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ABSTRACT
Mining Negative Sequential Patterns (NSP) is much more
challenging than mining Positive Sequential Patterns (PSP)
due to the high computational complexity and huge search s-
pace required in calculating Negative Sequential Candidates
(NSC). Very few approaches are available for mining NSP,
which mainly rely on re-scanning databases after identifying
PSP. As a result, they are very inefficient. In this paper, we
propose an efficient algorithm for mining NSP, called e-NSP,
which mines for NSP by only involving the identified PSP,
without re-scanning databases. First, negative containment
is defined to determine whether or not a data sequence con-
tains a negative sequence. Second, an efficient approach is
proposed to convert the negative containment problem to
a positive containment problem. The supports of NSC are
then calculated based only on the corresponding PSP. Final-
ly, a simple but efficient approach is proposed to generate
NSC. With e-NSP, mining NSP does not require addition-
al database scans, and the existing PSP mining algorithms
can be integrated into e-NSP to mine for NSP efficiently. e-
NSP is compared with two currently available NSP mining
algorithms on 14 synthetic and real-life datasets. Intensive
experiments show that e-NSP takes as little as 3% of the
runtime of the baseline approaches and is applicable for ef-
ficient mining of NSP in large datasets.

Categories and Subject Descriptors
H.2.8 [Data-base Applications]: Data Mining
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1. INTRODUCTION
Negative sequential patterns (NSP) refer to sequences with

non-occurring items. For instance, assume p1=<a b c X>
is a positive sequential pattern (PSP); p2=<a b ¬c Y> is a
NSP. It is increasingly recognized [5][10] that such NSP, com-
posed of both occurring and non-occurring items, can play
an irreplaceable role in deeply understanding and tackling
many business applications, such as the associations between
treatment services and illnesses, and the detection of high
impact occurring (positive behaviors) and non-occurring be-
havior (negative behaviors) sequences [3, 2], which cannot
be handled by mining PSP only. NSP cannot be described
or discovered by classic PSP mining algorithms such as GSP,
SPADE, PrefixSpan and SPAM. NSP mining has seen only
very limited progress in recent years [6][5][10][11], and all
existing methods are very inefficient in mining NSP. This is
because NSP is much more difficult to mine than PSP, in
particular because of two intrinsic complexities.

High computational complexity. The existing methods cal-
culate the support of negative sequential candidates (NSC)
by additionally scanning the database after identifying PSP.
This leads to additional costs and results in low efficiency in
NSP mining.

Large NSC search space. The existing approaches gener-
ate k -size NSC by conducting a joining operation on (k-1 )-
size NSP. This leads to a huge number of NSC [6][5][7][10],
which makes it difficult to search for meaningful outputs.
Further, NSC does not satisfy the anti-monotony principle
[10]. It is a challenge to prune the large proportion of mean-
ingless and unnecessary NSC, and it is therefore important
to develop efficient approaches for generating a limited num-
ber of truly useful NSC.



To address the above critical challenges in NSP mining
and make NSP mining workable in handling real-life appli-
cations, this paper proposes a novel and efficient NSP mining
approach called e-NSP. The main idea is as follows. To avoid
additional database scanning, we convert the negative con-
tainment problem to a positive containment problem. The
NSC supports are then calculated by only using a NSC’s cor-
responding PSP information. In this way, there is no need
to re-scan the database after discovering PSP. To the best of
our knowledge, this is the first approach to conduct efficient
NSP mining by involving PSP only, without rescanning the
database. e-NSP provides a new and promising strategy for
efficient NSP mining which is workable in large datasets.
The remainder of the paper is organized as follows. Sec-

tion 2 discusses the related work. In Section 3, we formalize
the problem of mining PSP and NSP. The e-NSP algorithm
is detailed in Section 4. Section 5 presents the experiment
results, which are followed by conclusions and future work
in Section 6.

