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ABSTRACT
Financial variables such as asset returns in the massive mar-
ket contain various hierarchical and horizontal relationships
forming complicated dependence structures. Modeling and
mining of these structures is challenging due to their own
high structural complexities as well as the stylized facts of
the market data. This paper introduces a new canonical vine
dependence model to identify the asymmetric and non-linear
dependence structures of asset returns without any prior in-
dependence assumptions. To simplify the model while main-
taining its merit, a partial correlation based method is pro-
posed to optimize the canonical vine. Compared with the
original canonical vine, the new model can still maintain the
most important dependence but many unimportant nodes
are removed to simplify the canonical vine structure. Our
model is applied to construct and analyze dependence struc-
tures of European stocks as case studies. Its performance is
evaluated by measuring portfolio of Value at Risk, a widely
used risk management measure. In comparison to a very
recent canonical vine model and the ‘full’ model, our ex-
perimental results demonstrate that our model has a much
better quality of Value at Risk, providing insightful knowl-
edge for investors to control and reduce the aggregation risk
of the portfolio.
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Modeling the complex dependence structures of financial
variables is a fundamental research problem in the finan-
cial domain useful for a wide range of applications including
price prediction and risk measurement. Its extreme impor-
tance has been partially demonstrated in the 2007 global
financial crisis. That financial turmoil was originated from
the subprime mortgage market in the United States (US),
and it quickly spread to every cell in the US and global finan-
cial system. The bankrupt of Lehman Brothers in Septem-
ber, 2008 marked a peak point of the crisis—the failure of the
fourth largest investment company was the largest bankrupt
in US history. The European financial market was heavily
impacted by the collapse of Lehman Brothers as the Euro-
pean financial market was not isolated. If early precautious
measures were taken according to the fundamental under-
standing of the global financial dependence, some of the cri-
sis may be avoided.

There are various hierarchical and horizontal coupling re-
lations in the stock markets [4]. We take European stocks as
an example to explain the concept of dependence. ˆSTOXX-
50E is a composite index of European stocks, composing of
50 European stocks from six countries. Siemens and Allianz
are two companies in Germany; France Telecom and Societe
Generale GRP are two companies from France. It is easily
understood that the price index of Siemens is directly de-
pendent on its national index of Germany. Although some-
times not easily visible, its price index is also dependent
on the composite index ˆSTOXX50E, the national index of
France, the price index of Allianz, that of France Telecom,
or that of Societe Generale GRP (see the dashed lines in
Figure 1). Thus, the price of an individual stock can be
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Figure 1: An Example of Dependence Structure

affected not only by the composite index and its national
index, but also by other national indices and the price of in-
dividual stocks from other countries. So, the price index of



two stocks even from different countries should be dependent
to each other which is however assumed as independent by
past models. Our concept of this comprehensive dependence
structure without prior independence assumptions can give
investors an insightful understanding of the financial market.
In particular, it is useful for portfolio investors to control the
aggregation risk [2] of the portfolio with higher precision.
To model the price and composite index in stock markets,

the price’s log difference of every two consecutive trading
days is usually taken, which are called returns. Early tech-
niques in modeling dependence of returns in stock markets
is by the Pearson’s correlation method. It uses the average
deviation from mean, ignoring the small or large returns as
well as negative and positive returns. However, it is unable
to explain the asymmetric correlation of stock markets as
shown in [17]. Another classical idea in modeling depen-
dence is through the use of the Capital Asset Pricing Model
(CAPM). CAPM belongs to the family of factor models, in
which CAPM is the simplest version with only one factor to
control market. The normality assumption makes CAPM
inappropriate in modeling returns of stocks, as the returns
of stock markets are not normally distributed.
Copula model is a powerful tool in modeling the depen-

dence structure for the returns of stock markets. This is
mostly attributed to that copula model can separate the de-
pendence structure from the marginal distribution. There-
fore, the selection of copula functions is not constrained by
the choice of marginal distributions. Another key point of
copula model is its consideration of both the dependence of
the portfolio of stock returns as well as correlations of in-
dividual stock returns at the same time. Recently, Heinen
and Valdesogo [10] proposed a new copula model, named
Canonical Vine Autoregressive (CAVA) model, which intro-
duces three different levels of variables: market indices, sec-
tor indices and individual stock returns. It integrates these
different levels of stock returns as a whole to conduct de-
pendence analysis. However, one limit of the CAVA model
is that it imposes two independence assumptions on the de-
pendence structure. With this restriction on dependence
structures, it is definitely not a perfect model to understand
the complex relationships of financial variables.
The challenging task to investigate the dependence struc-

ture in stock returns contains other three difficulties. Firstly,
it is difficult to build an appropriate model to describe and
capture the dependence. The dependence structure will be
very much complicated as the data dimension is quite large.
If the dependence is constructed by using canonical vine
(which is discussed in Section 2 in detail), the number of
nodes increases exponentially as the the number of variables
grows. It is difficult to construct and optimize the model
when the variables is quite large. Second, financial variables
has its own characteristics, which is called stylized facts.
The most important stylized facts are volatility clustering,
fat tails and asymmetry. Volatility clustering refers to the
variance of returns, namely low values of volatility tend to
be followed by low values; and high values of volatility fol-
lowed by high values [3]. The fat tail means that extreme
values in stock return occur more frequent than the implied
number by a normal distribution. Asymmetry means that
positive and negative returns of the same magnitude have
different impact on the variance. For example, stock return
will have stronger correlation in bear market downturn than
in bull market [7]. Third, daily returns are not normally dis-

tributed. Even after the daily returns being standardized by
dependence model, the standardized residuals are still not
normally distributed. Therefore, a new idea in modeling the
dependence structure is demanded to consider both the de-
pendence between stock returns as well as the stylized facts
of financial time series at the same time.

