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ABSTRACT
Due to imprecise query intention, Web database users often
use a limited number of keywords that are not directly re-
lated to their precise query to search information. Semantic
approximate keyword query is challenging but helpful for
specifying such query intent and providing more relevant
answers. By extracting the semantic relationships both be-
tween keywords and keyword queries, this paper proposes a
new keyword query approach which generates semantic ap-
proximate answers by identifying a set of keyword queries
from the query history whose semantics are related to the
given keyword query. To capture the semantic relationships
between keywords, a semantic coupling relationship anal-
ysis model is introduced to model both the intra− and
inter − keyword couplings. Building on the coupling re-
lationships between keywords, the semantic similarity of d-
ifferent keyword queries is then measured by a semantic ma-
trix. The representative queries in query history are identi-
fied and then a priori order of remaining queries correspond-
ing to each representative query in an off-line preprocessing
step is created. These representative queries and associated
orders are then used to expeditiously generate top-k ranked
semantically related keyword queries. We demonstrate that
our coupling relationship analysis model can accurately cap-
ture the semantic relationships both between keywords and
queries. The efficiency of top-k keyword query selection al-
gorithm is also demonstrated.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.8 [Database Management]: Database applica-
tions—Data mining

General Terms
Algorithms, Performance, Design, Experimentation
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1. INTRODUCTION
With the increasing of complexity and size of Web databa-

ses1, keyword search plays an important role in obtaining
the information needed from Web databases. In practice,
however, it is difficult for lay users to obtain complete and
effective information since average people usually have insuf-
ficient knowledge about the structure and contents of Web
databases. Accordingly, one often has imprecise ideas about
what exact keywords he/she should use for searching and
finds it hard to formulate an appropriate query by using on-
ly a few keywords. As a result, an inadequate answer, or
no answer, is often returned when the query is too selective
or query keywords are not properly selected. In such a con-
text, a user has to reformulate queries several times before
meaningful query results are received, which is often a time-
consuming exercise. Therefore, it is important to produce a
list of queries that are semantically related to the original
query so that a user can select and view the answers to a
query by choosing it from a proper list. Additionally, pro-
viding related queries is also very helpful for the scientific
database users, especially the people who is unfamiliar with
a new research field.

The challenge in selecting semantically related queries is
to understand the semantics of the original query and to
measure the semantic similarity between them. Several ap-
proaches have been proposed to deal with the issue of key-
word search over relational databases [1, 3, 14,15,20]. Their
basic idea is to extract a set of joining trees of tuples. A join-
ing tree of tuples is formed by matched tuples, which con-
tain the specified keywords in their text attributes, are inter-
connected through primary-foreign-key references. However,
most of the existing work neglects the coupling relationship-
s between keywords when searching the joining tuple trees,
rather treating them independent. As a result, the semantic
coupling between keywords is overlooked.

However, in the real world, there are various coupling re-
lationships [8] existing between objects, which have been
shown valuable to be incorporated into analysis such as doc-
ument term semantic analysis [10], clustering [21] and clas-
sification [23]. Similarly, keywords embedded in a query are

1Web database refers to a non-local online database that
can be accessible by a web form based interface.



coupled in terms of co-occurrences and semantic relation-
ships. The meaning of a keyword is often associated with
the meaning of the others, we call intra−couplings between
keywords in a query. The semantically connected keyword
set in a query jointly express the user query intention. In
addition, coupling relationships also exist between keywords
from different queries, we call inter− couplings of keyword-
s. Such cross-query keyword relationship contributes to the
matching between a query and others. On top of this obser-
vation, in this paper, we propose a new keyword query ap-
proach which incorporates the keyword semantic couplings
for approximate query. It incorporates the coupling analy-
sis [22] into keyword coupling relationship and query seman-
tic similarity analysis. It then leverages the query semantic
similarities to extract the top-k queries from query histo-
ry that are related to a given query. We will use the toy
example below to motivate and provide an overview of our
approach.
Example 1. As shown in Figure 1, a DBLP database

consisting of three relations: Authors, Papers and Write,
connected by primary-foreign-key relationships.

Authors Papers

Write

schema

Authors.Aid=Write.Aid Papers.Pid=Write.Pid

a1

a2

a3

R.Agrawal, R. Srikant

R. Srikant, R. Agrawal

Szarvas

p1

p2

p3

Mining Sequential Patterns

Effective Keyword Search in Relational Databases

Mining Association Rules between Sets of Items

w1

w2

w3

a1

a2

a3

p3

p1

p2

Aid Name Pid Title

Wid Aid Pid

Figure 1: Example of relational database DBLP

A user may issue the following keyword queries:
Q1:-DBLP(R. Agrawal, sequential patterns)
Q2:-DBLP(association rules, apriori algorithm)
On receiving the query Q1, a classic keyword search ap-

proach may provide a set of joining tree of tuples contain-
ing keywords “R. Agrawal” and “sequential patterns” as the
query results. For example, a joining tree of tuples a2 1

w2 1 p1 is an answer for query Q1. It is clear that there ex-
ists a relationship between keywords “R. Agrawal” and “se-
quential patterns” because they appear in the same query.
The query mostly probably indicates that the user wants
to find the paper related to “sequential patterns” proposed
by the author “R. Agrawal”. In real applications, the user
who submitted query Q1 may also be interested in tuples
containing “association rules” since the “sequential pattern-
s” and “association rules” are proposed by the same author
(i.e., R. Agrawal), and they are much related with each other
in the data mining research field. However, the traditional
keyword search approaches cannot provide the answer con-
taining keywords “association rules” such as a1 1 w1 1 p3
returned by Q2. This example shows coupling relationships
exist between keywords in a query and between queries.
This paper proposes a solution for extracting keyword

semantic approximate query results by selecting the top-
k queries from query history that are semantically relat-
ed to a given query. We first capture the intra- and inter-
couplings between different pairs of keywords extracted from
query history - log of past users keyword queries. The

intra- and inter-couplings are then combined to generate
the keyword coupling relationship. Note that, although key-
word coupling relationships can be captured from other da-
ta sources, in this paper we only rely on the query histo-
ry that is directly related to user query intentions. With
such keyword coupling relationships, we further measure the
semantic similarity between different queries by building a
semantic matrix, where the coupling relationships between
keywords are reserved. As a result, given a query, the sys-
tem provides a list of k queries from query history that are
related to the given query, and a user can view the answers
of related query by choosing it in the list.

