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ABSTRACT

The similarity between nominal objects is not straightfor-
ward, especially in unsupervised learning. This paper pro-
poses coupled similarity metrics for nominal objects, which
consider not only intra-coupled similarity within an attribute
(i.e., value frequency distribution) but also inter-coupled
similarity between attributes (i.e. feature dependency ag-
gregation). Four metrics are designed to calculate the inter-
coupled similarity between two categorical values by consid-
ering their relationships with other attributes. The theoret-
ical analysis reveals their equivalent accuracy and superior
efficiency based on intersection against others, in particular
for large-scale data. Substantial experiments on extensive
UCI data sets verify the theoretical conclusions. In addition,
experiments of clustering based on the derived dissimilarity
metrics show a significant performance improvement.

Categories and Subject Descriptors: H.2.8 [Database
Management|: Database Applications—data mining

General Terms: Algorithms, Measurement, Performance

Keywords: Similarity measure, Complexity, Accuracy

1. INTRODUCTION

Similarity analysis has been a problem of great practical
importance in several domains, including data mining, for
decades [8]. By defining certain similarity measures between
attribute values, it gauges the strength of the relationship
between two data objects: the more two objects resemble
each other, the larger the similarity is [7].

When objects are described by numerical features, their
similarity measures geometric analogies which reflect the
relationship of data values. For instance, the values 10m
and 12m are more similar than 10m and 2m. A variety of
similarity metrics have been developed for numerical data,
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Table 1: An Instance of the Movie Database

Movie Director Actor Genre Class
Godfather II Scorsese De Niro Crime [e
Good Fellas Coppola De Niro Crime G

Vertigo Hitchcock Stewart Thriller Ga

N by NW Hitchcock Grant Thriller Go
Bishop’s Wife Koster Grant Comedy Gla

Harvey Koster Stewart Comedy Gla

such as Euclidean and Minkowski distances [7]. By con-

trast, the similarity analysis between records described by
nominal variables has received much less attention. Hetero-
geneous Distances [10] and Modified Value Distance Matrix
(MVDM) [5], for example, depict the similarity between cat-
egorical values in supervised learning. For unlabeled data,
only a few works [7], including Simple Matching Similarity
(SMS, which only uses Os and 1s to distinguish similarities
between distinct and identical categorical values) and Occur-
rence Frequency [2], discuss the similarity between nominal
values. We illustrate the problem with these works and the
challenge of analyzing similarity for categorical data below.

Taking the Movie data (Table 1) as an example, six movie
objects are divided into two classes with three nominal fea-
tures: director, actor and genre. The SMS measure between
directors “Scorsese” and “Coppola” is 0, but “Scorsese” and
“Coppola” are very similar directors'. Another observation
by following SMS is that the similarity between “Koster”
and “Hitchcock” is equal to that between “Koster” and “Cop-
pola”; however, the similarity of the former pair should be
greater since it belongs to the same class Ga.

Both instances show that it is much more complex to an-
alyze similarity between nominal variables than continuous
data, and SMS and its variants fail to capture the genuine
relationship between nominal values. With the increase of
categorical data such as that derived from social networks,
it is important to develop effective and efficient measures for
capturing similarity between nominal variables.

Thus, we discuss the similarity for categorical values by
considering data characteristics. Two attribute values are
similar if they present analogous frequency distributions for
one attribute [2]; this reflects the intra-coupled similarity
within a feature. For example, two directors are very simi-
lar if they appear with almost the same frequency, such as
“Scorsese” with “Coppola” and “Koster” with “Hitchcock”.
However, the reality is that the former director pair is more

LA conclusion drawn from a well-informed cinematic source.



similar than the latter. To improve the accuracy of intra-
coupled similarity, it is believed that the object co-occurrence
probabilities of attribute values induced on other features
are comparable [1]. To this end, the similarity between di-
rectors should also cater for the dependencies on other fea-
tures such as “actor” and “genre” over all the movie objects,
namely, the inter-coupled similarity between attributes. The
coupling relationships between values and between attributes
contribute to a more comprehensive understanding of ob-
ject similarity [4]. No work that systematically considers
both intra-coupled and inter-coupled similarities has been
reported in the literature. This fact leads to the incomplete
description of categorical value similarities, and apart from
this, the similarity analysis on dependency aggregation is
usually very costly.