2. RELATED WORK
Very limited research is available in the literature on min-

ing NSP. [10] proposes a negative version of GSP algorithm
NegGSP to mine for NSP. [5] proposes a PNSP approach
for mining positive and negative sequential patterns in the
form of <(abc) ¬(de) (ijk)>. [6] only handles NSP with
the last element as negative. [11] proposes a genetic algo-
rithm for mining NSP. [9] proposes an approach to mining
event-oriented negative sequential rules. [7] identifies NSP
in the form of (¬a,b), (a,¬b) and (¬a,¬b), which is similar
to [9]. The above approaches either re-scan the database or
do not directly address NSP mining. In addition, different
researchers present inconsistent definitions and explanations
about the basic concept of negative containment [4]. [5] con-
siders that data sequence ds=<d c> cannot contain <¬(ab)
c ¬d>, <¬c d>,and <c ¬d>,while [10] allows that ds con-
tains them.

3. PROBLEM STATEMENT
In association rule mining, a non-occurring item is called

a negative item and an occurring item is called a positive
item [8]. This tradition is followed in NSP mining. Those
sequences consisting of at least one negative item are called
negative sequences. Sequential pattern mining (as it is usu-
ally called) mainly focuses on occurring items, namely posi-
tive sequences [6][5][7][10]. The sequences in source data are
called data sequences.

3.1 Positive Sequential Patterns - PSP
Let I = {i1, i2, . . . , in} be a set of items. An itemset is

a subset of I. A sequence is an ordered list of itemsets. A
sequence s is denoted by<s1 s2 . . . sl>, where sj⊆I (16j6l).
sj is also called an element of the sequence, and denoted
as (x1x2. . .xm), where xk is an item, xk∈I (16k6m). For
simplicity, the brackets are omitted if an element only has
one item, i.e., element (x) is coded x. An item can occur at
most once in an element, but can appear multiple times in
different elements of a sequence.
The length of sequence s, denoted as length(s), is the total

number of items in all elements in s. s is a k-length sequence
if length(s)=k. The size of sequence s, denoted as size(s),

is the total number of elements in s. s is a k-size sequence
if size(s)=k.

Sequence sα=<α1 α2 . . . αn> is called a sub-sequence of
sequence sβ=<β1 β2 . . . βm> and sβ is a super-sequence of
sα, denoted as sα⊆sβ , if there exists 16j1<j2<. . .<jn6m
such that α1⊆βj1 , α2⊆βj2 , . . ., αn⊆βjn . We also say that
sβ contains sα.

A sequence database D is a set of tuples <sid,ds>, where
sid is the sequence id and ds is the data sequence. The
number of tuples in D is denoted as |D|. The set of tuples
containing sequence s is denoted as {<s>}. The support of
s, denoted as sup(s), is the number of {<s>}, i.e., sup(s)=|
{<s>} |=| {<sid,ds>, <sid,ds>∈D ∧ (s⊆ds)} |. min sup is
a minimum support threshold which is predefined by users.
Sequence s is called a frequent (positive) sequential pattern
if sup(s)>min sup.

3.2 Negative Sequential Patterns - NSP
In real applications, the number of negative sequences is

large, and many of them are not meaningful. In order to
reduce the number of NSC and discover meaningful NSP
efficiently, constraints must be added to negative sequences
[9][11][5][10][6]. This paper also refers to the constraints in
these existing papers. The only difference is that we mine
NSP only from frequent PSP. The reason is that PSP is most
useful for users to make decisions so far.

In order to formalize the constraints, we provide a defini-
tion as following.

Definition 1. Positive Partner
The positive partner of a negative element ¬e is e, denoted

as p(¬e), i.e., p(¬e)=e. The positive partner of positive
element e is e itself, i.e., p(e)=e. The positive partner of a
negative sequence ns=<s1. . .sk> is to change all negative
elements in ns to their positive partners, denoted as p(ns),
i.e., p(ns)={<s′1. . .s

′

k> | s′i=p(si), si∈ns}. For example,
p(<¬(ab) c ¬d>)=<(ab) c d>.

Constraint 1. Frequency constraint. This paper only fo-
cuses on the negative sequences ns whose positive partner is
frequent, i.e., sup(p(ns))>min sup. While [5] and [10] only
require the positive partner of each element in ns is frequent.

Constraint 2. Format constraint. Continuous negative
elements in a NSC are not allowed. For example, <¬(ab)
¬c d> is not allowed. This constraint is same as [5][10].

Constraint 3. Element negative constraint. The minimum
negative unit in a NSC is an element [10]. For example,
<(¬ab) c d> does not satisfy this constraint, <¬(ab) c ¬d>
does.