Our contributions are summarized as follows:
(1). A novel method is proposed to measure the keyword

coupling relationships, which considers both the intra- and
inter-couplings between different keywords within and across
the queries.

(2). A new keyword query similarity metric based on a
semantic matrix is proposed, in which the keyword coupling
relationships are reserved.

(3). A top-k query selection algorithm, which is used to
quickly select top-k related queries from query history, is
presented.

The rest of this paper is organized as follows. Section 2 re-
views some related work. Section 3 outlines an overview of
our framework. Section 4 proposes the keyword coupling
relationship measuring method while Section 5 describes
the query semantic similarity measuring method. Section 6
presents a top-k query selection algorithm. The experiment
results are presented in Section 7. The paper is concluded
in Section 8.

2. RELATED WORK
Several methods have been proposed to handle keyword

search in relational and XML database systems, and the
popularity of keyword search is ongoing [24]. For the re-
lational database, the related work can be classified into
two main categories. The first is mainly based on Steiner
trees, such as BANKS [1] and its extensions [12, 20]. These
approaches firstly model the database as a directed data
graph, where nodes are tuples and the directed edges are
foreign key references between tuples. A keyword query is
then processed by traversing graph for searching minimal
joining trees of tuples containing the query keywords. The
second leverages Candidate network (CN), such as DBX-
plorer [3], DISCOVER [15], and SPARK [18], to find the
relevant answers. A candidate network is a joining network
of tuples(JNTs), in which the tuples are inter-connected
through primary-foreign-key relationships. The CN-based
approaches generate all possible candidate networks follow-
ing the database schema, and then identify a set of minimal
total joining network of tuples (MTJNTs) based on CNs.
For the XML database, the lowest common ancestors (L-
CAs) [26] and its extensions [5, 17] are used for keyword
search. In summary, the existing approaches mainly focus
on finding MTJNTs or LCAs explicitly containing the speci-
fied keywords and lack of considering the semantic relevance
between answers and queries. As a result, they cannot iden-
tify the results from which some MTJNTs or LCAs may also
be very relevant to a query in semantic terms, even though
they do not explicitly contain the query keywords.

In recent years, tentative work on keyword semantic un-
derstanding and approximate query has been undertaken.



In [19], the transformation rules are manually defined used
for keyword query integration and the local results are an-
alyzed used for finding relevant answers. In [6], the meta-
data of database is used for translating keyword queries in-
to meaningful SQL queries that describe the intended query
semantics. In [24], the data structural semantics are exploit-
ed and employed to reformulate the initial query. Although
keyword semantics have been taken into consideration, most
of the existing approaches usually assume that keywords in
a query are independent of one another, but in reality cou-
pling relationships exist between objects such as keywords
and terms as shown in [8,10].
The concept of coupling relationship has recently been in-

troduced to cater for the interactions within and between
attributes. A number of studies [8, 10, 21] have proven to
be very effective for capturing the implicit relationships for
machine learning and data mining tasks such as clustering
and document analysis. In this paper, we incorporate this
idea into keyword coupling and query similarity analysis and
then leverage the query similarity to find the top-k queries
from query history that are related to a given query. The
top-k retrieval problem has been studied in several situation-
s, such as the view-based top-k query against the relational
database [11] and the top-k preferences retrieval in context
of high dimensions [25]. Given a set of objects O, the ba-
sic idea of top-k retrieval is to quickly find the k objects
in O with the highest scores with respect to a given query
by considering the monotonic ranking functions defined on
a subset of the attributes of the set O. Note that, keyword
search issues are not investigated in this paper. Our focus is
on keyword coupling relationship analysis, query semantic
similarity measure and top-k related query selection.

3. FRAMEWORK
This paper proposes a two-step processing approach to

address this problem. The framework is shown in Figure 2.

kn1, , knnSelect query

Database

Keyword query Normalization

B(K)=

k11, , k1n

Query history

Top-k related queries

Relevant query

results

Online processing Offline pre-processing

Keyword coupling relationship

ki1, , kin

Queries similarities

calculating &

representative finding

Figure 2: Framework of keyword semantic approxi-
mate query

The first step occurs offline. It analyses query history of
all users already in the system and then captures the cou-
pling relationships between keywords. Firstly, all distinct
keywords in query history are extracted, following which
the intra- and inter-couplings between different pairs of key-
words can be calculated by leveraging the correlation anal-
ysis method. Consequently, the keyword intra- and inter-

Table 1: Example of a pruned query history
UID QID Keywords
U1 Q13 classification, clustering, KDD
U2 Q24 association rules, clustering, data analysis
U3 Q35 association rules, decision tree, prediction
U4 Q43 classification, decision tree, KDD

coupling is combined into a coupling relationship to reflect
the semantic relevance between keywords. Based on the
keyword coupling relationship, we further use the semantic
matrix to measure the similarity between keyword queries.
To reduce the online computation time, a few representa-
tive queries are selected and the remaining queries in query
history are formed into several ordered lists, hereafter called
“orders”. Each order corresponds to a representative query
and the queries in each order are ranked according to their
similarities to that representative query.

