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Abstract—Negative sequential patterns (NSP), which 
capture both frequent occurring and non-occurring 
behaviors, become increasingly important and sometimes 
play a role irreplaceable by analyzing occurring behaviors 
only. Repetition sequential patterns (RSP) capture 
repetitions of patterns in different sequences as well as 
within a sequence and are very important to understand 
the repetition relations between behaviors. Though some 
methods are available for mining NSP and repetition 
positive sequential patterns (RPSP), we have not found any 
methods for mining repetition NSP (RNSP). RNSP can help 
analysts to further understand the repetition relationships 
between items and capture more comprehensive 
information with repetition properties. However, mining 
RNSP is much more difficult than mining NSP due to the 
intrinsic challenges of non-occurring items. To address the 
above issues, we first propose a formal definition of 
repetition negative containment. Then we propose a 
method to convert repetition negative containment to 
repetition positive containment, which fast calculates the 
repetition supports only using the corresponding RPSP's 
information without re-scanning databases. Finally, we 
propose an efficient algorithm, called e-RNSP, to mine 
RNSP efficiently. To the best of our knowledge, e-RNSP is 
the first algorithm to efficiently mine RNSP. Intensive 
experimental results on the first four real and synthetic 
datasets clearly show that e-RNSP can efficiently discover 
the repetition negative patterns; results on the fifth dataset 
prove the effectiveness of RNSP which are captured by the 
proposed method; the results on the rest 16 datasets 
analyze the impacts of data characteristics on mining 
process. 

 
Index Terms— sequence analysis; repetition patterns; 

negative sequential patterns; repetition negative sequential 
patterns. 
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I. INTRODUCTION 

EQUENTIAL data is widely seen in real-life applications 

in particular behaviors, such as high-impact behavior 

analysis [1], group behavior analysis [2], contrast behavior 

analysis [3], abnormal behavior detection [4], and so forth. As 

an important means for behavior analysis [7-9], sequence 

analysis, in particular, sequential pattern mining has been 

increasingly explored to discover frequent subsequences in a 

sequence database [27-31,35]. Since the first proposal of 

sequential pattern mining, many algorithms, such as GSP [10], 

FreeSpan [11], PrefixSpan [12], SPADE [13], and SPAM [14], 

have been successfully proposed to enhance the algorithm 

efficiency. The patterns mined by these algorithms, focusing 

only on occurring items, are called positive sequential patterns 

(PSP). But limited research has been conducted on analyzing 

non-occurring behavior sequences [46], e.g., mining negative 

sequential patterns (NSP) [5, 6, 40]. NSP, which contains both 

occurring and non-occurring [46] items, such as <ab¬c>, 

sometimes play an irreplaceable role in many intelligent 

systems and applications, such as intelligent transport systems 

(ITS), health and medical management systems, bioinformatics, 

biomedical systems, risk management, counter-terrorism, and 

security [15,40]. For instance, assume s1=<abcX> is a PSP; 

s2=<ab¬cY> is a NSP, where a, b and c stand for medical 

service codes that a patient receives in health care, and X and Y 

stand for disease states. s1 shows that a patient who usually 

receives medical services a, b and then c is likely to have 

disease status X, whereas s2 indicates that patients receiving 

treatments of a and b but NOT c have a high probability of 

having status Y [15]. 

Although many algorithms can be used to discover PSP, NSP 

cannot be described or discovered by these algorithms. This is 

because mining NSP is much more difficult than mining PSP, 

particularly due to the following three intrinsic complexities: 

hidden nature of non-occurring items, high computational 

complexity and large negative sequential candidates (NSC) 

search space [15,40]. In fact, research on NSP mining is at an 

early stage, and has seen only limited progress in recent years 

[5, 40]. All existing methods are very inefficient and are too 

specific for mining NSP, except e-NSP [40]. e-NSP proposes a 

method to fast calculate the support of NSC only using the 

corresponding PSP's information, without database rescanning. 