In this paper, we assume that a negative sequence implic-
itly satisfies the above three constraints.

Because of constraint 3, the definition of sub-sequence in
positive sequence is not suitable for that in negative se-
quence. Now we formally redefine it by the definitions of
element-id set and order preserving sequence. Element id
is the order number of an element in a sequence. Given a
sequence s=<s1 s2 . . . sm>, id(si)=i is the element id of ele-
ment si. Element-id set EidSs of s is the set that includes all
elements and their ids in s, i.e., EidSs= {(si, id(si)) | si ∈ s
}={(s1,1), (s2,2), . . ., (sm,m)} (16i6m). The set including
all positive/negative element-ids is called positive/negative
element-id set of s, denoted as EidS+

s , EidS−

s respectively.
For any subset EidS′

s={(α1,id1), (α2,id2), . . ., (αp,idp)}
(1<p6m) of EidSs, α=<α1 α2 . . . αp>, if ∀ αi, αi+1∈α



Figure 1: Framework of e-NSP

(16i<p), there exist idi<idi+1, then α is called an order-
preserving sequence of EidS′

s, denoted as α=OPS(EidS′

s).
Sequence sα is called a sub-sequence of negative sequence

sβ , and sβ is a super-sequence of sα, if ∀EidS′

sβ
, EidS′

sβ

is subset of EidSsβ , sα=OPS(EidS′

sβ
), denoted as sα⊆sβ .

If sα is a negative sequence, it is required to satisfy Con-
straint 2. Specially, the sub-sequence containing all positive
elements, OPS(EidS+

s ) is called the Maximum Positive Sub-
sequence of s, denoted as MPS(s).
Example 1. Given s=<¬(ab) c d>, EidS+={(c,2), (d,3)},

MPS(s)=<c d>, OPS({(c,2),(¬(ab),1)})=<¬(ab) c> is a
sub-sequence of s.
Definition 2. Negative Sequential Pattern (NSP)
A negative sequence s is a negative sequential pattern (N-

SP) if its support is not less than the threshold min sup.

4. E-NSP ALGORITHM
Figure 1 shows the framework and working mechanism

of e-NSP. First, it mines all PSP by traditional PSP min-
ing algorithm, then it generates NSC based on PSP, after
that, it calculates supports of NSC by converting them to
calculating support of corresponding PSP.

4.1 Negative Containment
Because a sub-sequence (e.g., s1=<d>) may occur more

than one times in its super-sequence (e.g., s2=<a (bc) d
(cde)>), we need to know the positions that s2 contains
s1 from left and right sides of s2. It is very important to
our Negative Containment Definition. Therefore we give
the following definition.
Definition 3. First Sub-sequence Ending Position / Last

Sub-sequence Beginning Position
Given a data sequence ds=<d1 d2 . . . dt> and a positive

sequence α, (1) if ∃p (1<p6t), α⊆<d1 . . . dp>∧α*<d1 . . .
dp−1>, then p is called the First Sub-sequence Ending Posi-
tion, denoted as FSE(α,ds); if α⊆<d1> then FSE(α,ds)=1 ;
(2) if ∃q (16q<t), α⊆<dq . . . dt>∧α*<dq+1 . . . dt>, then q
is called the Last Sub-sequence Beginning Position, denoted
as LSB(α,ds); if α⊆<dt> then LSB(α,ds)=t ; (3) if α*ds,
then FSE(α,ds)=0, LSB(α,ds)=0.
Example 2. Given ds=<a (bc) d (cde)>. FSE(<a>,ds)=1,

FSE(<c>,ds)=2, FSE(<c d>,ds)=3, LSB(<a>,ds)=1, LS-
B(<c>,ds)=4, LSB(<c d>,ds)=2, LSB(<(cd)>,ds)=4.
Our definition of a data sequence containing a negative se-

quence is as follows. We use n-neg-size to denote a negative
sequene containing n negative elements.
Definition 4. Negative Containment Definition
Let ds=<d1 d2 . . . dt> be a data sequence, ns=<s1 s2