In this paper, we propose a Coupled Object Similarity
(COS) measure by considering both Intra-coupled and Inter-
coupled Attribute Value Similarities (IaAVS and [eAVS),
which capture the attribute value frequency distribution and
feature dependency aggregation with a high learning accu-
racy and relatively low complexity, respectively. We com-
pare accuracies and efficiencies among the four proposed
metrics for IeAVS, and come up with an optimal one from
both theoretical and experimental aspects; we then evaluate
our proposed measure with an existing metric on a variety of
benchmark categorical data sets in terms of clustering quali-
ties; and we develop a method to define dissimilarity metrics
flexibly with our fundamental similarity building blocks ac-
cording to specific requirements..

The paper is organized as follows. In Section 2, we briefly
review the related work. Preliminary definitions are speci-
fied in Section 3. Section 4 proposes the coupled similarities,
and the theoretical analysis is given in Section 5. We demon-
strate the efficiency and effectiveness of COS in Section 6
with experiments. Finally, we end this paper in Section 7.

2. RELATED WORK

There are some surveys [2, 7] that discuss the similar-
ity between categorical attributes. Cost and Salzberg [5]
proposed MVDM based on labels, while Wilson and Mar-
tinez [10] studied heterogeneous distances for instance based
learning. Unlike our focus here, the measures in their study
are only designed for supervised approaches.

For unsupervised learning, there exist some data mining
techniques for nominal data [1, 2]. The most famous are
the SMS measure and its diverse variants such as Jaccard
coefficients [7], which are all intuitively based on the prin-
ciple that the similarity measure is 1 with identical values
and is otherwise 0. More recently, attribute value frequency
distribution has been considered for similarity measures [2];
neighborhood-based similarities [8] are explored to describe
the object neighborhood by using an overlap measure. They
are different from our proposed method, which directly re-
veals the similarity between a pair of objects.

Recently, increasing numbers of researchers have argued
that the attribute value similarities are also dependent on
their coupling relations [2, 4]. Das and Mannila presented
the Iterated Contextual Distances algorithm, believing that
the feature and object similarities are inter-dependent [6].
Ahmad and Dey [1] proposed computing the dissimilarity
by considering the co-occurrence. While the dissimilarity
metric of the latter leads to high accuracy, the computation
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Table 2: An Example of Information Table

U 4 al az as
uy Ay B C
Uz Az B 1
us Ao B Co
ugq Az B3 Cs
us Ay B3 Cs
ueg A4 B2 CS

is usually very costly, which limits its application in large-
scale problems.

3. PROBLEM STATEMENT

A large number of data objects with the same features
can be organized by an information table S =< U, A, V, f >,
where U = {u1, -+ ,um} is composed of a nonempty finite
set of data objects; A = {a1, -+ ,an} is a finite set of fea-
tures; V = U;;l V; is a set of all attribute values, in which
V; is the set of attribute values of feature a;(1 < j < m);
and f = Aj_if; (f; : U — V;) is an information function
which assigns a particular value of each feature to every ob-
ject. For instance, Table 2 consists of six objects and three
features, with fa(u1) = Bi and Vo = {B1, Ba, Bs}.

Generally speaking, the similarity between two objects
Uiy, Uiy € U is built on top of the similarities within their
values z,y € V; for all the features a;. The basic concepts
below are defined to facilitate the formulation for attribute
value similarities, where | H| is the number of elements in H.

DEFINITION 3.1. Given an information table S, three Set
Information Functions (SIFs) are defined as f; : 2V —
2Vi, g V; =29, and g5 : 2Vi - 2V Specifically:

I Quny, - sun, }) = {f5(uny ), -5 fi(ug,) },
g5 () = {uilfi(wi) =2,1 <j<n,1<i<m},  (3.2)
g (W) = {wilfj(us) € W,1 <5 <m,1<i<m},

where wi, Uk, , -+ ,up, €U, and W C Vj.

These SIF's describe the relationships between objects and
attribute values from different levels. For example, f5 ({u1, u2,
U3}) = {Bl, BQ}, gg(Bl) = {ul, UQ} fOI' Value Bl, Whlle
g;({Bl, Bz}) = {ul, U2, uz, 'LL6} if given W = {Bl, Bg}.