To fulfill this need, we propose a new canonical vine based
dependence model, called Canonical V ine Dependence Mo−
del (CVDM). CVDM can capture various and important
hierarchical and horizontal dependence. In order to ad-
dress the high-dimensionality issue, we use an idea of par-
tial correlation to optimize the canonical vine structure.
The canonical vine, when it is constructed and optimized
by the partial correlation method, is able to model high-
dimensional dependence structures. It is capable of main-
taining the most important dependence, while reducing the
complexity of the dependence structure remarkably, espe-
cially for high-dimensional input. In addition, we also take
an ARMA-GARCH model with skewed student t distribu-
tion for marginal models to capture the stylized facts in
financial variables, such as volatility clustering, fat tail and
asymmetry.

The main contribution made by this work is the new par-
tial correlation method to construct and optimize the canon-
ical vine in our model CVDM. It is practically needed to
optimize the canonical vine as the number of parameters in
canonical vine is quit large for high dimensional data. The
optimal canonical vine can reduce the number of parameters
and simplify the canonical vine structure. The optimal vine
can capture the most important dependence of data, with-
out big affect on the structure of canonical vine. In addition,
compared with CAVA model, the partial correlation based
canonical vine model, CVDM, does not impose any indepen-
dence assumption on the structure, totally eliminating any
prior bias for modeling the dependence structure in stock re-
turns. CVDM not only summarizes the various dependence
with a single number, but also contains much information
which is helpful for a deeper understanding of dependence
structure. For example, CVDM can be used to determine
the correlation between two stock returns as well as multi-
variate stock returns. It can be also used to calculate the
conditional copula of stock return, such as the correlation of
two stock returns conditioning on market indices. Further,
the rich information in CVDM can be utilized to compute
risk measures such as Value at Risk.

The rest of the paper is organized as follows. In Section 2,
we provide a short introduction to copula and present related
works. Section 3 describes the framework of our Canonical
V ine Dependence Model in detail, including construction
and optimization of canonical vine. Section 4 discusses the
selection of marginal distributions. Section 5 provides simu-
lation steps for calculating the portfolio of Value at Risk. In
Section 6, we apply the Canonical Vine Dependence Model
to capture the dependence of returns in European stock mar-
kets, and evaluate out model by comparing with the per-
formance of CAVA and full canonical vine model. Finally,
Section 7 concludes the paper.

2. RELATED WORK
Recently, copula theories have been rapidly developed.

Copula is a powerful tool in modeling the dependence of
variables. It can capture complicated correlations between
variables, including linear or non-linear ones. According to



Sklar’s theorem [18], a copula function is defined to con-
nect univariate functions to form a multivariate distribution
function. The definition of a copula function is given by:

F (x1, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (1)

where, x = [x1, x2, ..., xn] is a random variable vector, F is
a joint distribution and F1, F2, ..., Fn are the marginal dis-
tributions of the corresponding variables respectively. The
differential of Equation (1) is:

f(x1, ..., xn) =

n∏
i=1

fi(xi) · c(F1(x1), F2(x2), ..., Fn(xn)) (2)

where, c is the density copula function and fi(xi) is the
density function of marginal distributions. A useful prop-
erty of copula is that given any set of marginal distribu-
tion (F1(x1), F2(x2), ..., Fn(xn)) and copula function C, we
can obtain a joint distribution via Equation (1). Equation
(2) implies another important property: copula function can
separate dependence from marginal distributions. This indi-
cates that the choice of copula functions is not constrained
by the choice of marginal distributions and the marginal
distributions do not have to be the same—the marginal dis-
tribution can even be selected from mixed families. This
property makes copula flexible and be a powerful tool for
modeling dependence.
One way to build high-dimensional copula models is to

construct multivariate copula model based on canonical vine
defined by Aas et.al [1] as:

c(F1(x1), F2(x2), ..., Fn(xn)) =

n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...j−1(F (xj |x1, ..., xj−1), F (xj+i|x1, ..., xj−1))

(3)

where, c(·, ·) is the pair copula density function. In Equa-
tion (3), the jointly copula function can be decomposed into
many conditional pair copula functions. Canonical vine is
hierarchical in nature. The basic scheme for modeling de-
pendence with canonical vine model is to decompose mul-
tivariate density functions into many conditional pair cop-
ulas. These pair copulas are bivariate copulas in one time.
The multivariate model based on canonical vine transforms
one high dimensional model into multiple two-dimensional
models, which makes canonical vine model the complex de-
pendence structure with high dimensional variables.
Chollete et al. [5] proposed a multivariate copula regime-

switching model based on vine copula to capture the asym-
metric dependence in stock markets. Berg and Aas [1] com-
pared multivariate model based on canonical vine with the
nested Archimedean construction. The result suggested that
canonical vine is better in fitting the data based on empir-
ical study with two four-dimensional data sets. Min and
Czado [16] proposed a Bayesian inference for canonical vine.
They developed a Markov chain Monte Carlo (MCMC) algo-
rithm, which can reveal unconditional and conditional inde-
pendence in data sets. Smith et al [19] proposed a Bayesian
method for the estimation of parameters in high-dimensional
model based on canonical vine.
Recently, Heinen and Valdesogo [10] proposed a Canonical

Vine Autoregressive (CAVA) model based on canonical vine.
Suppose that there are four stock returns (rA1,rA2,rB1 and

rB2) from two different sectors (SA and SB). The return of
market is rM , and the returns of sector A and B are rA and
rB respectively. The independence assumptions imposed by
the CAVA model are:

• the stocks are only dependent on their own sector re-
turns conditioned on the market, but they are inde-
pendent to all of the other sector returns. It means
that rA1 and rA2 are independent to rB conditioned
on rM , and rB1 and rB2 are independent to rA con-
ditioned on rM . This leads to crA,rB1|rM (·, ·) = 1,
crA,rB2|rM (·, ·) = 1, crB ,rA1|rM (·, ·) = 1, and
crB ,rA2|rM (·, ·) = 1;