. . . sm> be an m-size and n-neg-size negative sequence, (1)
if m>2t+1, then ds does not contain ns; (2) if m=1 and
n=1, then ds contains ns when p(ns)*ds; (3) otherwise, ds
contains ns if, ∀(si,id(si)) ∈ EidS−

ns (16i6 m), one of the
following three holds:
(a) (lsb=1) or (lsb>1)∧p(s1)*<d1 . . . dlsb−1>, when i=1,
(b) (fse=t) or (0<fse<t)∧p(sm)*<dfse+1 . . . dt>, when i=m,

(c) (fse>0 ∧ lsb=fse+1) or (fse>0 ∧ lsb>fse+1) ∧ p(si) *
<dfse+1 . . . dlsb−1>, when 1<i<m,

where fse=FSE(MPS(<s1 s2 . . . si−1>),ds), lsb=LSB(
MPS(<si+1 . . . sm>),ds).

Example 3. Given ds=<a (bc) d (cde)>, we have
(1) ns=<¬a c>. EidS−

ns={(¬a,1)}. ds does not contain
ns. lsb = 4 > 0, but p(s1)=<a>⊆<d1 . . . d3>=<a (bc) d>
(Case a).

(2) ns=<¬a a c>. EidS−

ns={(¬a,1)}. ds contains ns
because lsb = 1 (Case a).

(3) ns=<(ab) ¬(cd)>. EidS−

ns={(¬(cd),2)}. ds does not
contain ns because fse = 0 (Case b).

(4) ns=<(de) ¬(cd)>. EidS−

ns={(¬(cd),2)}. ds contains
ns because fse = 4(t = 4)(Case b).

(5) ns=<a ¬d d ¬d>. EidS−

ns={(¬d,2), (¬d,4)}. ds does
not contain ns. For (¬d,2), fse=1, lsb=4, but p(¬d) ⊆ <d2
. . . d3>=<(bc) d> (Case c). If one negative element does
not satisfy the condition, we do not need to consider other
negative elements.

(6) ns=<a ¬b b ¬a (cde)>. EidS−

ns={(¬b,2), (¬a,4)}. ds
contains ns. For (¬b,1), fse=1, lsb=2, fse>0 ∧ lsb=fse+1
(Case c); For (¬a,4), fse=2, lsb=4, p(¬a) *<d3>=<d>
(Case c).

4.2 Negative Conversion
In order to convert negative containment problems to pos-

itive containment problems, we need to define a special sub-
sequence as follows.

Definition 5. 1-neg-size Maximum Sub-sequence
For a negative sequence ns, its sub-sequence that includes

MPS(ns) and one negative element e is called a 1-neg-size
maximum sub-sequence, denoted as 1-negMS=OPS(EidS+

ns,
e), where e∈EidS−

ns. The sub-sequence set including al-
l 1-neg-size maximum sub-sequences of ns is called 1-neg-
size maximum sub-sequence set, denoted as 1-negMSSns,
1-negMSSns={OPS(EidS+

ns,e)| ∀ e∈EidS−

ns}.
Corollary 1. Negative Conversion Strategy
Given a data sequence ds=<d1 d2 . . . dt>, and ns=<s1

s2 . . . sm>, which is an m-size and n-neg-size negative se-
quence, the negative containment definition can be convert-
ed as follows: data sequence ds contains negative sequence
ns if and only if the two conditions hold: (1)MPS(ns) ⊆ ds;
and (2) ∀ 1-negMS ∈ 1-negMSSns, p(1-negMS) * ds.

Example 4. Given ds=<a (bc) d (cde)>, 1) if ns=<a
¬d d ¬d>, 1-negMSSns={<a ¬d d>, <a d ¬d>}, then
ds does not contain ns because p(<a ¬d d>)=<a d d>⊆
ds; 2) if ns’=<a ¬b b ¬a (cde)>, 1-negMSS′

ns={<a ¬b
b (cde)>, <a b ¬a (cde)>}, then ds contains ns because
MPS(ns)=<a b (cde)> ⊆ ds∧ p(<a ¬b b (cde)>) * ds ∧
p(<a b ¬a (cde)>)* ds.

Corollary 1 proves that the problem of whether a data
sequence contains a negative sequence is equivalent to the
problem of whether the data sequence does not contain its
corresponding positive sequences. The proof of Corollary 1
is omitted here because of limited space.