DEFINITION 3.2. Given an information table S, its Inter-
information Function (ITF) @;_ : V; — 2% is defined:

pj-k() = fi(g5(x))- (34)

This IIF ¢j_ is the composition of f; and g;. It ob-
tains the kth attribute value subset for the corresponding
objects, which are derived from the jth attribute value z.
For example, pa,1(B1) = {A1, A2}

DEFINITION 3.3. Given an information table S, the kth
attribute value subset W C Vi, and the jth attribute value
x € V;, the Information Conditional Probability (ICP)
of W with respect to x is Py ;(W|x):

_ lge) N g;(@)]

Pea (V) =200 )

. (3.5)



Intuitively, when given all the objects with the jth at-
tribute value x, ICP is the percentage of the common objects
whose kth attribute values fall in subset W and jth attribute
value is exactly « as well. For example, Py5({A1}|B1) = 0.5.

All these concepts and functions are composed to formal-
ize the so-called coupled interactions between categorical at-
tribute values, as presented below.

4. COUPLED SIMILARITIES

In this section, Coupled Attribute Value Similarity
(CAVS) is proposed in terms of both intra-coupled and
inter-coupled value similarities. When we consider the simi-
larity between attribute values, “intra-coupled” indicates the
involvement of attribute value occurrence frequencies within
one feature, while the “inter-coupled” means the interaction
of other features with this attribute. For example, the cou-
pled value similarity between B; and B> concerns both the
intra-coupled relationship specified by the repeated times of
values B; and Bs: 2 and 2, and the inter-coupled interaction
triggered by the other two features (a1 and asg).

Suppose we have the Intra-coupled Attribute Value
Similarity (IaAVS) measure 6.°(z,y) and Inter-coupled
Attribute Value Similarity (IeAVS) measure §;°(z,y)
for feature a; and z,y € Vj, then CAVS 5;-4(x,y) is natu-
rally derived by simultaneously considering both of them.

DEFINITION 4.1. Given an information table S, the Cou-
pled Attribute Value Similarity (CAVS) between attribute
values x and y of feature aj is:

5Nz, y) = 61 (x,y) - 8} (z,y) (4.1)

where 5;“ and 6]16 are IaAVS and IeAVS, respectively.

4.1 Intra-coupled Interaction

According to [7], it is a fact that the discrepancy of at-
tribute value occurrence times reflects the value similarity
in terms of frequency distribution. Thus, when calculating
attribute value similarity, we consider the relationship be-
tween attribute value frequencies on one feature, proposed
as intra-coupled similarity in the following.

DEFINITION 4.2. Given an information table S, the Intra-
coupled Attribute Value Similarity (IaAVS) between at-
tribute values x and y of feature aj is:

Tagy o) = |95 ()| - 195 ()]
NSl P o o o o ey e o

In this way, different occurrence frequencies indicate dis-
tinct levels of attribute value significance. Gan et al. [7]
reveal that greater similarity is assigned to the attribute
value pair which owns approximately equal frequencies. The
higher these frequencies are, the closer such two values are.
Thus, function (4.2) is designed to satisfy these two prin-
ciples. Besides, since 1 < |g;(2)],]g;(y)| < m, then §/* €
[1/3,m/(m + 2)]. For example, in Table 2, both values B
and By are observed twice, so 85%(By, Bs) = 0.5.

Hence, by taking into account the frequencies of cate-
gories, an effective measure (laAVS) has been captured to
characterize the value similarity in terms of occurrence times.

4.2 Inter-coupled Interaction

In terms of IaAVS, we have considered the intra-coupled
similarity, i.e., the interaction of attribute values within one
feature a;. This does not, however, involve the couplings
between other features ay(k # j) and feature a; when cal-
culating attribute value similarity. Accordingly, we discuss
this dependency aggregation, i.e., inter-coupled interaction.

In 1993, Cost and Salzberg [5] proposed a powerful method,
MVDM, for measuring the dissimilarity between categorical
values. MVDM considers the overall similarities of classifi-
cation of all objects on each possible value of each feature.
The idea is that attribute values are identified as being sim-
ilar if they occur with the same relative frequency for all
classifications. In the absence of labels, the above measure
is adapted to satisfy our target problem by replacing the
class label with some other feature to enable unsupervised
learning. We regard this interaction between features as
inter-coupled similarity in terms of the co-occurrence com-
parisons of ICP. The most intuitive variant is IRSP:

DEFINITION 4.3. Given an information table S, the Inter-
coupled Relative Similarity based on Power Set (IRSP)
between attribute values x and y of feature a; based on an-
other feature ay, is:

Oie(@,y) = min {2 = Pu;(Wle) = Py (Wly)},  (43)

where W = Vi\W is the complementary set of a set W
under the complete set Vj,.