• the returns of sector conditioned on market are in-
dependent to each other. It means that rA and rB
conditioned on rM are independent. This leads to
crA,rB |rM (·, ·) = 1

A1 A2 B1 B2

A

M

B

M,A M,B

A2,A|M

B1,B|M

A1,A|M B2,B|M

A1,A2|M,A B1,B2|M,B

Figure 2: CAVA Dependence Structure

Thus, we can obtain the joint density function (Equation
(4)) by rewriting Equation (2)

f(rM , rA, rB , rA1, rA2, rB1, rB2) =

f(rM ) · f(rA) · f(rB) · f(rA1) · f(rA2) · f(rB1) · f(rB2)

c(rM , rA, rB , rA1, rA2, rB1, rB2)

(4)

where c(rM , rA, rB , rA1, rA2, rB1, rB2) are the copula func-
tion, which can be decomposed into the following Equation:

c(rM , rA, rB , rA1, rA2, rB1, rB2) =

crM ,rA (F (rM ), F (rA)) · crM ,rB (F (rM ), F (rB))

crM ,rA1 (F (rM ), F (rA1)) · crM ,rA2 (F (rM ), F (rA2))

crM ,rB1 (F (rM ), F (rB1)) · crM ,rB2 (F (rM ), F (rB2))

crA,rA1|rM (F (rA, |rM ), F (rA1|rM ))

crA,rA2|rM (F (rA, |rM ), F (rA2|rM ))

crA1,rA2,rB1,rB2|rM ,rA,rB
(·, ·)

(5)

The dependence structure modeled by CAVA is described
in Figure 2, where a dashed line indicates that the correla-
tion is assumed to be independent. It is a biased assumption,
not an assumption based on data analysis. It is implausible.

3. OUR CANONICAL VINE DEPENDENCE
MODEL

Figure 3 shows the flow chart of our Canonical Vine De-
pendence Model (CVDM). It consists of two separated parts:
canonical vine and marginal distributions. For the part of
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Figure 3: CVDM Work Flow

canonical vine, the first step is to construct the canonical
vine, and then optimize the canonical vine. Both steps
are based on partial correlation. For the second part, we
take the ARMA-GARCH model for the marginal distribu-
tion with the skew student t distribution for error distribu-
tion. The parameters of both parts are estimated by using
maximize likelihood estimation. A parameterized CVDM
is therefore capable of measuring the risk or trends of the
financial market.

3.1 Canonical Vine
As highlighted in Introduction, our CVDM is centered

on the canonical vine. It is constructed by a large number
of conditional pair copula functions, making it flexible and
powerful for modeling the complex dependence structures
of high-dimensional financial variables. We do not impose
any independence assumption on the CVDM, which is more
appropriate in modeling the dependence structure of stock
returns. We continue the example from the Introduction to
describe the main ideas of CVDM.
Suppose that there is one market M with four stocks in

two sectors (A and B). The return of M is denoted by rM ,
returns of sectors A and B are denoted by rA and rB respec-
tively. The returns of stocks rA1 and rA2 belong to sector
A, and the returns of stocks rB1 and rB2 belong to sector
B. Mapping to the example discussed in Introduction, M
(Market) stands for ˆSTOXX50E (market index), A and B
stand for Germany and France respectively. A1, A2, B1 and
B2 stand for Siemens, Allianz, France Telecom and Societe
Generale GRP respectively. The joint density function of

M
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Figure 4: CVDM Dependence Structure

the CVDM model is given by:

f(rM , rA, rB , rA1, rA2, rB1, rB2)

=c(rM , rA, rB , rA1, rA2, rB1, rB2) ·
∏

f(·)
(6)

where
∏

f(·) = f(rM ) ·f(rA) ·f(rB) ·f(rA1) ·f(rA2) ·f(rB1) ·
f(rB2) are marginal distributions, which will be described
in Section 4. c(rM , rA, rB , rA1, rA2, rB1, rB2) is the copula
function defined by Equation (7):

c(rM , rA, rB , rA1, rA2, rB1, rB2) =

crM ,rA (F (rM ), F (rA)) · crM ,rB (F (rM ), F (rB))

crM ,rA1 (F (rM ), F (rA1)) · crM ,rA2 (F (rM ), F (rA2))

crM ,rB1 (F (rM ), F (rB1)) · crM ,rB2 (F (rM ), F (rB2))

crA,rB |rM (F (rA|rM ), F (rB |rM ))

crA,rA1|rM (F (rA, |rM ), F (rA1|rM ))

crA,rA2|rM (F (rA, |rM ), F (rA2|rM ))

crA,rB1|rM (F (rA, |rM ), F (rB1|rM ))

crA,rB2|rM (F (rA, |rM ), F (rB2|rM ))

crB ,rA1|rM ,rA
(F (rB , |rM , rA), F (rA1|rM , rA))

crB ,rA2|rM ,rA
(F (rB , |rM , rA), F (rA2|rM , rA))

crB ,rB1|rM ,rA
(F (rB , |rM , rA), F (rB1|rM , rA))

crB ,rB2|rM ,rA
(F (rB , |rM , rA), F (rB2|rM , rA))

crA1,rA2,rB1,rB2|rM ,rA,rB
(·, ·)

(7)

where crM ,rA stands for the copula between the return of
market and the return of sector A, crM ,rA1 is the copula be-
tween the return of market and the return of stock 1 in sector
A. crA1,rA2,rB1,rB2|rM ,rA,rB represents a four-dimensional
conditional copula, meaning the dependence of the four stocks
conditioned on the market and the two sectors. The term
crA1,rA2,rB1,rB2|rM ,rA,rB (·, ·) can be decomposed into 6 con-
ditional pair copulas.

