\Omega, e, c, t_{i}()} \widetilde{P} \xrightarrow{\Lambda, e, c, b_{i}()} \widetilde{R}$

BIA PROCESS: The Process of Behavior Informatics and Ana-
lytics
INPUT: original dataset Ψ;
OUTPUT: behavior patterns \widetilde{P} and operationalizable business rules \tilde{R};
Step 1: Behavior modeling $\Theta(\vec{\Gamma})$;
Given dataset Ψ;
Develop behavior modeling method $\theta(\theta \in \Theta)$ with
technical interestingness $t_{i}()$;
Employ method θ on the dataset Ψ
Construct behavior vector set $\vec{\Gamma}$;
Step 2: Converting to behavioral data $\Phi(\vec{\Gamma})$;
Given behavior modeling method θ;
FOR $j=1$ to $(\operatorname{count}(\Psi))$
Deploy behavior modeling method θ on dataset Ψ;
Construct behavior vector $\vec{\gamma}$;
ENDFOR
Construct behavior dataset $\Phi(\vec{\Gamma})$;
Step 3: Analyzing behavioral pattems $P \bar{\Gamma}$;
Given behavior data ($\Phi(\vec{\Gamma})$;
Design pattern mining method $\omega \in \Omega$;
Employ the method ω on dataset $\Phi \bar{\Gamma}$;
Extract behavior pattern set \tilde{P};
Step 4: Converting behavior pattems \widetilde{P} to operationalizable business rules \tilde{R};

Given behavior pattern set \tilde{P};
Develop behavior modeling method Λ;
Involve business interestingness $b_{i} 0$ and constraints c in the environment e;

Generate business rules \widetilde{R};

Behavioral representation

- (Behavior modeling)
- describing behavioral elements
- extracting syntactic and semantic relationships amongst the elements
- presentation and construction of behavioral sequences and properties
- unified mechanism for describing and presenting behavioral elements, properties, behavioral impact and patterns

Behavioral impact analysis

- Behavioral instances that are associated with high impact on business processes and/or outcomes
- Modeling of behavioral impact

```
Behavior impact analysis
>Behavioral measurement
Organizational/social impact analysis
>Risk, cost and trust analysis
>Scenario analysis
CCause-effect analysis
 Exception/outlier analysis and use
>Impact transfer patterns
>Opportunity analysis and use
DDetection, prediction, intervention and prevention
```


Behavioral pattern analysis

- Behavioral patterns without the consideration of behavioral impact

- Analyze the relationships between behavior sequences and particular types of impact
> Emergent behavioral structures
> Behavior semantic relationship
> Dynamic behavior pattern analysis
> Detection, prediction and prevention
$>$ Demographic-behavioral combined pattern analysis
$>$ Cross-source behavior analysis
> Correlation analysis
$>$ Social networking behavior
$>$ Linkage analysis
$>$ Behavior clustering
>Behavior network analysis
>Behavior self-organization
- Exceptions and outlier mining

UTS:AAi
THE ADVANCED ANALYTICS INSTITUTE

Behavioral Anomaly Analysis

- Abnormal behavior
- Abnormal + normal behaviors
- Abnormal group behavior

Behavioral intelligence emergence

- Behavioral occurrences, evolution and life cycles
- Impact of particular behavioral rules and patterns on behavioral evolution and intelligence emergence
- Define and model behavioral rules, protocols and relationships, and
- Their impact on behavioral evolution and intelligence emergence

Behavior networking

- Intrinsic mechanisms inside a network
- behavioral rules, interaction protocols, convergence and divergence of associated behavioral itemsets
- effects such as network topological structures, linkage relationships, and impact dynamics
- Community formation, pattern, dynamics and evolution

```
\(>\cdot\) Intrinsic mechanisms inside a network
```

$>$. Behavior network topological structures
$>$. Convergence and divergence of associated behavior
$>$. Hidden group and community formation and identification
$>$. Linkage formation and identification
$>$. Community behavior analysis

Behavioral simulation

- Observe the dynamics,
- The impact of rules/protocols/patterns, behavioral intelligence emergence, and
- The formation and dynamics of social behavioral network

Behavioral presentation

- presentation means and tools

- describe the motivation and the interest of stakeholders on the particular behavioral data
- traditional behavior pattern presentation
- visual behavioral presentation
> Rule-based behavior presentation
> Flow visualization
> Sequence visualization
> Dynamic group formation
> Visual behavior network
> Behavior lifecycle visualization
> Temporal-spatial relationship
> Dynamic factor tuning, configuration and effect analysis
> Behavior pattern emergence visualization
> Distributed, linkage and collaborative visualization 47

Discussion 2: What is the betaviour your organization

1 Write a few keywords (dimensions and aspects), or a diagram, to explain what is behaviour on your mind

2 List three aspects that you believe are the most important in discussing behaviour

5. Behavior Modeling and Representation

Formalization and Verification of Group Behavior Interactions

Can Wung, Innghing Coo, Sentior Member, IEEE, and Chi-Hung Chi

Aniract-Ginap behavier interactire, such as mulirobot thatwork and gropg cosumunicatioss in soclel networks, are midely seen in botín naturat, suciat, mad artitchat betasior.

 unctios or dedjuscbin. Surch couping matbonstips chatlongo asting Beharier represumtation mestook, because thyy impule

 nlyaes. In this papec, wi propese an ontobeg-based behaviot inodetimy and chockigg system contull for short to Expldity
 thes, asd construints. The Ontuit systes provides bode a stasal behavier modd and an ahstraci botavior taple to capture behay-

 agreneatoess (behaviors conducted by differunt actorss trom termproal, thfirenthat, ant party-hased perspectives Ontow cumerts a beharvir-aricated application inis a is and lemporal agge fermalas fir furtior varification and ratnement We demenstrus and evaluate the aflectivatess of Be Ontoll in modoling mutrobol bichaviers and thetr literactions in the Kinbocup saccer
 mojatiog of complex frop Beraver intsractios is a wen manner.
Safer Ternes-lichavor mitorartive, cuepling rilabintip froeq tohumic, model chocking

1. Intronuction

BPHAVIOR refers is the action or nactoo of any mulerial ander given cimumsances and esviroament. Ht is intrinsic in many arean, asd belavior amlysis hum become a finda mental lopic which has been increusingly ievestipued as an essentol activity is many fields, from social and hehwiornl ciences to computer scienoe [1], 121. In Goople, the keswom "behavior" itiracts 38000000 hits athile "hehavior interic tion" schieves 202000000 results, searthed oe 4th Dec. 2014

 Hise Y. Wuat
 TAS Toes, A
 ybuy, New acom, Amerita

Is both natural and social soiences and apphcabome, multiple behavion from one or multipk actors ofter intenct with ofe another, which are called coupled behavion ar group behwing interactions. They play impotuat mbes in group-baced activifies such us socal netwodking and multimbot leumwork. These coupled betavions asd belavior iatenctions may form inkerior driving forces thut shape underlying businesses, such as in anline cummunity and social networks i31, or may even cuase cullenging prohlems like group-tosed munipulation by a group of traders $|4|$ or serises traffic juma nevulting from huphwand imeractions between valicles traveling in differ eni diractions toward in incersection. Widh the despesize and widening of cumplex networking, coupled behaviun, or group behavior interactions ate increasingly sect is both mansinsam and emerging situations, in particular, in enterperse applcutions, organizations, cumplex systems, online, and social communities.

We illustrate coupled behuvies and behwior interactores using the example of multirobot soocer game in lig. 1. As shown in Fig. 1, two teams participut in a Robocup noccer competition (latp:I/www.robocupary/) with foar Sony AIIIO robots is each group. The robot playen openite of their own mithout any etiernal control, either by humans or by cumpures. They communirate with eat other by wireles or by uring the speakers and micruphones. Their interac tinm include the oollhbonibon among. Ifferent actions of the same robok, e.B. one of the robots licks the ball uffer it getr a message; and distinct operations oxaducted by differeni robots, such as sending mesuages between differeat playens As shown in the scenaio described by Ros and Velowo [5], 11 team of mobots intelligently cooperaie with ote anocher and self asfose their own actribes; the saccessfol tax crocutinn and problem mesolution rely ot the proper implamestation of an indvidual robol's activities as well as collabocitive imeractions betwees robots. If a mobot undertakes taske with out aprenpriate amangement and cocedination with the other robots, the Robocup is litely to be unsuccestial, even though every mobot perforns periectly. This exumple shows that gruup actos and beta miors by the same ar different actus within the group ire affen coupded in different forms of interactions 16 and it is essertial to identify, represent, and verify how the robotn interact to ensure the perfocmance of a multiribol sydem
To enable the above behuviar intenaction-criented system: bo wrok property, a fundumental task is to develop effective behuvior repoesertation tools to cupture, formalize, und vorify tehavional elemeats, coupline relationships, and interactione betwess behaviors, in both qualituive and quantitutive

Can Wang, Longbing Cao, Chi-Hung Chi: Formalization and Verification of Group Behavior
Interactions. IEEE T. Systems, Man, and Cybernetics:
Systems 45(8): 1109-1124 (2015)
Can Wang, and Longbing Cao. Modeling and Analysis of Social Activity Process, in Longbing Cao and Philip S Yu (S) Sshaynin Computing, 21-3-3,

Issues Addressed

- How to represent behaviors?
- Behavior ontology
- Behavior process and interaction
- Behavior interaction relationship
- How to model check behavior models built?
- Case studies of behavior modeling

3. Behavior Model/Representation

Behavior Modeling and Representation

UTS/AAI Technique Report 2011

Formalization and Verification of Group Behavior Interactions

Can Wang, Longbing Cao

University of Technology, Sydney, Australia

3. Behavior Model/Representation

Behavior Modeling and Checking Framework

Ontology-based Behavior Modeling and Checking

3. Behavior Model/Representation

Behavior Visual Descriptor

- Actor: refers to the subject(s) or object(s) of a behavior, for example, organizations, departments, systems, agents and people involved in an activity or activity sequence.
- Operation: represents activities, actions or events in a behavior or behavior sequence.
- Coupling: refers to the interaction between behaviors, including connections between actors and/or operations of either one or multiple actors.

3. Behavior Model/Representation

Behavior Visual Descriptor

- Instance Of ———>

Connecting instances (in Rectangle) to their corresponding classes

- Subclass Of \longrightarrow

Linking a subclass (in Oval) to its parent class

- Object Property $\rightarrow-$

Denoting the
relationships between
instances, between an
object and its properties (in Rounded Rectangle), or between properties.

Overall Single Behavior Model

Relationship Sub-model

Relationship	enable	disenable	or-split	and-split	or-join	and-join
Logic Form	$a \rightarrow b$	$\neg(a \rightarrow b)$	$a \rightarrow(b \vee c)$	$a \rightarrow(b \wedge c)$	$(a \vee b) \rightarrow c$	$(a \wedge b) \rightarrow c$

Relationships between Agent Behaviors

3. Behavior Model/Representation

Coupling Relationships

Coupling Relationships

Perspectives

$\left\{\begin{array}{l}\text { Temporal }\left\{\begin{array}{l}\text { Serial Coupling } \\ \text { Parallel coupling } \\ {\left[\begin{array}{l}\text { Synchronous relationship } \\ \text { Asynchronous coupling }\end{array}\right.} \\ {\left[\begin{array}{l}\text { Interleaving } \\ \text { Shared-variable } \\ \text { Channel system }\end{array}\right.}\end{array}\right.\end{array}\right.$

Inferential

-Causal Coupling
Conjunction Coupling
Disjunction Coupling
Exclusive Coupling

Party-based

-One-Party-Multiple-Operation Multiple-Party-One-Operation

Multiple-Party-
Multiple-Operation

Temporal Coupling

- Serial coupling, denoted by $\left\{\mathrm{B}_{1} ; \mathrm{B}_{2}\right\}$, showing the situation in which behavior B_{2} follows behavior B_{1}.
- Parallel coupling, by which behaviors happen in varying concurrent manners, including synchronous coupling and asynchronous coupling.
-Synchronous relationship, denoted by $\left\{\mathrm{B}_{1} \| \mathrm{B}_{2}\right\}$, indicating that B1 and B2 present at the same time based on certain communication protocols.

3. Behavior Model/Representation

Temporal Coupling

- Asynchronous coupling, showing that two behaviors B_{1} and B_{2} interact with each other at different time points.
* Interleaving, denoted by $\left\{B_{1}: B_{2}\right\}$, representing the involvement of independent complex behaviors by nondeterministic choice (independently).
* Shared-variable, denoted by $\left\{B_{1}| | \mid B_{2}\right\}$, signifying that the relevant behaviors have variables in common.
* Channel system, denoted by $\left\{B_{1} \mid B_{2}\right\}$, is a parallel system in which complex behaviors communicate via a channel, for instance, first-in and first-out buffers.

3. Behavior Model/Representation

Inferential Coupling

- Causal coupling, represented as $\left\{B_{1} \rightarrow B_{2}\right\}$, meaning that behavior B_{1} causes behavior B_{2}. IMPLY
- Conjunction coupling, $\left\{B_{1} \wedge B_{2}\right\}$, specifying that B_{1} and B_{2} take place together. AND
- Disjunction coupling, $\left\{B_{1} \vee B_{2}\right\}$, by which at least one of the associated behaviors must happen.

- Exclusive coupling, $\left\{B_{1} \oplus B_{2}\right\}$, indicating that if B_{1} happens, B_{2} will not happen, and vice versa.
XOR

3. Behavior Model/Representation

Party-based Coupling

- One-Party-Multiple-Operation, represented as $\left\{\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)^{\left[\mathrm{A}_{1}\right]}\right\}$, depicts that distinct behaviors B_{1} and B_{2} are performed by the same actor A_{1}.
- Multiple-Party-One-Operation, shown as $\left.\left\{\left(B_{1}\right)^{\left[A_{1} A_{2}\right.}\right]\right\}$, represents that multiple actors A_{1} and A_{2} implement the same behavior B_{1} to achieve their own intentions.
- Multiple-Party-Multiple-Operation, presented as $\left\{\left(B_{1}, B_{2}\right)^{\left[A_{1} A_{2}\right]}\right\}$, describes that different behaviors B_{1} and B_{2} are carried out by distinct actors A_{1} and A_{2}.

3. Behavior Model/Representation

Behavior Formal Descriptor

Definition 1 (Behavior): A behavior \mathbb{B} is described as a three-ingredient tuple $\mathbb{B}=(\mathscr{A}, \mathscr{O}, \mathscr{C})$, where:

- Actor \mathscr{A} is the entity that issues a behavior or on which a behavior is imposed.
- Operation \mathscr{O} is what an actor conducts in order to achieve certain goals.
- Coupling $\mathscr{C}=<\theta(\cdot), \eta(\cdot)>$ is a tuple that reveals complex interactions including intra-coupling $(\theta(\cdot))$ and inter-coupling $(\eta(\cdot))$.

For instance, in a stock market, a behavior can be represented as "an investor places a buy order". The involved actor is the "investor" himself or herself, the operation is the transaction of "buy". The third component coupling exposes the intra-relationship between this behavior and this investor's sell order on the other day, together with the inter-relationship between this behavior and another investor's buy order on the same day.

3. Behavior Model/Representation

Behavior Formal Descriptor

We tackle the coupled behaviors from either one or different actors, denoted as intra-coupling and intercoupling, respectively.

Behavior Feature Matrix

$$
F M(\mathbb{B})=\left(\begin{array}{c|ccc}
\left(\mathscr{O}_{11}\right. & \mathscr{O}_{12} & \ldots & \mathscr{O}_{1 J_{\max }}
\end{array}\right) \text { intra-coupling }
$$

An actor \mathscr{A}_{i} undertakes J_{i} operations $\left\{\mathscr{O}_{i 1}, \mathscr{O}_{i 2}, \ldots, \mathscr{O}_{i J_{i}}\right\}$

$$
\text { I actors: }\left\{\mathscr{A}_{1}, \mathscr{A}_{2}, \ldots, \mathscr{A}_{I}\right\}
$$

3. Behavior Model/Representation

Intra-Coupling

The intra-coupling reveals the complex couplings within an actor's

 distinct behaviors.Definition 2 (Intra-Coupled Behaviors): Actor \mathscr{A}_{i} 's behaviors $\mathbb{B}_{i j}\left(1 \leq j \leq J_{\max }\right)$ are intra-coupled in terms of coupling function $\theta_{j}(\mathbb{B})$,

$$
\begin{equation*}
\mathbb{B}_{i .}^{\theta}::=\mathbb{B}_{i \cdot} \cdot(\mathscr{A}, \mathscr{O}, \theta) \mid \sum_{j=1}^{J_{\max }} \theta_{j}(\mathbb{B}) \odot \mathbb{B}_{i j}, \tag{IV.2}
\end{equation*}
$$

where $\sum_{j=1}^{J_{\text {max }}} \odot$ means the subsequent behavior of \mathbb{B}_{i} is $\mathbb{B}_{i j}$ intra-coupled with $\theta_{j}(\mathbb{B})$, and so on.

$$
F M(\mathbb{B})=\left(\begin{array}{cccc}
\mathbb{B}_{11} & \mathbb{B}_{12} & \ldots & \mathbb{B}_{1 J_{\max }} \\
\mathbb{B}_{21} & \mathbb{B}_{22} & \ldots & \mathbb{B}_{2 J_{\max }} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{B}_{I 1} & \mathbb{B}_{I 2} & \ldots & \mathbb{B}_{I J_{\max }}
\end{array}\right)
$$

For instance, in the stock market, the investor will place a sell order at some time after buying his or her desired instrument due to a great rise in the trading price. This is, to some extent, one way to express how these two behaviors are intra-coupled with each other.

3. Behavior Model/Representation

Inter-Coupling

The inter-coupling embodies the way multiple behaviors of different

actors interact.

Definition 3 (Inter-Coupled Behaviors): Actor \mathscr{A}_{i} 's behaviors $\mathbb{B}_{i j}(1 \leq i \leq I)$ are inter-coupled with each other in terms of coupling function $\eta_{i}(\mathbb{B})$,

$$
\begin{equation*}
\mathbb{B}_{\cdot j}^{\eta}::=\mathbb{B}_{\cdot j}(\mathscr{A}, \mathscr{O}, \eta) \mid \sum_{i=1}^{I} \eta_{i}(\mathbb{B}) \odot \mathbb{B}_{i j}, \tag{IV.3}
\end{equation*}
$$

where $\sum_{i}^{I} \odot$ means the subsequent behavior of \mathbb{B}_{i} is $\mathbb{B}_{i j}$ intercoupled with $\eta_{i}(\mathbb{B})$, and so on.

$$
F M(\mathbb{B})=\left(\begin{array}{c|ccc}
\mathbb{B}_{11} & \mathbb{B}_{12} & \ldots & \mathbb{B}_{1 J_{\max }} \\
\mathbb{B}_{21} & \mathbb{B}_{22} & \ldots & \mathbb{B}_{2 J_{\max }} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{B}_{I 1} & \mathbb{B}_{I 2} & \ldots & \mathbb{B}_{I J_{\max }}
\end{array}\right)
$$

For instance, a trading happens successfully only when an investor sells the
instrument at the same price as the other investor
buys this instrument. This is another example of how to trigger the interactions between intercoupled behaviors.

3. Behavior Model/Representation

Coupling

In practice, behaviors may interact with one another in both ways of intra-coupling and inter-coupling.

Definition 4 (Coupled Behaviors): Coupled behaviors \mathbb{B}_{c} refer to behaviors $\mathbb{B}_{i_{1} j_{1}}$ and $\mathbb{B}_{i_{2} j_{2}}$ that are coupled in terms of relationships $h(\theta(\mathbb{B}), \eta(\mathbb{B}))$, where $\left(i_{1} \neq i_{2}\right) \vee\left(j_{1} \neq\right.$ $\left.j_{2}\right) \wedge\left(1 \leq i_{1}, i_{2} \leq I\right) \wedge\left(1 \leq j_{1}, j_{2} \leq J_{\max }\right)$

$$
\begin{gather*}
\mathbb{B}_{c}=\left(\mathbb{B}_{i_{1} j_{1}}^{\theta}\right)^{\eta} *\left(\mathbb{B}_{i_{2} j_{2}}^{\theta}\right)^{\eta}::=\mathbb{B}_{i j}(\mathscr{A}, \mathscr{O}, \mathscr{C}) \mid \sum_{i_{1}, i_{2}=1}^{I} \sum_{j_{1}, j_{2}=1}^{J_{\max }} \\
h\left(\theta_{j_{1} j_{2}}(\mathbb{B}), \eta_{i_{1} i_{2}}(\mathbb{B})\right) \odot\left(\mathbb{B}_{i_{1} j_{1}} \mathbb{B}_{i_{2} j_{2}}\right), \tag{IV.4}
\end{gather*}
$$

where $h\left(\theta_{j_{1}, j_{2}}(\mathbb{B}), \eta_{i_{1} i_{2}}(\mathbb{B})\right)$ is the coupling function denoting the corresponding relationships between $\mathbb{B}_{i_{1} j_{1}}$ and $\mathbb{B}_{i_{2} j_{2}}, \sum_{i_{1}, i_{2}=1}^{I} \sum_{j_{1}, j_{2}=1}^{J_{\max }} \odot$ means the subsequent behaviors of \mathbb{B} are $\mathbb{B}_{i_{1} j_{1}}$ coupled with $h\left(\theta_{j_{1}}(\mathbb{B}), \eta_{i_{1}}(\mathbb{B})\right), \mathbb{B}_{i_{2} j_{2}}$ with $h\left(\theta_{j_{2}}(\mathbb{B}), \eta_{i_{2}}(\mathbb{B})\right)$, and so on.

For instance, we consider both the successful trading between investor
A_{1} (buy) and investor A_{2} (sell), and then the selling behavior
conducted by A_{1} after he or she has bought the instrument at a relative low price.

THE ADVANCED ANALYTICS INSTITUTE

3. Behavior Model/Representation

Behavior Aggregator

We conduct behavior aggregations to interpret the interactions of intra-coupled and inter-coupled behaviors. The outcomes of the behavior aggregations form the basis of behavior verification.

3. Behavior Model/Representation

Intra-Coupled Aggregation

For the behaviors conducted by the same actor, we interpret the behavior dynamics in terms of a transition system (TS).

TS: Directed Graphs

Nodes: System States

A state describes the behavior status at a certain moment of system dynamics.

Edges: Model Transitions

State changes of a system.

TS is often used in computer science for modeling the behavior dynamics of a system.

THE ADVANCED ANALYTICS INSTITUTE

3. Behavior Model/Representation

Intra-Coupled Aggregation

In particular, the TS interpretation of the intra-coupled behaviors $\mathbb{B}_{i s}^{\theta}$. for actor \mathscr{A}_{i} is the tuple (St; Act; \rightarrow; In), where θ_{j} is the intra-coupling function.

- $\mathrm{St}=\left\{\theta_{j}(\mathbb{B})\right\}$ is a set of states.
- Act $=\{\mathscr{O}\}$ is a set of actions or operations.
- $\theta_{\mathbf{j}}(\mathbb{B}) \xrightarrow{\overparen{O}} \theta_{\mathbf{j}+1}(\mathbb{B})$ is a transition relation.
- $\operatorname{In}=\left\{\theta_{0}(\mathbb{B})\right\}$ is a set of initial states.

Every actor is interpreted by an independent transition system, we regard an operation as a corresponding action in TS; and the intra-coupling function θ_{j}, which links intra-coupled behaviors, represents the associated states in TS to connect all the involved operations.

3. Behavior Model/Representation

Inter-coupled Aggregation

Apart from the intra-coupled behaviors, inter-coupling $\mathbb{B}_{. j}^{n}$ refers to interactions between operations by different actors.

Definition 5 (Inter-coupling Operators): The behavior inter-couplings are essentially the various interactions among multiple behaviors. Let \mathbb{B}_{1} and \mathbb{B}_{2} be two behaviors, then the inter-coupling function $\eta_{i}(\mathbb{B})$ is defined as:

$$
\begin{array}{r}
\eta_{i}(\mathbb{B})::=\mathbb{B}_{1} ; \mathbb{B}_{2}\left|\mathbb{B}_{1}\right|\left|\mathbb{B}_{2}\right| \mathbb{B}_{1}: \mathbb{B}_{2}\left|\mathbb{B}_{1}\right|\left|\mathbb{B}_{2}\right| \mathbb{B}_{1}\left|\mathbb{B}_{2}\right| \mathbb{B}_{1} \rightarrow \\
\quad \mathbb{B}_{2}\left|\mathbb{B}_{1} \wedge \mathbb{B}_{2}\right| \mathbb{B}_{1} \vee \mathbb{B}_{2}\left|\mathbb{B}_{1} \oplus \mathbb{B}_{2}\right| f\left(\mathbb{B}_{1}\right)^{\left[\mathscr{A}_{1}\right]} \tag{V.1}
\end{array}
$$

Temporal Operators

Inferential
 Operators

Part-based Operators

3. Behavior Model/Representation

Combined Aggregation

With the intra-coupled and inter-coupled interactions defined, we develop the combined aggregation of coupled behaviors to model complex behavior-oriented applications.

$$
h\left(\theta_{j_{1} j_{2}}(\mathbb{B}), \eta_{i_{1} i_{2}}(\mathbb{B})\right)
$$

3. Behavior Model/Representation

Behavior Combination

First, we consider the extension of behavior sequences towards hierarchical and hybrid combinations, in which behaviors are associated in a hierarchical structure that consists of different relationships.

$$
f\left(\mathbb{B}_{1}, g\left(\mathbb{B}_{2}, \mathbb{B}_{3}\right)\right)=\left\{\mathbb{B}_{1} ;\left(\mathbb{B}_{2} \| \mathbb{B}_{3}\right)\right\}
$$

$$
\left\{f\left(\mathbb{B}_{1}\right) \cdot g\left(\mathbb{B}_{2}\right)\right\}
$$

\square $\left\{f\left(\mathbb{B}_{1}\right)^{\omega}\right\}$

$$
\left\{f\left(\mathbb{B}_{1}\right)^{*}\right\}
$$

The concatenation of \mathbb{B}_{1} and \mathbb{B}_{2}

Finite repetition of \mathbb{B}_{1}

Infinite iteration of \mathbb{B}_{1}

3. Behavior Model/Representation

Rule Reduction

Second, interaction rules (IR) are induced to support appropriate combinational reduction of multiple coupling relationships.