The second step occurs online when a user makes a query.
It first decomposes the input query into several distinct key-
words. Based on coupling relationships between keywords,
it then computes the semantic similarities between the giv-
en query and representative queries. Lastly, a list of top-k
related queries is returned using Threshold Algorithm (TA)
and priori orders. The user can view the results of the re-
lated query by selecting it from the list.

4. KEYWORD COUPLING RELATIONSHIP
ANALYSIS

Building on the term coupling analysis in document anal-
ysis [10], to evaluate the keyword coupling relationship, the
query history is used as the knowledge source in this paper.
This section first introduces the query history and its prune
strategy, and then presents how to measure the keyword
coupling relationships based on the query history.

4.1 Query History

Definition 1. (Keyword query): A input keyword query
Q over database D is an ordered list of distinct keywords,
i.e., Q = {k1, k2, ..., km}, each ki (i = 1, ...,m) in Q is a word
or a topical phrase, depending on the decomposition.

Definition 2. (Query history): A query history W is con-
sisted of {(U1, Q1,K1), ..., (Un, Qn,Kn)} in chronological or-
der, where Ui is a session ID (a session is a duration started
from a user connects to the Web database and ended to
the user disconnects), Qi is a query ID, and Ki is a query
keywords list.

To guarantee the quality of query history, the following
prune strategy is used: (1) remove the queries with emp-
ty results; (2) reserve only the keyword query that is most
related to the query intention. A user may issue several
queries in one session that progress from being general in
nature to being more concrete, finally stopping at a query
that returns meaningful results. Therefore, it is the last
keyword query in such a refinement sequence that is most
related to the query intention and should be reserved [9]; (3)
decompose the remaining queries into several distinct key-
words and normalize them using text split and analysis tools
such as AlchemyAPI and Wikipedia [16] (although it would



be interesting to process the natural language and normal-
ize the keywords, it is beyond the scope of this paper). An
example of pruned query history is shown in Table 1.

4.2 Keyword Intra-coupling within a Query
In Information Retrieval, two terms are considered seman-

tically related if they frequently co-occur in the same docu-
ments of the document set. Similarly, each keyword query
in query history is considered as a document. Then, the
frequency of co-occurrence of a pair of keywords (ki, kj) ap-
pearing in the same queries of query history can be measured
by Jaccard coefficient [7] as follows,

J(ki, kj) =
|W (ki) ∩W (kj)|
|W (ki) ∪W (kj)|

(1)

where, W (ki) and W (kj) represent the queries in query his-
tory in which ki and kj appears, respectively. Based on
Equation (1), we can give the definition of intra− coupling
of keywords.

Definition 3. (Intra-coupling of keywords): Keywords ki
and kj are intra-related if they co-occur in at least one key-
word query Qi (Qi ∈ W ), the intra-coupling between them
in W is defined as,

δIaR(ki, kj |W ) = J(ki, kj) (2)

where, J(ki, kj) is defined as Equation (1).

Since keyword ki or kj may also co-occur with other key-
words in the queries, we need to normalize the intra-coupling
between ki and kj by dividing the total number of intra-
couplings between ki and other keywords. Thus, the intra-
coupling between ki and kj is finally computed as follows,

δIaR(ki, kj) =


1 i = j

δIaR(ki, kj |W )∑n
a=1,a̸=i δIaR(ki, ka|W )

i ̸= j (3)

where, n is the number of all distinct keywords in W .
For each pair of keywords (ki, kj), we have δIaR(ki, kj) ≥ 0

and
∑n

j=1,j ̸=i δIaR(ki, kj) = 1. Note that, the values of

δIaR(ki, kj) and δIaR(kj , ki) may not be equal to each oth-
er due to the different dominators. The keyword intra-
coupling relationship calculating algorithm is shown in Al-
gorithm 1. Note that, since J(ki, kj) = J(kj , ki), the matrix
of δIaR(ki, kj |W ) is symmetric, therefore we need to only
compute the upper-half of the matrix of δIaR(ki, kj |W ) in
Algorithm 1 (line 4-5). Table 2 shows the intra-coupling ma-
trix of keywords extracted from Table 1. For simplicity, we
use CA, CU, KD, AR, DA, DT, and PR to denote the key-
words classification, clustering, KDD, association rules,
data analysis, decision tree, and prediction, respectively.

The intra-coupling reflects the correlation between the
keywords in case of they are co-occurring in the same queries.
Besides the intra-coupling, the keywords may also be inter-
related via their common keywords across queries. In par-
ticular, the keywords, which have never co-occurred in the
same queries (that means they only appeared in separate
queries), may also inter-related in semantic, such as “classi-
fication” and“association rules” are inter-related by the key-
word “clustering” and “decision tree”. In this paper, we say
this type of correlation between keywords is inter−coupling
of keywords. We next present how to capture the inter-
coupling between keywords.

Algorithm 1: Keyword intra-coupling calculation

Input: query history W , set of all distinct keywords K
extracted from W , number of keywords n.

Output: IaRMatrix.
1 IaRMatrix=null.
2 for i = 1 to n− 1 do
3 for k = i+ 1 to n do
4 IaRMatrix[i][j]=J(K[i],K[k]).
5 IaRMatrix[k][i]=IaRMatrix[i][k].

6 for m = 1 to n do
7 if m ̸= i then
8 Sum=Sum+IaRMatrix[i][m].

9 for j = 1 to n do
10 if j ̸= i then
11 IaRMatrix[i][j]=IaRMatrix[i][j]/Sum.