This dependence structure is displayed in Figure 4, where
the term (M,A) stands for the correlation between the mar-
ket and sector A measured by the copula function crM ,rA .
The term (A,B|M) means the conditional correlation be-
tween sector A and sector B conditioned on M , measured by
the conditional copula function crA,rB |rM . In the example,
the canonical vine consists of 6 trees and 21 nodes. All trees
and nodes (explained in Section 3.2) are shown as Figure 5.
If the dependence is modeled by CAVA which imposes two
independence assumptions, then the following copula func-
tions crA,rB |rM (·, ·), crA,rB1|rM (·, ·), crA,rB2|rM (·, ·),
crB ,rA1|rM ,rA(·, ·), crB ,rA2|rM ,rA(·, ·), crB ,rB1|rM ,rA(·, ·) and
crB ,rB2|rM ,rA(·, ·) are all ignored in CAVA. However, the
CVDM does not make any independence assumption in the
structure. The conditional independence or dependence be-
tween financial variables are judged by data instead.

3.2 Canonical Vine Dependence Construction
and Optimization

The key step to construct a canonical vine is to determine
the root variables for all trees. We take the example in
section 3.1 to explain the root variable. In Figure 5, from
first tree to sixth tree, the corresponding root variables are
M , A, B, A1, A2, B1, B2 respectively. When the root
variable of each tree is identified, the whole canonical vine
structure is then determined. Nodes in a canonical vine are
defined as the relations in this paper. Each tree has different
number of nodes, and each node can only be allocated to one
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Figure 5: CVDM Trees

conditional pair copula. We take the example in Section
3.1 to explain nodes. In Figure 5, for the first tree, there
are 6 nodes, and each nodes are allocated to one bivariate
copula, including crM ,rA , crM ,rB ,... and crM ,rB2 . For the
sixth tree, there is only one node, which is allocated to one
conditional copula crB1,rB2|rM ,rA,rB ,rA1,rA2

. It is obvious
that the number of nodes in a canonical vine will increase
exponentially as the number of variables increases. Since
each node has to be allocated to one conditional copula, the
number of parameters will be double for the two-parameter
conditional pair copulas. For ease of comprehensibility, it is
essential to simplify and optimize the canonical vine.
In the Canonical Vine Dependent Model, the principle

for canonical vine construction and optimization is to re-
duce the complexity of model without significantly affect-
ing or changing the original structure. It means that the
optimal canonical vine should capture the most important
dependence, ignoring the weak dependence. Based on this
principle, we use a partial correlation method to construct
the canonical vine dependence structure. In CVDM, the
construction of canonical vine is based on conditional cop-
ula. The new method is to build a canonical vine based on
partial correlation, which has same structure as canonical
vine based on conditional copula . Then, we optimize the
canonical vine based partial correlation by setting the small
value of partial correlation (the absolute values of partial
correlation less than significance value τ) to zero, in order
to decrease the number of nodes and reduce the complex-
ity of canonical vine. The optimal canonical vine based on
partial vine can be used to mapping into the canonical vine
based on conditional copula, since canonical vine based on
conditional copula has the same structure as the canonical
vine based on partial correlation, which is explained in [13].
The reason for using partial correlation is that it is not

easy to obtain the conditional copula in high-dimensional
model, but partial correlations can be easily obtained from

the correlation matrix. The definition of a partial correlation
is as follows:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ21n;3,...,n−1 ·
√

1− ρ22n;3,...,n−1

(8)

Obviously, ρ1,2 is equal to the ’Kendall’ correlation with two
variables. For elliptical distributions, partial correlations are
equal to conditional copula [12]. Therefore, we can build de-
pendent structure via partial correlations. Then, the canon-
ical vine based on partial correlation is optimized by setting
small values to zero as the small values (weak partial cor-
relation) can be ignored. The canonical vine based on par-
tial correlation will correspond to the canonical vine depen-
dence structure based on conditional copula. The method
to construct a canonical vine based on partial correlation
is described in Algorithm 1, where log(D) is explained in
Equation (9).

Algorithm 1 Canonical Vine Construction and Optimiza-
tion
Require: observations of n variables
1: Calculate all values of partial correlation, and then allocate

the smallest absolute value of partial correlation to the node
of last tree.

2: for k = 1, ..., n− 2 do
3: For those trees exceeding the kth tree (> k) excluding the

last tree, find an appropriate root variables for each tree
which can minimize the function

∑
|ρc:d| .

4: For those trees from the first to the kth tree (<= k), find an
appropriate root variables for each tree which can minimize
the function of

∑
log(1− ρ2c;d).

5: end for
6: There will be (n − 2) − 1 canonical vines as k = 1, ..., n − 2.

Calculate the function −log(D) of all of the canonical vines
based on partial correlation, and choose the maximum value
of the function as the ’best’ canonical vine.

7: For the ’best’ canonical vine, the small absolute values of
partial correlation, which are less than significance value τ ,
are set to zero.

8: The optimal canonical vine based on conditional copula is
corresponding to the canonical vine based on partial correla-
tion.

9: return The optimal canonical vine dependence structure

We take the example in Section 3.1 to explain how to
construct a canonical vine based on the partial correlation.
There are one market variable (M), two sector variables
(A,B), and four stocks (A1,A2,B1, B2), totally 7 variables.
There will have 6 trees and 21 nodes in both canonical vine
structure based on partial correlation and conditional cop-
ula. Each node can be allocated to one bivariate copula
or one partial correlation. For constructing the canonical
vine based on conditional copula, we build the canonical
vine based on partial correlation at first. The partial cor-
relation can be obtained via the Equation 8. For these 7
variables, there are totally 21 partial correlations, including
ρM,A;B,A1,A2,B1,B2,ρM,B;A,A1,A2,B1,B2,...,
ρB1,B2;M,A,B,A1,A2. The smallest absolute value of these
partial correlations is allocated to the root node of last tree
(the sixth tree in Figure 5) as the last tree only has one
node. Suppose the selected partial correlation in the last
tree is ρB1,B2;M,A,B,A1,A2. The variables in last tree are
variables B1 and B2. The sets c7 = {B1, B2} and d7 =
{M,A,B,A1, A2} are called conditioned set and condition-
ing set respectively. For the selection of the root variable