Definition 6 (Interaction Rule): An interaction rule

$$
\begin{equation*}
I R: \mathbb{B}_{1} \times \cdots \times \mathbb{B}_{n} \rightarrow \frac{f\left(\mathbb{B}_{1}, \cdots, \mathbb{B}_{n}\right)}{g\left(\mathbb{B}_{1}, \cdots, \mathbb{B}_{n}\right)} \tag{V.3}
\end{equation*}
$$

is the combinational equivalence and reduction about the coupling relationships among behaviors $\mathbb{B}_{i}(1 \leq i \leq n)$, where $f(\cdot)$ and $g(\cdot)$ are two coupling expressions for the involved behaviors.

[^1]
3. Behavior Model/Representation

Rule Reduction

For instance, four interaction rules are induced as follows (where $* ; * 1 ; * 2$ are the coupling operators):

3. Behavior Model/Representation

TS Conversion

Finally, concurrent transition systems (TSs) are constructed to specify complex interactions by utilizing temporal, inferential, and party-based couplings to describe, combine and aggregate the coupling relationships.

The relationships among TSs are concerned since complex behaviors are represented as TSs. Assume that there are n complex behaviors (TSs) associated with one another in terms of different coupling relationships.

3. Behavior Model/Representation

TS Conversion

- Serial Coupling: $T S_{1} ; T S_{2} ; \cdots ; T S_{n}$
- Synchronous Coupling: $T S_{1}\left\|T S_{2}\right\| \cdots \| T S_{n}$
- Interleaving Coupling: $T S_{1}: T S_{2}: \cdots: T S_{n}$
- Shared-variable Coupling: $T S_{1}| | T S_{2}|\|\cdots\|| \mid T S_{n}$
- Channel System Coupling: $T S_{1}\left|T S_{2}\right| \cdots \mid T S_{n}$
- Causal Coupling: $T S_{1} \rightarrow T S_{2}$
- Conjunction Coupling: $T S_{1} \wedge T S_{2}$
- Disjunction Coupling: $T S_{1} \vee T S_{2}$
- Exclusive Coupling: $T S_{1} \oplus T S_{2}$
- Hierarchical Coupling: $f\left(g\left(T S_{1}, T S_{2}, \cdots, T S_{n}\right)\right)$
- Hybrid Coupling: $f\left(T S_{1}\right) \cdot g\left(T S_{2}\right), f\left(T S_{1}\right)^{*},\left(T S_{1}\right)^{\omega}$
- OPMO Coupling: $f\left(T S_{1}, T S_{2}, \cdots, T S_{n}\right)^{\left[A_{1}\right]}$
- MPOO Coupling: $f\left(T S_{1}\right)^{\left[A_{1} A_{2} \cdots, A_{n}\right]}$
- MPMO Coupling: $f\left(T S_{1}, T S_{2}, \cdots, T S_{n}\right)^{\left[A_{1} A_{2} \cdots A_{n}\right]}$

3. Behavior Model/Representation

Group Behavior Representation and Verification

3. Behavior Model/Representation

Behavior Constraint Indicator

In order to improve the quality of the behavior model, a simulation can be conducted prior to the behavior checking. For verification purposes, the behavior model under consideration needs to be accompanied by a relevant constraint specification that is to be verified.

Constraints, i.e., prior simulations, can be used effectively to get rid of the simpler categories of modeling errors. To make a rigorous verification possible, constraints should be described in a precise and unambiguous manner. This is done through a constraint specification language.

> For instance, a business constraint in stock markets is that investors are not allowed to make transactions after trading hours.

3. Behavior Model/Representation

Behavior Constraint Indicator

We take advantage of the propositional logic and temporal logic to express the constraints of the desired model.

3. Behavior Model/Representation

Behavior Constraint Indicator

3. Behavior Model/Representation

Behavior Checker

Different types of formal verification:

```
Manual Proof of Mathematical Arguments
    - Time-consuming
    - Error-prone
    - Often not economically viable
```


Interactive Computer Aided Theorem Proof

- Require significant expert knowledge

Automated Model Checking

An automated technique that, given a finite-state model of a system and a formal property, can systematically check whether or not this property holds for that model. If not, model checkers can help to identify the input sequence that triggers the failure.

3. Behavior Model/Representation

Behavior Checker

UTS:AAi

Case study of behavior representation

Graphical Action Sub-model of Online Shopping based on Actor's Roles

Graphical Action Sub-model of Online Shopping based on Stages

L. Cao

THE ADVASMCED ANALYTICS INSTITUTE

3. Behavior Model/Representation

Behavior Modeling and Checking Framework

Ontology-based Behavior Modeling and Checking

3. Behavior Model/Representation

Case Study: Robot Soccer Game

Snapshot of the four-legged league in the Robocup soccer

 competition: two teams participate in a Robocup soccer competition with four Sony AIBO robots in each group.

3. Behavior Model/Representation

Case Study: Behavior Descriptor

A case-based multi-robot architecture with \mathbf{n} robots and k retrievers:

Distributed
Behaviors

Uncertain
Situations

Nonstop
Operations

Robot RC firstly retrieves a case from the case space and then informs the rest of the Ords robot players. Once the Ords successfully receive the messages from RC, they send acknowledgments back to the retriever RC for confirmation. the RC also coordinates all the other players including itself to defeat the opponent. All the robots, no matter RC or Ord, could abort the executions at any moment if timeout expires, or messages or cases are lost in the interactions.

3. Behavior Model/Representation

Case Study: Behavior Aggregator

Transition system models $T S\left(\mathbb{B}\left(R C_{p}\right)\right)$ and $T S\left(\mathbb{B}\left(\right.\right.$ Ord $\left.\left._{q}\right)\right)$

3. Behavior Model/Representation

Case Study: Behavior Aggregator

Inter-coupled
 Aggregation
 $\eta_{i}^{(R C, O r d s)}$

```
(\mathbb{B}(RC)|\mathbb{B}(\mp@subsup{Ord}{2}{2})):(\mathbb{B}(RC)|\mathbb{B}(\mp@subsup{Ord}{3}{})):(\mathbb{B}(RC)|\mathbb{B}(\mp@subsup{Ord}{4}{}))
```

The syntax of coupled behaviors between retriever RC and players Ords:

$$
\mathbb{B}(\text { RC, Ords })=\left(\mathbb{B}^{\theta^{(R C)}}\right)^{\eta^{(R C, O r d s)}} *\left(\mathbb{B}^{\theta^{(\text {Ords })}}\right)^{\eta^{(R C, \text { Ords })}}
$$

Combined Aggregation

$$
h^{(R C, O r d)}
$$

$$
T S(\mathbb{B}(R C)) \mid\left(T S\left(\mathbb{B}\left(\text { Ord }_{2}\right)\right): T S\left(\mathbb{B}\left(\text { Ord }_{3}\right)\right): T S\left(\mathbb{B}\left(\text { Ord }_{4}\right)\right)\right)
$$

3. Behavior Model/Representation

Case Study: Behavior Constraint Indicator

Ontology Axiom
 $\square\left(\neg\left(\right.\right.$ execute_attack $^{\left[\text {Ord } d_{i}\right]} \wedge$ execute_block $\left.\left.{ }^{\left[\text {Ord }_{i}\right]}\right)\right)$

It is never the case that any Ord can both implement the executions of attack and block opponent players

Desired Constraint

The execution of a case will not be done until all Ords have completed their actions.

Inferential Coupling

$\square\left(\left(T S(\text { retrieve case })^{[C R]} \wedge \bigcirc T S(\right.\right.$ send $\left.m s g){ }^{[C R]}\right) \rightarrow$ $\diamond\left(T S(\right.$ receive $\left.m s g){ }^{\left[O_{r d}\right]} \wedge \bigcirc T S(\text { ack })^{\left[{ }^{\left[r d d_{i}\right]}\right)}\right)$

If the case is successfully retrieved by $C R$, then eventually the message sent is received and the acknowledgment is sent by Ord.

Forbidden Constraint

$$
\square \diamond\left(\vee_{i} \text { abort }^{\left[\text {Ord }_{i}\right]}\right)
$$

Ord will infinitely often abort the execution.

3. Behavior Model/Representation

Case Study: Behavior Checker

SPIN is used to perform checking of the corresponding $T S(\mathbb{B})$ and constraints.

The graphical interface of the counter example process with XSPIN is shown on the left, which is based on a Message Sequence Chart window of XSPIN. The vertical lines represent robot behaviors, boxes represent states, and arrows represent messages sent.

3. Behavior Model/Representation

Case Study: Behavior Checker

- State 10: ack ${ }^{\left[\mathrm{Ord}_{3}\right]} \rightarrow$ wait_prepare ${ }^{[R C]}$
- State 18: send def $\mathrm{msg}^{[R C]} \rightarrow$ wait $\mathrm{msg}^{\left[\mathrm{Ord}_{4}\right]}$

At State 39, the robot player
Ord2 aborts the execution whenever it receives messages from RC. Therefore, at State 45 , Ord2 and RC wait for each other, resulting in an infinite wait loop while the executions of other robots are interrupted simultaneously, which is the so-called deadlock. A typical deadlock scenario occurs when components mutually wait for each other to progress.

- State 34: send def $\mathrm{msg}^{[R C]} \rightarrow$ wait $\mathrm{msg}^{\left[\mathrm{Ord}_{3}\right]}$
- State 39: \square (receive $\mathrm{msg}^{\left[\mathrm{Ord}_{2}\right]} \rightarrow$ abort $\left.{ }^{\left[\text {Ord }_{2}\right]}\right)$
- State 45: $\square\left(\wedge_{i}\right.$ wait_end $^{\left[\mathrm{Ord}_{i}\right]} \wedge$ wait_prepare $\left.^{[R C]}\right)$

3. Behavior Model/Representation

Case Study: Behavior Model Refiner and Exporter

After analyzing the deadlock scenario, we introduce an additional state called "hold on" to break the loop.

- State 40: State $39 \rightarrow$ hold_on ${ }^{\left[\text {Ord }_{i}\right] \vee[R C]}$

When such a deadlock happens, the next state will be 'hold on', which means that the other two robot players Ord_{3} and Ord_{4} will continue their execution as usual. RC continues to retrieve cases and send messages without receiving ack from Ord_{2} until the behaviors of Ord_{2} become normal. If this does not occur, there must be design flaws in Ord $_{2}$, which should be explored by robot experts. In fact, "State $40^{\prime \prime}$ serves as a Behavior Model Refiner.

Finally, a refined system (in addition with State 40) will be provided by the Behavior Model Exporter

THE ADVANCED ANALYTICS INSTITUTE

Model Refiner

An additional state called "hold_on" to break the loop.

Deadlock hold_on

- Two robot players Ord3 and Ord4 will continue their executions as usual.
- CR continues to retrieve cases and send messages without receiving acknowledgment from Ord1 until the behaviors of Ord1 become normal.
- Else, there must be some design flaws in Ord1, which should be further explored by robot experts.

Exercise 3: Model behavioner in year ou: mess

Behaviour understanding

Organization:
Business problem:
Cu:

Part II.
 Behavior Pattern Analysis

- Behavior patterns
- High impact behavior patterns
- Behavior pattern combinations
- Combined behavior sequences associated with impact
- Manage impact of individual or group behaviors

6. High Impact Behavior Analysis

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on Knowledge and Data Engineering, 20(8): 1053-1066, 2008.

Mining Impact-Targeted Activity Patterns in Imbalanced Data

Longling Cac, Senior Member, $\mathbb{E E E E}$, Yanchang Zhao, Member, IEEE, and Chengi Zhang. Senior Member, lEEE

Abstract

1 Intrioduction
 1 ighormates (I9) [25 , [26] , 9] [10], [13], activity [5], f30]

 391. 151 1401 luge volumes of taviabel frasuluiat an
 poverrment-cuscomar dite For vaumpie in Eve 5.4 bution

 cremulibs araind cee tril 5 on of custemer dite fram the
 cundomers in the framsal your 294-20क T1 Similat probiens can be widely seon from otwr omenging ares problems can bo widely seon from olvi emenging areac oparialed activitises of everats thresizening the fational aphatalal activiass of everuts ithreifoning the rasiond

 trevecontact centurs, end hwilhware servioes may aboo resput

 motr, pobdided anlate 12 fly 2 me ?

Therefory, ㄹ is importaet to spocifically analym suk impues-bargeted acil vities to find out konowled ge a bout what activity puiterris ife issocosibid with certain typers of the impuct of Erberest so spasifi domain targes and what
 mpuct, As a result twe fintingo may support refaid dymenkes of impici-largeted activises, the caviees of
 intiviber hading to arian oppes of impol, and pacesie Alivesua on en poriety or brsitrass ondiomis. For iniunos, in andyatig activises in the socid mocurity notivork, ive
 Thely to luad to povernment cuotimer deter The romelting
 the rblk of certhin onpoing acbome or arlatity pequmos the riak of berthan ongoing acborns of antivily enqumas con la proveried or minfinal Habinoie ducion making an ha prowembed of mi mimizad Husorsse decsoon making obivitives, can thas he improwed and erihaencal
 mmplowises, whict carnot be woill innofied by exiding tromplixisus, Whict carnot bot woil inandeal by existing
 [16|, and iequere and yois is 8 in boin IS and data mining

 will result in an impact on businese stuasicrs. This is will fosut in an impoit on businese stumbions. This is saquerceor event miteting-Second, Impuet-targeted activition

 popolasor Thwy ane nomally mare and dxaperaed in a largo
 or rellused linsitises. For listacer, inly around 4 pervert of

Issues Addressed

- What is impact of behavior?
- How to model behavior impact?
- How to construct impact-based behavior sequences?
- How to identify high impact behavior sequences?
- How to identify combined behavior sequences associated with impact?
- How to manage behavior patterns through combined impact-targeted behavior sequences?

Coupled impact-oriented behaviors

Risk/Impact Definition

- Risk is defined as a feasible detrimental outcome of an activity or action (e.g., launch or operation of a spacecraft) subject to hazard(s)
- (1) magnitude (or severity) of the adverse consequence(s) that can potentially result from the given activity or action, and
- (2) likelihood of occurrence of the given adverse consequence(s).

Impact

- Business impact of behavior
- Consequence:
- Fraud
- Debt
- Exception ...
- Magnitude:
- Positive/negative
- Multi-level
- Ratio
- Probabilistic
- qualitative risk assessment:
- severity and likelihood are both expressed qualitatively (e.g., high, medium, or low)
- quantitative risk assessment/probabilistic risk assessment:
- Consequences are expressed numerically
- Their likelihoods of occurrence are expressed as probabilities or frequencies

Probabilistic Risk Assessment

- Causes/Initiators:
- What can go wrong with the studied technological entity, or what are the initiators or initiating events (undesirable starting events) that lead to adverse consequence(s)?
- Effects/Consequences:
- What and how severe are the potential detriments, or the adverse consequences that the technological entity may be eventually subjected to as a result of the occurrence of the initiator?
- Functions(cause, effect):
- How likely to occur are these undesirable consequences, or what are their probabilities or frequencies?

Cause/initiator modeling

- Factor analysis
- Rule-based methods
- Cause-effect analysis
- Failure Modes and Effects Analyses
- Sensitivity analysis
- Statistics techniques

Effects/Consequences Modeling

- Quantifying accident (or mishap) scenarios
- chains of events that link the initiator to the endpoint detrimental consequences
- Deterministic analysis
- Probabilistic analysis

Function(Cause, Effect)

- Probabilistic or statistical methods
- Inductive logic methods like event tree analysis or event sequence diagrams
- Deductive methods like fault tree analysis

Expected Distribution of Clients with Risks

Most clients are relatively small.
Few have extreme consequences

Most clients are compliant.

Risk Differentiation Framework

HighConsequences Continuous Monitoring $Q 2$	Continuous Review Q1	
	Periodic Monitoring $Q 4$	Periodic Review Q3
	Likelihood	

Behavior impact modeling

- Impact measuring
- Cost
- Cost-sensitive
- Profit
- Cost-benefit
- Risk score
- ...
- Impact evolution
- Positive \rightarrow Negative
- Negative \rightarrow Positive
- Risk of a pattern, eg.

$$
\begin{aligned}
& \operatorname{Risk}(P \rightarrow T)=\frac{\operatorname{Cost}(P \rightarrow T)}{\operatorname{TotalCost}(P)} \\
& \operatorname{AvgCost}(P \rightarrow T)=\frac{\operatorname{Cost}(P \rightarrow T)}{\operatorname{Cnt}(P \rightarrow T)}
\end{aligned}
$$

Impact-Targeted Activity Mining

- Frequent impact-oriented activity patterns
- Frequent impact-contrasted activity patterns
- Sequential impact-reversed activity patterns

Here:
Impact \rightarrow Debt, Fraud, Risk ...

Impact-Oriented Activitv Patterns
 $\{P-->T\}$ or $\{P$--> $\bar{T}\}(P$--> \bar{T}, or \bar{P}--> $\bar{T})$

- frequent positive impact-oriented (T) activity patterns

$$
\begin{gathered}
-\quad P \text {--> } T \text {, or } \\
\bar{P}-->T
\end{gathered}
$$

- frequent negative impact-oriented () aq̄ivity patterns

$$
\begin{array}{r}
-P \text {-->, } \bar{T} . \\
\bar{P} \text {--> } \bar{T}
\end{array}
$$

P is an activity sequence, $\left(P=\left\{a_{j}, a_{i+1}, \ldots\right\}, i=0,1, \ldots\right)$.

Impact-Contrasted Activitv Patterns $\{P \rightarrow T, P \rightarrow \bar{T}\} \quad\{P \rightarrow \bar{T}, P \rightarrow T$

- Pattern: P is of high significance in positive impact dataset, and of low significance in negative impact dataset, or vice versa.
- Positive impact-contrasted pattern

$$
P_{T \bar{T}}:\{P \rightarrow T, P \rightarrow \bar{T}\}
$$

- Negative impact-contrasted pattern

$$
P_{\bar{T} T}:\{P \rightarrow \bar{T}, P \rightarrow T\}
$$

Impact-Reversed Activity Patterns

- Sequential impact-reversed activity pattern pair
- underlying pattern:
- derivative pattern:

Raw Data

- Data:
- Time: [1/1/06, 31/3/06]
- No. of activity transactions: 15,932,832
- No. of customers: 495,891
- No. of debts: 30,546

Constructing Activity Baskets and Sequences

- Positive-impact activity sequences: the activities before a debt are put in a basket. E.g., $\{a 8, a 9, a 10, a 11, a 12, a 13, d 2\},\{a 13, a 14, a 15, a 16, a 17, a 18$, d3\}

- Negative-impact activity sequences

A virtual activity "NDT" is created for those customers have never had a debt.

Examples of Debt/Non-Debt Activity Sequences

Table 1. Example of an activity sequence associated with a debt from target dataset a15, a9, a18, a19, a16, a9, DET

ACTIVITY CODE	START DATE	TIME
a_{15}	$15 / 02 / 2006$	$13: 34: 05$
a_{9}	$16 / 02 / 2006$	$16: 26: 16$
a_{18}	$16 / 02 / 2006$	$16: 26: 17$
a_{19}	$20 / 02 / 2006$	$16: 12: 35$
a_{16}	$28 / 02 / 2006$	$11: 27: 50$
a_{9}	$1 / 03 / 2006$	$13: 50: 03$
Debt	$1 / 03 / 2006$	$23: 59: 59$

Table 2. Example of an activity sequence related to non-debt from non-target dataset a14, a16, a1, a20, a14, a21, a22, NDT

ACTIVITY CODE	START DATE	TIME
a_{14}	$6 / 02 / 2006$	$2: 19: 37$
a_{16}	$6 / 02 / 2006$	$10: 21: 50$
a_{1}	$7 / 02 / 2006$	$3: 51: 07$
a_{20}	$7 / 02 / 2006$	$4: 44: 48$
a_{14}	$7 / 02 / 2006$	$9: 48: 59$
a_{21}	$8 / 02 / 2006$	$10: 03: 13$
a_{22}	$15 / 02 / 2006$	$13: 55: 39$
No-Debt	$15 / 02 / 2006$	$23: 59: 59$

Frequent Debt-Targeted Activity Patterns

$$
\{P \text {--> } T\} \text { or }\{P \text {--> } \bar{T}\} \quad(P \text {--> } \bar{T}, \text { or } \bar{P} \text {--> } \bar{T})
$$

Patterns $P \rightarrow T$	Supp $_{D}(P)$	Supp $_{D}(T)$	Supp $_{D}(P \rightarrow T)$	Confidence	Lift	AvgAmt (cents)	AvgDur (days)	risk $k_{a m t}$	risk $k_{d u r}$
$a_{1}, a_{2} \rightarrow T$	0.0015	0.0364	0.0011	0.7040	19.4	22074	1.7	0.034	0.007
$a_{3}, a_{1} \rightarrow T$	0.0018	0.0364	0.0011	0.6222	17.1	22872	1.8	0.037	0.008
$a_{1}, a_{4} \rightarrow T$	0.0200	0.0364	0.0125	0.6229	17.1	23784	1.2	0.424	0.058
$a_{1} \rightarrow T$	0.0626	0.0364	0.0147	0.2347	6.5	23281	2.0	0.490	0.111
$a_{6} \rightarrow T$	0.2613	0.0364	0.0133	0.0511	1.4	18947	7.2	0.362	0.370
$a_{4} \rightarrow T$	0.1490	0.0364	0.0162	0.1089	3.0	21749	3.2	0.505	0.203
$a_{5} \rightarrow T$	0.1854	0.0364	0.0139	0.0755	2.1	18290	6.2	0.363	0.334
$a_{7} \rightarrow T$	0.1605	0.0364	0.0113	0.0706	1.9	19090	6.8	0.310	0.300

High impact behaviour analysis

(Impact-targeted behavior pattern mining)
TABLE 8
Common Frequent Sequential Patterns in Separate Data Sets
 (cents) (days)

(cents) (days)												
a_{5}	0.382	0.178	0.204	$2.15-0.204$	0.47	18290	$\begin{array}{lll}.2 & 0.363 & 0\end{array}$					
a_{7}	0.312	0.154	0.157	$2.02-0.157$	0.50	19090	6.8 0.3	0.310 0.	4:13			
a_{6}	0.367	0.257	0.110	$1.43-0.110$	0.70	18947	7.20.	0.3620				
a_{14}	0.903	0.684	0.219	$1.32-0.219$	0.76	19251	6.6	$\stackrel{0.905}{0 .}$	33:55			
a_{15}	0.746	0.567	0.179		TABLE 9							
a_{16}	0.604	0.597	0.007		Impact-Reversed Sequential Activity Patterns in Separate Data Sets							
a_{14}, a_{15}	0.605	0.374	0.231									
a_{15}, a_{15}	0.539	0.373	0.167	Underlying sequence (P)	Impact 1	Derivative activity Q	Impact 2	Cir	Cps	Local support of $P \rightarrow$ Impact 1	Local support of $P Q \rightarrow$ Impact 2	
a_{16}, a_{14}	0.479	0.402	0.076									
a_{14}, a_{16}	0.441	0.393	0.049									
a_{16}, a_{16}	0.367	0.410	-0.043	a_{14}	\bar{T}	a_{4}	T	2.5	0.013	0.684	0.428	
a_{14}, a_{14}, a_{15}	0.477	0.257	0.220	a_{16}	\bar{T}	a_{4}	T	2.2	0.005	0.597	0.147	
a_{14}, a_{15}, a_{14}	0.435	0.255	0.179	a_{14}	\bar{T}	a_{5}	T	2.0	0.007	0.684	0.292	
a_{16}, a_{14}, a_{14}	0.361	0.267	0.093	a_{16}	\bar{T}	a_{7}	T	1.8	0.004	0.597	0.156	
$\underline{a_{16}, a_{14}, a_{16}}$	0.265	0.255	0.010	a_{14}	\bar{T}	a_{7}	T	1.7	0.005	0.684	0.243	
			$\cdots \cdots$	a_{15}	\bar{T}	a_{5}	T	1.7	0.007	0.567	0.262	
			*****	a_{14}, a_{14}	\bar{T}	a_{4}	T	2.3	0.016	0.474	0.367	
				a_{16}, a_{14}	\bar{T}	a_{5}	T	2.0	0.006	0.402	0.133	
				a_{14}, a_{16}	\bar{T}	a_{5}	T	2.0	0.005	0.393	0.118	
				a_{16}, a_{15}	\bar{T}	a_{5}	T	1.8	0.006	0.339	0.128	
				a_{15}, a_{14}	\bar{T}	a_{5}	T	1.7	0.007	0.381	0.179	
				a_{16}, a_{14}	\bar{T}	a_{7}	T	1.6	0.004	0.402	0.108	
				a_{14}, a_{16}, a_{14}	\bar{T}	a_{15}	T	1.2	0.005	0.248	0.188	
				a_{16}, a_{14}, a_{14}	\bar{T}	a_{15}	T	1.2	0.005	0.267	0.220	

7. Combined Behavior Pattern Analysis

References

- Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations for Discovering and Constructing Complex but Actionable Patterns, WIREs Data Mining and Knowledge Discovery.
- Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang. Combined Mining: Discovering Informative Knowledge in Complex Data, IEEE Trans. SMC Part B, 41(3): 699-712, 2011.
- Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang. Combined Pattern Mining: from Learned Rules to Actionable Knowledge, LNCS 5360/2008, 393-403, 2008.
- Huaifeng Zhang, Yanchang Zhao, Longbing Cao and Chengqi Zhang. Combined Association Rule Mining, PAKDD2008.
- Yanchang Zhao, Huaifeng Zhang, Fernando Figueiredo, Longbing Cao Chengqi Zhang, Mining for Combined Association Rules on Multiple Datasets, Proc. of 2007 ACM SIGKDD Workshop on Domain Driven Data Mining (DDDM 07), 2007, pp. 18-23.