12 Return IaRMatrix.

Table 2: Example of keyword intra-coupling matrix
CA CU KD AR DA DT PR

CA 1.00 0.20 0.60 0.00 0.00 0.20 0.00
CU 0.22 1.00 0.22 0.22 0.33 0.00 0.00
KD 0.60 0.20 1.00 0.00 0.00 0.20 0.00
AR 0.00 0.20 0.00 1.00 0.30 0.20 0.30
DA 0.00 0.50 0.00 0.50 1.00 0.00 0.00
DT 0.22 0.00 0.22 0.22 0.00 1.00 0.33
PR 0.00 0.00 0.00 0.50 0.00 0.50 1.00

4.3 Keyword Inter-coupling across Queries
The basic idea for capturing the inter-coupling between

keywords is that if the sets of keywords co-occurred with
ki and kj are partly overlapped we say ki and kj are inter-
related.

Given a keyword ki, all the keywords co-occurred with ki
in query history can be seen as the features associated with
ki. The inter-coupling between two keywords can be esti-
mated by the commonality in the features associated with
them. For example, given a keyword “classification” in Ta-
ble 1, a set of keywords “clustering, KDD, decision tree” is
associated with it; while, a set of keywords “clustering, da-
ta analysis, decision tree, prediction” is associated with the
keyword “association rules”. Clearly, the overlapped key-
words between two sets are “clustering” and “decision tree”.
In this paper, we say these are common keywords, which
mean that two keywords occurring in different queries are
inter-related via their common keywords. According to this,
the inter-coupling between ki and kj via a common keyword
kc can be defined as follows.

Definition 4. (Inter-coupling of keywords): Keywords ki
and kj are inter-related if there is at least one common key-
word kc such that δIaR(ki, kc) > 0 and δIaR(kj , kc) > 0
hold but keywords ki and kj appear in different queries.
The inter-coupling between keywords ki and kj via common
keyword kc is defined as,

δIeR(ki, kj |kc) = min{δIaR(ki, kc), δIaR(kj , kc)} (4)

where, δIaR(ki, kc) and δIaR(kj , kc) are the intra-couplings
between ki and kc, kj and kc, respectively.



Algorithm 2: Keyword inter-coupling calculating algo-
rithm
Input: set of all keywords K in W , number of keywords

n, IaRMatrix, weight of each keyword in K.
Output: IeRMatrix.

1 IeRMatrix=null.
2 for i = 1 to n− 1 do
3 for j = 1 to n do
4 S ← the set of common keywords between K[i]

and K[j].
5 m = |S|.
6 if S = ϕ then
7 IeRMatrix[i][j]=0.

8 else
9 for k = 1 to m do

10 minvalue=min{δIaR(K[i], S[k]),
11 δIaR(K[j], S[k])}.
12 sum+= minvalue*w(S[k]).

13 IeRMatrix[i][j]=sum/m.

14 Return IeRMatrix.

It should be pointed out that there is usually more than
one common keyword between ki and kj and each one may
have different importance/weight in query history. Thus, it
is necessary to measure the importance of the common key-
word. The intuition is that the greater the frequency of the
keyword occurring in query history, the greater the number
of the users interested in it, and thus the more importan-
t the keyword is. A method that leverages this intuition
is to count the frequencies of keywords appearing in query
history, and then allow important coefficients to depend on
these frequencies. Let QF (ki) represents the frequency of
occurrence of keyword ki in query history and QFMax the
frequency of the most frequently occurring keyword. Con-
sequently, the weight of ki, w(ki) can be defined as,

w(ki) =
QF (ki)

QFMax
(5)

We then let S be the set of common keywords for ki and
kj , that is, S = {kc|(δIaR(ki, kc) > 0 ∧ δIaR(kj , kc) > 0)}.
Then, the inter-coupling between ki and kj , inter-related by
all the common keywords in S, can be formalized as,

δIeR(ki, kj) =


1 i = j∑

∀kc∈S w(kc) ∗ δIeR(ki, kj |kc)
|S| i ̸= j

(6)
where, w(kc) is computed by Equation (5), δIeR(ki, kj |kc)
is the inter-coupling between ki and kj related via the com-
mon keyword kc, and |S| denotes the number of common
keywords in S. Equation (6) means the inter-coupling be-
tween ki and kj is measured by the average inter-couplings
between ki and kj via all of their’s common keywords. If
S = ϕ, then δIeR(ki, kj) is zero. Note that, the correla-
tion between two co-occurring keywords is also enhanced
by their inter-coupling relationship. The keywords inter-
coupling calculating algorithm is shown in Algorithm 2. Ta-
ble 3 shows the inter-coupling matrix of keywords extracted
from Table 1.

Table 3: Example of keyword inter-coupling matrix
CA CU KD AR DA DT PR

CA 1.00 0.00 0.00 0.20 0.20 0.00 0.20
CU 0.00 1.00 0.00 0.00 0.00 0.22 0.22
KD 0.00 0.00 1.00 0.20 0.20 0.00 0.20
AR 0.20 0.00 0.20 1.00 0.00 0.00 0.00
DA 0.20 0.00 0.20 0.00 1.00 0.22 0.50
DT 0.00 0.22 0.00 0.00 0.22 1.00 0.00
PR 0.20 0.22 0.20 0.00 0.50 0.00 1.00

Table 4: Keyword coupling relationship matrix
CA CU KD AR DA DT PR

CA 1.00 0.10 0.30 0.10 0.10 0.10 0.10
CU 0.11 1.00 0.11 0.11 0.17 0.11 0.11
KD 0.30 0.10 1.00 0.10 0.10 0.10 0.10
AR 0.10 0.10 0.10 1.00 0.15 0.10 0.15
DA 0.10 0.25 0.10 0.25 1.00 0.11 0.25
DT 0.11 0.11 0.11 0.11 0.11 1.00 0.17
PR 0.10 0.11 0.10 0.25 0.25 0.25 1.00