of the second to last tree (the fifth tree in Figure 5), there
are two nodes which can be allocated as two partial corre-
lations. We have to select one root variable for the second
to last tree (the fifth tree) from d7 and generate 2 new con-
ditioned sets. If the selected root variable of the second
to last tree is A2, then the two new conditioned sets are
c6 = {A2, B1} and c′6 = {A2, B2}. The corresponding con-
ditioning set for c6 and c′6 is d6 = {M,A,B,A1}. The partial
correlations allocated to the two nodes are ρA2,B1;M,A,B,A1

and ρA2,B2;M,A,B,A1. If the chosen root variable is A1, the
two new conditioned sets will be c6 = {A1, B1} and c′6 =
{A1, B2}. The corresponding conditioning set for c6 and
c′6 is d6 = {M,A,B,A2}. The partial correlation allocated
to the two nodes are ρA1,B1;M,A,B,A2 and ρA1,B2;M,A,B,A2.
When the selected root variable of the second to last tree is
M , A or B , the process is similar to A1 and A2. The next
step is to determine k, where k is a tree-broken level. For
trees beyond the kth tree (> k), the appropriate root vari-
able must minimize the value of function

∑
|ρc:d|. For trees

within the kth tree (<= k), the appropriate root variables
must minimize the value of function

∑
log(1− ρ2c;d). For ex-

ample, suppose k is 3 in the example. For the first, second
and third trees, the selected root variables for each tree must
minimize the value of function

∑
|ρc:d|. For the fourth, fifth

and sixth trees, the chosen root variables for each tree must
minimize the value of function

∑
log(1− ρ2c;d). The param-

eter k can choose different values, such as k = 1, 2, 3, 4, 5.
Therefore, there should totally have 5 canonical vines. The
’Best’ canonical vine should maximize the value of function
−log(D), where D is the determinant which is calculated by
using:

D =
∏
{i,j}

(1− ρ2i,j;d(i,j)) (9)

where d(i, j) is the conditioning set excluding variable i, j.
The corresponding conditioned set is i, j. The small abso-
lute values of partial correlation in the ’Best’ canonical vine,
which are less than significance value τ , will be set to zero.
Finally, the optimal canonical vine structure based on par-
tial correlation is built. Since the canonical vine based on
conditional vine has a similar structure, we can construct
the optimal canonical vine based conditional copula by us-
ing the structure based on partial correlation.

3.3 Parameter Estimation
Parameters of CVDM are estimated by optimizing the

following log-likelihood function:

L(ξ : x) :=

N∑
j=1

{
p∑

i=1

log fi(xi,j ;ϕi) + log(c(F1(x1,n), ..., Fp(xp,n); θ))}
(10)

where ξ = (ϕ, θ) is a vector covering all parameters of the
marginal distributions ϕ = (ϕ1, ..., ϕp) and the copula pa-
rameters θ. Then, we decompose Equation (10) into two
parts, marginal distribution log likelihood function and cop-
ula log likelihood function. The marginal distribution log-
likelihood is:

Lm(ϕ;x) =

p∑
i=1

N∑
j=1

log(fi,j ;ϕi) (11)

and the copula log likelihood is:

Lc(θ;u, ϕ) = log(c(F1(x1,n), ...Fp(xp,n); θ)) (12)

where u = (F1(x1), ...Fp(xp)). Therefore, the parameters of
the whole model can be estimated via two steps: marginal
step and copula step. For the marginal step, parameters are
estimated by optimizing the marginal log likelihood Lm(ϕ;x):

ϕ̂ = argmax
ϕ

Lm(ϕ;x) (13)

For the copula step, parameters are estimated by optimizing
the copula log likelihood Lc(θ;u, ϕ) which is conditional on
the estimated parameters ϕ for marginal distributions:

θ̂ = argmax
θ

Lc(θ;u, ϕ) (14)

4. MARGINAL MODELS SPECIFICATION
Volatility clustering is one of the most important char-

acteristic of stocks, referring to the variance of returns. It
says that low values of volatility tend to be followed by low
values, and that high values of volatility is followed by high
values. As ARMA representation of GARCH models can
capture this characteristic of volatility clustering, we choose
ARMA-GARCH model as the marginal distribution of our
CVDM to capture the volatility of daily returns in European
stock markets.

4.1 ARMA-GARCH Model
ARMA(p,q)-GARCH(1,1) model is defined as follows:

Xt = c0 +

p∑
i=1

δiXt−i +

q∑
j=1

γjεt−j + εt (15)

εt = σtet (16)

σ2
t = ω + αε2t−1 + βσ2

t−1 (17)

where ω > 0, α ≥ 0, β ≥ 0, α + β < 1 , Xt is actual stock
return and σt is volatility of return on day t. The constraint
α + β < 1 is to maintain the GARCH weak stationary. et
is the error as discussed in next subsection. In general, a
GARCH (1, 1) model with three parameters is adequate to
fit the financial time series. Hansen and Lunde [9] provided
evidence that it is difficult to find a volatility model which
outperforms the GARCH (1, 1) model. In this paper, we
take GARCH (1, 1) to interpret how GARCH models cap-
ture volatility clustering. The GARCH coefficient is to be
constant and positive. Given the value of ω, it is obvious
that a small value of σ2

t−1 will result in a small value of σ2
t ,

and a large value of σ2
t−1 will result in a large value of σ2

t .
Therefore, we select the ARMA-GARCH for the marginal
distributions in CVDM.