Combined mining: Analyzing object and pattern relations for complex yet actionable patterns
Longbing Cao ${ }^{*}$

Abstract

Combined mining is a iechnique for analyzing objoci relations and paitem nela toms, and for axtracting and constructing actionable knowlad ge (patuerns of ex. ceptions). Although combined patiems can be built within a single methoc, suct as combined sequintial patiernis by a garogating wievani froquent sequencos, this knowledge is composed of multiple constituent componanis (the left hand side) Irom multiple data sourcss, which ane ropersonted by difforsm feature spacss or identifiod by diverse modelling methods. In some cases, this knowfedge is also assodated with cariain impacts (influence, action, or concluaicn, on the right hand side). This paper peesenes an abseract high-level picuure of combined mining and the combined pations ifom the porspecive of obfoct and pattern rolaticen analyit Several fundamencal aspects of combined patiernmining are discussed, including Ieature inveracion, pattern interantion, pausern dynamics, panem impach, patiorn velation patern stracture patern paradigm, paserm formstion criteria, and pat tem proseniation (in terms of patiem ontology and patiem dyramic charis). We also briefly lilustrate the concepes and discuss how they can te applisd to mining complex dau for complex knowledge in either a multifeature multisoarce, of multimethod scanarko e arts wirg Neristalsis Ise.

Wikla Date Marive Knouf Doan 2013, I: 140-155 dnic 10. $1062 /$ widm. 10 so

INTRODUCIION

Tn this paper, wt introdact the concept of comlinal 1 (pattern) mining. Combined mining ì mainly suitahis for handling the inmplexity of emplogins mul. ifrature sms, maki-information of arser, constraints, maltimthods, and maltimedela in clata mininys, and for analyzing oomplex relationa berwern objocs or doscriptons |atrilutes, ipurvec, methodi, copstraints, babela, and impacki) or hewworn identifind pratserm daring the loarning perwes. Comineal paserni may be formol throqut analyai of the internal relations betwern ofients or patterm comstituens aksaineal hy a sangle methol on a sinale datast, fore initanst, somtimal seyumotial patserna formed from analyring the relations within a dicoserral sequential pantern wacr.

 haurdis

With the enception of object and patsern rela toin analyait, which is a viry new topic in the data mining cummanity, many approscho and alporithm: aec avziable in the literature on other sapeas of the above combinations. The main cuntribation of combinol mining is that it enables the eatraction, liwer try, comatruction, and induction of knovialer, which conests of sot emply liwerimiouss ofiens hat ale of imtractions and relatiams berween ofjects, as well w their impuas. Thry art referred as as cometiox bue actionable purterna, fecause they rellat pautre ele mens and rclations, which form crrtain puttern stris. tarso and dymamics, and indicate decision-making mations.

Compinal mining poumder as owtrall soluso for metting the challenyr of mining complex knowl alge in complex data. ${ }^{1}$ It also sabstantially build upon onhur inalividual approsiono mach as concep. thal inductive learning ${ }^{2,2}$ and inlerenos, perneralira tion, alyryation, and xammarization, ${ }^{*} 3$ in orler to

CRISP-DM Methology

Pattern discovery process

$$
\begin{equation*}
\mathcal{P}_{n, m, l}: \mathcal{R}_{l}\left(\mathcal{F}_{k}\right) \rightarrow \mathcal{I}_{m, l} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Data set } \mathcal{D}: \mathcal{D}=\left\{\mathcal{D}_{k} ; k=1, \ldots, K\right\} \\
& \text { Feature set } \mathcal{F}: \mathcal{F}=\left\{\mathcal{F}_{k} ; k=1, \ldots, K\right\} \\
& \text { Method set } \mathcal{R}: \mathcal{R}=\left\{\mathcal{R}_{l} ; l=1, \ldots, L\right\} \\
& \text { Interestingness set } \mathcal{I}: \mathcal{I}=\left\{\mathcal{I}_{m, l} ; m=1, \ldots, M ; l=1, \ldots, L\right\} \\
& \text { Impact set } \mathcal{T}: \mathcal{T}=\left\{\mathcal{I}_{j} ; j=1, \ldots, J\right\} \\
& \text { Pattern set } \quad \mathcal{P}: \quad \mathcal{P}=\left\{\mathcal{P}_{n, m, l} ; n=1, \ldots, N ; m=1, \ldots, M ; l=1, \ldots, L\right\}
\end{aligned}
$$

Combined mining

Definition l (Combined Mining): Combined mining is a two-to-multistep data mining procedure, consisting of the following:

1) Mining atomic patterns $\mathcal{P}_{n, m, l}$ as described in (1).
2) Merging atomic pattern sets into combined pattern set $\mathcal{P}_{k}^{\prime}=\mathcal{G}_{k}\left(\mathcal{P}_{n, m, l}\right)$ for each data set \mathcal{D}_{k} by pattern merging method $\mathcal{G}_{k} ; \mathcal{G}_{k} \in \mathcal{G}$, where \mathcal{G} includes a set of patternmerging methods suitable for a particular business problem.
3) If multiple data sets are involved, combined patterns identified in specific data sets are then further merged into the combined pattern set $\mathcal{P}=\mathcal{G}\left(\mathcal{P}_{k}^{\prime}\right)$.

From a high-level perspective, combined mining represents a generic framework for mining complex patterns in complex data as follows:

$$
\begin{equation*}
\mathcal{P}:=\mathcal{G}\left(\mathcal{P}_{n, m, l}\right) \tag{2}
\end{equation*}
$$

in which atomic patterns $\mathcal{P}_{n, m, l}$ from either individual sources \mathcal{D}_{k}, individual methods \mathcal{R}_{l}, or particular feature sets \mathcal{F}_{k} are combined into groups with the members closely related to each other in terms of pattern similarity or difference.

The meaning of "combined":

1) The combination of multiple data sources (\mathcal{D}) : The combined pattern set \mathcal{P} consists of multiple atomic patterns identified in several data sources, respectively, namely, $\mathcal{P}=\left\{\mathcal{P}_{k}^{\prime} \mid \mathcal{P}_{k}^{\prime}: \mathcal{I}_{k}^{\prime}\left(X_{j}\right) ; X_{j} \in \mathcal{D}_{k}\right\} ;$ for example, demographic data and transactional data are two data sets involved in mining for demographic-transactional patterns.
2) The combination of multiple features (\mathcal{F}) : The combined pattern set \mathcal{P} involves multiple features, namely, $\mathcal{P}=\left\{\mathcal{F}_{k} \mid \mathcal{F}_{k} \subset \mathcal{F}, \mathcal{F}_{k} \in \mathcal{D}_{k}, \mathcal{F}_{j+k} \in \mathcal{D}_{j+k} ; j, k \neq 0\right\}$, e.g., features of customer demographics and behavior.
3) The combination of multiple methods (\mathcal{R}): The patterns in the combined set reflect the results mined by multiple data mining methods, namely, $\mathcal{P}=\left\{\mathcal{P}_{k}^{\prime} \mid \mathcal{R}_{k}^{\prime} \rightarrow \mathcal{P}_{k}^{\prime}\right\}$, for instance, association mining and classification.
4) The combination of pattern impacts.

Basic paradigms

- Nonimpact-oriented combined patterns

$$
\begin{align*}
& \mathcal{P}_{n}: R_{l}\left(X_{1} \wedge \cdots \wedge X_{i}\right) \rightarrow I_{m} \tag{3}\\
& \mathcal{P}:=\mathcal{G}\left(P_{1} \wedge \cdots \wedge P_{n}\right) \rightarrow \mathcal{I} \tag{4}
\end{align*}
$$

- Impact-oriented combined patterns

$$
\begin{align*}
& P_{n}:\left\{R_{l}\left(X_{1} \wedge \cdots \wedge X_{i}\right) \rightarrow I_{m}\right\} \rightarrow T_{1} \tag{5}\\
& \mathcal{P}:=\mathcal{G}\left(P_{1}, \cdots, P_{n}\right) \tag{6}
\end{align*}
$$

Number of constituent atoms

- Pair patterns

$$
\mathcal{P}::=\mathcal{G}\left(P_{1}, P_{2}\right)
$$

- Cluster patterns

$$
\mathcal{P}::=\mathcal{G}\left(P_{1}, \ldots, P_{n}\right)(n>2)
$$

Structural relations

- Peer-to-peer patterns

$$
\mathcal{P}::=P_{1} \cup P_{2}
$$

- Master-slave patterns

$$
\left\{\mathcal{P}::=P_{1} \cup P_{2}, P_{2}=f\left(P_{1}\right)\right\}
$$

- Hierarchy patterns

$$
\left\{\mathcal{P}::=P_{i} \cup P_{i}^{\prime} \cup P_{j} \cup P_{j}^{\prime}, P_{j}=\mathcal{G}\left(P_{i}\right), \ldots, P_{j}^{\prime}=\mathcal{G}^{\prime}\left(P_{i}\right)^{\prime}\right\}
$$

Time frame

- Independent patterns

$$
\left\{P_{1}: P_{2}\right\}
$$

- Sequential patterns
$\left\{P_{1} ; P_{2}\right\}$
- Hybrid patterns

$$
\left\{P_{1} \otimes P_{2} \cdots \otimes P_{n} ; \otimes \in\{:, \| ; ;\}\right\}
$$

Basic Process: an framework

- Multi-source combined pattern mining

Fig. 1. Combined mining for actionable patterns.
$C M::=\underbrace{\mathcal{D}_{k}\left[\mathcal{D} \xrightarrow{\otimes} \mathcal{D}_{k}\right]^{\mathcal{I}_{k}, \mathcal{R}_{k}, \Omega_{m}}\left\{\mathcal{P}_{k}\right\}}_{K} \longrightarrow \mathcal{G}^{\mathcal{N}_{\mathcal{P}_{k}, \Omega_{d}, \Omega_{m}} \mathcal{P}, ~}$

PROCESS: Multisource Combined Mining
INPUT: target data sets $\mathcal{D}_{k}(k=1, \ldots, K)$, business problem Ψ
OUTPUT: combined patterns \mathcal{P}
Step 1: Identify a suitable data set or data part, for example, \mathcal{D}_{1} for initial mining exploration.
Step 2: Identify the next suitable data set for pattern mining, or partition whole source data into K data sets supervised by the findings in Step 1.
Step 3: Data set-kmining: Extract atomic patterns \mathcal{P}_{k} on data set/subset D_{k}

FOR $k=1$ to K
Develop modeling method \mathcal{R}_{k} with interestingness \mathcal{I}_{k}.

Employ method \mathcal{R}_{k} on the environment e and data
\mathcal{D}_{k} engaging metaknowledge Ω_{m}.
Extract the atomic pattern set \mathcal{P}_{k}.
ENDFOR
Step 4: Pattern merger: Merge atomic patterns into combined pattern set \mathcal{P}

FOR $k=1$ to K
Design the pattern merger functions \mathcal{G}_{k} to merge all relevant atomic patterns into \mathcal{P}_{k} by involving domain and metaknowledge Ω_{d} and Ω_{m} and interestingness \mathcal{I}.

Employ the method $\mathcal{G}\left(\mathcal{P}_{k}\right)$ on the pattern set \mathcal{P}_{k}.
Generate combined patterns into set $\mathcal{P}=\mathcal{G}_{k}\left(\mathcal{P}_{k}\right)$.

ENDFOR

Step 5: Enhance pattern actionability to generate deliverables \mathcal{P}. Step 6: Output the deliverables \mathcal{P}.

- Multi-feature combined pattern mining

Definition 2 (MFCPs): Assuming that \mathcal{F}_{k} denotes the set of features in data set $\mathcal{D}_{k} \forall i \neq j, \mathcal{F}_{k, i} \cap \mathcal{F}_{k, j}=\emptyset$, based on the variables defined in Section IV-A, an MFCP P is in the form of

$$
\begin{align*}
& \mathcal{P}_{k}: \mathcal{R}_{l}\left(\mathcal{F}_{1}, \cdots, \mathcal{F}_{k}\right) \\
& \mathcal{P}:=\mathcal{G}_{F}\left(\mathcal{P}_{k}\right) \tag{8}
\end{align*}
$$

where $\exists i, j, i \neq j, \mathcal{F}_{i} \neq \emptyset, \mathcal{F}_{j} \neq \emptyset$, and $\mathcal{G}_{F^{*}}$ is the merging method for the feature combination.

$$
F \wedge c_{1} \wedge a_{1}-a_{2} \rightarrow N
$$

- Multi-method combined pattern mining

Definition 10 (Multimethod Combined Mining): Assuming that there are l data mining methods $\mathcal{R}_{l}(l=1, \ldots, L)$, their respective interestingness metrics are in the set \mathcal{I}_{m} ($m=$ $1, \ldots, M)$. The features available for mining the data set are denoted by \mathcal{F}, and multimethod combined mining is in the form of

$$
\begin{align*}
& \mathcal{P}_{l}: \mathcal{R}_{l}(\mathcal{F}) \rightarrow \mathcal{I}_{m, l} \\
& \mathcal{P}:=\mathcal{G}_{M}\left(\mathcal{P}_{l}\right) \tag{20}
\end{align*}
$$

where \mathcal{G}_{M} is the merging method integrating the patterns identified by multiple methods.

- Multi-method combined pattern mining - Parallel MMCM

$$
\left\{\begin{array}{l}
\mathcal{D}_{1}{ }^{e, \mathcal{I}_{1}, \mathcal{R}_{1}, \Omega_{m}} \mathcal{P}_{1} \tag{22}\\
\mathcal{D}_{2} \xrightarrow{e, \mathcal{I}_{2}, \mathcal{R}_{2}, \Omega_{m}} \mathcal{P}_{2} \\
\ldots \\
\mathcal{D}_{K} \xrightarrow{e, \mathcal{I}_{l}, \mathcal{R}_{1}, \Omega_{m}} \mathcal{P}_{n}
\end{array} \quad \mathcal{P}:=\mathcal{G}\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}\right)\right.
$$

- Serial MMCM

$$
\begin{align*}
& \mathcal{D}^{e, \mathcal{R}_{1}, \mathcal{F}_{l}, \mathcal{I}_{l}, \Omega_{m}} \mathcal{P}_{1}, o r \tag{23}\\
& \left\{\mathcal{R}_{1}, \mathcal{F}_{1}, \mathcal{I}_{1}\right\} \xrightarrow{e, \mathcal{D}_{m}} \mathcal{P}_{1} . \tag{24}\\
& \left\{\mathcal{R}_{2}, \mathcal{F}_{2}, \mathcal{I}_{2}\right\}, \mathcal{D}_{, \Omega_{m}, \mathcal{P}_{1}}^{\longrightarrow} \tag{25}\\
& \left\{\mathcal{R}_{L}, \mathcal{F}_{L}, \mathcal{I}_{L}\right\} \rightarrow \mathcal{P} . \tag{26}
\end{align*}
$$

Multi-Feature Combined Patterns

> Definition Multi-Feature Combined Patterns. Assume $\mathcal{F}_{k, i}$ to be the set of all features in dataset \mathcal{D}_{k}, and $\forall i \neq j, \mathcal{F}_{k, i} \cap \mathcal{F}_{k, j}=\emptyset$, based on the variables defined in Section 2.1, a Multi-Feature Combined Pattern (MFCP) P is in the form of

$$
\mathcal{R}: \mathcal{I}\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right) \rightarrow T
$$

$T \neq \emptyset$ is a target item or class and $\exists i, j, i \neq j, \mathcal{F}_{i} \neq \emptyset, \mathcal{F}_{j} \neq \emptyset$.

For example, A_{1} can be a demographic itemset, A_{2} can be a transactional itemset on marketing campaign, A_{3} can be an itemset from a third-party dataset, and T can be the loyalty level of a customer.

Traditional Supports, Confidences \& Lifts

- $\operatorname{Supp}(A->B)=\operatorname{Prob}\left(A^{\wedge} B\right)$
- $\operatorname{Conf}(A->B)=\operatorname{Prob}\left(A^{\wedge} B\right) / \operatorname{Prob}(A)$
- Lift $=\operatorname{Conf}(A->B) / \operatorname{Prob}(B)$

Table 6: Traditional Interestingness Measures for Rule $U+V \rightarrow C$

Supports	$\operatorname{Supp}(U), S u p p(V), S u p p(U V), S u p p(C)$ $S u p p$$(U C), \operatorname{Supp}(V C), \operatorname{Supp}(U V C)$

Contribution

Definition Contribution. For a multi-feature combined pattern $P: X \rightarrow T$, where $X=X_{\mathrm{p}} \wedge X_{\mathrm{e}}$, the contribution of X_{e} to the occurrence of outcome T in rule P is

$$
\begin{aligned}
\operatorname{Cont}_{\mathrm{e}}(P) & =\frac{\operatorname{Lift}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T\right)}{\operatorname{Lift}\left(X_{\mathrm{p}} \rightarrow T\right)} \\
& =\frac{\operatorname{Conf}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T\right)}{\operatorname{Conf}\left(X_{\mathrm{p}} \rightarrow T\right)}
\end{aligned}
$$

$\operatorname{Cont}_{\mathrm{e}}(P)$ is the lift of X_{e} with X_{p} as a precondition, which shows how much X_{e} contributes to the rule. Contribution can be taken as the increase of lift by appending additional items X_{e} to a rule. Its value falls in $[0,+\infty)$. A contribution greater than one means that the additional items in the rule contribute to the occurrence of the outcome, and a contribution less than one suggests that it incurs a reverse effect.

Interestingness of Combined Pattern

$$
I_{\mathrm{rule}}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T\right)=\frac{\operatorname{Cont}_{\mathrm{e}}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T\right)}{\operatorname{Lift}\left(X_{\mathrm{e}} \rightarrow T\right)}
$$

$I_{\text {rule }}$ indicates whether the contribution of $X_{p}\left(\right.$ or X_{e}) to the occurrence of T increases with X_{e} (or X_{p}) as a precondition. Therefore, " $I_{\text {rule }}<1$ " suggests that $X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T$ is less interesting than $X_{\mathrm{p}} \rightarrow T$ and $X_{\mathrm{e}} \rightarrow T$. The value of $I_{\text {rule }}$ falls in $[0,+\infty)$. When $I_{\text {rule }}>1$, the higher $I_{\text {rule }}$ is, the more interesting the rule is.

Combined Pattern Pairs

Definition Combined Pattern Pairs. For impact-oriented combined patterns, a Combined Pattern Pair (CPP) is in the form of

$$
\mathcal{P}:\left\{\begin{array}{l}
X_{1} \rightarrow T_{1} \\
X_{2} \rightarrow T_{2}
\end{array}\right.
$$

where 1) $X_{1} \cap X_{2}=X_{\mathrm{p}}$ and X_{p} is called the prefix of pair \mathcal{P}; $X_{1, e}=X_{1} \backslash X_{\mathrm{p}}$ and $X_{2, e}=X_{2} \backslash X_{\mathrm{p}}$; 2) X_{1} and X_{2} are different itemsets; and 3) T_{1} and T_{2} are contrary to each other, or T_{1} and T_{2} are same but there is a big difference in the interestingness (say confidences conf) of the two patterns.

- A combined rule pair is composed of two contrasting rules.
- Eg,. for customers with the same characteristics U, different policies/campaigns, V_{1} and V_{2}, can result in different outcomes, T_{1} and T_{2}.

Interestingness of Pattern Pairs

$$
I_{\text {pair }}(\mathcal{P})= \begin{cases}\left|\operatorname{Conf}\left(P_{1}\right)-\operatorname{Conf}\left(P_{2}\right)\right|, & \text { if } T_{1}=T_{2} \\ \sqrt{\operatorname{Conf}\left(P_{1}\right) \operatorname{Conf}\left(P_{2}\right)}, & \text { if } T_{1} \text { and } T_{2} \text { are contrary } ; \\ 0, & \text { otherwise }\end{cases}
$$

Combined Pattern Clusters

Definition Combined Pattern Clusters. Assume there are k local patterns $X_{i} \rightarrow T_{i},(i=1, \ldots, k), k \geq 3$ and $X_{1} \cap X_{2} \cap \cdots \cap X_{k}=X_{\mathrm{p}}$, a combined pattern cluster (CPC) is in the form of

$$
\mathcal{C}:\left\{\begin{array}{l}
X_{1} \rightarrow T_{1} \\
\cdots \\
X_{k} \rightarrow T_{k}
\end{array},\right.
$$

where X_{p} is the prefix of cluster \mathcal{C}.

- Based on a combined rule pair, related combined rules can be organized into a cluster to supplement more information to the rule pair.
- The rules in cluster C have the same U but different V , which makes them associated with various results T .

Interestingness of Pattern Clusters

$$
I_{\text {cluster }}(\mathcal{C})=\max _{P_{i}, P_{j} \in \mathcal{C}, i \neq j} I_{\text {pair }}\left(P_{i}, P_{j}\right)
$$

Interestingness of Rule Pair/Cluster

$$
\begin{aligned}
& I_{\text {pair }}(\mathcal{P})=\operatorname{Lift}_{V}\left(R_{1}\right) \operatorname{Lift}_{V}\left(R_{2}\right) \operatorname{dist}\left(T_{1}, T_{2}\right) \\
& I_{\text {cluster }}(\mathcal{C})=\max _{i \neq j, R_{i}, R_{j} \in \mathcal{C}, T_{i} \neq T_{j}} I_{\text {pair }}\left(R_{i}, R_{j}\right)
\end{aligned}
$$

- dist(): the dissimilarity between the descendants of R_{1} and R_{2}
- The interestingness of combined rule pair/cluster is decided by both the interestingness of rules and the most contrasting rules within the pair/cluster.
- A cluster made of contrasting confident rules is interesting, because it explains why different results occur and what can be done to produce an expected result or avoid an undesirable consequence.

Rule Pair vs Rule Cluster

$$
\mathcal{P}:\left\{\begin{array}{l}
U \wedge V_{1} \rightarrow \text { stay } \\
U \wedge V_{2} \rightarrow \text { churn }
\end{array}, \quad \mathcal{C}:\left\{\begin{array}{l}
U \wedge V_{1} \rightarrow \text { stay } \\
U \wedge V_{2} \rightarrow \text { churn } . \\
U \wedge V_{3} \rightarrow \text { stay }
\end{array}\right.\right.
$$

- From P , we can see that V_{1} is a preferable policy for customers with characteristics U.
- If, for some reason, policy V_{1} is inapplicable to the specific customer group, P is no longer actionable.
- Rule cluster C suggests that another policy V_{3} can be employed to retain those customers.

Extended Combined Pattern Pairs

Definition Extended Combined Pattern Pairs. An Extended Combined Pattern Pair (ECPP) is a special combined pattern pair as follows

$$
\mathcal{E}:\left\{\begin{array}{l}
X_{\mathrm{p}} \rightarrow T_{1} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T_{2}
\end{array}\right.
$$

where $X_{\mathrm{p}} \neq \emptyset, X_{\mathrm{e}} \neq \emptyset$ and $X_{\mathrm{p}} \cap X_{\mathrm{e}}=\emptyset$.

Conditional P-S ratio

Definition A metric for measuring the difference led by the occurrence of X_{e} in the above scenario is Conditional Piatetsky-Shapiro's $(P-S)$ ratio $C p s$, which is defined as follows.

$$
\begin{gathered}
\operatorname{Cps}\left(X_{\mathrm{e}} \rightarrow T \mid X_{\mathrm{p}}\right)=\operatorname{Prob}\left(X_{\mathrm{e}} \rightarrow T \mid X_{\mathrm{p}}\right)-\operatorname{Prob}\left(X_{\mathrm{e}} \mid X_{\mathrm{p}}\right) \times \operatorname{Prob}\left(T \mid X_{\mathrm{p}}\right) \\
=\frac{\operatorname{Prob}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T\right)}{\operatorname{Prob}\left(X_{\mathrm{p}}\right)}-\frac{\operatorname{Prob}\left(X_{\mathrm{p}} \wedge X_{\mathrm{e}}\right)}{\operatorname{Prob}\left(X_{\mathrm{p}}\right)} \times \frac{\operatorname{Prob}\left(X_{\mathrm{p}} \rightarrow T\right)}{\operatorname{Prob}\left(X_{\mathrm{p}}\right)}
\end{gathered}
$$

Extended Combined Pattern Clusters

Definition Extended Combined Pattern Sequences. An Extended Combined Pattern Sequence (ECPC), or called Incremental Combined Pattern Sequence (ICPS), is a special combined pattern cluster with additional items appending to the adjacent local patterns incrementally.

$$
\mathcal{S}:\left\{\begin{array}{l}
X_{\mathrm{p}} \rightarrow T_{1} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \rightarrow T_{2} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \wedge X_{\mathrm{e}, 2} \rightarrow T_{3} \\
\cdots \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \wedge X_{\mathrm{e}, 2} \wedge \cdots \wedge X_{\mathrm{e}, \mathrm{k}-1} \rightarrow T_{k}
\end{array},\right.
$$

where $\forall i, 1 \leq i \leq k-1, X_{i+1} \cap X_{i}=X_{i}$ and $X_{i+1} \backslash X_{i}=X_{e, i} \neq \emptyset$, i.e., X_{i+1} is an increment of X_{i}. The above cluster of rules actually makes a sequence of rules, which can show the impact of the increment of patterns on the outcomes.