4.4 Keyword Coupling Relationship
The coupling relationship between two keywords ki and

kj is the combination of intra- and inter-coupling of the two
keywords, which is defined keyword coupling as follows,

δSR(ki, kj) ={
1 i = j
(1− α) ∗ δIaR(ki, kj) + α ∗ δIeR(ki, kj) i ̸= j

(7)

where, α ∈ [0, 1] is the parameter to determine the weight
of intra- and inter-coupling. It is clearly that the higher the
coupling relationship, the more related is the two keywords.
Note that, the Equation (7) would be intra-coupling if α = 0
while it would be inter-coupling if α = 1, that means the
intra- and inter-coupling are the special cases of keyword
coupling relationship.

Table 4 shows the coupling relationship matrix of all key-
words extracted in Table 1. Here, we set α to 0.5, which
means the intra- and inter-coupling play the same important
role in measuring the keyword coupling relationship. From
Table 4, we can see that the coupling relationship between
keywords considering both of intra- and inter- coupling of
keywords is more reasonable than that of only considering
either intra-coupling or inter- coupling of keywords. For ex-
ample, we consider a pair of keywords “classification” and
“prediction” (or “data analysis”) in Table 1. If we only con-
sider their intra-coupling, there is no relationship between
them as showed in Table 2. But in reality, “classification”
and“prediction”(or“data analysis”) is closely related to each
other in semantic and the relationship between them can be
captured by our inter-coupling calculating algorithm. As a
result, the coupling relationship between them would not be
zero as showed in Table 4.

5. KEYWORD QUERY SEMANTIC SIMI-
LARITY ANALYSIS

In information retrieval, cosine similarity is a commonly
used similarity measure, defined on Vector Space Model. In
this paper, each query can be treated as a document and the
keyword can be treated as a term. Thus, we can adopt the



cosine similarity to quantify the semantic similarity between
queries. The solution consists of the following 3 steps.
Step 1. Convert the keyword query into vector

representation. Given a pair of queries Qi1 and Qi2, we
assume K be the set of all distinct keywords in Qi1 and Qi2

and n the number of keywords inK. We also let n = |K| and
∆ be an arbitrary but fixed order on the keywords appearing
inK. K[i] refers to the i-th keyword of K based on the order
∆. In the context of Qi1 and Qi2, a vector representation of

Qi1 =
∧

j K[j](j = 1, ..., n) is a binary vector
−→
Q i1 of size n.

The i-th element of the vector corresponds to keyword K[i].

If K[i] appears among the keywords of Qi1 then
−→
Q i1[i] = 1,

otherwise it is 0. Note that, since different pairs of queries
usually contain different number of keywords, the cardinality
of K is finite and varies depending on the compared queries.
For example, the queries Q35 and Q43 in Table 1 totally

have five distinct keywords. We assume the order on them is
association rules, decision tree, prediction, classification,
and KDD. Then, the query Q35 and Q43 can be represented
by the vector [1 1 1 0 0] and [0 1 0 1 1], respectively.
Step 2. Construct the semantic matrix. Given a

pair of queries Qi1 and Qi2, we also assume K be the set of
all distinct keywords in Qi1 and Qi2 and n the number of
keywords in K. The coupling relationships of all keywords
in K can then be transformed into a semantic Matrix SK ,
which is a n ∗ n matrix and each element SK(i, j) in it cor-
responds to the coupling relationship between keywords ki
and kj .
Step 3. Compute the semantic similarity between

queries. The traditional VSM-based cosine similarity mea-
suring method assumes the keywords are independent in
queries and ignores the coupling relationships between them.
To address the omission of semantic relationships between
keywords in VSM, based on the semantic matrix SK con-
structed in Step 2, each keyword query vector is transformed

into a new feature vector
−→
Q′ =

−→
Q′SK , which enriches the

query vector representation with the coupling relationships
between keywords. Then, using this transformation the cor-

responding kernel [4] of two query vector
−→
Q i1 and

−→
Q i2 can

be written as,

k′(Qi1, Qi2) =
−→
Q i1(S

T
K ∗ SK)

−→
QT

i2 (8)

Based on the query vector representations (
−→
Q i1,

−→
Q i2) and

kernel k′(Qi1, Qi2), we can define the kernel-based cosine
similarity between two queries as follows,

cosker(
−→
Q i1,

−→
Q i2) =

k′(Qi1, Qi2)√
k′(Qi1, Qi1)

√
k′(Qi2, Qi2)

(9)

Using Equation (9), the semantic similarity between each
pair of queries in query history can be obtained. The matrix-
es of similarities between different pairs of queries obtained
by using traditional VSM-based cosine similarity (short for
V-COS) and kernel-based cosine similarity (short for K-
COS) algorithms are showed in Table 5 and 6, respectively.
From Table 5 and 6, we can find that the similarities of

a specified query to other queries calculated by V-COS al-
gorithm are usually same. For example, the similarities be-
tween Q24 to Q13 and Q35 are all 0.33 and the same to Q35

to Q24 and Q43, and thus lead the queries are difficult to
differ from each other. While, the similarities of them cal-
culated by K-COS algorithm are different and more close to
reality.