4.3 Support of Negative Sequence
Corollary 2.
Given a m-size and n-neg-size negative sequence ns, for

∀1-negMSi ∈ 1-negMSSns (16i6n), the support of ns in
sequence database D is:

sup(ns) =| {ns} |=| {MPS(ns)} − ∪n
i=1{p(1-negMSi)} |

(1)



This can be easily derived from Corollary 1. Because
∪n

i=1{p(1-negMSi)} ⊆ {MPS(ns)}, equation 1 can be rewrit-
ten as:
sup(ns) =| {MPS(ns)} | − | ∪n

i=1{p(1-negMSi)} |

= sup(MPS(ns))− | ∪n
i=1{p(1− negMSi)} | (2)

Example 5. sup(<¬a (bc) d ¬(cde)>)=sup(<(bc) d>) -
|{<a (bc) d>}∪{<(bc) d (cde)>}|;
If ns only contains a negative element

sup(ns) = sup(MPS(ns))− sup(p(ns)) (3)

Example 6. sup(<(ab) ¬c d>)=sup(<(ab) d>) - sup(<(ab)
c d>)
In particular, for negative sequence <¬e>,

sup(< ¬e >) =| D | −sup(< e >) (4)

From equation 2 we can see that sup(ns) can be easi-
ly calculated if we know sup(MPS(ns)) and | ∪n

i=1{p(1-
negMSi)} |. According to Constraint (1) and the nega-
tive candidate generation approach discussed in Section 4.4,
MPS(ns) and p(1-negMSi) are frequent. So sup(MPS(ns))
can be easily obtained by traditional algorithms.
Now the problem is how to calculate | ∪n

i=1{p(1-negMSi)} |.
Our approach is as follows.
We use a data structure, which is called e-NSP data struc-

ture, like Table 2 to store the corresponding data, includ-
ing PSP, support and {sid} (containing all ids of the tuples
that contain corresponding PSP). These data are stored in
a hash table to identify PSP efficiently. In order to calculate
the union set efficiently, we propose two other optimization
methods as follows: (1) When we calculate support of a N-
SC, we also utilize a hash table to accelerate search speed.
Compared with the performance using common array, the
search speed with hash table is far more efficient. (2) We
assume that all data in Table 2 are stored in main memo-
ry. This is feasible in practice since the mainstream memory
can reach gigabytes and above. We do not record the sid of
1-size PSP because the equations do not need to calculate
the union set of those sid of 1-size PSP.

4.4 Negative Sequential Candidates Genera-
tion

The basic idea of generating a negative sequential candi-
date is to change any non-contiguous elements (not items)
in a PSP to their negative ones.
Definition 6. e-NSP Candidate Generation
For a k-size PSP, its NSC are generated by changing any

m non-contiguous element(s) to its (their) negative one(s),
m=1,2, . . .,pk/2q, where pk/2q is a minimum integer that is
not less than k/2.
Example 7. The NSC based on <(ab) c d> include:
m=1, <¬(ab) c d>,<(ab) ¬c d>,<(ab) c ¬d>;
m=2, <¬(ab) c ¬d>.
Obviously, for all PSP in a sequence database, we can gen-

erate all NSC that satisfy the three constraints, as described
in Section 3.2.

4.5 Algorithm Pseudocode
The e-NSP algorithm, as shown in Algorithm 1, is pro-

posed to mine for NSP using only identified PSP.

Algorithm 1: e-NSP Algorithm

Table 1: Example Data Set
Sid Data Sequence

10 <a b c>
20 <a (ab)>
30 <(ae) (ab) c>
40 <a a>
50 <d>

Table 2: Example Result - Positive Patterns
PSP Support {sid}

<a> 4 -
<b> 3 -
<c> 2 -
<a a> 3 {20,30,40}
<a b> 3 {10,20,30}
<a c> 2 {10,30}
<b c> 2 {10,30}
<(ab)> 2 -
<a b c> 2 {10,30}
<a (ab)> 2 {20,30}

Input: Sequence Dataset D and min sup;
Output: NSP;
PSP = minePSP();
HashTable PSPHash = CreatePSPHashTable(PSP );
For (each psp in PSP ){

NSC = e-NSP Candidate Generation(psp);
For (each nsc in NSC){

if (nsc.size==1 && nsc.neg size==1) {
nsc.support = |D| - p(nsc).support;