Impact

Definition Impact. The impact of X_{e} on the outcome in the rule is

$$
\operatorname{impact}_{\mathrm{e}}(P)=\left\{\begin{array}{l}
\operatorname{cont}_{\mathrm{e}}(P)-1: \text { if } \operatorname{cont}_{\mathrm{e}}(P) \geq 1, \\
\frac{1}{\operatorname{cont}_{\mathrm{e}}(P)}-1 \quad: \text { otherwise. }
\end{array}\right.
$$

Intervention Strategy 1

- Type A: Demographics differentiated combined pattern
- Customers with the same actions but different demographics
\rightarrow different classes/business impact

$$
\text { Type A: }\left\{\begin{array}{lll}
A_{1}+D_{1} & \rightarrow & \text { quick payer } \\
A_{1}+D_{2} & \rightarrow \text { moderate payer } \\
A_{1}+D_{3} & \rightarrow & \text { slow payer }
\end{array}\right.
$$

Intervention Strategy 2

- Type B: Action differentiated combined pattern
- Customers with the same demographics but taking different actions
\rightarrow different classes/business impact

$$
\text { Type B: }\left\{\begin{array}{l}
A_{1}+D_{1} \\
A_{2}+D_{1} \\
A_{3}+D_{1}
\end{array} \rightarrow \text { quick payer } \quad \text { slow payer } \quad\right. \text { payer }
$$

Business Impact

- Able to move customers from one class to another class
- Useful for designing business policy

Case Study I

- Mining Combined Patterns and Patterns Clusters for Debt Recovery

Business Problem

- To profile customers according to their capacity to pay off their debts in shortened timeframes.
- To target those customers with recovery and amount options suitable to their own circumstances, and increase the frequency and level of repayment.

Data (1)

- Customer demographic data
- Customer ID, gender, age, marital status, number of children, declared wages, location, benefit type,
- Debt data
- Debt amount, debt start/end date, ...
- Repayment data (transactional)
- Repayment method, amount, time, date, ...
- Class ID: Quick/Moderate/Slow Payer

Data (2)

- The case study is on governmental social security data with debts raised in the calendar year 2006 and the corresponding customers and arrangement/repayment activities.
- The cleaned sample data contains 355,800 customers with their demographic attributes, arrangements and repayments.
- There are 7,711 traditional associations mined.

Results (1)

- There were 7,711 association rules before removing redundancy of combined rules.
- After removing redundancy of combined rules, 2,601 rules were left, which built up 734 combined rule clusters.
- After removing redundancy of combined rule clusters, 98 rule clusters with 235 rules remained, which was within the capability of human beings to read.

Results (2)

Traditional Association Rules

V		T	Conf(\%)	Count	Lift
Arrangement	Repayment	Class			
irregular	cash or post office	A	82.4	4088	1.8
withholding	cash or post office	A	87.6	13354	1.9
withholding \& irregular	cash or post office	A	72.4	894	1.6
withholding \& irregular	cash or post office \& withholding	B	60.4	1422	1.7

An Example of Combined Patterns

Rules	X_{p}	$X_{\text {e }}$			Cnt	$\begin{array}{\|r\|} \hline \text { Conf } \\ (\%) \end{array}$	$I_{\text {r }}$	Lift	Cont $_{\mathrm{p}}$	Cont $_{\text {e }}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{P}} \rightarrow T \end{array}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{e}} \rightarrow T \end{array}$
	Demographics	Arrangements	Repayments	Class								
P_{1}	age:65+	withholding \& irregular	withholding	C	50	63.3	2.91	3.40	2.47	4.01	0.85	1.38
P_{2}	income:0 \& remote: Y \& marrital:sep \& gender:F	withholding	cash or post \& withholding	B	20	69.0	1.47	1.95	1.34	2.15	0.91	1.46
P_{3}	income:0 \& age:65+	withholding	cash or post \& withholding	A	1123	62.3	1.38	1.35	1.72	1.09	1.24	0.79
P_{4}	income:0 \& gender: F \& benefit:P	withholding	cash or post	A	469	93.8	1.36	2.04	1.07	2.59	0.79	1.90

Results (3)

An Example of Combined Pattern Clusters

Clusters	Rules	$X_{\text {p }}$	$X_{\text {e }} \quad T$			Cnt	Conf (\%)	I_{r}	$I_{\text {c }}$	Lift	Cont $_{\mathrm{p}}$	Cont $_{\text {e }}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{P}} \rightarrow T \end{array}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{e}} \rightarrow T \end{array}$
		demographics	arrangements	repayments										
\mathcal{P}_{1}	$\begin{aligned} & P_{5} \\ & P_{6} \\ & P_{7} \end{aligned}$	marital:sin \&gender: F \&benefit:N	irregular	cash or post	A	400	83.0	1.12	0.67	1.80	1.01	2.00	0.90	1.79
			withhold	cash or post	A	520	78.4	1.00		1.70	0.89	1.89	0.90	1.90
			withhold \& irregular	cash or post \& withhold	B	119	80.4	1.21		2.28	1.33	2.06	1.10	1.71
	$\begin{aligned} & P_{8} \\ & P_{9} \end{aligned}$		withhold	cash or post \& withhold	B	643	61.2	1.07		1.73	1.19	1.57	1.10	1.46
			withhold \& vol. deduct	withhold \& direct debit	B	237	60.6	0.97		1.72	1.07	1.55	1.10	1.60
	P_{10}		cash	agent	C	33	60.0	1.12		3.23	1.18	3.07	1.05	2.74
\mathcal{P}_{2}	$P_{11}$$P_{12}$$P_{13}$$P_{14}$	age:65+	withhold	cash or post	A	1980	93.3	0.86	0.59	2.02	1.06	1.63	1.24	1.90
			irregular	cash or post	A	462	88.7	0.87		1.92	1.08	1.55	1.24	1.79
			withhold \& irregular	cash or post	A	152	85.7	0.96		1.86	1.18	1.50	1.24	1.57
			withhold \& irregular	withhold		550	63.3	2.91		3.40	2.47	4.01	0.85	1.38

Business Rule

BUSINESS RULES: Customer Demographic-Arrangement-Repayment combination business rules
For All customer i ($i \in I$ is the number of valid customers)
Condition:
satisfies $S /$ he is a debtor aged 65 or plus; relates
S/he is under arrangement of 'withholding' and 'irregularly', and His/her favorite Repayment method is 'withholding';
Operation:
Alert $=$ "S/he has 'High' risk of paying off debt in a very long timeframe."
Action $=$ "Try other arrangements and repayments in R_{2}, such as trying to persuade her/him to repay under 'irregular' arrangement with 'cash or post'."
End-All

Case Study II

- Mining Extended Combined Pattern Pairs for Debt Prevention

Business Problem

- A case study of extend combined pattern pairs on Centrelink debt-related activity data is given as follows. More details can be found in [Cao et al. 2008], where they are called impact-reversed sequential activity patterns.
- The data involves four data sources, which are activity files recording activity details, debt files logging debt details, customer files enclosing customer circumstances, and earnings files storing earnings details.
- To analyse the relationship between activity and debt, the data from activity files and debt files are extracted.

Data (1)

- Customer demographic data
- Customer ID, gender, age, marital status, number of children, declared wages, location, benefit type,
- Debt data
- Debt amount, debt start/end date, ...
- Repayment data (transactional)
- Repayment method, amount, time, date, ...
- Class ID: Quick/Moderate/Slow Payer

Date (2)

- The activity data for us to test the proposed approaches is Centrelink activity data from Jan. 1st to Mar. 31st 2006.
- We extract activity data including 15,932,832 activity records recording government-customer contacts with 495,891 customers, which lead to 30,546 debts in the first three months of 2006.
- After data preprocessing and transformation, there are 454,934 sequences: 16,540 (3.6\%) activity sequences associated with debts and 438,394 (96.4%) sequences with nil debt.

Results (1)

Examples of Extended Combined Pattern Pairs

X_{P}	T_{1}	X_{e}	T_{2}	Cont $_{\mathrm{e}}$	Cps	Local support of $X_{\mathrm{P}} \rightarrow T_{1}$	Local support of $X_{\mathrm{P}} \wedge X_{\mathrm{e}} \rightarrow T_{2}$
a_{14}	\bar{T}	a_{4}	T	2.5	0.013	0.684	0.428
a_{16}	\bar{T}	a_{4}	T	2.2	0.005	0.597	0.147
a_{14}	\bar{T}	a_{5}	T	2.0	0.007	0.684	0.292
a_{16}	\bar{T}	a_{7}	T	1.8	0.004	0.597	0.156
a_{14}	\bar{T}	a_{7}	T	1.7	0.005	0.684	0.243
a_{15}	\bar{T}	a_{5}	T	1.7	0.007	0.567	0.262
a_{14}, a_{14}	\bar{T}	a_{4}	T	2.3	0.016	0.474	0.367
a_{14}, a_{16}	\bar{T}	a_{5}	T	2.0	0.005	0.393	0.118
a_{15}, a_{14}	\bar{T}	a_{5}	T	1.7	0.007	0.381	0.179
a_{14}, a_{16}, a_{14}	\bar{T}	a_{15}	T	1.2	0.005	0.248	0.188

An Example of Extended Combined Pattern Pair

$$
\left\{\begin{array}{l}
a_{14} \rightarrow \bar{T} \\
a_{14}, a_{4} \rightarrow T
\end{array}\right.
$$

- The local supports of $a_{14} \rightarrow T$ and $a_{14} \rightarrow \bar{T}$ are respectively 0.903 and 0.684 , so the ratio of the two values is 1.3.
- The local supports of $a_{14}, a_{4} \rightarrow T$ and $a_{14}, a_{4} \rightarrow \bar{T}$ are 0.428 and 0.119 respectively, so the ratio of the two values is 3.6 .
- When a14 occurs first, the appearance of a4 makes it more likely to become debtable.
- This kind of pattern pairs help to know what effect an additional activity will have on the impact of the patterns.

Case Study III

- Exploring the impact of behavior dynamics
- Identifying the most important behavior during the evolution

Combined pattern presentation

Figure 2: Pattern Evolution Chart
$T M C, G P S, D A G, P P J, O M F, I K R, T M C, P P J \rightarrow U_{3}$

An Example of Extended Combined Pattern Cluster

$$
\left\{\begin{array}{l}
P L N \rightarrow T \\
P L N, D O C \rightarrow T \\
P L N, D O C, D O C \rightarrow T \\
P L N, D O C, D O C, D O C \rightarrow T \\
P L N, D O C, D O C, D O C, R E A \rightarrow T \\
P L N, D O C, D O C, D O C, R E A, I E S \rightarrow T
\end{array}\right.
$$

An Example of Extended Combined Pattern Cluster

Discussion 1: Behaviour in your organisatign

1 List the business lines (drill down to specific business areas) in your organization where behaviour could be an important aspect/asset

2 Use a few keywords in a dot point format to describe behaviour analytics tasks conducted at your organization

Discussion 2: What is the betaviour your organization

1 Write a few keywords (dimensions and aspects), or a diagram, to explain what is behaviour on your mind

2 List three aspects that you believe are the most important in discussing behaviour

Exercise 3: Model behavioner in year ou: mess

Behaviour understanding

Organization:
Business problem:
Cu:

Group discussion: behaviour inapaet

Session 3: In your business, how do you measure the impact or utility of behaviour?

	Objective metrics	Subjective metrics
Business aspects		
Technical aspects		

Part III.
 Negative Behavior Analysis

- What is negative behavior?
- Why care about negative behavior?
- How to represent/model behavior?
- How to check the behavior model?

8. Negative Behavior Analysis

Negative sequential pattern mining

References

- Xiangjun Dong, Zhigang Zhao, Longbing Cao, Yanchang Zhao, Chengqi Zhang, Jinjiu Li, Wei Wei, Yuming Ou. e-NSP: Efficient Negative Sequential Pattern Mining Based on Identified Positive Patterns Without Database Rescanning, CIKM 2011, 825-830.
- Zhigang Zheng, Yanchang Zhao, Ziye Zuo, Longbing Cao. An Efficient GABased Algorithm for Mining Negative Sequential Patterns, PAKDD2010, 262-273.
- Zhigang Zheng, Yanchang Zhao, Ziye Zuo, Longbing Cao. Negative-GSP: An Efficient Method for Mining Negative Sequential Patterns, AusDM 2009: 63-67.
- Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patterns, ECML/PKDD2009, 648-663.
- Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Mining Both Positive and Negative Impact-Oriented Sequential Rules From Transactional Data, PAKDD2009, pp.656-663.

EXPERT OPINION

Nonoccurring Behavior Analytics: A New Area

Longbing Cro, Univarrity of Tachnology Sydhey Ptullp. 5 . Yu, University of 尚inots at Chicago
Vipln Kumar, University of Mennesota

B
chavior-related studies and applications, mach as behavior analysis, data miming, machine learning, and behavioral science, have generally focused co behavions that hape occurred of -ill ocur. 5ach hehavion are called posithe be haviors (PIA) or occaortag behaplars (OAS). Re lated work has focused on hehavinal puterns, anomalies, impact, and dynamicx This coessitutes the area of behavsor analytice, which focuses on anderstanding, shalyzing, learnint, prodicting. and manapinh past, poesent, and farure behar. iors. When behsvior representation and modeling are alsu considered, we use the iem behavor informatics ot bathawfor comphatmgl to describe the cew perspective of modeling, reasoning about venting, This has ornald is in imporas te hwiors. Tis has erged as an importan and demanding area for comprobensively and deeply handling uhiquitosa behavion valine, in business povernment servicen, sicmtific activities, social ac vibiec, and ecoocmik and financial husiness Limited reseanch has been conducted on ama lysing, dertecting, or predicting noonocurring behaviurs (NOHk), thase that did nut or will not octur. NOils are alse called negative behworors, which are not straightiforwand, vince they usally are hidden and uifficult in undenstand, of one uscally is soe concerned with them. That NOB are owerlooked does not mean they are unimportatt. For instance, if a patient misses an appointment with a specialist, and thus mises the opportunity to receive immediate and appropriate treatment for a halth problem, the patient' health cuuld wonsen. Additiocully, in many situa tions, failurt in follow rules ar policies could re walt in administrative or even legal obligations.

Therefore, it in important to build a theoretial oundation for NO Is stals.
Unfortunately, few research outcomes of NOB sudy can be identified in the literatare. Relevant work inchudes event amalysis; nepative associatio rule mining, ${ }^{2}$ which identifies patterns oompriving ocooccarting items; and negative sequentizl paterns, ${ }^{31}$ which compcise sequeotial tiements that do not appear in the towiness process. $\mathrm{No}_{\mathrm{H}}^{\mathrm{sy}}$ matic work has been conducted to undestanis, model, formalize, analoze, leam, detect, prodict, intervene, and managy NOHk.
NOB is not a trivial problem. 5ome may anue that it is simple to treat an NOI as a epecial On, and that all roiecamt technigper can then be used directly for NO analyics. Unfortunately, this of ten dues not wurk for reasons trlated to the dif. feront natures and complexities of occurring and oonoccurring behavinrs. In this article, we coulline the concept of NOR is and related complexities, draw a picture of NOB analytics, and preent ctar view of NOHI rexearch directions and pruspects.

What is NOB?

We brielly disuuss the ewence, intrinsic chanacterscrics, and complexities of NOBs, and the forms that NOlis cars take, in order to anderstand the concept of NOB

Intinek Chametaristics

NOIls refer to those behavions that should occur fer do not far ssme reasin. They are hidden but are widely seen in hehavinral applications in businex, exomomica, bealh, syberpoct, social and motile petworka, and natural and human epstems. Mary husinesses, services, applications, and spsters involve NOllo, including healihcare and

Longbing Cao, Philip S. Yu, Vipin Kumar. Nonoccurring Behavior Analytics: A New Area. IEEE Intelligent Systems 30(6): 4-11 (2015).

Xiangjun Dong, Zhigang Zhao, Longbing Cao, Yanchang Zhao, Chengqi Zhang, Jinjiu Li, Wei Wei, Yuming Ou. e-NSP: Efficient Negative Sequential Pattern Mining Based on Identified Positive Patterns Without Database Rescanning, CIKM 2011, 825-830.

Zhigang Zheng, Yanchang Zhao, Ziye ZuoLongbing Cao, Huaifeng Zhang, Yanchang Zhao, Chengqi Zhang. An Efficient GA-Based Algorithm for Mining Negative Sequential Patterns, PAKDD2010, 262-273.

Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Mining Both Positive and Negative Impact-Oriented Sequential Rules From Transactional Data, PAKDD2009, pp.656-663.

Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Debt Detection in Social Security by Sed is Co Cincation Using Both Positive and Negative Patterns ECMALPK 663, 2009.

Avalathe orine at www, eciencedireckeam
 - $=$ ScienceDirect

Artificiai
Intelli-
gence

e-NSP: Efficient Negative Sequential Pattern Mining*
Nellanghing Cas. M Xiangjun Dong and M Thigang Theng
*Tasendy ef Toctedige Ndivg Auenhas

Abstract

As an imporini tooi for tehanior intornalisa, xgase sequential faliens (NSP) (ruch as mising nedical (rearnets) ate critical sptems and apilabiots wach as intilgent tranpori yiems, healhcare and risk mamagenent, as they ofter involve not occurtigg proposed to curven the xpabve cortainnen probiem is a posithe containneri prubiem The NSC suppors are then calculace how that eNSP performs partictiarly well of datactswith a suall number of exments in a sequesc, a laree number of lienved

 lage scale dauseds iy directy uing existing PSP mining algoritime.Q2015 Pithisted by Eacrier Lid
Komwond:
 conpuling patem miaitg

1. Intruduction

Behwior is widely wen in our duily study, work, living and eatertainment [7]. A critical isue in undentandiag behasior frum the informatics perpective, namely behavior informatics $\mid 6.9]$, is io undentand the complerities, dyzamics and imputt of ann-occurring behmioes (NOA) [8]. Miniat Negoune sequental pararns (NSP) [43] is

[^2]**Gmopnify witer linail hnyhigovelaprailen

Issues Addressed

- What is non-occurring behavior?
- Why do we care about non-occurring behaviors?
- What are issues in understanding nonoccurring behaviors?
- What are the problems with existing behavior study in addressing non-occurring behaviors?
- Research opportunities and prospects of nonoccurring behavior study

Problem description

- What is negative sequential patterns?
- Focus on negative relationship between itemsets
- Absent items are taken into consideration
- Example:

$$
p_{1}=\left\langle a b c d>\text { vs } p_{2}=\langle a b \neg c e>\right.
$$

- Each item, a, b, c, d and e, stands for a claim item of insurance.
- p1: an insurant usually claims for a, b, c and d in a claim.
- p2: does NOT claim c after a and b, then claim item e instead of d.

Challenges for NSP

- Apriori principle doesn't work for some situations
- Huge search space
- 10 distinct items
- 3-item PSC: 10^{3}
- 3-item NSC: 20^{3}

Non-occurrence behaviour analysis

(Negative sequence analysis)

Table 1. Supports, Confidences and Lifts of Four Types of Sequential Rules

	Rules	Support	Confidence
I	$A \rightarrow B$	$P(A B)$	$\frac{P(A B)}{P(A)}$
II	$A \rightarrow \neg B$	$P(A)-P(A B)$	$\frac{P(A)-P(A B)}{P(A)}$
III	$\neg A \rightarrow B$	$P(B)-P(A \& B)$	$\frac{P(B)-P(A \& 1}{1-P(A)}$
IV	$\neg A \rightarrow \neg B$	$1-P(A)-P(B)+P(A \& B)$	$\frac{1-P(A)-P(E}{1-P i}$

Table 4. Selected Positive and Negative Sequential Rules

Type	Rule	Support	Confidence	Lift
I	REA ADV ADV \rightarrow DEB	0.103	0.53	2.02
	DOC DOC REA REA ANO \rightarrow DEB	0.101	0.33	1.28
	RPR ANO \rightarrow DEB	0.111	0.33	1.25
	RPR STM STM RPR \rightarrow DEB	0.137	0.32	1.22
	$\mathrm{MCV} \rightarrow$ DEB	0.104	0.31	1.19
	$\mathrm{ANO} \rightarrow$ DEB	0.139	0.31	1.19
	STM PYI \rightarrow DEB	0.106	0.30	1.16
II	STM PYR RPR REA RPT $\rightarrow \neg$ DEB	0.166	0.86	1.16
	MND $\rightarrow \neg$ DEB	0.116	0.85	1.15
	STM PYR RPR DOC RPT $\rightarrow \neg$ DEB	0.120	0.84	1.14
	STM PYR RPR REA PLN $\rightarrow \neg$ DEB	0.132	0.84	1.14
	REA PYR RPR RPT $\rightarrow \neg$ DEB	0.176	0.84	1.14
	REA DOC REA CPI $\rightarrow \neg$ DEB	0.083	0.83	1.12
	REA CRT DLY $\rightarrow \neg$ DEB	0.091	0.83	1.12
	REA CPI $\rightarrow \neg$ DEB	0.109	0.83	1.12
III	\neg \{PYR RPR REA STM $\} \rightarrow$ DEB	0.169	0.33	1.26
	$\neg\{$ PYR CCO $\} \rightarrow$ DEB	0.165	0.32	1.24
	$\neg\{$ STM RPR REA RPT $\} \rightarrow$ DEB	0.184	0.29	1.13
	$\neg\{$ RPT RPR REA RPT $\} \rightarrow$ DEB	0.213	0.29	1.12
	$\neg\{\mathrm{CCO} \mathrm{RPT}\} \rightarrow$ DEB	0.171	0.29	1.11
	$\neg\{\mathrm{CCO}$ PLN $\} \rightarrow$ DEB	0.187	0.28	1.09
	$\neg\{$ PLN RPT $\} \rightarrow$ DEB	0.212	0.28	1.08
IV	$\neg\{$ ADV REA ADV $\rightarrow \rightarrow \neg$ DEB	0.648	0.80	1.08
	$\neg\{$ STM EAN $\} \rightarrow \neg$ DEB	0.651	0.79	1.07
	$\neg\{$ REA EAN $\} \rightarrow \neg$ DEB	0.650	0.79	1.07
	$\neg\{\mathrm{DOC} \mathrm{FRV}\} \rightarrow \neg \mathrm{DEB}$	0.677	0.78	1.06
	\neg \{DOC DOC STM EAN $\} \rightarrow \neg$ DEB	0.673	0.78	1.06
	$\neg\{\mathrm{CCO}$ EAN $\} \rightarrow \neg$ DEB	0.681	0.78	1.05

Genetic-Algorithm based NSP approach: GA-NSP

- Find good (frequent) genes with good performance (supp), and optimize genes (FP) through crossover and mutation, m^{*} generations
- Improve gene quality (making more and more frequent)

Strengths:

- Treat candidates unequally
- Very low support threshold
- Find long-NSP at the beginning

GA-NSP

- New generations: good genes (freq patterns) through crossover and mutation operations.
- Population evolution control: fitness and dynamic fitness.
- Performance improvement: pruning method (check constraints of NSP)

Problem Statement

- Sequence (general)
$s=<e_{1} e_{2} \ldots e_{n}^{>}$ i.e. <ab(c,d) $e>,<a \neg b c e>$
- Positive/Negative Sequence
$s_{p}=<e_{1} e_{2} \ldots e_{n}>$, all elements are positive
$s_{n}=<e_{1} e_{2} \ldots e_{n}>$, at least one element is
negative
- Negative Sequential Pattern
- Its support is greater than minimum support threshold.
- Two or more continuous negative elements are not accepted.
- For each negative item, its corresponding positive item is required to be frequent.
- Items in an element should be all positive or all negative. i.e. $\langle a(a, \neg b) c>$ is not allowed.

- Negative Matching

Negative Matching. A negative sequence $s_{n}=<e_{1} e_{2} \ldots e_{k}>$ matches a data sequence $s=<d_{1} d_{2} \ldots d_{m}>$, iff:

1) s contains the max positive subsequence of s_{n}
2) for each negative element $e_{i}(I \leq i \leq k)$, there exist integers $p, q, r(l \leq p \leq q \leq r \leq m)$ such that: $\exists e_{i-1} \subseteq d_{p} \wedge e_{i+1} \subseteq d_{r}$, and for $\forall d_{q}, e_{i} \not \subset d_{q}$

	Sequence	Matching	Data Sequence
S_{1}	$\langle b \neg c a\rangle$	No	$\langle b f d c a\rangle$
S_{2}	$\langle b \neg c d a\rangle$	Yes	$\langle b f d c a\rangle$

GA-NSP Algorithm

- Encoding

Sequence		Chromosome		
		gene $_{1}$	gene	gene

- Crossover

parent 1	$b \neg c \uparrow a$	\Rightarrow	child 1	$b \neg c e$
parent 2	$d \uparrow e$	\Rightarrow	child 2	$d a$

parent	$b \neg c a \uparrow$	\Rightarrow	child 1	$b \neg c$ a $d e$
parent 2	$\uparrow d e$	\Rightarrow	child2	d e $b \neg c a$

- Mutation

Select a random position and then replace all genes after that position with 1 -item patterns

- Fitness \& Dynamic Fitness

$$
\begin{gather*}
\text { ind.fitness }=(\text { ind.support }- \text { min_sup }) \times \text { DatasetSize. } \tag{1}\\
\text { ind.dfitness }=\left\{\begin{array}{lr}
\text { ind.fitness, } \\
\text { ind.dfitness } \times(1-\text { DecayRate }), & \text { if } \text { ind is selected }
\end{array}\right. \tag{2}
\end{gather*}
$$

- Selection

Selection $(p o p)$ \{ / /Subfunction for selecting top K individuals from population for (each ind with top K dfitness in pop) \{
popK.add(ind);
ind.dfitness $=$ ind.dfitness $*(1-$ decay_rate $)$;
if (ind.dfitness <0.01) ind.dfitness $=0$;
\}
return pop K;
\}

$$
\begin{equation*}
\text { ind.fitness }=(\text { ind.support }- \text { min_sup }) \times \text { DatasetSize } . \tag{1}
\end{equation*}
$$

ind.dfitness $=\left\{\begin{array}{lr}\text { ind.fitness }, & \text { initial set } \\ \text { ind.dfitness } \times(1-\text { DecayRate }), & \text { if } \text { ind is selected }\end{array}\right.$

- GA-NSP Pseudocode

```
RunGA(min_sup, decay_rate, crossover_rate, mutation_rate){
    pop = initialPopulation();
    for (each individual ind in pop){
        ind.fitness = calculateFitness(ind);
        ind.dfitness = ind.fitness
        pop.sum_dfitness = pop.sum_dfitness + ind.dfitness
    }
    while (pop.sum_dfitness > 0){
        popK = Selection(pop);
        if (Random()<crossover_rate) Crossover(popK);
        if (Random()<mutation_rate) Mutation(popK);
        for (each individual ind in popK)
            if (Prune(ind)!=true && ind.sup >= min_sup) pop.add(ind);
    }
    return pop;
}
```


Experiments Result. 1

- Datasets
- Dataset1 $(D S 1)$ is C8.T8.S4.I8.DB10k.N1k, which means the average number of elements in a sequence is 8 , the average number of items in an element is 8 , the average length of a maximal pattern consists of 4 elements and each element is composed of 8 items average. The data set contains 10 k sequences, the number of items is 1000.
- Dataset2(DS2) is C10.T2.5.S4.I2.5.DB100k.N10k.
- Dataset3(DS3) is C20.T4.S6.I8.DB10k.N2k.
- Dataset4 (DS4) is real application data for insurance claims.