Table 5: Query similarity matrix based on V-COS
Q13 Q24 Q35 Q43

Q13 1.00 0.33 0.00 0.67
Q24 0.33 1.00 0.33 0.00
Q35 0.00 0.33 1.00 0.33
Q43 0.67 0.00 0.33 1.00

Table 6: Query similarity matrix based on K-COS
Q13 Q24 Q35 Q43

Q13 1.00 0.61 0.44 0.86
Q24 0.61 1.00 0.72 0.44
Q35 0.44 0.72 1.00 0.61
Q43 0.86 0.44 0.61 1.00

6. TOP-K KEYWORD QUERY SELECTION

6.1 Top-K Keyword Query Selection Problem
Let Q be a given keyword query over database D and

W be the query history. Based on the semantic similarities
between different queries, the goal is to address the top-k
query selection problem defined as,

Γk = argmaxΓ ′

k(k<<n)∑
i=1

δsim(Q,Qi) (10)

where, Γk is a list of k keyword queries and n is the number
of all queries in query history. The objective of the problem
is to find a set of number k queries in query history that
semantically related closely as possible to the given query.

6.2 Approach
A straightforward algorithm to find the top-k related queries

is used to compare the similarities of the given query to al-
l queries and then rank them according to the similarities.
The time complexity is O(n2logn), where n is the number of
all queries in query history. However, this complexity is un-
acceptable for a large scale query history. Thus, we have to
find an approximate method to expeditiously find the top-k
related queries. This paper proposes a three-step solution
to resolve it. The first step is to find a few representative
queries in query history and the second step is to order the
remaining queries corresponds to each representative query.
The third step is to select the top-k related queries based
on these orders. The first and second steps are processed
during offline time and the third step is processed during
online time.

Step 1. Find representative keyword queries. Based
on the semantic similarities between different pairs of queries,
we provide an algorithm (Algorithm 3), which is inspired by
the furthest-first traversal algorithm [2], to find the repre-
sentative queries in query history. Let m be the number
of queries in query history W . Also let l be the number
of representatives and Wl the set of representatives. The
algorithm starts by picking an arbitrary query in W as a
representative query, denoted by Q̄i, and then adds it to
the set Wl = {Q̄i}, while Q̄i is removed from W . Then, it
picks query Q̄j , which is furthest from Q̄i that means the
δsim(Q̄j , Q̄i) is the smallest among the {δsim(Qj , Q̄i)|j ∈
(1, ...,m) and j ̸= i} in W .



Algorithm 3: Representative queries finding algorithm

Input: queries in W = {Q1, ..., Qm}, number l.
Output: the set of l representatives Wl = {Q1, , Ql}.

1 Wl ← ϕ.
2 pick arbitrary Q1 ∈W .
3 Wl ←Wl

∪
{Q1}.

4 W ←W − {Q1}
5 for i = 2 to l do
6 Qi = argminQ′∈W δsim(Q′, Q̄i−1)

7 Wl ←Wl

∪
{Q̄i}

8 W ←W − {Q̄i}
9 Return Wl = {Q̄1, .., Q̄l}

Step 2. Create orders for representative queries.
For each representative query Q̄i create an order τi of all
remaining queries (except Q̄i) in query history in descending
order, according to their similarities to Q̄i. The output of
this procedure is a set of l orders. According to the output
orders, each query Qj has a score that is associated with the
position of Qj in each order τi. The score of Qj in τi that
corresponds to Q̄i is:

s(Qj |Q̄i) = n− τi(Qj) + 1 (11)

where, τi(Qj) represents the position of Qj in τi.
Using Algorithm 3, a few representative queries can be

selected. When a given query is coming, it needs to only
compute the similarities between the given query and rep-
resentative queries, which is used as a weighting parameter
for top-k query selection.
Step 3. Select top-k related queries. For a given

query Q, using the output of Step 2, this step computes
the set Qk(W ) ⊆ W with |Qk(W )| = k, such that ∀Qj ∈
Qk(W ) andQ′

j ∈ {W−Qk(W )} it holds that score(Qj , Q) >

score(Q′
j , Q), with score(Qj , Q) =

∑l
i=1 δsim(Q, Q̄i)s(Qj |Q̄i).

We next describe a method, which employs the Threshold
Algorithm (TA) [13], to provide the top-k related queries for
a given query. The TA uses sorted and random modes to
access the queries in the orders. The Sorted mode obtains
the score of a query in an order by scanning the order of
the queries from the top to down sequentially. The Random
mode finds the score of a query in an order in one access.
The top-k query selection algorithm is shown in Algorithm
4, where the score of Qj found in each order τi to Q is
computed by:

s(Qj , Q) = δsim(Q, Q̄i)s(Qj |Q̄i) (12)

where, s(Qj , Q) is weighted by the semantic similarity be-
tween the given query Q to the representative query Q̄i.
The score of Qj in every other order is found via random

access, and all these scores are summed, resulting in the final
score of Qj for the given query Q:

score(Qj , Q) =

l∑
i=1

δsim(Q, Q̄i)s(Qj |Q̄i) (13)

In Algorithm 4, λ is a threshold for the current repeat
loop, for any query Q′

j that has not yet been seen in the
repeat loop access, its score is less than λ. The time com-
plexity of Algorithm 4 is O(kl2), where k is the number of
queries need to be retrieved and l (l << n) is the num-
ber of representative queries. When l is small, Algorithm 4

Algorithm 4: The top-k query selection algorithm

Input: Orders set Wl = {τ1, ..., τl}, given query Q,
number k.

Output: Top-k related queries in query history.
1 Let B = {} be a buffer that can hold k keyword queries.
2 Let L be an l size array that is used to store the score

of the last visited query of each order by the end of the
current round-robin cycle.