4.2 Error Types
The simplest choice of an error is the standard normal

distribution, such as et ∼ N(0, 1). The ARMA-GARCH
with normal distribution errors indicates a symmetric dis-
tribution for observations {xt}. However, the distribution
of financial time series is not normal with negative skewness
and excess kurtosis. It also has been demonstrated that
the distribution of financial time series has fat tails beyond
normal distribution [3]. Fat tail means that extreme val-
ues occur more frequently than that produced by a normal
distribution. The ARMA-GARCH with normal error can-
not take account of the asymmetry in the distribution of
financial data. Therefore, the normal distribution should be
excluded. It is more appropriate to use a distribution which



has fatter tails than Gaussian distribution. The most com-
monly used fat tail distributions for fitting ARMA-GARCH
model are the skew student t distribution. Hansen [9] pro-
posed the skew student t distribution to fit the financial time
series. Its density function is as follows:

fSkewt(et) =
2γ

1 + γ2
[ft(γet)I(et < 0) + ft(

et

γ
)I(et > 0)] (18)

where I(·) is the indicator function , γ > 0 and ft(·) is the
density of the student t distribution with v degrees of free-
dom. When γ = 1, the skew student t distribution becomes
student t distribution. The skew student t distribution is
to skew the symmetric student t distribution by combining
together two differently scaled halves of the symmetric dis-
tributions. The advantage of skew student t distribution
is that it can fit the fat-tailed data very well as it has two
tails behaving as polynomials. Therefore, we select the skew
student t error distribution in our application.

5. PORTFOLIO OF VALUE AT RISK: A
WIDELY USED MEASURE FOR RISK
MANAGEMENT

Value at Risk (VaR) is a widely used risk measurement on
a specific portfolio of stock returns [2]. The performance of
models can be evaluated by estimating the value at risk. A
good model can generate good estimates of VaR. The quality
of VaR generated by different models can be judged by using
backtesting methods, including unconditional coverage test
[11] and the conditional coverage test [6]. These tests are
based on likelihood ratios and the null hypothesis is that
VaR should exhibit a conditional or unconditional coverage
equal to the normal significance level α (0.05 in general).
The details of these tests can be found in [8]. The portfolio
of stock returns is denoted by:

rportfolio =

n∑
i=1

µiri (19)

where ri is the return for i = 1, ..., n and µi is the weight.
The process for computing a Value at Risk is as follows:

(i). The AR(1)-GARCH(1,1) with skewed t student distri-
bution is specified for the marginal distribution. Th--
en, the parameters of AR(1)-GARCH(1,1) are esti-
mated for each stock and indices;

(ii). Use the parameter estimations to calculate the one
day forward GARCH variance forecast for each stock
by using Equation (17);

(iii). The standardized residuals obtained from AR(1)-
GARCH(1,1) are transformed to uniform data by us-
ing skew student t cumulative distribution function;

(iv). Fit a CVDM by using these data and estimated pa-
rameters;

(v). Use the estimated parameters of copula functions to
simulate a sample for each financial time series. Then,
the sample is transformed to standard residuals by us-
ing the inverse skew student t cumulative distribution
functions;

(vi). Calculate the one day forecast return for each stocks
and indices by using the estimated AR(1) model (Eqaution(15))
and one day forward GARCH variance which is calcu-
lated in Step (ii);

(vii). The portfolio return is calculated by using Equation
(19). Then, we repeat Steps (v) and (vi) T times (e.g.
T = 10000). Then we can determine 99%, 95%, or
90% VaR of portfolio return.

The backtesting used to evaluate the performance of the
portfolio of VaR by using the CVDM. If the VaR forecast
is accurate, the VaR forecast should possess two properties.
The first property is that the exceedances has to occur in-
dependently. The second property is that the proportion of
exceedances should approximately equal to the significance
level α. The hit variable of ex-post exceedances is given by:

It =

{
1, if rt,p < V aRt(1− α);
0, otherwise.

(20)

where rt,p denote the ex-post observed portfolio return at
time t. If the VaR forecast is accurate, the It should be
equal to α that is the significance level in the backtesting.

6. DEPENDENCE ANALYSIS ON EUROPE-
AN STOCK RETURNS

6.1 Data and Marginal Model Specification
To evaluate the performance of CVDM on real financial

data, we used the log returns of 45 stocks from ˆSTOXX50E,
a Europe-wide composite index, corresponding to the mar-
ket variable (M) mentioned in the example of Section 3.1.
The sector variables are the five national leading stock in-
dices corresponding to the home country of our chosen stocks
such as ˆFCHI, ˆGDAXIP, ˆAEX, FTSEMIB.MI and ˆIBEX,
namely the national indices of France, Germany, Netherland,
Spain and Italy. Some of these national leading stock indices
are referred as the sector variables A and B by the exam-
ple of Section 3.1. There are 51 variables involved in our
experiment in total. The data were download from yahoo
finance (http://finance.yahoo.com), it spans 970 days from
22/05/2006 to 30/06/2010. These stocks and indices in our
experiment are listed in Table 1. The returns of these in-
dices and stocks are calculated by taking the log difference

Table 1: Indices and Stocks
Indices Netherlands Spain Italy

ˆSTOXX50E AGN.AS BBVA.MC ENEL.MI
ˆAEX INGA.AS IBE.MC ENI.MI
ˆIBEX PHIA.AS REP.MC G.MI

ˆFTSEMIB.MI SAN.MC ISP.MI
ˆGDAXIP TEF.MC TIT.MI
ˆFCHI

Germany France
ALV.DE SIE.DE ACA.PA FTE.PA
BAYN.DE SAP.DE AI.PA GLE.PA
DAI.DE ALO.PA GSE.PA
DB1.DE BN.PA MC.PA
DBK.DE BNP.PA OR.PA
DTE.DE CA.PA SAN.PA
EOAN.DE CS.PA SGO.PA
MUV2.DE DG.PA SU.PA
RWE.DE FP.PA UL.PA

VIV.PA



of the prices on every two consecutive trading days.
We carried out experiments and obtained descriptive statis-

tics of the data as shown in Table 2. Skewness (Skew) is a
measure of asymmetry of financial time series, and Kurto-
sis (Kurt) is to measure the ”peakedness”. We can see that
all of the variables have positive skewness, excluding the
national indices ˆAEX and ˆIBEX. All of the variables ex-
hibit an excess kurtosis, indicating that they do not follow
any normal distribution. This is suggestive of that different
and appropriate models should be selected for their marginal
distributions. As described in the method section, AR (1)
- GARCH(1,1) is considered as the marginal distribution
model to capture the asymmetry. The Ljung Box Q test
[15] was then used for examining the existence of residual
autocorrelation for each time series.
We conducted the Ljung Box Q test for each marginal

model to ensure that residuals do not have autocorrelation.
When marginal distributions fail the Q test, we increased
the value of p and q in ARMA (p,q) - GARCH (1,1) model
until all marginal distributions pass the Q test. The Ljung
Q Test results of the composition index ˆSTOXX50E and
the five national leading indices are shown in Table 3. The
45 stocks are not listed due to the limit of pages. In Table
3, p is the corresponding p value. The results indicate that
the six indices do not have autocorrelation as all of the p
values are bigger than the significance level 0.05.