'S:AAN

「S:AAi

- Comparison with PNSP, Neg-GSP

Classification of both positive and negative behavior patterns

-Huaifeng Zhang, Yanchang Zhao, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Customer Activity Sequence Classification for Debt Prevention in Social Security, Journal of Computer Science and Technology, 24(6): 1000-1009 (2009).

- Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,Longbing Cao, Chengqi Zhang and Hans Bohlscheid.

Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patterns.
$E C M L / P K D D 2009,648-663$.
the advanced analitics institute

Sequence classification

Let \mathcal{T} be a finite set of class labels. A sequential classifier is a function

$$
\begin{equation*}
\mathcal{F}: \mathcal{S} \rightarrow \mathcal{T} \tag{1}
\end{equation*}
$$

In sequence classification, the classifier \mathcal{F} is built on the base of frequent classifiable sequential patterns \mathcal{P}.

Definition 3.1 (Classifiable Sequential Pattern). Classifiable Sequential Patterns (CSP) are frequent sequential patterns for the sequential classifier in the form of $p_{a} \Rightarrow \tau$, where p_{a} is a frequent pattern in the sequence database \mathcal{S}.

Based on the mined classifiable sequential patterns, a sequential classifier can be formulised as

$$
\mathcal{F}: s \xrightarrow{\mathcal{P}} \tau .
$$

- Class correlation ratio

$$
\begin{aligned}
& \operatorname{CCR}\left(p_{a} \rightarrow \tau\right)=\frac{\operatorname{cor} r\left(p_{a} \rightarrow \tau\right)}{\operatorname{corr}\left(p_{a} \rightarrow \neg \tau\right)}=\frac{a \cdot(c+d)}{c \cdot(a+b)} \\
& \operatorname{corr}\left(p_{a} \rightarrow \tau\right)=\frac{\sup \left(p_{a} \cup \tau\right)}{\sup \left(p_{a}\right) \cdot \sup (\tau)}=\frac{a \cdot n}{(a+c) \cdot(a+b)}
\end{aligned}
$$

Table 2. Feature-Class Contingency Table

	p_{a}	$\neg p_{a}$	\sum
τ	a	b	$a+b$
$\neg \tau$	c	d	$c+d$
\sum	$a+c$	$b+d$	$n=a+b+c+d$

Table 4. Selected Positive and Negative Sequential Rules

Type	Rule	Support	Confidence	Lift
I	REA ADV ADV \rightarrow DEB	0.103	0.53	2.02
	DOC DOC REA REA ANO \rightarrow DEB	0.101	0.33	1.28
	RPR ANO \rightarrow DEB	0.111	0.33	1.25
	RPR STM STM RPR \rightarrow DEB	0.137	0.32	1.22
	$\mathrm{MCV} \rightarrow$ DEB	0.104	0.31	1.19
	ANO \rightarrow DEB	0.139	0.31	1.19
	STM PYI \rightarrow DEB	0.106	0.30	1.16
II	STM PYR RPR REA RPT $\rightarrow \neg$ DEB	0.166	0.86	1.16
	MND $\rightarrow \neg$ DEB	0.116	0.85	1.15
	STM PYR RPR DOC RPT $\rightarrow \neg$ DEB	0.120	0.84	1.14
	STM PYR RPR REA PLN \rightarrow ПDEB	0.132	0.84	1.14
	REA PYR RPR RPT $\rightarrow \neg$ DEB	0.176	0.84	1.14
	REA DOC REA CPI $\rightarrow \neg$ DEB	0.083	0.83	1.12
	REA CRT DLY $\rightarrow \neg$ DEB	0.091	0.83	1.12
	REA CPI $\rightarrow \neg$ DEB	0.109	0.83	1.12
III	\neg \{PYR RPR REA STM $\rightarrow \rightarrow$ DEB	0.169	0.33	1.26
	$\neg\{$ PYR CCO $\} \rightarrow$ DEB	0.165	0.32	1.24
	$\neg\{$ STM RPR REA RPT $\} \rightarrow$ DEB	0.184	0.29	1.13
	$\neg\{$ RPT RPR REA RPT $\} \rightarrow$ DEB	0.213	0.29	1.12
	$\checkmark\{\mathrm{CCO} \mathrm{RPT}\} \rightarrow$ DEB	0.171	0.29	1.11
	$\neg\{\mathrm{CCO}$ PLN $\} \rightarrow$ DEB	0.187	0.28	1.09
	\neg \{PLN RPT $\} \rightarrow$ DEB	0.212	0.28	1.08
rv	$\neg\{$ ADV REA ADV $\rightarrow \rightarrow$ DEB	0.648	0.80	1.08
	\neg SSTM EAN $\} \rightarrow \neg$ DEB	0.651	0.79	1.07
	\neg \{REA EAN $\} \rightarrow \neg$ DEB	0.650	0.79	1.07
	\neg (DOC FRV $\} \rightarrow \neg$ DEB	0.677	0.78	1.06
	\neg \{DOC DOC STM EAN $\} \rightarrow \neg$ DEB	0.673	0.78	1.06
	$\neg\{\mathrm{CCO}$ EAN $\} \rightarrow \neg$ DEB	0.681	0.78	1.05

Table 5. The Number of Patterns in PS10 and PS05

	PS10 (min_sup = 0.1)		PS05 (min_sup $=0.05$)	
	Number	Percent(\%)	Number	Percent(\%)
Type I	93,382	12.05	127,174	3.93
Type II	45,821	5.91	942,498	29.14
Type III	79,481	10.25	$1,317,588$	40.74
Type IV	556,491	71.79	846,611	26.18
Total	775,175	100	$3,233,871$	100

Table 6. Classification Results with Pattern Set PS05-4K

Pattern Number		40	60	80	100	150	200	300
Neg\&Pos	Recall	.438	.416	$\mathbf{. 2 8 6}$	$\mathbf{. 2 8 1}$	$\mathbf{. 4 2 2}$.492	.659
	Precision	.340	.352	.505	$\mathbf{. 5 2 0}$	$\mathbf{. 5 0 3}$.474	.433
	Accuracy	.655	.670	$\mathbf{. 7 5 7}$	$\mathbf{. 7 6 1}$	$\mathbf{. 7 5 7}$.742	.705
	Specificity	.726	.752	.909	.916	.865	.823	.720
	Recall	.130	.124	.141	.135	.151	.400	.605
	Precision	.533	.523	.546	.472	.491	.490	.483
	Accuracy	.760	.758	.749	.752	.754	.752	.745
	Specificity	.963	.963	.946	.951	.949	.865	.790

e-NSP:
 Efficient Negative Sequential Pattern Mining Based on Identified Positive Patterns Without Database Rescanning

PSP: Positive Sequential Pattern

- Only contain occurring itemsets
E.g. p1=<a b c X>.

Existing Methos:
AprioriAll, GSP, FreeSpan, PrefixSpan, SPADE , SPAM

NSP: Negative Sequential Pattern

- Also contain non-occurring itemsets
E.g. $p 1=<a \mathrm{~b} \neg \mathrm{c} \boldsymbol{X}>$.

Limited research:
Neg_GSP, PNSP

Difficulties in Mining NSP

■ High Computational Complexity.
Additionally scanning database after identifying PSP.

- Large NSC Search Space.
k-size NSC by conducting a joining operation on (k-1)size NSP. (NSC : Negative Sequential Candidates)

■ No Unified Definition about Negative Containment. How a data sequence contains a negative sequence?

Some Definitions

- Negative Item/ Element :

Non-occurring item / element

- Negative Sequence

A sequence includes at least one negative item

- Positive-partner of a Negative Element /Sequence

$$
\begin{aligned}
& \mathrm{p}(\neg \mathrm{e})=\mathrm{e} . \\
& \mathrm{p}(<\mathrm{a} \neg(\mathrm{ab}) \mathrm{c}>)=<\mathrm{a}(\mathrm{ab}) \mathrm{c}>.
\end{aligned}
$$

- Max Positive Sub-sequence

$$
\operatorname{MPS}(\langle a \neg(a b) c\rangle)=\langle a c\rangle
$$

Constraints to Negative Sequence

Constraint 1. Frequency Constraint

This paper only focuses on the negative sequences ns whose positive partner is frequent, i.e., $\sup (\mathrm{p}(\mathrm{ns}))>=\mathrm{min}_{\text {_ }}$ sup.

Constraint 2. Format Constraint

Continuous negative elements in a NSC are not allowed.

$$
\begin{aligned}
& <\neg(a b) c \neg d> \\
& <\neg(a b) \neg c d>x
\end{aligned}
$$

Constraint 3. Element Negative Constraint

The minimum negative unit in a NSC is an element.

$$
\begin{aligned}
& <\neg(a b) c d> \\
& <(\neg a b) c d>X
\end{aligned}
$$

What does This Paper Do

E-NSP: Only use corresponding PSP information to calculate the support of negative sequence, without additionally database scanning.

- A definition about negative containment.
- Three constraints for negative sequence
- A smart method to generate negative sequence candidate (NSC).
- A conversion strategy to convert negative containment problems to positive containment problems.
- A method to calculate the support of NSC.

The framework of E-NSP

1. Mine all PSP by traditional PSP mining algorithms;
2. Generate NSC based on these PSP;
3. Convert these NSC to corresponding PSP;
4. Get supports of NSC by calculating support of corresponding PSP.

Negative Containment Definition

Definition 4. Negative Containment Definition

Let $d s=<d_{1} d_{2} \ldots d_{t}>$ be a data sequence, $n s=<s_{1} s_{2}$
$. s_{m}>$ be an m-size and n-neg-size negative sequence, (1)
Let $d s=<d_{1} \quad d_{2} \ldots d_{t}>$ be a data sequence, $n s=<s_{1} s_{2}$
$\ldots s_{m}>$ be an m-size and n-neg-size negative sequence, (1) if $m>2 t+1$, then ds does not contain $n s$; (2) if $m=1$ and $n=1$, then $d s$ contains $n s$ when $p(n s) \nsubseteq d s$; (3) otherwise, $d s$ contains ns if, $\forall\left(s_{i}, i d\left(s_{i}\right)\right) \in E i d S_{n s}^{-}(1 \leqslant i \leqslant m)$, one of the following three holds:
(a) $(l s b=1)$ or $(l s b>1) \wedge p\left(s_{1}\right) \nsubseteq<d_{1} \ldots d_{l s b-1}>$, when $i=1$,
(b) $(f s e=t)$ or $(0<f s e<t) \wedge p\left(s_{m}\right) \nsubseteq<d_{f s e+1} \ldots d_{t}>$, when $i=m$,
(c) $\left(f_{s e}>0 \wedge l s b=f s e+1\right)$ or $(f s e>0 \wedge l s b>f s e+1) \wedge p\left(s_{i}\right) \nsubseteq$
$<d_{f s e+1} \ldots d_{l s b-1}>$, when $1<i<m$,
where $f s e=F S E\left(M P S\left(<s_{1} s_{2} \ldots s_{i-1}>\right), d s\right), l s b=L S B($ $\left.\operatorname{MPS}\left(<s_{i+1} \ldots s_{m}>\right), d s\right)$.

Negative Containment Definition

$d s$ contains ns if $<\mathrm{s}_{1}, \ldots, \mathrm{~s}_{i}>$ contain $\operatorname{MPS}\left(n s_{\text {left }}\right)$, $<\mathrm{s}_{j}, \ldots \mathrm{~s}_{\mathrm{t}}>$ contain MPS $\left(n s_{\text {right }}\right)$, and $<\mathrm{s}_{i+1}, \ldots \mathrm{~s}_{j-1}$, >doesn't contain <e>. (To EACH negative element -e in $n s$)

Example: Negative Containment Definition

$n s=<a \neg b b(c d e)>. \quad d s=<a(b c) d(c d e)>$.

Definitions

1-neg-size Maximum Sub-sequence is a sequence that includes MPS(ns) and one negative element e in original sequence order.

1-neg-size maximum sub-sequence set is a set that includes all 1-neg-size maximum sub-sequences of $n s$, denoted as 1-negMSS ${ }_{n s}$.

Example $n s=<a \neg b c \neg d>$,
1-negMSSns $=\{\langle a \neg b c\rangle,\langle a c \neg d\rangle\}$

Negative Conversion Strategy

Given a data sequence $d s=<d_{1} d_{2} \ldots d_{t}>$, and $n s=<s_{1}$ $s_{2} \ldots s_{m}>$, which is an m-size and n-neg-size negative sequence, the negative containment definition can be converted as follows: data sequence $d s$ contains negative sequence $n s$ if and only if the two conditions hold: (1) MPS $n s) \subseteq d s$; and (2) $\forall 1$-neg $M S \in 1$-neg $M S S_{n s}, p(1-n e g M S) \nsubseteq d s$.

Example $n s=\langle a \neg b b \neg a(c d e)>, d s=<a(b c) d(c d e)>$.
1-negMSSns=\{ <a \quad bb(cde)> , <ab $a(c d e)>$ \}
(1) MPS(ns) $=<a b(c d e)>\subseteq$ ds;

ds contains ns

(2)p(<a $b b(c d e)>)=<a b b(c d e)>\not \subset d s ;$

$$
\mathrm{p}(<a b \neg a(c d e)>)=<a b a(c d e)>\not \subset \mathrm{ds} ;
$$

Negative Conversion Strategy

\(\left.$$
\begin{array}{|c|c|}\hline \text { problem } \\
\text { whether a data } \\
\text { sequence contains } \\
\text { a negative } \\
\text { sequence }\end{array}
$$ \quad \begin{array}{c}problem

whether the data

sequence does not

contain its\end{array}\right\}\)| corresponding |
| :---: |
| positive sequences |

Now we can calculate the support of NSC only using the NSC's corresponding PSP.

Calculate the Support of NS

$$
\begin{equation*}
\sup (n s)=|\{n s\}|=\left|\{M P S(n s)\}-\breve{u}_{i=1}^{n}\left\{p\left(1-n e g M S_{i}\right)\right\}\right| \tag{1}
\end{equation*}
$$

Because $\bigcup_{i=1}^{n}\left\{p\left(1-n e g M S_{i}\right)\right\} \subseteq\{\operatorname{MPS}(n s)\}$, equation 1 can be rewritten as:

$$
\begin{align*}
& \sup (n s)=|\{M P S(n s)\}|-\left|\left.\right|_{i=1} ^{n}\left\{p\left(1-n e g M S_{i}\right)\right\}\right| \\
& =\sup (\operatorname{MPS}(n s))-\left|\bigcup_{i=1}^{n}\left\{p\left(1-\operatorname{negMS}_{i}\right)\right\}\right| \tag{2}
\end{align*}
$$

Example $10 \sup (\langle a \neg b c \neg d e\rangle)=\sup (\langle a c e\rangle\})-|\{\langle a b c e\rangle\} \cup\{\langle a c d e\rangle\}| ;$

$$
\sup (<\neg a a \neg a>)=\sup (\langle a\rangle)-|\{\langle a a\rangle\} \cup\{\langle a a\rangle\}|=\sup (\langle a\rangle)-\sup (<a a\rangle) .
$$

If $n s$ only contains a negative element, the support of $n \boldsymbol{n}$ is:

$$
\begin{equation*}
\sup (n s)=\sup (\operatorname{MPS}(n s))-\sup (p(n s)) \tag{3}
\end{equation*}
$$

Example $11 \sup (\langle a \neg b c e\rangle)=\sup (\langle a c e\rangle)-\sup (\langle a b c e\rangle)$
Specially, for negative sequence $\langle\neg \boldsymbol{\iota}>$,

$$
\begin{equation*}
\sup (\langle\neg e\rangle)=|D|-\sup (\langle e\rangle) . \tag{4}
\end{equation*}
$$

Calculate the Support of NS

$$
\begin{gather*}
\sup (n s)=|\{M P S(n s)\}|-\left|\cup_{i=1}^{n}\left\{p\left(1-n e g M S_{i}\right)\right\}\right| \\
=\sup (M P S(n s))-\left|\cup_{i=1}^{n}\left\{p\left(1-n e g M S_{i}\right)\right\}\right| \tag{2}
\end{gather*}
$$

Known			
PSP	Support	\{sid \}	Calculate the union set of
<a>	4	-	
	3	-	$\{p(1-n e g M S i)\}$
$<c>$	2	-	
$<a \quad a>$	3	\{20,30,40\}	(p(1-negMSi)
$<a b>$	3	$\{10,20,30\}$	are frequent.)
$<a^{\text {a }}$ c $>$	2	\{10,30\}	

Negative Sequential Candidates Generation

Definition . e-NSP Candidate Generation
For a k-size PSP, its NSC are generated by changing any m non-contiguous element(s) to its (their) negative one(s), $m=1,2, \ldots,\lceil k / 2\rceil$, where $\lceil k / 2\rceil$ is a minimum integer that is not less than $k / 2$.

Example. $s=<(a b) c d>$ include:

$$
\begin{aligned}
& m=1,\langle\neg(a b) c d>,<(a b) \neg c d>,<(a b) c \neg d>; \\
& m=2,<\neg(a b) c \neg d>.
\end{aligned}
$$

An Example

Table 1: Example Data Set

Sid	Data Sequence
10	$\langle a b c\rangle$
20	$\langle a(a b)\rangle$
30	$\langle(a e)(a b) c\rangle$
40	$\langle a a\rangle$
50	$\langle d\rangle$

Table 2: Example Result - Positive Patterns

PSP	Support	\{sid\}
$\langle a\rangle$	4	-
$\langle b\rangle$	3	-
$\langle c\rangle$	2	-
$\langle a a\rangle$	3	$\{20,30,40\}$
$\langle a b\rangle$	3	$\{10,20,30\}$
$\langle a c\rangle$	2	$\{10,30\}$
$\langle b c\rangle$	2	$\{10,30\}$
$\langle(a b)\rangle$	2	-
$\langle a b c\rangle$	2	$\{10,30\}$
$\langle a(a b)\rangle$	2	$\{20,30\}$

An Example

Table 3: Example Result - NSC and Support (min_sup=2)

PSP	NSC	Related PSP	Sup
<a>	$<\neg a>$	<a>	1
$$	《नb>	$$	2
$<c>$	$\langle\neg \boldsymbol{c}\rangle$	$<c>$	3
$<a \quad a>$	$\begin{aligned} & <\neg a a> \\ & <a \neg a> \end{aligned}$	$\begin{aligned} & <a>,<a a> \\ & <a>,<a a> \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
$<a b>$	$\begin{aligned} & <\neg a b> \\ & <a \neg b> \end{aligned}$	$\begin{aligned} & ,<a b> \\ & <a>,<a b> \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$<a c>$	$\begin{array}{r} \langle\neg a c\rangle \\ \langle a \neg c\rangle \end{array}$	$\begin{aligned} & <c>,<a c> \\ & <a>,<a c> \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$
$<b c>$	$\begin{aligned} & <\neg b c> \\ & <b \neg c> \end{aligned}$	$\begin{aligned} & <c>,<b c> \\ & ,<b c> \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$<(a b)>$	$\langle\neg(a b)\rangle$	$<(a b)>$	3
$<a(a b)>$	$\begin{aligned} & <\neg a(a b)\rangle \\ & \langle a \neg(a b)\rangle \end{aligned}$	$\begin{aligned} & <(a b)>,<a(a b)> \\ & <a>,<a(a b)> \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$
$<a b c>$	$\begin{aligned} & <\neg a b c> \\ & <a \neg b c> \\ & <a b \neg c> \\ & <\neg a b \neg c> \end{aligned}$	$\begin{aligned} & <b c>,<\begin{array}{lll} b & c> & c> \\ <a & c> & <a b c> \\ <a & b> & <a b c> \\ ,<a b>,<b c> \end{array} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$

Experiment and Evaluation

Data Sets

Four source datasets including both real data and synthetic datasets generated by IBM data generator. Partition these datasets to 14 datasets according to different data factors.

ID	Dataset Characteristics	$\begin{aligned} & \min \\ & \text { sup } \end{aligned}$	$\begin{aligned} & \text { NGSP } \\ & \left(t_{1}, s\right) \end{aligned}$	$\begin{aligned} & \text { PNSP } \\ & \left(t_{2}, s\right) \end{aligned}$	$\begin{aligned} & \text { ©NSP } \\ & \left(t_{3}, s\right) \end{aligned}$	t_{3} / t_{2}
DS1	C8T4S6I6.DB10k.N100	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 1451.7 \\ & 241.4 \\ & 78.9 \end{aligned}$	$\begin{aligned} & 638.2 \\ & 163.1 \\ & 61.9 \end{aligned}$	$\begin{aligned} & 14.94 \\ & 4.16 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 2.3 \% \\ & 2.5 \% \\ & 2.5 \% \end{aligned}$
DS1.1	C4T4S6I6.DB10k.N100	$\begin{aligned} & 0.01 \\ & 0.015 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 517.5 \\ & 130.4 \\ & 48.0 \end{aligned}$	$\begin{aligned} & 208.4 \\ & 64.5 \\ & 28.4 \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.33 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.5 \% \\ & 0.5 \% \\ & 0.5 \% \end{aligned}$
DS1.2	C12T4S6I6.DB10k.N100	$\begin{aligned} & 0.14 \\ & 0.16 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 229.0 \\ & 127.6 \\ & 73.8 \end{aligned}$	$\begin{aligned} & 191.9 \\ & 109.5 \\ & 66.9 \end{aligned}$	$\begin{aligned} & 7.99 \\ & 4.49 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 4.2 \% \\ & 4.1 \% \\ & 3.8 \% \end{aligned}$
DS1.3	C8T8S6I6.DB10k.N100	$\begin{aligned} & 0.22 \\ & 0.24 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 130.8 \\ & 83.7 \\ & 55.9 \end{aligned}$	$\begin{aligned} & 118.5 \\ & 76.5 \\ & 52.8 \end{aligned}$	$\begin{aligned} & 5.22 \\ & 3.19 \\ & 2.14 \end{aligned}$	$\begin{aligned} & 4.4 \% \\ & 4.2 \% \\ & 4.1 \% \end{aligned}$
DS 1.4	C8T12S6I6.DB10k.N100	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1205.2 \\ & 133.2 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 969.3 \\ & 123.5 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 57.55 \\ & 6.75 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 5.9 \% \\ & 5.5 \% \\ & 4.6 \% \end{aligned}$
DS 1.5	C8T4S12I6.DB10k.N100	$\begin{aligned} & \hline 0.04 \\ & 0.06 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 1130.0 \\ & 187.0 \\ & 61.2 \end{aligned}$	$\begin{aligned} & 478.6 \\ & 124.7 \\ & 47.5 \end{aligned}$	$\begin{aligned} & 12.22 \\ & 3.39 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 2.6 \% \\ & 2.7 \% \\ & 2.6 \% \end{aligned}$
DS1.6	C8T4S18I6.DB10k.N100	$\begin{aligned} & \hline 0.04 \\ & 0.06 \\ & 0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 297.1 \\ & 64.2 \\ & 23.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 157.4 \\ & 45.5 \\ & 19.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.47 \\ & 0.97 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \% \\ & 2.1 \% \\ & 1.9 \% \\ & \hline \end{aligned}$
DS1.7	C8T4S6I10.DB10k.N100	$\begin{aligned} & \hline 0.06 \\ & 0.07 \\ & 0.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 690.2 \\ & 334.7 \\ & 188.1 \end{aligned}$	$\begin{aligned} & 395.1 \\ & 227.5 \\ & 138.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.33 \\ & 4.23 \\ & 2.63 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \% \\ & 1.9 \% \\ & 1.9 \% \end{aligned}$
DS1.8	C8T4S6I14.DB10k.N100	$\begin{aligned} & 0.08 \\ & 0.1 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 983.9 \\ & 320.5 \\ & 141.8 \end{aligned}$	$\begin{aligned} & 630.8 \\ & 248.9 \\ & 112.7 \end{aligned}$	$\begin{aligned} & 8.88 \\ & 3.63 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 1.4 \% \\ & 1.5 \% \\ & 1.4 \% \end{aligned}$
DS1.9	C8T4S6I6.DB10k.N200	$\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 378.2 \\ & 101.8 \\ & 39.5 \end{aligned}$	$\begin{aligned} & 98.4 \\ & 43.1 \\ & 23.3 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.17 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.6 \% \\ & 0.4 \% \\ & 0.3 \% \end{aligned}$
DS1.10	C8T4S6I6.DB10k.N400	$\begin{aligned} & 0.015 \\ & 0.02 \\ & 0.025 \end{aligned}$	$\begin{aligned} & 823.0 \\ & 197.3 \\ & 99.8 \end{aligned}$	$\begin{aligned} & 97.4 \\ & 42.0 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \\ & 0.1 \% \end{aligned}$

Experiment and Evaluation

Conclusions

We have proposed a simple but very efficient NSP mining algorithm: e-NSP. E-NSP includes:

- A formal definition, negative containment, to define how a data sequence contains a negative sequence.
- A negative conversion strategy to convert negative containing problems to positive containing problems.
- A method to calculate the supports of NSC only using the corresponding PSP.
- A simple but efficient approach to generate NSC.
- The experimental results and comparisons on 14 datasets from different data characteristics perspectives have clearly shown that e-NSP is much more efficient than existing approaches.