In fact, two attribute values are closer to each other if
they have more similar probabilities with other attribute
value subsets in terms of co-occurrence object frequencies.
In Table 2, by employing (4.3), we want to get 651(31, Bs),
i.e. the similarity between two attribute values B, Bz of fea-
ture az regarding feature a;. Since the set of all attribute
values of feature a1 is Vi = {A1, Aa, Az, A4}, the number of
all power sets within Vi is 2%, i.e., the number of the com-
binations consisting of W C V; and W C Wy is 2%, The
minimal value among them is 0.5, which indicates that sim-
ilarity 65, (B, B2) = 0.5.

This process shows the combinational explosion brought
about by the power set needs to be considered when calcu-
lating attribute value similarity by IRSP. We therefore try
to define three more similarities based on IRSP as follows.

DEFINITION 4.4. Given an information table S, the Inter-
coupled Relative Similarity based on Universal Set
(IRSU), Join Set (IRSJ), and Intersection Set (IRSI)
between attribute values x and y of feature a; based on an-
other feature ay, are the following formulae respectively:

55k(x,y) =2 = Y max{Py;({w}e), Poy({w}ly)}, (4.4)

Sik(z,y) =2 = Y max{Pu;({w}lz), Py, ({w}ly)}, (4.5)
welJ

Gji(x,y) = Y min{Py;({w}|z), Pu;({w}ly)}, (4.6)
we

where w € |J and w € () denote w € pji(x)Jpisn(y)
and w € @i (x) () ej-k(y), respectively.

Each kth attribute value w € Vj, rather than its value
subset W C V4, is considered to reduce computational com-
plexity. In this way, IRSU is applied to compute similarity



651(31,32), and we get 651(31,32) = 0.5. Since IRSU
only concerns all the single attribute values rather than
exploring the whole power set, it has solved the combina-
tional explosion issue to a great extent. In IRSU, ICP is
merely calculated 8 times compared with 32 times by IRSP,
which leads to a substantial improvement in efficiency. Then
with (4.5), the calculation of 63|, (B, B2) is further simpli-
fied since As &€ pa1(B1)Jp2—1(B2). Thus, we obtain
(557|1 (B1, B2) = 0.5, which reveals the fact that it is enough to
compute ICP with w € Vi that belongs to w21 (B1) U p2-1
(B2) instead of all the elements in V1. From this perspective,
IRSJ reduces the complexity further when compared with
IRSU. Based on IRSU, an alternative IRSI is considered.
For example, with (4.6), the calculation of 6£|1(31,B2) is
once again simplified since only As € @o_1(B1) () p2—1(B2).
Then, we easily get 55‘1(31, Bs) = 0.5. In this case, it is suf-
ficient to compute ICP with w € Vi which only belongs to
w251(B1) () p2—-1(B2). Tt is trivial that the cardinality of
intersection () is no larger than that of join set |J. Thus,
1RSI is further more efficient than IRSU due to the reduc-
tion of intra-coupled relative similarity complexity.
Intuitively speaking, it is a fact that IRSI is the most
efficient of all the proposed inter-coupled relative similarity
measures: [RSP, IRSU, IRSJ, IRSI. In addition, all four
measures lead to the same similarity result, such as 0.5.
According to the above discussion, we can naturally define
the similarity between the jth attribute value pair (x,y) on
top of these four optional measures by aggregating all the
relative similarities on features other than attribute a;.

DEFINITION 4.5. Given an information table S, the Inter-
coupled Attribute Value Similarity (IeAVS) between at-
tribute values x and y of feature aj is:

6316(:C>y) = Z akéj\k(%.ﬂ%
k=1,k#j

(4.7)

where ay, is the weight parameter for feature ax, Zzzl ap =
1, o € [0,1], and 0 (x,y) is one of the inter-coupled rela-
tive similarity candidates.