} else if (nsc.size>1 && nsc.neg size==1){
nsc.support = MPS(nsc).support - p(nsc).support;

} else {
1-negMSSnsc = {1-negMSi | 1<=i<=nsc.neg size};
HashTable cHash = new HashTable();
For (i=1; i<=nsc.neg size; i++) {

For (each sid in p(1-negMSi).sidSet) {
If (sid.hashcode NOT IN cHash)

cHash.put(sid.hashcode(),sid);
nsc.support=MPS(nsc).support - cHash.size();

}
If (nsc.support > min sup) NSP.add(nsc);

} } } }
return NSP;

4.6 An Example
The sequence database is shown in Table 1 [5]. The pro-

cess is as follows.
(1) Mine PSP using one of the well-known algorithms,

such as GSP, and fill in the e-NSP data structures, which
are shown as Table 2.

(2) Use the e-NSP Candidate Generation method to gen-
erate all NSC.

(3) Use Equations 2-4 to calculate the support of these
NSC. The results are shown in Table 3, and the resulting
NSP are marked in bold.

From this example, we can see that <a c> and <a ¬c>,
<a (ab)> and <a ¬(ab)> are frequent patterns, but clear-
ly not all of them can be used to make decisions because
they may be misleading. How to select the meaningful and
workable patterns is one of our ongoing tasks.



Table 3: Example Result - NSC and Support
(min sup=2)

PSP NSC Related PSP Sup

<a> <¬a> <a> 1
<b> <¬b> <b> 2

<c> <¬c> <c> 3

<a a> <¬a a> <a>, <a a> 1
<a ¬a> <a>, <a a> 1

<a b> <¬a b> <b>, <a b> 0
<a ¬b> <a>, <a b> 1

<a c> <¬a c> <c>, <a c> 0
<a ¬c> <a>, <a c> 2

<b c> <¬b c> <c>, <b c> 0
<b ¬c> <b>, <b c> 1

<(ab)> <¬(ab)> <(ab)> 3

<a (ab)> <¬a (ab)> <(ab)>, <a (ab)> 0
<a ¬(ab)> <a>, <a (ab)> 2

<a b c> <¬a b c> <b c>, <a b c> 0
<a ¬b c> <a c>, <a b c> 0
<a b ¬c> <a b>, <a b c> 1
<¬a b ¬c> <b>, <a b>, <b c> 0

5. EXPERIMENTS AND EVALUATION
We conduct experiments on 14 synthetic and real dataset-

s to compare the efficiency of e-NSP with two baseline ap-
proaches PNSP [5] and NegGSP [10]. We select PNSP and
NegGSP because they are the only available algorithms that
are comparable to our algorithm. To compare their perfor-
mance, we adapt PSNP and NegGSP to follow the same
definitions and constraints as stated in Section 3. In the
comparison, all positive patterns are identified by GSP. N-
SP are further mined by e-NSP, PNSP and NegGSP. We
conduct intensive experiments to compare the difference be-
tween three algorithms in terms of computational costs on
different data sizes and data characteristics.
All algorithms are implemented in Java in a PC with Intel

Core 2 CPU of 2.9GHz, 2GB memory and Windows XP
Professional SP2.

5.1 Data Sets
To describe and observe the impact of data characteristics

on algorithm performance, we use following data factors: C,
T, S, I, DB and N, which are defined to describe character-
istics of sequence data [1].
C : Average number of elements per sequence; T : Average

number of items per element; S : Average length of maximal
potentially large sequences; I : Average size of items per ele-
ment in maximal potentially large sequences; DB : Number
of sequences (= size of Database); and N : Number of items.
Four source datasets are used for the experiments. They

include both real data and synthetic datasets generated by
IBM data generator [1]. By partitioning the data, we obtain
14 datasets in total.
Dataset 1 (DS1), C8 T4 S6 I6 DB100k N100. We further

adjust DS1 to generate 10 additional datasets, labelled as
DS1.x (x = 1, . . . , 10).
Dataset 2 (DS2), C10 T8 S20 I10 DB10k N0.2k.
Dataset 3 (DS3) is from UCI Datasets. There are 989,818

records. The average number of elements in a sequence is 4,
and each element only has one item.
Dataset 4 (DS4) is real-application data from financial ser-

vice industry. It contains 5,269 customers/sequences. The
average number of elements in a sequence is 21. The mini-

Figure 2: Runtime Comparison

mum number of elements in a sequence is 1, and the maxi-
mum number is 144.