Group discussion: negative behalrigur

$\mathcal{N e g a t i v e}$ behaviour
Organization:
Business pro6lem:

Business areas	Negative behaviour	Behaviour impact

Part IV.
 Group Behavior Analysis

- What are group behaviors?
- How to formalize group behaviors?
- How to analyze group behavior?

9. Coupled/Group Behavior Analysis

References

- Can Wang, Zhong She, Longbing Cao. Coupled Clustering Ensemble: Incorporating Coupling Relationships Both between Base Clusterings and Objects, ICDE2013.
- Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).
- Longbing Cao, Yuming Ou, Philip S YU, Gang Wei. Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors, KDD2010, 85-94.
- Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based Market Manipulation, KDD 2012, 976-984.
- Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative Manipulations in Stock Markets, IJCNN 2012, 1-8.
- Can Wang, Mingchun Wang, Zhong She, Longbing Cao. CD: A Coupled Discretization Algorithm, PAKDD2012, 407-418

Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors

Longbing Cao Faculy of Engineering and IT University of Tectrology sydray
lbcao@it.uts.edu.au

> Yuming Ou Facuty of Enginering and IT Uniersiy of Techrodogy Sydny. yuming@ituts.edu.au Gang Wei Depertment ot Surveilanos Shanghai Stock Exchanga

ABSTRACT

In capital macket aurwillanon, an energing iread in that a group of hiddea maipalaicra collaborate with anh other to namipulate three trwding wquenoss: buy-areders, well-arden aod tendea, through carefully mernaging their pricen, vahne aod times, in cerder to minlead otbre imvetors, sffect the is atrumank mowemerk, and thus macimine pernonal benofits. If the focus in on coly une of the abore three sequences in atimpting to anshyne such bidden gronp bamed beharioc, ar if thay ane merged inko ane mquesce is per an imnotax, the coup ligg relationsbipe anong ien indianed through trad is and the maltior fin
 It of nimmathing the gemaine fact in busines. Therefoes, typical sequence annhyia appecaches, which mingy ideotify patierns an a siggla sequeson, canoct be wed bers. This paper addessas a novel topic, nannely coupied behatier ana fynur in bidden groupa In particuler, we propase a corpled Hidden Mnekor Modela (HMMM)-baned approach to delaci abacrmal group-bausd trading beharions. The nualting modeb cater far (1) nultiple anquasces from a group of pecPh, (2) interactizas anong them, (3) mquence item properties, and (4) nignifiand hange amcog crapled mquears. We demcorifaie our apperand in detactiog abnoemal nas a iqulative tending beharion on oedarbock-leral stodk data The reaulta ars ervaluaked against alerta genarated by the axchaoge' aurvillance syatem from both techniral and compritaizinal pernpectires. It ahown that the proposed wophed aod adaptive HMONa cetperform a atand ned HMMM only nodeling any single sequance, or the HMM ocmbining maltiple single suquancen, wìhoui cunvidering the wapling rels timalip. Furiler wark on corpled beharior anslyyis, induding coupled nequenco/weat analyuir, hidden group nashyni and behariar dynamian are very critical.

 peraiuisn andor a fee.
xDD 'io, Jaly $2 \mathrm{Z}-28,2010$, Wintingina, DC, USA
Conrigtt 2010 ACM 973-1-4015-005s-V/1007,.520.00

Categories and Subject Descriptors

H2.8 Information 8yatems': Databam applicationsData Mining

General Terms
Algurìhma, Elocnamias, Securily

Keywords
Couplad behariar manlyis, osupled mequase analyuis, so quence inem property, anquence changa, bidden group disconery, coupled bidden Markor moskl, abnarnal bebowiar detection, makel manipulatian

1. INTRODUCTION

Abncrmal bebsurise detaction playn an inporiand rale in capital markei surveilhnes $|5|$ and riak nanmgemesi. The cogoing global finaocial criais and recravico wres mgulation bodies to undertake a deep invutigntion of trading beber irra is capital narketa. Aa emerging abacrmal tending aituatico in that a gronp of experiencred markat manipulatocn collnbcrate with ench otber to manipulite an inktrumerk by finetuning ìn prises/rclumes and trading time, in crider to niaguide other irresiors. Onos the inakrumati's market perice reaches a comfertyble livel, thes nasipulatoes immer bally behering. In fact in) behwira. In mel, ba be in cluding intruaion dion
To lo 10 , 1
stresmes, is which thosetypiel tradiag bemosimi of mukiple - buy oeders well oedera nad trades fum the maipulaton - are coupled whb ent ther in terma fivin frioen ond - ser coupled whis each cher in terma of ining, prices nad walnese etc, acrereding to a macher y trading model aod iswutor indeatian [b]. Oten anly an inciridusl sequence in such nultiple cruphed wequacos (e.s. trades) a focused on Ex patiera nalyys, while ine quoter-winsed nciuna and the acticn price and wahne informatiza asoccated wit trades are maniag, Ar a resoll, we canco diaci bow grup-baed nanupulative tradig belawion. Aharasinuly, if buyz and

sequence

 analysisLongbing Cao, Yuming Ou, Philip S YU, Gang Wei. Detecting Abnormal Coupled Sequences and Sequence Changes in Groupbased Manblitiontrading

Coupled Behavior Analysis with Applications

Langging Cao, Sonior Momber, IEEE, Yuring Ou, and Prilip S. Yu, Fellow, IEEE

Abstract

 Nenomal behuido ditwinn

 exua an dopp behaviar ntation nach an porixalic belumon wounth her mamly fixued on individual betavions In month hou many hexand on nuividui bohavion in
 aw often कuphed wha achothe Caphed hotavarn phy
 [20]. [00 [19]
1.1 Couplad Behavior Aopllicat lona

While very limed wwamh motome an he idemtied in ter livanak, oxpled bebarior io widely moerchend. As well we the euryile in Section 31, the fillowing arw ypiocal asplal hharir apinctive:
 inde inedacta meris of actrites in order as achww their gal. The activise aw mocoxibed weth wh phur and aim fir the nalle obpoctive.

- Groupbowed inturuen clamx A benily er group d
 wow athe. Acwthe evarple is wherva hoult can

 Nuax Xur, Sady, duibsta

 Tin, aldur May 2π

powiber may col h h ina tr with multrine cabovas to ourclam hulth hands byappoving hyumtvies: by bercakmers for a varify of wevion. Sach gowp

 mon crasocised by Wivunt group, ww fnd utv
- Croomeket exitipletion livelve in on under.

Ctionearkat mitipaikion. mivatr in an under-

- Car treopot nptem. At a bay introction, many
 Sch ofher bo move in their repoctive direction
- Social network imeractiox A grow of ow inveat wht woch coter in a waxial ant wot
- lernaio ditiection A hrrye rumber of hacke
 mallopl intmoion helmigow
Wht the depponing and widering of natwoding them woplad lablawow in incweingt n a wide ringer of arcumbinax, in pificular, caxplax subvorla, anens

12 Challenges in Analyaling Coupled Bohaviors
 hen aopled in intrinic and cuitertal rulaturah po. The
 60 a fall arxientinding of the amblerlitig pobkm and in
 auplied belawion
- Rahariary nfer not anly to artions mach ax a hag
 the tming, price, and voiame moxiahed with a bor: The ungeyrant of beturvona properver in beha viar analyde may make to findizy morh more workable for proidum-sokining

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).

Issues Addressed

- Behavior properties described by attribute vector
- How to construct behavior sequences?
- How to handle multiple sequences coupled with each other?
- How to model vector-based behavior sequences?
- How to map vector-based behavior sequences to Coupled Hidden Markov Model?
- How to detect pool manipulation by identifying abnormal coupled sequences?

What is Coupled Behavior?

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 3067-3085, 2010.
www.behaviorinformatics.org

Problem-
$S^{\text {molving }}$ m
CED ANALYTICS INSTITUTE

Self-organizing behaviors

Quelea vs Elephant

Coupled impact-oriented behaviors

- Social security

UTS:AAii

Relationship crossing behaviors

Figure 6: Relationships between Multiple Behaviors

Figure 7: Relationships between behaviors

Relationship crossing objects/behaviors

Homogeneous relation

Heterogeneous relation

Mixed relation/coupling relation

Coupling relationships

- From temporal aspect
- Serial Coupling: $T S_{1} ; T S_{2} ; \cdots ; T S_{n}$
- Interleaving Coupling: $T S_{1}: T S_{2}: \cdots: T S_{n}$
- Shared-variable Coupling: $T S_{1} \|\left|T S_{2}\right||\cdots|| | T S_{n}$
- Channel System Coupling: $T S_{1}\left|T S_{2}\right| \cdots \mid T S_{n}$
- Synchronous Coupling: $T S_{1}\left\|T S_{2}\right\| \cdots \| T S_{n}$
- From inferential aspect
- Causal Coupling: $T S_{1} \rightarrow T S_{2}$
- Precedential Coupling: $T S_{1} \Rightarrow T S_{2}$
- Intentional Coupling: $T S_{1} \rightarrow T S_{2}$
- Inclusive Coupling: $T S_{1} \mapsto T S_{2}$
- Exclusive Coupling: $T S_{1} \oplus T S_{2}$
- From combinational aspect
- Hierarchical Coupling: $f\left(g\left(T S_{1}, T S_{2}, \cdots, T S_{n}\right)\right)$
- Hybrid Coupling: $f\left(T S_{1}\right) \cdot g\left(T S_{2}\right), f\left(T S_{1}\right)^{*},\left(T S_{1}\right)^{\omega}$
- One-Party-Multiple-Behavior Coupling: $f\left(T S_{1}, T S_{2}, \cdots\right.$, $\left.T S_{n}\right)^{\left[A_{1}\right]}$
- Multiple-Party-One-Behavior Coupling: $f\left(T S_{1}\right)^{\left[A_{1} A_{2} \cdots, A_{n}\right]}$
- Multiple-Party-Multiple-Behavior Coupling: $f\left(T S_{1}, T S_{2}\right.$ $\left., \cdots, T S_{n}\right)^{\left[A_{1} A_{2} \cdots A_{n}\right]}$

Basic Behavior Patterns

- Tracing: Different actions with sequential order.

$$
\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}
$$

- Consequence: Different actions have causalities in occurrence.

$$
\left\{a_{i} \rightarrow a_{j}\right\}
$$

- Synchronization: Different actions occur at the same time.
$\left\{a_{1} \leftrightarrow, \cdots, \leftrightarrow a_{n}\right\}$
- Combination: Different actions occur in concurrency.

$$
\left\{a_{1}\left\|a_{2}\right\|, \cdots, \| a_{n}\right\}
$$

- Exclusion: Different actions occur mutually exclusively.

$$
\left\{a_{1} \oplus a_{2} \oplus, \cdots, \oplus a_{n}\right\}
$$

- Precedence: Different actions have required precedence

$$
\left\{a_{i} \Rightarrow a_{j}\right\}
$$

And more to be explored...

- Sequential Combination $\longrightarrow A \times B \times C \times \cdots$
- Parallel Combination $\longrightarrow A \otimes B \otimes C \otimes \ldots$
- Nested Combination
- Fuzzy or probabilistic Combination

What is the Coupled Behavior Analysis (CBA) problem?

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Application, IEEE Trans. Knowledge and Data Engineering.

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 3067-3085, 2010.
www.behaviorinformatics.org

Individual Objects' behaviors

- Customer a_{i}^{\prime} s N behaviors $B_{i}:\left\{b_{i 1}, b_{i 2}, \ldots, b_{i n}\right\}$

Remark:
-Individual objects
-Objects are independent
-Individual behaviors
-Behaviors of the same
object are somehow
dependent

Individual vs Group

Sclienclific cassifiration

If they behave in the same/different way independently

5:AAi Danalytics institute

Group Objects' behaviors

- M customers' behaviors

$$
\begin{aligned}
& B_{1}:\left\{b_{11}, b_{12}, \ldots, b_{1 n}\right\} \\
& B_{2}:\left\{b_{21}, b_{22}, \ldots, b_{2 n}\right\}
\end{aligned}
$$

$B_{m}:\left\{b_{m 1}, b_{m 2}, \ldots, b_{m n}\right\}$

Interactions
between
brains
Individual dependence

Behavior Feature Matrix

I actors (customers): $\left\{\mathscr{E}_{1}, \mathscr{E}_{2}, \ldots, \mathscr{E}_{I}\right\}$
J_{i} behaviors for an actor $\mathscr{E}_{i}:\left\{\mathbb{B}_{i 1}, \mathbb{B}_{i 2}, \ldots, \mathbb{B}_{i J_{i}}\right\}$
Behavior $\mathbb{B}_{i j}: \overrightarrow{\mathbb{B}}_{i j}=\left(\left[p_{i j}\right]_{1},\left[p_{i j}\right]_{2}, \cdots,\left[p_{i j}\right]_{K}\right)$
Behavior Feature Matrix :

$$
F M(\mathbb{B})=\left(\begin{array}{cccc}
\mathbb{B}_{11} & \mathbb{B}_{12} & \ldots & \mathbb{B}_{1 J_{\max }} \\
\mathbb{B}_{21} & \mathbb{B}_{22} & \ldots & \mathbb{B}_{2 J_{\max }} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{B}_{I 1} & \mathbb{B}_{I 2} & \ldots & \mathbb{B}_{I J_{\max }}
\end{array}\right)
$$

An Example of Stock Market

Transactional Data

Behavior Feature Matrix

	Investor	Time	Direction	Price
Volume				
B1	(1)	$09: 59: 52$	Sell	12.0
B2	(2)	$10: 00: 35$	Buy	11.8
B3	2000			
B3	(3)	$10: 00: 56$	Buy	11.8
B4	(2)	$10: 01: 23$	Sell	11.9
B5	(1)	$10: 01: 38$	Buy	11.8
B6	(4)	$10: 01: 47$	Buy	11.9
B7	(5)	$10: 02: 02$	Buy	11.9
B8	(2)	$10: 02: 04$	Sell	11.9

$$
\square F M(\mathbb{B})=\left(\begin{array}{ccc}
B_{1} & B_{5} & \varnothing \\
B_{2} & B_{4} & B_{8} \\
B_{3} & \varnothing & \varnothing \\
B_{6} & \varnothing & \varnothing \\
B_{7} & \varnothing & \varnothing
\end{array}\right)
$$

Behavior Intra-relationship

Definition 2. (Intra-Coupled Behaviors) Actor \mathscr{E}_{i} 's behaviors $\mathbb{B}_{i j}(1 \leq j \leq$ $\left.J_{\text {max }}\right)$ are intra-coupled in terms of coupling function $\theta_{j}(\cdot)$,

$$
\begin{array}{r}
\mathbb{B}_{i .}^{\theta}::=\mathbb{B}_{i .}(\mathscr{E}, \mathscr{O}, \mathscr{C}, \theta) \mid \sum_{j=1}^{J_{\max }} \theta_{j}(\cdot) \odot \mathbb{B}_{i j} \\
\left|\theta_{j}(\cdot)\right| \geq \theta_{0} \tag{2}
\end{array}
$$

where θ_{0} is the intra-coupling threshold, $\sum_{j=1}^{J_{\max }} \odot$ means the subsequent behavior of \mathbb{B}_{i} is $\mathbb{B}_{i j}$ intra-coupled with $\theta_{j}(\cdot)$, and so on, with nondeterminism.

$$
F M(\mathbb{B})=\left(\begin{array}{cccc}
\mathbb{B}_{11} & \mathbb{B}_{12} & \ldots & \left.\mathbb{B}_{1 J_{\max }}\right) \\
\mathbb{B}_{21} & \mathbb{B}_{22} & \ldots & \mathbb{B}_{2 J_{\max }} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{B}_{I 1} & \mathbb{B}_{I 2} & \ldots & \mathbb{B}_{I J_{\max }}
\end{array}\right)
$$

Behavior Inter-relationship

Definition 3. (Inter-Coupled Behaviors) Actor \mathscr{E}_{i} 's behaviors $\mathbb{B}_{i j}(1 \leq i \leq I)$ are inter-coupled with each other in terms of coupling function $\eta_{i}(\cdot)$,

$$
\begin{array}{r}
\mathbb{B}_{\cdot j}^{\eta}::=\mathbb{B}_{. j}(\mathscr{E}, \mathscr{O}, \mathscr{C}, \eta) \mid \sum_{i=1}^{I} \eta_{i}(\cdot) \odot \mathbb{B}_{i j} \\
\left|\eta_{i}(\cdot)\right| \geq \eta_{0} \tag{4}
\end{array}
$$

where η_{0} is the inter-coupling threshold, $\sum_{i}^{I} \odot$ means the subsequent behavior of \mathbb{B}_{i} is $\mathbb{B}_{i j}$ inter-coupled with $\eta_{i}(\cdot)$, and so on, with nondeterminism.

$$
F M(\mathbb{B})=\left(\begin{array}{c|ccc}
\mathbb{B}_{11} & \mathbb{B}_{12} & \ldots & \mathbb{B}_{1 J_{\max }} \\
\mathbb{B}_{21} & \mathbb{B}_{22} & \ldots & \mathbb{B}_{2 J_{\max }} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{B}_{I 1} & \mathbb{B}_{I 2} & \ldots & \mathbb{B}_{I J_{\max }}
\end{array}\right)
$$

Behavior Relationship

Definition 4 (Coupled Behaviors) Coupled behaviors \mathbb{B}_{c} refer to behaviors $\mathbb{B}_{i_{1} j_{1}}$ and $\mathbb{B}_{i_{2} j_{2}}$ that are coupled in terms of relationships $f(\theta(\cdot), \eta(\cdot))$, where $\left(i_{1} \neq i_{2}\right)$ $\vee\left(j_{1} \neq j_{2}\right) \wedge\left(1 \leq i_{1}, i_{2} \leq I\right) \wedge\left(1 \leq j_{1}, j_{2} \leq J_{\max }\right)$

$$
\begin{align*}
& \mathbb{B}_{c}=\left(\mathbb{B}_{i_{1} j_{1}}^{\theta}\right)^{\eta} *\left(\mathbb{B}_{i_{2} j_{2}}^{\theta}\right)^{\eta}::=\mathbb{B}_{i j}(\mathscr{E}, \mathscr{O}, \mathscr{C}, \mathscr{R}) \mid \sum_{i_{1}, i_{2}=1}^{I} \sum_{j_{1}, j_{2}=1}^{J_{\max }} \\
& f\left(\theta_{j_{1} j_{2}}(\cdot), \eta_{i_{1} i_{2}}(\cdot)\right) \odot\left(\mathbb{B}_{i_{1} j_{1}} \mathbb{B}_{i_{2} j_{2}}\right) \tag{5}
\end{align*}
$$

Coupled Behavior Analysis

Theorem 1. (Coupled Behavior Analysis (CBA)) The analysis of coupled behaviors (CBA Problem for short) is to build the objective function $g(\cdot)$ under the condition that behaviors are coupled with each other by coupling function $f(\cdot)$, and satisfy the following conditions.

$$
\begin{gather*}
f(\cdot)::=f(\theta(\cdot), \eta(\cdot)), \tag{9}\\
g(\cdot) \mid\left(f(\cdot) \geq f_{0}\right) \geq g_{0} \tag{10}
\end{gather*}
$$

Not an easy job to find $\Theta(), n(), f(), g()$

C1 Beer, Diaper, Banana, Harry Potter, iPhone
 C2 Apple, Cherry, Blackberry, Plum
 C3 Pencil case, Rubber, Lego toy, Scooter
 C4 Pear, Cherry, Peach, Plum, Melon, Apple
 C5 Beer, iPhone, Fish, Meat
 C6 Scooter, Pen, Notebooks

If
C1 - Father; C2 - Mum, C3 - Son;
C4 - Mum, C5 - Father, C6 - Son;
C1.Address $=$ C2.Address $=$ C3.Address;
C4.Address $=$ C5.Address $=$ C6.Address

Then

What will be the difference between

- Outcomes from classic Association Rule or Frequent Pattern Mining
- Outcomes by considering the above coupling relationship?
\{Beer, iPhone\}
\{Cherry\}
\{Scooter\}
\{Father: Beer, iPhone;
Mum: Cherry;
Son: Scooter\}

How to handle CBA

Combined mining

Fig. 1. Combined Mining for Actionable Patterns

Copula

Tensor theory

Combined Pattern Mining

 in
Coupled Objects

for

High Impact Behavior Analysis

Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang. Combined Mining: Discovering Informative Knowledge in Complex Data, accepted by IEEE Trans. SMC Part B
 Knowledge and Data Engineering, 20(8): 1053-1066, 2008.
the advanced analitics institute

Combined Pattern Pairs

Definition Combined Pattern Pairs. For impact-oriented combined patterns, a Combined Pattern Pair (CPP) is in the form of

$$
\mathcal{P}:\left\{\begin{array}{l}
X_{1} \rightarrow T_{1} \\
X_{2} \rightarrow T_{2}
\end{array}\right.
$$

where 1) $X_{1} \cap X_{2}=X_{\mathrm{p}}$ and X_{p} is called the prefix of pair \mathcal{P}; $X_{1, e}=X_{1} \backslash X_{\mathrm{p}}$ and $X_{2, e}=X_{2} \backslash X_{\mathrm{p}}$; 2) X_{1} and X_{2} are different itemsets; and 3) T_{1} and T_{2} are contrary to each other, or T_{1} and T_{2} are same but there is a big difference in the interestingness (say confidences conf) of the two patterns.

- A combined rule pair is composed of two contrasting rules.
- For customers with same characteristics U, different policies/campaigns, V_{1} and V_{2}, can result in different outcomes, T_{1} and T_{2}.

Extended Combined Pattern Pairs

Definition Extended Combined Pattern Pairs. An Extended Combined Pattern Pair (ECPP) is a special combined pattern pair as follows

$$
\mathcal{E}:\left\{\begin{array}{l}
X_{\mathrm{p}} \rightarrow T_{1} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}} \rightarrow T_{2}
\end{array}\right.
$$

where $X_{\mathrm{p}} \neq \emptyset, X_{\mathrm{e}} \neq \emptyset$ and $X_{\mathrm{p}} \cap X_{\mathrm{e}}=\emptyset$.

Extended Combined Pattern Clusters

Definition Extended Combined Pattern Sequences. An Extended Combined Pattern Sequence (ECPC), or called Incremental Combined Pattern Sequence (ICPS), is a special combined pattern cluster with additional items appending to the adjacent local patterns incrementally.

$$
\mathcal{S}:\left\{\begin{array}{l}
X_{\mathrm{p}} \rightarrow T_{1} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \rightarrow T_{2} \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \wedge X_{\mathrm{e}, 2} \rightarrow T_{3} \\
\cdots \\
X_{\mathrm{p}} \wedge X_{\mathrm{e}, 1} \wedge X_{\mathrm{e}, 2} \wedge \cdots \wedge X_{\mathrm{e}, \mathrm{k}-1} \rightarrow T_{k}
\end{array},\right.
$$

where $\forall i, 1 \leq i \leq k-1, X_{i+1} \cap X_{i}=X_{i}$ and $X_{i+1} \backslash X_{i}=X_{e, i} \neq \emptyset$, i.e., X_{i+1} is an increment of X_{i}. The above cluster of rules actually makes a sequence of rules, which can show the impact of the increment of patterns on the outcomes.

Coupled Object Analysis: Combined Demographics + Behavior Analysis

-Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang. Combined Mining: Discovering Informative Knowledge in Complex Data, IEEE Trans. SMC Part B.
-Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on Knowledge and Data Engineering, 20(8): 1053-1066, 2008.

- Yanchang Zhao, Huaifeng Zhang, Longbing Cao Chengqi Zhang. Combined Pattern Mining: from Learned Rules to Actionable Knowledge, Australian AI2008.