Accordingly, we have §;° € [0,1], then 6;4 5j¢-8ic €
[0,m/(m + 2)] since 6/ € [1/3,m/(m + 2)]. In Table 2, for
example, 63°(B1, B2) = 0.5:8)1(B1, B2)+0.502/3(B1, B2) =
(0.5+0)/2 = 0.25 if ax = ag = 0.5 is taken with equal
weight. Furthermore, coupled attribute value similarity (4.1)
is obtained as 05'(By,B2) = 04%(By1, By) - 05¢(B1, Ba) =
0.5 x0.25 = 0.125. For the Movie data set in Section 1, then
(S?)ir.ectm.(SCOTSESE, COppOla) = 6girector(copp0la7 COppOlCL)
=0.33, and 0, cotor (Koster, Coppola) = 0 while 65, ceton
(Koster, Hitchcock) = 0.25. They correspond to the fact
that “Scorsese” and “Coppola” are very similar directors just
as “Coppola” is to himself, and the similarity between “Koster”
and “Hitchcock” is larger than that between “Koster” and
“Coppola”, as clarified in Section 1.

After specifying IaAVS and IeAVS, a coupled similarity
between objects is built based on CAVS. Then, we consider
the sum of all these CAVSs analogous to the construction
of Manhattan dissimilarity [7]. Formally, we have:

DEFINITION 4.6. Given an information table S, the Cou-
pled Object Similarity (COS) between objects u;, and ui, :

COS(uiy, uiy) = Zéf(xiljv Ting ) (4.8)
j=1
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Table 3: Computational Complexity for CAVS

Metric  Calculation Steps Flops per Step  Complexity
IRSP nR(R—1)/2 2(n — 1)2F O(n?R22%)
IRSU nR(R—1)/2 2(n—1)R O(n?R?R)
IRSJ nR(R—1)/2 2(n—1)P O(n?R?R)
IRST nR(R—1)/2 2(n —1)Q O(n?R?R)

where ;' is the CAVS measure defined in (4.1), xi,; and
Tiyj are the attribute values of feature a; for objects u;; and
wu;, respectively, and 1 <i1,i0 <m, 1 <5< n.

For COS, all the CAVSs with each feature are summed
up for two objects. For example (Table 2), COS(uz,u3) =
>0 0j(way, m55) = 0.5 4 0.125 + 0.125 = 0.75.

S. THEORETICAL ANALYSIS

This section compares four proposed inter-coupled relative
similarity measures (IRSP, IRSU, IRSJ and IRSI) in terms
of their computational accuracies and complexities.

1) Computational Accuracy Equivalence
From the aspect of set theory, these four measures are
equivalent to one another in calculating value similarity.

THEOREM 5.1. IRSP, IRSU, IRSJ and IRSI are all equiv-
alent to one another.?

The above theorem also explains the similarity result in
Section 4.2. Thus, these measures induce exactly the same
computational accuracy in machine learning tasks.

2) Computational Complexity Comparison

Suppose we have an information table S with m objects
and n features, the maximal number of attribute values for
all the features is R. In total, the number of attribute value
pairs for all the features is at most n - R(R — 1)/2, which is
also the number of calculation steps. For each inter-coupled
relative similarity, we calculate ICP for |1 CPJ.(‘]]:I )\ times by a
measure JRSM. As we have n attributes, the total ICP time
costs for CAVS is 2|ICP].(‘A}:I)\ - (n — 1) flops per step. Since
we have four options for M, the computational complexities
for calculating all the CAVSs are shown in Table 3.

As indicated in Table 3, all the measures have the same
calculation steps, while their flops per step are sorted in de-
scending order since 2% > R > P > @Q, in which P and Q
are the join and intersection sets of the corresponding IIF's,
respectively. This evidences that the computational com-
plexity essentially depends on the time costs of ICP linearly
with given data. Specifically, IRSP has the largest complex-
ity O(n?R?2™), compared to the smaller equal ones O(n?R%)
presented by the other three measures (IRSU, IRSJ, and
IRST). Of the latter three candidates, though they have the
same computational complexity, IRSI is the most efficient
due to Q@ < P < R. In fact, the dissimilarity that Ahmad
and Dey [1] have used for mixed data clustering corresponds
to the worst measure RSP discussed here.

Considering both the accuracy analysis and complexity
comparison, we conclude that IRSI is the best performing
because it indicates the least complexity but still maintains
an equal accuracy to present coupling.

2 All detailed proofs of Theorem 5.1 are available on request.
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6. EXPERIMENT AND EVALUATION

In this section, several experiments are performed on ex-
tensive UCI data sets to show the effectiveness and efficiency
of our proposed coupled similarities. The experiments are
divided into two categories: coupled similarity comparison
and COS application. For simplicity, we just assign the
weight vector o = (ax)1xn with values a(k) = 1/n in (4.7).