3 repeat
4 for i = 1 to l do
5 Retrieve next query Qj from τi using sorted

access.
6 Compute s(Qj , Q) = δsim(Q, Q̄i)s(Qj |Q̄i) as Q

′
j

s score.
7 Update L[i] with score of Qj in τi.
8 Get score of Qj from other orders {τk|τk ∈Wl

and k ̸= i} via random access.
9 score(Qj , Q)← summing up of all the scores of

Qj retrieved from all the orders.
10 Insert ⟨Qj , score(Qj , Q)⟩ into B in descending

order.
11 λ← λ+ L[i].

12 until B[k − 1].score ≥ λ
13 Return B.

achieves a significant decrease in complexity (In Section 7,
we demonstrate that even for a small number of l, our top-
k related query selection algorithm can achieve a relatively
high accuracy).

7. EXPERIMENTS

7.1 Experimental settings
The experiments are conducted on a computer running

Windows 2008 with Intel P4 3.2-GHz CPU, and 8 GB of
RAM. We implemented all algorithms in C# and SQL. We
use the following two real datasets to evaluate the perfor-
mance of our methods.

1. DBLP dataset. The download DBLP XML file is de-
composed into 4 relational tables, that are Authors, Papers,
Write and Publications, respectively. We built a keyword
query system based on DBLP dataset and provided a web in-
terface for users to submit keyword queries that they would
execute. In this way, we collected 1,600 queries in an exten-
sive scope and 500 queries are finally retained after pruned
as the query history. Each remained query contained 3 ∼ 5
keywords and there are 1,674 distinct keywords in total. The
keywords in query history are related to author, paper title,
and conference name, and they are also inter-related within
the same queries and/or across the different queries. So the
query history over DBLP is very appropriate for testing the
performance of our keyword coupling relationship and query
semantic similarity measuring methods.

2. IMDB dataset. The Internet Movie Database (IMD-
B) contains movies, directors, actors and other movie-related
information. For this database, we adopt the following strat-
egy to simulate the query history. We first created a data
view, in which each record is formed by joining all connect-
ed tuples according to the primary-foreign-key references.
Then, we random selected 1,000 records from the data view



and extracted keywords respectively from the movie name,
actor name, genre, role, and director name of each record.
Next, the keywords extracted from each record were random
selected to integrate as a keyword query. Finally, we totally
formed 1,000 queries as the query history.

7.2 Accuracy of Keyword Coupling Relation-
ships

This experiment aims to show how to determine the pa-
rameter α in Equation(7) to get the best accuracy of cou-
pling relationships between keywords. To do this, we ran-
domly selected 10 keywords from DBLP and IMDB query
histories, respectively. For each keyword ki, we first ob-
tained the top-5 relevant keywords by using our keyword
coupling relationship measuring method with respect to each
value of parameter α in Equation (7) from 0 to 1 at the in-
crements 0.1. Then, we mixed these keywords and thus a
set Ki of 55 keywords was generated. Next, we calculat-
ed the frequency of occurrence for each distinct keyword in
Ki and finally marked the top 5 most frequently occurring
keywords as the relevant keywords since the more frequently
the keyword occurring in Ki indicates the more the keyword
relevant to the given keyword.
Based on the relevant keywords marked for each selected

keyword ki, we then use the Recall and Precision metrics to
evaluate the accuracy of coupling relationships with respect
to different values of α. Recall is the ratio of the number
of relevant keywords retrieved by the algorithm to the total
number of the keywords that were marked as relevant. Preci-
sion is the ratio of the number of relevant keywords retrieved
by the algorithm to the total number of keywords that were
retrieved. In our case, both the relevant and retrieved key-
words number 5, making the Recall and Precision equal.
Figure 3 shows the Recall&Precision of answers obtained by
using our keyword coupling relationship measuring method
with respect to different values of α on DBLP and IMDB
datasets, respectively. Note that, the Recall&Precision for
each value of α is averaged over 10 selected keywords.
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Figure 3: Accuracy of answers for different values of
α on DBLP and IMDB datasets

It can be seen that the curve of Recall&Precession reach-
es the peak at α = 0.5 for both DBLP and IMDB datasets,
which demonstrates that our method achieves the best per-
formance on these two datasets when α is set to 0.5, and
the corresponding accuracy are 0.90 and 0.83, respectively.
Note that, since the keywords from different datasets may
have different coupling relationships, it is necessary to opti-
mize the setting of α to achieve the highest accuracy. It also
can be seen that, the peak accuracy on IMDB is lower than
that on DBLP. This is because the query history of DBLP is

the real queries user submitted, in which the coupling rela-
tionships between keywords of them are very strong, so that
we can capture the coupling relationships more efficiently.

7.3 Accuracy of Keyword Query Semantic Sim-
ilarities

This experiment aims to evaluate how well our query se-
mantic similarity measuring algorithm captures the user query
intentions. To verify the accuracy of the semantic similari-
ties between different queries, we adopt the strategy as fol-
lows. We invited 10 people, which are researchers and PhD
students, to choose the queries from the DBLP and IMDB
query histories. For each selected query Qi, we generat-
ed a set Ki of 30 queries from query history that likely to
contain a mix of relevant and irrelevant queries in relation
to the given query. Each set Ki is formed by mixing the
top 10 results of each algorithm of kernel-based similarity
(K-COS), traditional VSM-based cosine similarity (V-COS),
and RANDOM (it selects the queries in a random order and
provides a baseline to show the efficiency of the other two
algorithms). Lastly, we presented the queries with their cor-
responding K′

is to each user in our study. Each user had
to mark the top 10 queries in Ki that they considered se-
mantically related to Qi. We then measured how closely the
10 queries marked as relevant by the user matched the 10
queries returned by each algorithm. The users were asked
to describe whether they considered a query Q′ related to a
given query Q based on:

(i) the keywords in Q′ are related to that of Q. For ex-
ample, the keyword “sequential mining” is related to “asso-
ciation rules”, hence the queries contains the keywords are
considered to be related to each other.