Table 2: Descriptive Statistics for the Indices
ˆSTOXX50E ˆGDAXIP ˆFCH

Min -0.081 -0.0975 -0.947
Max 0.1211 0.1080 0.1059
Skew 0.1178 0.2168 0.7650
Kurt 9.8754 10.1641 9.5348

ˆAEX ˆIBEX FTSEMIB.MI
Min -0.0959 -0.0959 -0.0860
Max 0.1003 0.1023 0.1088
Skew -0.1723 -0.1330 0.0014
Kurt 10.0045 8.9012 9.1447

Table 3: Results of Ljung Box Q Test
ˆSTOXX50E ˆGDAXIP ˆFCH

statistics 12.7841 14.6496 11.4877
p 0.8865 0.7961 0.9326

ˆAEX ˆIBEX FTSEMIB.MI
statistics 20.2718 19.0624 18.4021

p 0.4447 0.5178 0.5609

6.2 Canonical Vine Dependence Model: A Case
Study

A case study was conducted to compare the detailed per-
formance of our CVDM with a recent CAVA model and the
’full’ canonical vine model. The ’full’ canonical vine model
is constructed by taking the ’full’ canonical vine. The ’full’
canonical vine can be constructed via Algorithm 1 without
the optimization step. Given the 51-variable data set above,
the canonical vine contains 50 trees and 1275 nodes. In the
case study, all nodes are t copulas. For k = 1, 2, 3, ..., 49,
there are totally 49 canonical vines based on partial corre-
lation. We choose the canonical vine based on partial cor-
relation which can maximize the value of function −log(D),
where D is the determinant of partial correlation. The re-

sult shows that when k = 47, the canonical vine has the
maximum value of the function −log(D), which is the ’best’
canonical vine. The selected root variables of the first five
trees of the canonical vine are ˆSTOXX50E, ˆFCHI, FT-
SEMIB.MI, ˆAEX and ˆGDPAXIP. The two variables in
the last tree (the fiftieth tree) are SU.PA and CS.PA. Then,
the selected canonical vine is optimized based on partial cor-
relation. The value of partial correlation, which is less than
significance value τ , is set to zero. In our experiment, we
considered to use different significance values to optimize
the canonical vine, and then compare the optimal canonical
vine with the ’full’ canonical vine. The comparison between
canonical vines with different significance value τ is based
on the function −log(D), where D is the determinant of par-
tial correlation as mentioned in Section 3.2. The function is
to calculate the determinant canonical vine based on partial
correlation, which can also be used to compare the similarity
of vine structure based on partial correlation [14].

Table 4 shows the determinants and numbers of pair cop-
ulas under various significance value τ . When τ is equal
to 0, all values that are less than 0 were set to zero to in-
dicate that the canonical vine is the ’full’ canonical vine
without any simplification or optimization. The value of
−log(D) means the strength of a canonical vine based on
partial correlation. When τ is equal to 0.1, the value of
−log(D) is 27.43, which is not significantly different from
the value of the ’full’ canonical vine. Compared with the
number of nodes in the ’full’ canonical vine, the number of
nodes of the canonical vine with τ=0.1 is 217, decreasing
the complexity of the canonical vine a lot. If the conditional
pair copulas for each node are selected from t copula family,
the gap of parameters will double as the t conditional pair
copula has two parameters. When τ takes the value of 0.2,
0.25 or 0.3, the number of nodes decreased to 90, 69 and
59 respectively, however, the value of −log(D) are signifi-
cantly different from the ’full’ model. It indicates that these
canonical vines with high value of τ are obviously different
from the ’full’ canonical vine model. We also constructed the
optimal canonical vine based on conditional copula. Since
the canonical vine based on conditional copula has a similar
structure with that of the canonical vine based on partial
correlation, we can construct the canonical vine based on
conditional copula and then built our CVDM. In the ex-
periment, we built two CVDMs with τ = 0.1 and 0.2, in
order to compare the performance of Value at Risk in the
following section. CVDM (τ=0.1) has similar determinant
as the ’full’ model, but the number of nodes is significantly
decreased. CVDM (τ=0.2) has less number of nodes, but
the determinant is obviously different from the ’full’ model.
The performance of the two CVDMs is further evaluated in
the section below.