Combined Pattern Mining

- Type A: Demographics differentiated combined pattern
- Customers with the same actions but different demographics
\rightarrow different classes/business impact

$$
\text { Type A: }\left\{\begin{array}{lll}
A_{1}+D_{1} & \rightarrow & \text { quick payer } \\
A_{1}+D_{2} & \rightarrow & \text { moderate payer } \\
A_{1}+D_{3} & \rightarrow & \text { slow payer }
\end{array}\right.
$$

Combined Pattern Mining

- Type B: Action differentiated combined pattern
- Customers with the same demographics but taking different actions
\rightarrow different classes/business impact

$$
\text { Type B: } \begin{cases}A_{1}+D_{1} & \rightarrow \text { quick payer } \\ A_{2}+D_{1} & \rightarrow \text { moderate payer } \\ A_{3}+D_{1} & \rightarrow \text { slow payer }\end{cases}
$$

An Example of Combined Pattern Clusters

Clusters	Rules	$X_{\text {p }}$	$X_{\text {e }} \quad T$			Cnt	Conf (\%)	$I_{\text {r }}$	$I_{\text {c }}$	Lift	Cont $_{\mathrm{p}}$	Cont $_{\text {e }}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{P}} \rightarrow T \end{array}$	$\begin{array}{r} \text { Lift of } \\ X_{\mathrm{e}} \rightarrow T \end{array}$
		demographics	arrangements	repayments										
\mathcal{P}_{1}	$P_{5}$$P_{6}$$P_{7}$	marital:sin \&gender: F \&benefit:N	irregular	cash or post	A	400	83.0	1.12	0.67	1.80	1.01	2.00	0.90	1.79
			withhold	cash or post	A	520	78.4	1.00		1.70	0.89	1.89	0.90	1.90
			withhold \& irregular	cash or post \& withhold	B	119	80.4	1.21		2.28	1.33	2.06	1.10	1.71
	$\begin{gathered} P_{8} \\ P_{9} \\ P_{10} \\ \hline \end{gathered}$		withhold	cash or post \& withhold	B	643	61.2	1.07		1.73	1.19	1.57	1.10	1.46
			withhold \& vol. deduct	withhold \& direct debit	B	237	60.6	0.97		1.72	1.07	1.55	1.10	1.60
			cash	agent	C	33	60.0	1.12		3.23	1.18	3.07	1.05	2.74
\mathcal{P}_{2}	$P_{11}$$P_{12}$$P_{13}$$P_{14}$	age:65+	withhold	cash or post	A	1980	93.3	0.86	0.59	2.02	1.06	1.63	1.24	1.90
			irregular	cash or post	A	$14 / 2$	88.7	0.87		1.92	1.08	1.55	1.24	1.79
			withhold \& irregular	cash or post	A	132	85.7	0.96		1.86	1.18	1.50	1.24	1.57
			withhold \& irregular	withhold		750	63.3	2.91		3.40	2.47	4.01	0.85	1.38

	Behavior 1	Behavior 2
Demographic 1	Low value	High value
Demographic 2	High value	Low valuember

An Example of Extended Combined Pattern Cluster

$$
\left\{\begin{array}{l}
P L N \rightarrow T \\
P L N, D O C \rightarrow T \\
P L N, D O C, D O C \rightarrow T \\
P L N, D O C, D O C, D O C \rightarrow T \\
P L N, D O C, D O C, D O C, R E A \rightarrow T \\
P L N, D O C, D O C, D O C, R E A, I E S \rightarrow T
\end{array}\right.
$$

Identifying high impact behavior in behavior evolution

Coupled Hidden Markov Model-based Abnormal Coupled Behavior Analysis

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Application, IEEE Trans. Knowledge and Data Engineering.
Cao, L., Ou Y, Yu PS, Wei G. Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors, KDD2010.

Pool manipulation

TABLE 1
An example of buy and sell orders

Investor	Time	Direction	Price	Volume
(1)	$09: 59: 52$	Sell	12.0	155
(2)	$10: 00: 35$	Buy	11.8	2000
(3)	$10: 00: 56$	Buy	11.8	150
(2)	$10: 01: 23$	Sell	11.9	200
(1)	$10: 01: 38$	Buy	11.8	200
(4)	$10: 01: 47$	Buy	11.9	200
(5)	$10: 02: 02$	Buy	11.9	250
(2)	$10: 02: 04$	Sell	11.9	500

Fig. 1. Coupled Trading Behaviors

Construct behavior sequences

- Behavioral data structure 1:

$$
\begin{equation*}
\left\{\frac{\text { Actor }_{i}-\text { Operation }_{i}}{\text { Attributes }_{i}} \xrightarrow{\eta} \frac{\text { Actor }_{j}-\text { Operation }_{j}}{\text { Attributes }_{j}}\right\}_{i, j=1 ; \text { winsize }^{I, J}} \tag{12}
\end{equation*}
$$

Fig. 2. Behavior sequences - Data Structure 1

－Data structure 2 ：

$$
\begin{gather*}
\text { Category }:\left\{\frac{\text { Actor }_{i}-\text { Operation }_{i}}{\text { Attributes }_{i}} \xrightarrow{\eta}\right. \\
\left.\frac{\text { Actor }_{j}-\text { Operation }_{j}}{\text { Attributes }_{j}}\right\}_{i, j=1 ; \text { winsize }^{I, J}} \tag{14}
\end{gather*}
$$

Fig．3．Behavior sequences－Data Structure 2

CHMM Based Coupled Sequence

Modeling

- Coupled behavior sequences

- Multiple sequences

$$
\begin{aligned}
& \Phi_{1}=\left\{\phi_{11}, \ldots, \phi_{1 T}\right\} \\
& \Phi_{2}=\left\{\phi_{21}, \ldots, \phi_{2 F}\right\} \\
& \Phi_{C}=\left\{\phi_{C 1}, \ldots, \phi_{C G}\right\}
\end{aligned}
$$

- Coupling relationship

$$
\begin{aligned}
& R_{i j}\left(\Phi_{i}, \Phi_{j}\right) \\
& R_{i j} \subset R, R_{i j}\left(\Phi_{i}, \Phi_{j}\right)=\varnothing
\end{aligned}
$$

- Behavior properties

$$
\phi_{i k}\left(p_{i k, 1}, \ldots, p_{i k, L}\right)
$$

CBA - CHMM

$$
\begin{gather*}
\text { CBA problem } \rightarrow \text { CHMM model } \tag{15}\\
\Phi\left(\mathbb{B}_{c}\right) \mid \text { category } \rightarrow X \tag{16}\\
M\left(\Phi\left(\mathbb{B}_{c}\right)\right) \mid \phi_{i k}\left(\left[p_{i j}\right]_{1}, \ldots,\left[p_{i j}\right]_{K}\right) \rightarrow Y \tag{17}\\
f(\theta(\cdot), \eta(\cdot)) \rightarrow Z \tag{18}
\end{gather*}
$$

Initial distribution of $\Phi\left(\mathbb{B}_{c}\right) \mid$ category $\rightarrow \pi$

Figure 2: Architecture of CHMM

Framework: abnormal CBA

Fig. 5. Framework of abnormal coupled behavior detection
Hidden States
$S^{\text {buy }}=\{$ Positive Buy,Neutral Buy, Negative Buy $\}$
$S^{\text {sell }}=\{$ Positive Sell,Neutral Sell,Negative Sell $\}$
$S^{\text {trade }}=\{$ Market Up, Market Down $\}$

- CHMM model:

$$
\begin{gather*}
\lambda^{C H M M}=(X, Y, Z, \pi) \\
\bar{x}_{i j}=\frac{\sum_{t=1}^{T-1} \alpha_{t}(i) x_{i j} y_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{\sum_{t=1}^{T-1} \alpha_{t}(i) \beta_{t}(j)}, 1 \leq i, j \leq N \tag{20}\\
\bar{y}_{j}(k)=\frac{\sum_{t=1, o_{t}=O_{k}}^{T} \alpha_{t}(j) \beta_{t}(j)}{\sum_{t=1}^{T} \alpha_{t}(j) \beta_{t}(j)}, 1 \leq j \leq N \tag{21}\\
\bar{\pi}_{i}=\frac{\alpha_{1}(i) \beta_{1}(i)}{\sum_{j=1}^{N} \alpha_{1}(j) \beta_{1}(j)}, 1 \leq i \leq N \tag{22}\\
\operatorname{Pr}\left(Q \mid \lambda^{H M M}\right)=\sum_{i=1}^{N} \alpha_{T}(i) \tag{23}\\
Z=\left\{z_{i j^{\prime}}\right\} \quad z_{i j^{\prime}}=\operatorname{Pr}\left(s_{t+1}^{\prime}=S_{j^{\prime}} \mid s_{t}=S_{i}\right)
\end{gather*}
$$

Adaptive CHMM for Detecting Sequence Changes

Figure 3: Update Point of ACHMM

$$
\begin{align*}
x_{i j}^{u p d a t e} & =(1-w) x_{i j}^{o l d}+w * x_{i j}^{n e w} \tag{15}\\
y_{i j}^{u p d a t e} & =(1-w) y_{i j}^{\text {old }}+w * y_{i j}^{\text {new }} \tag{16}\\
z_{i j^{\prime}}^{u p d a t e} & =(1-w) z_{i j^{\prime}}^{\text {old }}+w * z_{i j^{\prime}}^{n e w} \tag{17}\\
\pi_{i}^{u p d a t e} & =(1-w) \pi_{i}^{o l d}+w * \pi_{i}^{\text {new }} \tag{18}
\end{align*}
$$

The Algorithms

```
Algorithm 1 Constructing observation sequences
    Step 1: Segment the whole trading day into \(L\) intervals
    by a time window with the length winsize.
    Step 2: Calculate \(I A\) for buy-order, sell-order and trade
    activities respectively in each window. They are denoted
    as \(I A_{l}^{\text {buy }}, I A_{l}^{\text {sell }}\) and \(I A_{l}^{\text {trade }}\), respectively.
    Step 3: Obtain \(I A_{l}^{\prime \text { buy }}, I A_{l}^{\prime \text { sell }}\) and \(I A_{l}^{\prime \text { trade }}\) by quantiz-
    ing \(I A_{l}^{\text {buy }}, I A_{l}^{\text {sell }}\) and \(I A_{l}^{\text {trade }}\).
    Step 4: Obtain the trading activity sequnce \(I A^{b u y}\) for
    buy-order by putting all \(I A_{l}^{\prime b u y}\) in a trading day together.
    Obtain \(I A^{\text {sell }}\) and \(I A^{\text {trade }}\) in the same way. We obtain
\[
\begin{equation*}
I A^{\text {type }}=I A_{1}^{\prime \text { type }}, I A_{2}^{\prime \text { type }}, \cdots, I A_{L}^{\prime \text { type }} \tag{19}
\end{equation*}
\]
where type \(\in\{\) buy, sell, trade \(\} . I A^{\text {buy }}, I A^{\text {sell }}\) and \(I A^{\text {trade }}\) are the observation sequences of CHMM in the day.
Step 5: Repeat Step 1-4 for each trading day
```


- Benchmark Models
- HMM-B: Buy-based HMM
- HMM-S: Sell-based HMM
- HMM-T: Trade-based HMM
- IHMM: HMM-B + HMM-S + HMM-T
- CHMM: CHMM(buy, sell, trade)
- ACHMM: Adaptive CHMM(buy, sell, trade)

Evaluation

- Technical performance

$$
\begin{align*}
\text { Accuracy } & =\frac{T P+T N}{T P+F N+F P+T N} \tag{43}\\
\text { Precision } & =\frac{T P}{T P+F P} \tag{44}\\
\text { Recall } & =\frac{T P}{T P+F N} \tag{45}\\
\text { Specificity } & =\frac{T N}{F P+T N} \tag{46}
\end{align*}
$$

- Business performance

$$
\begin{gather*}
\text { Return }=\ln \frac{p_{t}}{p_{t-1}} \tag{48}\\
\text { Abnormal Return }=\text { Return }-\left(\gamma+\xi \text { Return }^{\text {market }}\right) \tag{49}
\end{gather*}
$$

- Business Performance

Fig. 9. Return of Six Models

Fig. 10. Abnormal Return of Six Models

- Computational cost

$$
\left(O\left(T N^{6}\right)\right) \xrightarrow{\text { N-heads dynamic programming }} O\left(T(3 N)^{2}\right)
$$

TABLE 5
Computational performance

		IHMM	CHMM	ACHMM
winsize $=10(\mathrm{~m})$	Training time (s)	0.574	11.978	11.988
	Traint time (s)	0.056	1.296	3.576
$=20(\mathrm{~m})$	Test time (s)	0.256	4.929	4.933
winsize	Training time (s)	0.047	0.655	3.486
$=30(\mathrm{~m})$	Test time (s)	0.042	4.121	4.119
winsize $=60(\mathrm{~m})$	Training time (s)	0.109	2.003	2.429

Hierarchical CHMM-based \& Relational Learning-based Group Behavior Learning

- Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative Manipulations in Stock Markets, IJCNN 2012.
- Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based Market Manipulation, KDD 2012.

Framework

Figure 1: The Workflow of the Proposed Framework.

- HC: Hybrid coupling; HG: Hierarchical grouping
- $1^{\text {st }}$ qualitative analysis, generates possible qualitative coupling relationships between behaviors with or without domain knowledge;
- $2^{\text {nd }}$ quantitative representation of coupled behaviors is learned via proper methods;
- $3^{\text {rd }}$ anomaly detection algorithms are proposed to cater for different applictrenarios.

Hybrid coupling-based analysis

Figure 2: An Example of Qualitative Analysis.

From qualitative to quantitative

(a) An Example of the Subgraphs for Coupled Behaviors

	A	$R F_{1}$	$R F_{2}$	\cdots	$R F_{n}$
trade $_{1}$	x_{1}	$r f_{11}$	$r f_{21}$		$r f_{n 1}$
trade $_{2}$	x_{2}	$r f_{12}$	$r f_{22}$	\cdots	$r f_{n 2}$
(b) An Example of the Relational Features for Coupled Behaviors					

Figure 3: An Example of the "Flattened" Propositional Coupled Behavioral Data

Hierarchical Grouping-based analysis

- Qualitative Analysis: Domain Knowledge driven Initial Grouping

$$
\begin{align*}
& \text { DEFINITION } 4 \quad \text { (PARTICLE GROUPS). The particle groups, } \\
& \text { which are represented by }\left\{P G_{j}\right\}(1 \leq j \leq N) \text { are the par- } \\
& \text { titioning result of actors }\left\{A_{i}\right\}(1 \leq i \leq I) \text { by the rule } R(\cdot) \\
& \text { made by domain experts: } \\
& \qquad R(\cdot) \mid\left\{A_{1}, A_{2}, \cdots, A_{I}\right\} \rightarrow\left\{P G_{1}, P G_{2}, \cdots, P G_{N}\right\} \text {. } \tag{3}
\end{align*}
$$

- For each group, both corresponding CHMM
- The similarity between two CHMMs (two groups)
- Symmetric distance between the coupled behaviors of two particle groups for the given CHMM

Figure 2: The Work Flow of the Proposed Framework.

- Relational features for behaviors $p\left(R F_{1} \mid X^{(t)}\right) \quad p\left(R F_{2} \mid X^{(t)}\right) \cdots, p\left(R F_{n} \mid X^{(t)}\right)$
- Conditional probability distribution CPD $p\left(X^{(t)} \mid R F_{1}, \cdots, R F_{n}\right)$
- Relational Bayesian Classifier (RBC)
- Conditional Probability Tree (CPT)

Cross-market Behavior Analysis for Financial Crisis Contagion

$>$ Wei Cao, Liang Hu, Longbing Cao: Deep Modeling Complex Couplings within Financial Markets. AAAI 2015: 2518-2524
> Wei Cao, Longbing Cao. Financial Crisis Forecasting via Coupled Market State Analysis, IEEE Intelligent Systems, 30(2): 18-25 (2015).

Example: 1998 financial crisis

Selected Asian Exchange Rates Against US $\$$

 June 1897 = 100

Motivation: gaps

- Most of the existing literature simply tests the existence of market contagion.
- Multiple markets are affected by financial crisis.
- Limited research pays attention to the unknown underlying market couplings which are the "fundamental" reasons for the market contagion.

Motivation: challenges

- To properly understand financial crisis:
(1) Selection of global markets and discriminative market indicators;
(2) Market couplings are very complicated to capture, which includes intra-market coupling (couplings within a market) and inter-market coupling (couplings between different types of markets);
(3) Hidden couplings behind the market indicators need to be captured
(4) Measurement of effect/relationship of market couplings on understanding crisis, namely how the couplings contagions reflect the crisis.

Solution: Design

- Model cross-market couplings via building a CHMMLR framework:
(1) couplings from Equity market and Commodity market ($\mathbf{C}(E, C)$);
(2) couplings from Equity market and Interest market ($\mathrm{C}(E, I)$);
(3) couplings from Commodity market and Interest market (
). $\mathbf{c}(C, I)$
- Estimate global crisis by the crisis forecasting capability of integrating the different pairwise market couplings

Technical method: CHMM

Market 1:

Market 2:

Fig. 1: A CHMM with Two Chains
$C H M M=\lambda(A, B, R, \pi)$

Technical method: LR

- The probability of financial crisis at time t

$$
\begin{array}{r}
P_{t}=P\left(Y_{t}=1 \mid X=x\right)=E\left(Y_{t} \mid X=x\right)= \\
\frac{1}{1+e^{-b_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}+\varepsilon}} \tag{1}
\end{array}
$$

- The likelihood of financial crisis at time period T

$$
\begin{equation*}
L(\theta)=\prod_{t=1}^{T} P_{t}^{Y_{t}}\left(1-P_{t}\right)^{1-Y_{t}} \tag{2}
\end{equation*}
$$

Modeling cross-market couplings

Definition 1. Intra-market Coupling. This is the interaction between the behaviors from the same market. Formally, the representation of intra-market coupling w.r.t market i is given by:

$$
\begin{equation*}
\theta_{i}=\left\{m_{i} \otimes m_{i}\right\}_{t=1}^{T} \tag{3}
\end{equation*}
$$

where m_{i} denotes the observations from market i, \otimes represents the coupled interactions among market i 's observations from time 1 to T. In this paper, there are three global financial markets, so $i \in\{E, C, I\}$.

Definition 2. Inter-market Coupling. This is the interaction between the behaviors from pairwise markets. Formally, the representation of inter-market coupling w.r.t market i and j is given by:

$$
\begin{equation*}
\eta_{i}=\left\{m_{i} \circledast m_{j}\right\}_{t=1}^{T} \tag{4}
\end{equation*}
$$

where \circledast represents the coupled interactions between market i 's observations and market j 's observations from time 1 to $T, i, j \in\{E, C, I\}$.
Definition 3. Market Coupling. The representation of market coupling w.r.t market i and j is given by:

$$
\begin{equation*}
\mathbb{C}(i, j)=\left\{\theta_{i}, \eta_{i j}\right\} \tag{5}
\end{equation*}
$$

where θ_{i} denotes the intra-market coupling in market i, and $\eta_{i j}$ represents the inter-market coupling between markets i and j.

Objective function

$\operatorname{argmax}_{(i, j)} R($ crisis, $\mathbb{C}(i, j))$

The identification (estimation) of financial crisis is to build a proper model to determine the specific pairwised cross-market couplings and the corresponding objective function

$$
\mathbf{C}(i, j)
$$

Modeling Framework

Indicator selection

Definition 4. Pairwise Market Indicator Correlation (PMIC). This is the correlation of one indicator in a market ($M I_{i k}$) with indicators in another market $\left(\left\{M I_{j l}\right\}\right)$, where $(i \neq j) \wedge$ $(i, j \in\{E, C, I\}) \wedge(k, l \in\{1,2\})$.

$$
\begin{equation*}
P M I C\left(M I_{i k},\left\{M I_{j l}\right\}\right)=\sum_{l}\left|\rho_{D C C A}\left(M I_{i k}, M I_{j l}\right)\right| \tag{7}
\end{equation*}
$$

where $\rho_{D C C A}(\cdot)$ is the cross-correlation coefficient of the two market indicators.

$$
\operatorname{argmax}_{k} P M I C\left(M I_{i k},\left\{M I_{j l}\right\}\right)
$$

Coupling process

Pairwise Market Couplings \rightarrow CHMM modeling

$$
\begin{equation*}
\Phi\left(M I^{i}\right) \mid \text { observation } \rightarrow B\left(P\left(o_{t}^{i}=X_{v} \mid z_{t}^{i}=Z_{h}\right)\right) \tag{9}
\end{equation*}
$$

$\Phi\left(M I^{i}\right) \mid$ intra - transition $\left(\theta_{i}\right) \rightarrow$
$A \mid \operatorname{intra}\left(P\left(z_{t+1}^{i}=Z_{h^{\prime}} \mid z_{t}^{i}=Z_{h}\right)\right)$
$\Phi\left(M I^{i}\right), \Phi\left(M I^{j}\right) \mid$ inter $-\operatorname{transition}\left(\eta_{i j}\right) \rightarrow$

$$
\begin{gather*}
A \mid \operatorname{inter}\left(P\left(z_{t+1}^{i}=Z_{h^{\prime}} \mid z_{t}^{j}=Z_{h}\right)\right) \tag{11}\\
\mathbb{C}(i, j) \rightarrow\left\{z^{i}, z^{j}\right\} \tag{12}
\end{gather*}
$$

Forecasting process

Fig. 3: Forecasting Process

Forecasting process

Algorithm 1: Financial Crisis Forecasting via Market

 CouplingsInput: A training set $T r$; A testing set $T e=$

$$
\left\{\left\{z_{1}^{i}, z_{1}^{j}\right\},\left\{z_{2}^{i}, z_{2}^{j}\right\}, \ldots,\left\{z_{t}^{i}, z_{t}^{j}\right\}, \ldots\left\{z_{T}^{i}, z_{T}^{j}\right\}\right\}
$$

Output: A predicted financial crisis set $C S$; A predicted non-financial crisis set $N S$
1 Train the Logistic Regression model Ω on the training set $T r$, obtained trained model $\Omega^{T r}$;
2 forall the $\left\{z_{\tau}^{i}, z_{\tau}^{j}\right\}_{\tau=t-w+1}^{t}$ and $t \in[w, T]$ in the Testing set do
3 Compute the probability of crisis given the trained model $\Omega^{T r}$ and couplings $\left.\left\{z^{i}, z^{j}\right\}_{\tau=t-w+1}^{t}\right)$:
$P_{t+1}\left(\right.$ crisis $=1 \mid\left\{z_{\tau}^{i}, z_{\tau}^{j}\right\}$;
if $P_{t+1}\left(\right.$ crisis $\left.=1 \mid\left\{z_{\tau}^{i}, z_{\tau}^{j}\right\}\right)>0.5$ then
time $t+1 \rightarrow C S^{(i, j)}$;
else
time $t+1 \rightarrow N S^{(i, j)}$;
end
end

Experiments: Data

- Data:
- Markets: Equity market, Commodity market and Interest market.
- Time period: January 1990 to December 2010.

TABLE II: Selected Indicators

Pairwise Coupling	Market Indicator
$\mathbb{C}(E, C)$	$E:$ DJIA / $C:$ WTI Oil Price
$\mathbb{C}(C, I)$	$C:$ Gold Price/C:TED Spread
$\mathbb{C}(E, I)$	$E:$ DJIA $/ I:$ BAA Spread

Cross-market indicator trends

Fig. 4: Indicator behavior During the Period 1990-2010 VAN

Evaluation Models

Comparative Methods:

A. IID models

LR- (E, C) : This model forecasts crisis based on selected indicators of Equity market and Commodity market directly, without considering the hidden complex market couplings.
LR- (C, I) : This model forecasts crisis based on selected indicators of Commodity market and Interest market directly, without considering the hidden complex market couplings.

LR-($E, I)$: This model forecasts crisis based on selected indicators of Equity market and Interest market directly, without considering the hidden complex market couplings.

B: Non-IID models

LR- $\mathbb{C}(E, C)$: This model forecasts crisis based on market couplings from Equity market and Commodity market.

LR- $\mathbb{C}(C, I)$: This model forecasts crisis based on market couplings from Commodity market and Interest market.

LR- $\mathbb{C}(E, I)$: This model forecasts crisis based on market couplings from Equity market and Interest market.

Experiments: Results

(a) Accuracy (w=2)

(d) Accuracy (w=3)

(b) Precision(w=2)

(e) Precision(w=3)

(c) $\operatorname{Recall}(\mathrm{w}=2)$

(f) Recall(w=3)

Fig. 7: Technical Performance of Various Approaches

Experiments: Explanation

- These illustrate that the pairwise market couplings have higher relations with financial crisis when compared with those simple indicators. The reasons can be interpreted as following:

1) the pairwise couplings is the "essence" of market contagion, which means that the pairwise couplings can better reflect the financial crisis;
2) two different types of couplings (intra-market couplings and inter-market couplings) which can represent the pairwise market couplings well;
3) the CHMM is demonstrated as a useful tool to capture the complex hidden couplings between pairwise markets.

Experiments: Explanation

Fig. 8: Market Couplings Behavior during 2008 Financial Crisis ($w=2$)

Explanation: Crisis Evolution

- Stage 1 is a stage of "crisis launch" and spans from August 2007 to December 2007, in this period the probabilities of crisis forecasted by all three pairwise couplings begin to grow.
- Stage 2 is defined as $\mathbf{C}(E, C)$ stage, where the couplings from Equity market and Commodity market has a sharp increase in this stage (December 2007 to September 2008). A possible explanation is that crisis always first revealed by Equity market and Commodity market, the Equity market is always considered as risky market while the Commodity market is the opposite.
- Stage 3 is described as "sharp fluctuation" stage, where the all pairwise market couplings reveal high financial crisis probabilities (September 2008 to April 2009). This maybe caused by the spread news of crisis and shifts in investors' common but changing appetite of risk.
- Stage 4 is a C(C,I)stage spans from April 2009 to November 2009. An explanation is at this stage the macro-control measures (e.g. cutting rate) begin to take effect.
- Stage 5 is described as "post-crisis" while the behaviors from all tha nairwise
couplings become stable (after November 2009).

THE ADVANCED ANALYTICS INSTITUTE

Conclusions

- Cross-market coupling learning:
- Equity market, Commodity market and Interest market
- CHMM-LR for financial crisis analysis:
- CHMM captures the complex hidden pairwise market couplings,
- LR is applied to evaluate the crisis forecasting capability based on the couplings

Part V.
 High Utility Behavior Analysis

- Why care about behavior utility?
- How to measure behavior utility?
- How to identify high utility behavior?