(ii) the results of Q′ are relevant to that of Q, although
no keyword in Q′ is same or related to Q. For example, the
results of query “e-commerce, decision making” are partly
overlapped with those of query“data analysis, decision tree”,
but the keywords in queries are not explicit related.
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Figure 4: Accuracy for K-COS, V-COS, and RAN-
DOM



The Recall&Precision metrics is also used to evaluate this
overlap. Figure 4 shows the Recall&Precision of answers for
K-COS, V-COS, and RANDOM. We can see that the Re-
call&Precision of K-COS is much higher than V-COS over
the two datasets. The averaged Recall&Precision of K-COS
is 0.84 for DBLP and 0.78 for IMDB while the V-COS is
0.65 for DBLP and 0.52 for IMDB. This is because V-COS
learns the query similarity based on traditional VSM, which
only considers the local overlapped information between the
queries. In contrast, the K-COS considers both the local
overlapped information between the queries and the cou-
pling relationships of the keywords within/across queries.
Additionally, the reasonability of keyword coupling relation-
ship, which considers both the intra- and inter-coupling be-
tween keywords, is demonstrated by Experiment 7.2. Hence,
the answers for the given query can meet the user’s inten-
tions more closely.

7.4 Accuracy of Top-k Query Selection
This experiment aims to test the accuracy of the top-k

queries obtained using only the orders that corresponds to
representative queries when compared with the top-k key-
word queries obtained by computing the similarities of the
given query to all queries in query history. To quantify this
accuracy, we use R(All, k) to denote the top-k queries re-
turned by computing the similarities of the given query to
all queries in query history, and R(Rep, k) to denote the
top-k queries returned using only the orders corresponding
to representative queries. The overlap of two top-k answer
sets is measured using the Jaccard coefficient:

J(R(Rep, k), R(All, k)) =
|R(Rep, k)

∩
R(All, k)|

|R(Rep, k)
∪

R(All, k)| (14)
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Figure 5: Accuracy of different l when value k varied

The coefficient falls into the interval of [0, 1] and the high-
er its value the more similar the two sets of queries are. In
this experiment, we use three parameters: n, l, and k, to
character the dataset. Here, n is the number of queries in
each of the orders, l the number of representative queries,
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Figure 6: Performance of top-k selection algorithm

and k the number of queries needs to be selected. Figure
5 shows the value of the coefficients (averaged over 10 test
queries) for different values of k, when l={10, 20, 40, 60,
80}. The values of n are fixed to 500 for DBLP and 1000
for IMDB (because there are 500 and 1000 queries in their
query histories, respectively), and k is varied in {10, 20, 30,
40, 50, 60, 70, 80, 90, 100}.

From Figure 5 we can see the coefficients corresponding to
different numbers of l are nearly identical (except the case of
l=10 for DBLP) and the accuracy is relatively high, which
means when only a small number of representative queries
(such as l = 20) are used to find the related queries, the
information lost by looking at the orders for representatives
instead of computing similarities of the given query to all
queries in query history is not substantial. Additionally, the
accuracy of l=10 is much lower than that of other numbers
of l on DBLP dataset, which indicates that the number of l
should be selected appropriately for different datasets.

7.5 Experimental Results
This experiment aims to verify the performance of the

top-k selection algorithm. In this experiment, we generate
5,000 and 10,000 keyword queries as query history for DBLP
and IMDB datasets, respectively. Based on these datasets,
we fix the number of l to 10, 20, 40, 60, and 80, respectively
and then test the execution time of top-k selection algorithm
for different k values (here, we set the number of k to 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100, repectively). Figure 6
shows the execution time on DBLP and IMDB datasets for
different k values when l={10, 20, 40, 60, 80}.

From Figure 6, we can see that the algorithm runs fast,
especially when l ≤ 20 and k ≤ 10. As demonstrated in Ex-
periment 7.4, the information lost is not substantial by only
using l = 20 representative queries to find related queries.
Meanwhile, providing top-10 related queries are enough for
most users in real applications. Therefore, our top-k selec-
tion algorithm can be very well suitable for processing the
large scale of query history. Additionally, the performance



of the algorithm decreases with the increasing of value l and
k. The reason is that the top-k query selection algorithm
needs to deal with more queries in orders as the number l
and k increased. We also computed the time consumption
for computing the similarities of a given query to all queries
in query history. It takes approximately 48 seconds for D-
BLP and 321 seconds for IMDB to obtain the similarities
of a given query to all remaining queries in query history.
Our top-k selection algorithm clearly outperforms existing
methods and demonstrates more efficient performance.

8. CONCLUSIONS
This paper presented a novel approach to address the cou-

pling relationships hidden between keywords and between
keywords and queries to enhance semantic approximate key-
word queries over Web databases. The techniques proposed
in this paper can also be adopted in domains other than web
databases. For example, scientific database users, especially
the ones who are not familiar with the area, would benefit
from a system that improves their original queries. Further-
more, this approach can be used both at the application lev-
el and be incorporated into most of existing keyword search
frameworks to support the semantic approximate keyword
search. The experiments on real dataset identified that the
keyword coupling relationship and query semantic similarity
measuring methods can capture the semantic relationships
of keywords and queries more reasonable. The top-k related
queries can be returned quickly and relatively high accuracy
is achieved, even though only a small number of representa-
tive queries are retained.
It would be interesting to investigate (i) how to minimize

the updating cost when the query history is varied, and (i-
i) the effect of introducing some diversity in the suggested
queries.
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