Table 4: Determinants and Numbers of Pair Copu-
las

τ 0 0.01 0.02 0.03 0.04
−log(D) 29.02 29.02 28.97 28.88 28.74
No. nodes 1275 1081 906 755 643

τ 0.05 0.06 0.07 0.08 0.09
−log(D) 28.52 28.31 28.04 27.81 27.43
No. nodes 534 465 399 358 307

τ 0.1 0.15 0.20 0.25 0.30
−log(D) 27.10 25.10 23.65 22.59 21.82
No. nodes 271 139 90 69 59



6.3 Experiments on Value at Risk
The performance of our model was further evaluated by

measuring the Value at Risk (VaR). The backtesting tests
discussed in Section 5 were used for validating VaR fore-
cast generated by different models. A moving window of
970 observations, corresponding to appropriately 4 years of
daily returns from 22/05/2006 to 30/6/2010, was used to
construct the model. The test period was from 01/07/2010
to 01/03/2012 with 500 observations of daily returns. We
calculated three VaRs: 90%, 95%, and 99% VaR. The pro-
cess is explained in Section 5. The VaR of portfolio returns
of 51 variables (45 stocks, 5 leading national indices and 1
composite index) in the test period was calculated by using
Equation (19). We compared our CVDM (τ = 0.1 and 0.2)
with the ’full’ model and CAVA model.
It is important to examine whether VaR are consistent

with subsequently realized return given a significant level.
Kupiec [11] introduced a percentage of failure of uncondi-
tional coverage to examine the quality of VaR. Christoffersen
[6] proposed a more complete test to examine the conditional
coverage and independence of VaR. These tests were used as
backtesting for examining the quality of VaR here. The ex-
ceedances result is presented in Table 5, where POF stands
for the percentage of failure. It can been seen that CVDM
(τ =0.1) performs very good as the two levels of POF are
in the level 95% and 90%, lower than α. At the level 99%,
the exceedances is slightly increased in comparison to those
expected ones. Compared with CVDM (τ=0.1), the ’full’
canonical vine model has a similar performance. However,
the CAVA model does not have a good performance, as all of
the three levels of exceedances are higher than the expected
one. The performance of CVDM (τ= 0.2) is worse than
CAVA. The corresponding display of these VaR forecasts is
shown in Figure 6.
Table 6 presents statistics of a conditional coverage test,

unconditional coverage test and an independent coverage
test, where LRCC, LRUC, and LRIC are short for the likeli-
hood ratio of conditional coverage, likelihood ratio of uncon-
ditional coverage and likelihood ratio of independent cover-
age respectively. The values in the parentheses are the cor-
responding P values of these tests. The smaller the statis-
tics is, the bigger the corresponding P value is, indicating
that the VaR forecast is more accurate. If the P value is
bigger than 0.05, it means that the null hypothesis of back-
testing can be accepted, and the VaR forecasts are accurate
and reliable. For CVDM (τ=0.1), it can been seen that
the VaR forecasting at all of the three levels are sufficiently
accurate, as the null hypotheses of the conditional, uncon-
ditional and independent cannot be rejected according to
these tests. The ’full’ canonical vine model has similar per-
formance in backtesting. It is evident that the model based
on our optimal canonical vine performs as good as the ’full’
model, suggesting that these weak correlations can be ig-
nored without affecting or changing the whole dependence
structure. It means that our new method for constructing
and optimizing canonical vine is excellent and reliable. On
the other hand, the tests on CAVA suggest that VaR fore-
casting at all of the three levels is not accurate, since the
null hypotheses of conditional, unconditional and indepen-
dent at all of the three levels are rejected. The reason is
that CAVA imposes two independence assumptions to ig-
nore some strong correlations in the canonical vine. CVDM
(τ=0.2) has similar performance with CAVA, and the reason

is that the number of nodes is too small to capture the most
important dependence in caonoical vine.

We have conducted similar analysis for CVDM under dif-
ferent significance value (τ) listed in Table 4. The results
show that for those CVDMs with τ greater than 0.1, their
VaR performance are not accepted. For those CVDMs with
τ less than 0.1, their performance are as good as the ’full’
model, however, the number of nodes are quite large. When
τ is equal to 0.1, the nodes is small enough, and the perfor-
mance is accepted. We also conduct analysis for other five
portfolios of European stocks , the results show that CVDM
(τ=0.1) performs as good as the ’full’ canonical vine model,
and better than CAVA’s.

Table 5: Number of Exceedances of VaR Forecast
Model VaR α Expected Actual POF

CVDM
99% 1% 5 7 1.4%

τ=0.1
95% 5% 25 21 4.2%
90% 10% 50 41 8.2%

CVDM
99% 1% 5 16 3.2%

τ=0.2
95% 5% 25 43 8.6%
90% 10% 50 96 19.2%

CAVA
99% 1% 5 13 2.6%
95% 5% 25 39 7.8%
90% 10% 50 82 16.4%

’Full’
99% 1% 5 7 1.4%
95% 5% 25 20 4%
90% 10% 50 40 8%

Table 6: The Results of VaR Backtesting
Model VaR LRCC LRUC LRIC

CVDM
99% 3.81(0.149) 0.72(0.397) 0.91(0.44)

τ=0.1
95% 2.01(0.367) 0.71(0.399) 0.74(0.39)
90% 2.16(0.340) 0.88(0.77) 0.77(0.379)

CVDM
99% 13.21(0.001) 15.47(0.000) 6.32(0.012)

τ=0.2
95% 13.75(0.001) 15.04(0.000) 5.68(0.017)
90% 14.60(0.001) 16.18(0.000) 6.03(0.014)

CAVA
99% 11.96(0.003) 10.99(0.001) 5.16(0.023)
95% 11.17(0.004) 10.19(0.001) 3.98(0.046)
90% 11.73(0.003) 10.45(0.001) 4.64(0.031)

’Full’
99% 3.8(0.149) 0.72(0.397) 0.77(0.381)
95% 2.00(0.367) 0.71(0.399) 0.84(0.361)
90% 2.28(0.320) 0.77(0.379) 0.84(0.361)

7. CONCLUSION
This work proposes a new canonical vine, as optimized

based on partial correlation, to model the complex depen-
dence structures of financial variables. It has been demon-
strated useful for analyzing the complicated dependence struc-
ture of a big portfolio of European stocks. Compared with
CAVA, our CVDM shows a much better performance in
producing the VaR forecasts of portfolio returns. CVDM
also has a similar performance of VaR forecasting as that
of the ’full’ canonical vine model although with a size much
smaller. As a future work, we will examine in detail the
strong correlations identified by CVDM to understand more
about dependence structures of European/Asian/US stocks.
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Figure 6: The VaR Forecast of Portfolio Returns
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