10. High Utility Behavior Analysis

High Utility Sequential Pattern Mining

The $\mathbf{1 8}^{\text {th }}$ ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2012)

USpan: An Efficient Algorithm for High Utility Sequential Pattern Mining

Junfu Yin, Zhigang Zheng and Longbing Cao
Advanced Analytics Institute
University of Technology, Sydney, Australia

Outline

1. Introduction

2. Related Work

3. Problem Statement
4. USpan Algorithm
5. Experiments
6. Conclusions

Introduction

- Sequential pattern mining
- Very essential for handling order-based critical business problems.
- Interesting and significant sequential patterns are generally selected by frequency.
- Insufficient of frequency/support framework
- They do not show the business value and impact.
- Some truly interesting sequences may be filtered because of their low frequencies.

Example: Retail business

Introduction

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence
1	$<(e, 5) \quad[(c, 2)(f, 1)] \quad(b, 2)>$
2	$<[(a, 2)(e, 6)][[(a, 1)(\bar{b}, 1)(c, 2)] i[(a, 2)(d, 3)(e, 3)]>$
3	$<(c, 1) \quad[(a, 6)(d, 3)(e, 2)]>$
4	$<[(b, 2)(e, 2)] \quad[(a, 7)(d, 3)] \quad[(a, 4)(b, 1)(e, 2)]>$
5	$<[(b, 2)(e, 3)] \quad[(a, 6)(e, 3)] \quad[(a, 2)(b, 1)]>$

In sequence s_{2}, there are three transactions:
$[(a, 2)(e, 6)]$,
$[(a, 1)(b, 1)(c, 2)]$ and
$[(a, 2)(d, 3)(e, 3)]$.
Transaction [(a, 2)(e, 6)] means the customer buys two items, namely a and e. $(a, 2)$ means the quanity of item a is 2 .

The square brackets omitted when there is only one item in the transaction. For example: $(e, 5),(b, 2)$ in s_{1} and $(c, 1)$ in s_{3}.

Introduction

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence
1	< (e, 5) $[(c, 2)(f, 1)] \quad(b, 2)>$
2	
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$
4	$<[(b, 2)(e, 2)][(a, 7)(d, 3)][(a, 4)(b, 1)(e, 2)]>$
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$

The utility of $\langle e\rangle$ in $(e, 6)$ is $6 \times 1=6$

The utility of <ea> in s_{2} is
$\{((6 \times 1)+(1 \times 2)),((6 \times 1)+(1 \times 2))\}$
$=\{8,10\}$

The utility of <ea> is the database is

Add the highest utility in each sequence to represent the utility of <ea>:
$10+16+15=41$

If the minimum utility threshold $\xi=40$ then <ea> is a high utility pattern.

Introduction

Contributions:

1. We define the problem of mining high utility sequential patterns systematically.
2. USpan as a novel algorithm for mining high utility sequential patterns.
3. Two pruning strategies, namely width and depth pruning, are proposed to reduce the search space substantially.

Related Work

- High utility pattern mining
- Two-Phase Algorithm (Liu et al., UBDM' 2005)
- IHUP Algorithm (Ahmed et al., IEEE Trans. TKDE' 2009)
- UP-Growth (Tseng et al., SIGKDD' 2010)
- High utility sequential pattern mining
- UMSP (Shie et al., DASFAA' 2011) Designed for mining high utility mobile sequential patterns.
- UWAS-tree / IUWAS-tree (Ahmed et al., SNPD' 2010) Designed for mining the high utility weblog data. IUWAS-tree is for incremental environment.
- UI / US (Ahmed et al., ETRI Journal' 2010) Uses two measurements of utilities of sequences. No generic framework is proposed.

Problem Statement: Containing

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$
2	$<[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]>$
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$
4	$<[(b, 2)(e, 2)][(a, 7)(d, 3)][(a, 4)(b, 1)(e, 2)]>$
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$

(a, 2): Q-item
[(a, 2)(e, 6)]: Q-itemset
$s_{1}-s_{5}$: Q-sequence

- Q-itemset containing
$[(a, 4)(b, 1)(e, 2)]$ contains q-itemsets
$(a, 4),[(a, 4)(e, 2)]$ and $[(a, 4)(b, 1)(e, 2)]$
but not $[(a, 2)(e, 2)]$ and $[(a, 4)(c, 1)]$.
- Q -sequence containing
$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$
contains q-sequences
$<(b, 2)>,<[(b, 2)(e, 3)]>$ and
$<[(b, 2)][(e, 3)](a, 2)>$
but not $[(a, 2)(e, 2)]$ and $[(a, 4)(c, 1)]$.

Problem Statement: Matching

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$
2	$<[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]>$
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$
4	$<[(b, 2)(e, 2)][(a, 7)(d, 3)][(a, 4)(b, 1)(e, 2)]>$
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$

Sequence <ea> matches:
$<(e, 6)(a, 1)>$ and $<(e, 6)(a, 2)>$ in s_{2}; $<(e, 2)(a, 7)>$ and $<(e, 2)(a, 4)>$ in s_{4}; $<(e, 3)(a, 6)>$ and $\left\langle(e, 3)(a, 2)>\right.$ in s_{5};

Denote as < $e, 6)(a, 1)>\sim<e a>$

Problem Statement: Utilities

The Sequence Utility Framework

The q-item utility:

$$
u(i, q)=f_{u_{i}}(p(i), q)
$$

The q-itemset utility:

$$
u(l)=f_{u_{i s}}\left(\bigcup_{j=1}^{n} u\left(i_{j}, q_{j}\right)\right)
$$

The q-sequence utility:

$$
u(s)=f_{u_{s}}\left(\bigcup_{j=1}^{m} u\left(l_{j}\right)\right)
$$

The q-sequence database utility:

$$
u(S)=f_{u_{d b}}\left(\bigcup_{j=1}^{r} u\left(s_{j}\right)\right)
$$

The sequence utility in a q-sequence:

$$
v(t, s)=\bigcup_{s^{\prime} \sim n n s^{\prime} \subseteq s} u\left(s^{\prime}\right)
$$

The sequence utility in a database:

$$
v(t)=\bigcup_{s \in S} v(t, s)
$$

For example:

$$
\begin{aligned}
& \mathrm{v}\left(<e a>, s_{4}\right)=\{\mathrm{u}(<(e, 2)(a, 7)>), \mathrm{u}(<(e, 2)(a, 4)>)\} \\
& \mathrm{v}\left(\langle e a>)=\left\{\mathrm{v}\left(<e a>, s_{2}\right), \mathrm{v}\left(<e a>, s_{4}\right), \mathrm{v}\left(\left\langle e a>, s_{5}\right)\right\}\right.\right.
\end{aligned}
$$

Problem Statement: Utilities

High Utility Sequential Pattern Mining

The q-item utility:

$$
f_{u_{i}}(p(i), q)=p(i) \times q
$$

The q-itemset utility:

$$
f_{u_{i s}}\left(\bigcup_{j=1}^{n} u\left(i_{j}\right)\right)=\sum_{j=1}^{n} u\left(i_{j}, q_{j}\right)
$$

The q-sequence utility:

$$
f_{u_{s}}\left(\bigcup_{j=1}^{m} u\left(l_{j}\right)\right)=\sum_{j=1}^{m} u\left(l_{j}\right)
$$

The q-sequence database utility:

$$
f_{u d b}\left(\bigcup_{j=1}^{r} u\left(s_{j}\right)\right)=\sum_{j=1}^{r} u\left(s_{j}\right)
$$

The sequence utility in a database:

$$
v(t)=u_{\max }(t)=\sum \max \left\{u\left(s^{\prime}\right) \mid s^{\prime} \sim t \cap s^{\prime} \subseteq s \cap s \in S\right\}
$$

For example:
$V\left(\langle e a\rangle, s_{4}\right)=\{16,10\}$
$V(\langle e a\rangle)=\{\{8,10\},\{16,10\},\{15,7\}\}$
Sequence t is a high utility sequential pattern if and only if $u_{\max } \geq \xi$ where ξ is a user-specified minimum utility.

Target: Extracting all high utility sequential patterns in S satisfying ξ.

USpan Algorithm

Challenges of mining for high utility patterns

$$
\begin{aligned}
& u_{\max }(\langle a\rangle)=4+12+14+12=42 \\
& u_{\max }(\langle a b\rangle)=7+13+9=29 \\
& u_{\max }(\langle a b c\rangle)=15 \\
& \left.u_{\max }(<(a b c) a\rangle\right)=19
\end{aligned}
$$

No Downward Closure Property

USpan Algorithm

Lexicographic Q-sequence Tree

U02 A OQMithn

$$
v(\langle b\rangle)=\{10,5\}
$$

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$
2	$<[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]>$
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$
4	$[<(b, 2)(e, 2)] \quad[(a, 7)(a, 3)][(a, 4)(b, 1)(e, 2)]>$
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$

Items	$/ 1$	12	$/ 3$
a		14	8
b	10		5
d		9	
e	2		2

USpan Algorithm: Concatenation

Data Representation

items

USpan Algorithm: Width Pruning

What is Width Pruning

USpan Algorithm: Width Pruning

What to Width Prune

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence	SU
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$	24
2	< [(a, 2)(e, 6)] [(a, 1)(b, 1)(c, 2)] [(a, 2)($(, 3)(e, 3)]$ >	41
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$	27
4	< [(b, 2) $(e, 2)$] [(a, 7) ($d, 3)] \quad[(a, 4)(b, 1)(e, 2)]$ >	50
5	< [(b, 2) $(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$	42
SID	Quantitative Sequence	SU
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$	24
2	$<[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]>$	41
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]$ >	27
4	$<[(b, 2)(e, 2)] \quad[(a, 7)(d, 3)] \quad[(a, 4)(b, 1)(e, 2)]>$	50
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]>$	42

<f> should be width-pruned

$$
\begin{aligned}
\operatorname{SWU}(<e a>) & =u\left(s_{2}\right)+u\left(s_{4}\right)+u\left(s_{5}\right) \\
& =41+50+24 \\
& =115
\end{aligned}
$$

$$
\operatorname{SWU}(<f>)=u\left(s_{1}\right)=24
$$

USpan Algorithm: Depth Pruning

What is Depth Pruning

USpan Algorithm: Depth Pruning

What to Depth Prune

Table 1: Quality Table

Items	a	b	c	d	e	f
Quality	2	5	4	3	1	1

Table 2: Quantitative Sequence Database

SID	Quantitative Sequence	SU
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$	24
2	$<[(a, 2)(\boldsymbol{e}, \mathbf{6})][(\boldsymbol{a}, \mathbf{1})(\boldsymbol{b}, \mathbf{1})(\boldsymbol{c}, \mathbf{2})][(\boldsymbol{a}, \mathbf{2})(\boldsymbol{d}, \mathbf{3})(\boldsymbol{e}, \mathbf{3})]>$	41
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$	27
4	$<[(b, 2)(\boldsymbol{e}, \mathbf{2})][(\boldsymbol{a}, \mathbf{7})(\boldsymbol{d}, \mathbf{3})][(\boldsymbol{a}, \mathbf{4})(\boldsymbol{b}, \mathbf{1})(\boldsymbol{e}, \mathbf{2})]>$	50
5	$<[(b, 2)(\boldsymbol{e}, \mathbf{3})][(\boldsymbol{a}, \mathbf{6})(\boldsymbol{e}, \mathbf{3})][(\boldsymbol{a}, \mathbf{2})(\boldsymbol{b}, \mathbf{1})]>$	42

SID	Quantitative Sequence	SU
1	$<(e, 5)[(c, 2)(f, 1)] \quad(b, 2)>$	24
2	$<[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]>$	41
3	$<(c, 1)[(a, 6)(d, 3)(e, 2)]>$	27
4	$<[(b, 2)(e, 2)][(a, 7)(d, 3)][(a, 4)(b, 1)(e, 2)]>$	50
5	$<[(b, 2)(e, 3)][(a, 6)(e, 3)][(\boldsymbol{a}, \mathbf{2})(\boldsymbol{b}, \mathbf{1})]>$	42

<e(ae)> should be depth-pruned

$$
\begin{aligned}
u_{\text {rest }}(\langle e a\rangle) & =(8+29)+(16+24)+(15+17 \\
& =37+40+32 \\
& =109
\end{aligned}
$$

$$
\begin{gathered}
u_{\text {rest }}(<\mathrm{e}(a e)>)=(18+9) \\
=27
\end{gathered}
$$

Experiments

Datasets

Synthetic Datasets

Parameters	DS1	DS2
that the average number of elements	10	8
the average number of items in an element	2.5	2.5
the average length of a maximal pattern	4	6
the average number of items per element	2.5	2.5
Number of sequences	10 k	10 k
Number of items	1 k	10 k

Real Datasets
DS3 is a dataset consisting of online shopping transactions which contains 350,241 transactions and 59,477 customers.

DS4 is a real dataset that includes mobile communication transactions. The dataset is a 100,000 mobile call history from a specific day. There are 67,420 customers in the dataset.

Experiments

Performance and distributions (DS2)

- The running time and the number of patterns grow exponentially with respect to ξ.
- The high utility sequential patterns are mid-long patterns.

Experiments

Scalability Test (DS1 \& DS2)

- Both the time and memory usage grow linearly with respect to the size of the DB.

Experiments

High Utility Sequential Pattern vs. Frequent Sequential Patterns (DS3)

- USpan out performs Prefixspan with respect to the utilities of the patterns.

Conclusions

1. We define the problem of mining high utility sequential patterns.
2. We propose the USpan to efficiently mine for mining high utility sequential patterns.
3. Two pruning strategies are proposed to substantially reduce the search space.
4. Experiments on both synthetic and real datasets show that USpan can discover the high utility sequential patterns efficiently.

Part VI.

Prospects \& Summary

12. Challenges and Prospects

Behaviour is ubiquitous

Behaviour is a valuable asset

So-called behavior analysis vs.

 behavior informaties| Aspects | Traditional behavior analysis | Behavior computing |
| :--- | :--- | :--- |
| Objective | Behavior exterior
 Explicit behaviors | Behavior interior \& exterior;
 Implicit behaviors |
| Means | Empirical, qualitative, psychological
 understanding | Quantitative understanding |
| Data | Observations and appearance including
 customer demographic, service usage | Actors, actions, couplings,
 context |
| Management | Transactions with entity relationships | Behavior feature matrix |
| Expect | Appearance, observations of behaviors | Behavioral actor's belief, desire,
 intention and impact for internal
 driving forces or causes |

TID	Items
100	f, a, c, d, g, I, m, p
200	a, b, c, f, 1,m, o
300	b, f, h, j, o
400	b, c, k, s, p
500	a, f, c, e, l, p, m, n

Novel Behavior Pattern Mining

- Semi-supervised coupled behavior analysis

1: Coupling relationship analysis
Inter-leaving coupling: e.g., $\left\{a_{1}, a_{2}\right\}$
Parallel coupling: e.g., $\left\{a_{1} \| a_{2}\right\}$
Serial coupling: e.g., $\left\{a_{1} ; a_{2}\right\}$
Causal coupling: e.g., $\left\{a_{1} \Rightarrow a_{2}\right\}$
Exclusive coupling: e.g., $\left\{a_{1} \nVdash a_{2}\right\}$
Negative coupling: e.g., $\left\{a_{1}=\overline{a_{2}}\right\}$
Hierarchical coupling: e.g., $\left\{a_{1} ;\left(a_{2} \| a_{3}\right)\right\}$
Hybrid coupling

> 2: coupling-oriented Pattern mining
> Underlying-derivative mode: e.g., $\left\{a_{1}\right\}-\left\{a_{1} ; a_{2}\right\}$
> Contrast mode: $\left\{a_{1}\right\}-\left\{a_{2}=\overline{a_{1}}\right\}$
$\left\{a_{1} \| a_{3}\right\} \Rightarrow\left\{\bar{b}_{2} ; \dot{b}_{6}\right\}$
THE ADVANCED ANALYTICS INSTITUTE

Non-IIDness Learning in Behavioral and Social Data

Longbing Cá ${ }^{*}$
Aà anced Anabytics Instituce, University of Technology. Syangy Austratia
"Corrosponding author: longbing.cao@uts. edu au

Abstract

Most of the classic theoretical systems and tools in statistics, data mining and machine learning are built on the fundamental assumption of IIDness, which assumes the independence and identical distribution of underlying objects, attributes and/or values. However, complex behavioral and socia problems often exhibit strong couplings and heterogeneity between values, attributes and objects (i.e, non-IIDness). This fundamentally challenges the IIDness-based learning methodologies and techniques. This paper presents a high-level overview of the needs, challenges and opportunities of non-mDess learning for handling complex behavioral and social problems. By reviewing the nature and issues of classic iDness-based algorithims in frequent pattern mining, clustering and classification to compler behavioral and social applications, concepts, structures, frameworks and exemplar techniques are discussed for non-IIDness learning. Case stadies, related work and prospect of non-IIDness learning are presented. Non-IIDness learning is akso a fundamental issue in big data analytics.

Keyword: non-IIDness leaming: IIDness, IID data; non-IID data; coupling: behavior informatics; social informatics Recerved 13 February 2013; revised 5 July 2013 Handing editor Guandong Xu

1. INTRODUCTION

Behavioral and social applications are ubiquitous, ranging from business and online applications to social and orgmizationa pplications and domains. With the increaing and continuo pplications and domains. With the increasing and continuous development of such applications, an emerging need is to develop an in-depth understanding of the underlying working mechanism, driving force, dynamics and evolution of a behavi ral and/or social system, as well as the impact on business and context. To this end, building on the classic theories and tools available in behavioral science and social science, behavio informatics $[1,2]$ and social informatics $[3]^{1}$ have recently been studied to 'formalize', 'quantify' and 'compute' complex behavioral and social applications.
As an emerging area of research, behavior and socia informatics is in its earliest stage and features many challenges and opportunities. A canonical trend is to develop theories, tools and algorithms based on the classic outcomes available in extant disciplines including statistics, data mining and machine leaming. Typically, frequent pattern mining, clustering
${ }^{1}$ See more from the IEEE Thask Force on Behavior and Social Informatics ond Computing: www bsic info
and classification of behavioral and social applications are conducted by expanding the conesponding existing theorie and algonthms. In this paper, we discuss the potential issues and risk in puasuing this path for complex behavioral and social applications by explicitly or implicitly taking the IIDnes assumption, and thus reveal the need for developing non IDness learning for behavior and social informatics.
Arguably, most of the existing theories, tools and systems in statistics, data mining and machine learning are built on the IIDness assumption, which assumes the independence and identical distribution of the underlying objects, attributes and/o values. Based on a high-level abstraction, it is assumed that objects, attributes and values are independent and identicall distributed, with most of existing learning theories, models and algonthms proposed on the basis of this assumption. This works well in simple business applications and abstract problems with weakened and avoidable relations and heterogenerty, and serve as the foundation of classic analytics, mining and learning theories, algorithms, systems and tools
Complex behavioral and social applications often exhibit strong coupling relations (which are beyond the usua dependency relation) and heterogeneity between objects, object

analysis

in Behavioral and Social Data, The Computer Journal, 57(9): 1358-1370 (2014).

Longbing Cao. Coupling Learning of Complex Interactions, Journal of Information Processing and Management, 51(2): 167-186 (2015).

Issues Addressed

- Behaviors are non-IID, namely not independent and identically distributed (IID)
- What is the non-IIDness of behavior-related problems?
- What are coupling relationships of non-IID behaviors?
- What are heterogeneity of non-IID behaviors?
- What are opportunities and prospects of nonIID behavior and social problem study?

Modeling and Analysis of Complex Behaviors

We could develop two directions to explicate complex behaviors: qualitative and quantitative behavior analytics

With the formal representation of coupled behaviors, the qualitative analytics addresses the task of behavior reasoning and verification, while the quantitative research targets behavior learning and evaluation. Finally, an appropriate way could be chosen to integrate these two studies to obtain an integrated understanding of the implicit complex behaviors from both qualitative and quantitative aspects.

During this process, many open issues are worth systematic investigation along with case studies from aspects such as behavior reasoning, behavior learning, behavior evaluation, behavior integration at individual but more on group levels.

Modeling and Analysis of Complex Behaviors

Complex Behaviors \longrightarrow Behavior Algebra

9. Challenges and Prospects of Complex Behavior Computing

Modeling and Analysis of Complex Behaviors

Individual \quad Coupled

Part VII. Checklist

- What is behavior
- Why behavior informatics
- How to represent a behavioral application/system
- How to verify a behavior model
- Individual's behavior pattern
- Group behavior pattern
- How to measure behavior impact
- Impact-oriented behavior pattern
- Non-occurring behavior pattern
- Group behavior analysis
- Behavior informatics conceptual map
- Application of BI

Behaviour analytics matrix

Behaviour analytics matrix

Organization:
Business problem: \qquad

Maximize the behaviour value

Behaviour analytics for smart business

1. Explain to your manager what behaviours exist in my organisation \& why it is important to explore behaviour deeply

- Human
- Business
- Organization
- Environment
- Cost-effectiveness
- Optimisation
- Resource efficiency
- Productivity
- Early intervention
-

2. Advise your manager what values could be delivered through deep behaviour analytics:

- Behaviour understanding
- Sequencing/networking
- Impact management
- Fraud detection
- Anomaly detection
- Hidden groups
- Early prediction
- Early intervention
- Active management
-

3. Demonstrate to your manager what analytics tasks can be undertaken to discover and deliver the values from deep behaviour analytics:

- Positive behaviour pattern
- Negative behaviour pattern
- Self-finalising pattern
- Hidden group discovery

Impact modeling

- Utility learning
- Behaviour change detection
- Behaviour coupling analysis
- Intervention strategy design

References

- Longbing Cao, Xiangjun Dong, Zhigang Zhao. e-NSP: Efficient Negative Sequential Pattern Mining. Artificial Intelligence, 2016.
- Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based Market Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative Manipulations in Stock Markets, IJCNN 2012, 1-8.

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).

Zhong She, Can Wang, and Longbing Cao. A Coupled Framework of Clustering Ensembles, AAAI2012 (poster)

Can Wang, and Longbing Cao.Modeling and Analysis of Social Activity Process, in Longbing Cao and Philip S Yu (eds) Behavior Computing, 21-35, Springer, 2012

Can Wang, Mingchun Wang, Zhong She, Longbing Cao. CD: A Coupled Discretization Algorithm, PAKDD2012, 407-418

Can Wang, Longbing Cao, Minchun Wang, Jinjiu Li, Wei Wei, Yuming Ou. Coupled Nominal Similarity in Unsupervised Learning, CIKM 2011, 973-978.

Xiangjun Dong, Zhigang Zhao, Longbing Cao, Yanchang Zhao, Chengqi Zhang, Jinjiu Li, Wei Wei, Yuming Ou. O-Npp. Effigient Negative Sequential Pattern Mining Based on Identified Positive Patterns Without Database Rescanning, CIKM 2011,

- Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 3067-3085, 2010.

Longbing Cao, Yuming Ou, Philip S YU, Gang Wei. Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors, KDD2010, 85-94.

Zhigang Zheng, Yanchang Zhao, Ziye ZuoLongbing Cao, Huaifeng Zhang, Yanchang Zhao, Chengqi Zhang. An Efficient GA-Based Algorithm for Mining Negative Sequential Patterns, PAKDD2010, 262273

- Longbing Cao, Philip S Yu, Behavior Informatics: An Informatics Perspective for Behavior Studies, The Intelligent Informatics Bulletin, 10(1): 6-11, 2009.

Zhigang Zheng, Yanchang Zhao, Ziye Zuo, Longbing Cao. Negative-GSP: An Efficient Method for Mining Negative Sequential Patterns, AusDM 2009: 63-67.

Shanshan Wu, Yanchang Zhao, Huaifeng Zhang, Chengqi Zhang, Longbing Cao, Hans Bohlscheid. Debt Detection in Social Security by Adaptive Sequence Classification, KSEM 2009: 192-203.

Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei,Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Debt Detection in Social Security by Sequence Classification Using Both Positive and Negative Patterns, ECML/PKDD2009, 648-663, 2009.

Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Mining Both Positive and Negative Impact-Oriented Sequential Rules From Transactional Data, PAKDD2009, pp.656-663.

Longbing Cao, Behavior Informatics and Analytics: Let Behavior Talk, DDDM2008 joint with ICDM2008, 87-96.

Longbing Cao Yuming Ou. Market Microstructure Patterns Powering Trading and Surveillance Agents. Journal of Universal Computer Sciences, 14(14): 2288-2308, 2008.

Yanchang Zhao, Huaifeng Zhang, Longbing Cao, Chengqi Zhang and Hans Bohlscheid. Efficient Mining of Event-Oriented Negative Sequential Rules, WI 08, pp. 336-342.

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on Knowledge and Data Engineering, 20(8): 1053-1066, 2008.

Longbing Cao, Yanchang Zhao, Chengqi Zhang, Huaifeng Zhang. Activity Mining: from Activities to Actions, International Journal of Information Technology \& Decision Making, 7(2): 259-273, 2008

Longbing Cao, Behavior Informatics and Analytics: Let Behavior Talk, DDDM2008 joint with ICDM2008.

Chengqi Zhang, Longbing Cao. Keynote: Activity Mining to Strengthen Debt Prevention, Pacific Asia Conf. on Intelligence and Security Informatics (PAISI), 2007.

Longbing Cao, Yanchang Zhao, Fernando Figueiredo, Yuming Ou, Dan Luo. Mining High Impact Exceptional Behavior Patterns, PAKDD2007 industry track, LNCS4819, 56-63, 2007.
Longbing Cao.Activity mining: challenges and prospects. ADMA2006, LNAI4093, 58 5 5 .S EAN
the advanced analvtics institute

Your feedback is appreciated.

- Longbing Cao longbing.cao@gmail.com
www-staff.it.uts.edu.au/~|bcao
www.behaviorinformatics.org

[^0]: Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach, Information Science, 180(17); 3067-3085, 2010.
 www.behaviorinformatics.org

[^1]: In the above SOS-notation based interaction rule, if the numerator formula holds, then the denominator part holds as well. With interaction rules, we can perform reasoning about behaviors to simplify and conclude critical rules.

[^2]: 5The