6.1 Coupled Similarity Comparison

To compare efficiencies, we conduct extensive experiments
on the inter-coupled relative similarity metrics: IRSP, IRSU,
IRSJ, and IRSI. The goal in this set of experiments is to
show the obvious superiority of IRSI, compared with the
most time-consuming measure IRSP. As discussed in Sec-
tion 5, the computational complexity linearly depends on
the time costs of ICP with given data. Thus, we consider a
comparison of complexities represented by the time costs of
ICP. Also explained in Section 5, the complexity for TRSP is
O(n*R*2™), while the other three have equal smaller com-
plexity O(n*R?). Here, scalability analysis is explored in
terms of these two factors separately: the number of fea-
tures |A| and the maximal number of attribute values R.

From the perspective of |A|, Soybean-large data set is
considered with 307 objects and 35 features. Here, we fix R
to be 7, and focus on |A| ranging from 5 to 35 with step 5.
In terms of the total time costs of ICP, the computational
complexity comparisons among four measures (/RSP, IRSU,
IRSJ, and IRST) are depicted in Figure 1(|A4|). The result
indicates that the complexities of all these measures keep
increasing when |A| becomes larger. The acceleration of
IRSP (from 3328 to 74128) is the greatest compared with
the slightest acceleration of IRSI (from 632 to 15704). Apart
from these two, the scalability curves are almost the same for
IRSU and IRSI, though the complexity of IRSU is slightly
higher than that of IRSJ with varied |A|. Therefore, IRSI is
the most stable and efficient measure to calculate the intra-
coupled relative similarity in terms of |A|.

From the perspective of R, the variation of R is con-
sidered when |A] is confirmed. Here, we take advantage of
the Adult data set with 30718 objects and 13 features cho-
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sen. Specifically, the integer feature “fnlwgt” is discretized
into different intervals (from 10 to 10000) to form distinct R
ranging from 16 to 10000, since one of the existing categorial
attributes “education” already has 16 values. The outcomes
are shown in Figure 1(R), in which the horizontal axis refers
to R, and the vertical axis indicates the relative complex-
ity ratios in terms of {(J/U), £(I/J), and £(I/U). From
this figure, we observe all the ratios between 10% and 100%,
which again verifies the complexity order for these four mea-
sures indicated in Section 5. Another issue is that all three
curves decrease as R grows, which means the efficiency ad-
vantages of IRSJ upon IRSU (from 85.5% to 46.8%), IRSI
upon IRSJ (from 78.2% to 40.2%), and IRSI upon IRSU
(from 66.9% to 18.8%) all become more and more obvious
with the increasing of R. The general trend of these ratios
always falling comes from the fact that there is a higher
probability of getting a join set smaller than the whole set,
and an intersection set smaller than the join set, with larger
R. The same conclusion also holds for the ratio {(U/P),
but this is due to the fact that ¢~ ' (x) = 2/2% is a strictly
monotonously decreasing function when x > 1. We omit
this ratio in Figure 1(R) since the denominator [IC'P")]
becomes exponentially large when R grows, e.g., it equals
to 5.12 x 10 when R = 500. Hence, IRSI is the least
time-consuming intra-coupled similarity with regard to R.

In summary, all the above experiment results clearly show
that IRSI outperforms IRSP, IRSU, and IRSJ in terms
of the computational complexity. In particular, with the
increasing numbers of either features or attribute values,
IRSI demonstrates superior efficiency compared to the oth-
ers. IRSJ and IRSU follow, with IRSP being the most
time-consuming, especially for the large-scale data set.

6.2 Application

In this part of our experiments, we focus on the compu-
tational accuracy comparison. In the following, we evaluate
the COD which is derived from (4.8):

COD(wiy, iy) = > b (85 (Tiyg, Ting)) - ha (8] (Tiyg, Tinj)),
=1

(6.1)
where hi(t) and ho(t) are decreasing functions. Based on
intra-coupled and inter-coupled similarities, h1(t) and ha(t)
can be flexibly chosen to build dissimilarity measures ac-
cording to specific requirements. Here, we consider hi(t)
1/t — 1 and ha(t) = 1 —t to reflect the complementarity of
similarity and dissimilarity measures. In terms of the capa-
bility on revealing the relationship between data, the better
the dissimilarity induced, the better is its similarity.