5.2 Computational Cost
The runtime of mining NSP by the three approaches is

shown in Figure 2. e-NSP takes mostly less than 3% of the
runtime of PNSP and NegGSP on all datasets. For example,
e-NSP spends 2.7% to 1.6% runtime of PNSP on DS3 when
min sup decreased from 0.025 to 0.01. When min sup is
reduced to 0.01, PNSP and NegGSP take around one hour,
but e-NSP takes less than one minute, because e-NSP only
needs to “calculate” NSP support based on the sid sets of
corresponding positive patterns, while PNSP and NegGSP
have to re-scan the whole dataset.

The results on the maximum length and number of neg-
ative patterns are shown in Figure 3. It is difficult to draw
a reliable conclusion from them, because the characteristics
of the datasets are not comparable. Therefore, we conduct
a dataset characteristics analysis in following section.

Figure 3: Maximum Length and Number of Nega-
tive Patterns



Table 4: Dataset Characteristics Analysis Result

ID Dataset min NGSP PNSP eNSP t3/t2
Characteristics sup (t1,s) (t2,s) (t3,s)

0.04 1451.7 638.2 14.94 2.3%

DS1 C8T4S6I6.DB10k.N100 0.06 241.4 163.1 4.16 2.5%

0.08 78.9 61.9 1.53 2.5%

0.01 517.5 208.4 1.08 0.5%

DS1.1 C4T4S6I6.DB10k.N100 0.015 130.4 64.5 0.33 0.5%

0.02 48.0 28.4 0.16 0.5%

0.14 229.0 191.9 7.99 4.2%

DS1.2 C12T4S6I6.DB10k.N100 0.16 127.6 109.5 4.49 4.1%

0.18 73.8 66.9 2.53 3.8%

0.22 130.8 118.5 5.22 4.4%

DS1.3 C8T8S6I6.DB10k.N100 0.24 83.7 76.5 3.19 4.2%

0.26 55.9 52.8 2.14 4.1%

0.3 1205.2 969.3 57.55 5.9%

DS1.4 C8T12S6I6.DB10k.N100 0.4 133.2 123.5 6.75 5.5%

0.5 23.6 23.0 1.06 4.6%

0.04 1130.0 478.6 12.22 2.6%

DS1.5 C8T4S12I6.DB10k.N100 0.06 187.0 124.7 3.39 2.7%

0.08 61.2 47.5 1.23 2.6%

0.04 297.1 157.4 3.47 2.2%

DS1.6 C8T4S18I6.DB10k.N100 0.06 64.2 45.5 0.97 2.1%

0.08 23.5 19.0 0.36 1.9%

0.06 690.2 395.1 7.33 1.9%

DS1.7 C8T4S6I10.DB10k.N100 0.07 334.7 227.5 4.23 1.9%

0.08 188.1 138.0 2.63 1.9%

0.08 983.9 630.8 8.88 1.4%

DS1.8 C8T4S6I14.DB10k.N100 0.1 320.5 248.9 3.63 1.5%

0.12 141.8 112.7 1.61 1.4%

0.03 378.2 98.4 0.59 0.6%

DS1.9 C8T4S6I6.DB10k.N200 0.04 101.8 43.1 0.17 0.4%

0.05 39.5 23.3 0.06 0.3%

0.015 823.0 97.4 0.08 0.1%

DS1.10 C8T4S6I6.DB10k.N400 0.02 197.3 42.0 0.03 0.1%

0.025 99.8 20.6 0.02 0.1%

5.3 Dataset Characteristics Analysis
We analyze the dataset characteristics in terms of the

above defined data factors to see the impact of the data
factors (see Section 5.1) on the performance of e-NSP, com-
pared to PNSP and NegGSP. We generate various types of
synthetic datasets with different distributions. Dataset DS1
is extended to ten different datasets by tuning each factor, as
shown in Table 4. For example, dataset DS1.1 (C4T4S6I6.
DB10k.N100) is different to DS1 (C8T4S6I6.DB10k.N100)
on C factor, which means they have different average num-
bers of elements in a sequence. We mark the difference by
underlining the distinct factor for each dataset in Table 4.
In Table 4, t1, t2 and t3 represent the runtime of NegGSP,