To demonstrate the effectiveness of our proposed COD in
application, we compare two clustering methods based on
two dissimilarity metrics on six data sets. Here, COD is
used with the outperforming measure IRSI.

One of the clustering approaches is the k-modes (KM) al-
gorithm [7], designed to cluster categorical data sets. The
main idea of KM is to specify the number of clusters k and
then to select k initial modes, followed by allocating every
object to the nearest mode. The other is a branch of graph-
based clustering, i.e., spectral clustering (SC) [9], which
makes use of the Laplacian Eigenmaps on dissimilarity ma-
trix to perform dimensionality reduction for clustering prior
to the k-means algorithm. In respect of feature dependency
aggregations, however, Ahmad and Dey [1] evidenced that
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Figure 2: Clustering evaluation on six data sets

their proposed metric ADD outperforms SMD in terms of
KM clustering. Thus, we aim to compare the performances
of ADD [1] and COD (6.1) for further clustering evaluations.

We conduct four groups of experiments on the same data
sets: KM with ADD, KM withCOD, SC with ADD, and SC
with COD. The clustering performance is evaluated by com-
paring the obtained cluster of each object with that provided
by the data label in terms of accuracy (AC) and normalized
mutual information (NMI) [3]. ACe€ [0,1] is a degree of
closeness between the obtained clusters and its actual data
labels, while NMI€ [0,1] is a quantity that measures the
mutual dependence of two variables: clusters and labels.
AC=1 or NMI= 1 if the clusters and labels are identical,
and AC= 0 or NMI= 0 if the two sets are independent. In
fact, the larger AC or NMI is, the better the clustering is,
and the better the corresponding dissimilarity metric is.

Figure 2 reports the results on six data sets with different
|U|, ranging from 15 to 699 in increasing order. In terms of
AC and NMI, the evaluations are conducted with KM-ADD,
KM-COD, SC-ADD, and SC-COD individually. Followed
by Laplacian Eigenmaps, the subspace dimensions are de-
termined by the number of labels in SC. For each data set,
the average performance is computed over 100 tests for KM
and k-means in SC with distinct start points.

As can be clearly seen from Figure 2, the clustering meth-
ods with COD, whether KM or SC, outperform those with
ADD in terms of both AC and NMI measures. That is
to say, dissimilarity metric COD is better than ADD on
clustering qualities. Specifically for KM, the AC' improving
rate ranges from 5.56% (Balloon) to 16.50% (Zoo), while
the NMI improving rate falls within 4.76% (Soybean-s) and
37.38% (Breastcancer). With regard to SC, the former rate
takes the minimal and maximal ratios as 4.21% (Balloon)
and 20.84% (Soybean-1), respectively; however, the latter
rate belongs to [5.45% (Soybean-1), 38.12% (Shuttle)]. Since
AC and NMI evaluate clustering quality from different as-
pects, they generally take minimal and maximal ratios on
distinct data sets. Another significant observation is that
SC  mostly outperforms KM a little whenever it has the
same dissimilarity metric; in fact, Luxburg [9] has indicated
that SC very often outperforms k-means for numerical data.

We draw the following two conclusions: 1) intra-coupled

relative similarity IRSI is the most efficient one when com-
pared with IRSP, IRSU and IRSJ, especially for large-scale
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data; 2) our proposed object dissimilarity metric COD is
better than others, such as dependency aggregation only
ADD, for categorical data in terms of clustering qualities.

7. CONCLUSION

We have proposed COS, a novel coupled object similarity
metric which involves both attribute value frequency distri-
bution (intra-coupling) and feature dependency aggregation
(inter-coupling) in measuring attribute value similarity for
unsupervised learning of nominal data. Theoretical analysis
and substantial experiments have shown that inter-coupled
relative similarity measure IRSI significantly outperforms
the others (IRSP, IRSU, IRSJ) in terms of efficiency, in par-
ticular on large-scale data, while maintaining equal accuracy.
Moreover, our derived dissimilarity metric is more compre-
hensive and accurate in capturing the clustering qualities in
accordance with substantial empirical results.

We are currently applying the COS measure with IRSI to
feature discretization, clustering ensemble, and other data
mining tasks. We are also considering extending the notion
of “coupling” for the similarity of numerical data. Moreover,
the proposed concepts Inter-information Function and In-

formation Conditional Probability for the information table

have potential for other applications.
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