PNSP and e-NSP correspondingly. We use t3/t2 to show e-
NSP’s performance compared with PNSP. From the results
(see Table 4), we can say that factors C, T and N seriously
affect the performance of e-NSP, and factors S and I do
not greatly affect it. When factor C is low, such as DS1.1,
e-NSP works better than on datasets with big C, such as
DS1 and DS1.2. Similar results hold for T, such as DS1
with small T, compared with DS1.3 and DS1.4 with big T.
When N is high, such as in DS1.9 and DS1.10, e-NSP works
better than that with small N, such as in DS1.

6. CONCLUSIONS AND FUTURE WORK
Mining NSP is very challenging due to the large search

space of negative candidates. Current NSP techniques rely
on re-scaning databases after identifying positive pattern-
s. This has been shown to be very inefficient, and little
progress has been made in NSP mining. We have proposed
a simple but very efficient NSP mining algorithm: e-NSP.
e-NSP is based on a formal and consistent concept, negative
containment, which defines how a data sequence contains a
negative sequence. e-NSP encloses a negative conversion s-
trategy to convert the problem of whether a data sequence
contains a negative sequence to the problem of whether the
data sequence contains some of the corresponding positive

sequences. Supports of NSC are then calculated based on-
ly on the corresponding PSP. Finally, a simple but efficient
approach has been proposed to generate NSC. e-NSP has
been tested on both synthetic and real-world datasets and
compared with existing NSP mining algorithms. The exper-
imental results and comparisons on 14 datasets from data
characteristics perspectives have clearly shown that e-NSP is
much more efficient than existing approaches. e-NSP offers
a new strategy for efficiently mining large scale NSP.

We are currently working on effective approaches to se-
lect the most meaningful patterns, and the application of
negative sequence mining on complex behavior analysis.

Acknowledgment
This work was supported by Projects of International Coop-
eration Training for Shandong Province Higher Education-
al Excellent Backbone Teacher, Shandong Provincial Natu-
ral Science Foundation, China (No.ZR2011FM028), and by
Australian Research Council Grants (DP1096218, DP0988016,
LP100200774, LP0989721).

7. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In ICDE’ 95, pages 3–14, 1995.

[2] L. Cao. In-depth behavior understanding and use: the
behavior informatics approach. Information Science,
180:3067–3085, 2010.

[3] L. Cao, Y. Zhao, and C. Zhang. Mining
impact-targeted activity patterns in imbalanced data.
IEEE TKDE, 20:1053–1066, 2008.

[4] X. Dong, L. Zhao, X. Han, and H. Jiang. Comparisons
of several definitions about negative containment. In
ICCNT’ 11, pages 553–556, 2011.

[5] S.-C. Hsueh, M.-Y. Lin, and C.-L. Chen. Mining
negative sequential patterns for e-commerce
recommendations. In APSCC ’08. IEEE, pages
1213–1218, 2008.

[6] N. P. Lin, H.-J. Chen, and W.-H. Hao. Mining
negative sequential patterns. In WSEAS’ 07, pages
654–658, 2007.

[7] W.-M. Ouyang and Q.-H. Huang. Mining negative
sequential patterns in transaction databases. In
ICMLC’ 07, volume 2, pages 830–834, 2007.

[8] X. Wu, C. Zhang, and S. Zhang. Efficient mining of
both positive and negative association rules. ACM
Trans. Inf. Syst., 22:381–405, July 2004.

[9] Y. Zhao, H. Zhang, L. Cao, C. Zhang, and
H. Bohlscheid. Mining both positive and negative
impact-oriented sequential rules from transactional
data. In PAKDD’ 09, volume 5476, pages 656–663.
2009.

[10] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao. Negative-gsp:
An efficient method for mining negative sequential
patterns. In Data Mining and Analytics, volume 101,
pages 63–67. 2009.

[11] Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao. An efficient
ga-based algorithm for mining negative sequential
patterns. In PAKDD’ 10, volume 6118, pages 262–273.
2010.