By this way, e-NSP obtains high time efficiency.  

e-NSP, however, does not consider the repetition sequential 

patterns (RSP) mining problem. RSP is important as they 
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represent repetition behaviors, and can capture repetitions of a 

pattern in different sequences as well as within a sequence, in 

which the same item(s) can occur more than once in a sequence 

[20-26,48]. It is helpful for deeply understanding the relations 

between items in many applications, such as network attack 

detection, DNA periodic analysis [21,51], outlier pattern 

detection [34], and so on [18,36-39,52]. For example, suppose a 

dataset contains two sequences below: {10: <ababababc>; 20: 

<ac>} and a given minimum support threshold min_sup =2. 

RSP mining algorithms can find pattern <ab> occurring at least 

4 times and thus mark it as a frequent pattern. If <ababababc> 

represents the behavior that a hacker attacks a server in a short 

time period, mining RSPs like <ab> can help analysts to 

capture more useful information about a pattern’s appearance 

within or between sequences. Some RSP mining algorithms 

have also been proposed to mine such patterns [19-30]. 

Unfortunately, all existing RSP mining algorithms we have 

found only consider repetition PSP (RPSP).  

Repetition NSP (RNSP) combines the respective 

information of NSP and RPSP, representing non-occurring 

repetition behaviors. It can help analysts to further understand 

the relationships between items and capture more 

comprehensive information with repetition properties. For 

example, in auto insurance fraud detection, s3=<xy¬zW> 

denotes a customer’s collision-payment sequence, where x 

denotes the event of a vehicle collision caused by a customer’s 

own reason, y denotes the event that the insurance company 

assesses the damage, z denotes the event of repairing car in the 

garages that the insurance company suggests, and W denotes 

the event of the payment to customer by the insurance company. 

s3 denotes that a customer gets the payment, but s/he doesn’t 

repair her/his car in the garages that insurance company 

suggests. This case is normal because the insurance company 

doesn’t force their customers to repair car in their suggested 

garages. However, sequence s4=< xy¬zW xy¬zW xy¬zW> 

should be highly abnormal, since it indicates that the same 

events repetitively occur to the same customer which is likely a 

fraud. In fact, such suspicions happen sometimes in real life. 

Hence, mining such RNSP is very important in real 

applications.   

However, RNSP mining is more difficult than NSP mining 

and RSP mining, particularly because of the following two 

intrinsic complexities.  

(1) Repetition negative containment problem. In NSP mining, 

there is not a unified definition about negative containment 

[15-18] so far because the hidden nature of non-occurring items 

[46] makes it complicated in defining the negative containment 

problem. For example, for a sequence s5=<ababababc>, in PSP 

mining, the support of <ab> in s5 is 1; in RPSP mining, the 

repetition support of <ab> in s5 is 4 (this value may be different 

in different RSP mining methods). But in NSP mining, whether 

s5 contains <ab¬d> is inconsistent in different papers [15-18]. 

In RNSP mining, does s5 contain <ab¬d>?  If yes, how many 

repetition times that s5 contains <ab¬d>?  Therefore, how to 

define repetition negative containment is a challenging problem 

unsolved.  

(2) High computational complexity. Most of existing 

methods are very inefficient because they calculate the support 

of NSC by additionally scanning the database after identifying 

PSP. If we use the same way to obtain the repetition supports, it 

will bring enormous consumption both on running time and 

space. Therefore, how to fast calculate the repetition support of 

RNSP is a significant yet difficult problem.  

In order to address the above critical challenges and make 

RNSP running feasible in real-life applications, this paper 

proposes an efficient algorithm, called e-RNSP, to mine RNSP 

efficiently. To the best of our knowledge, e-RNSP is the first 

algorithm to mine RNSP. The main contributions are as 

follows.  

First, we propose a definition to formally define repetition 

negative containment.  

Second, we propose a method to convert the problem of 

repetition negative containment to the problem of repetition 

positive containment, which lets us fast calculate the support of 

NSC by only using the corresponding RPSP's information and 

avoid database rescanning.   

Further, a hash table is proposed to store the corresponding 

information of RPSP and propose an efficient algorithm, called 

e-RNSP, to mine RNSP efficiently.  

Lastly, experiments are conducted on real and synthetic 

datasets to compare e-RNSP with three available NSP mining 

methods, e-NSP [40], NegGSP [17] and PNSP [16] in terms of 

the number of patterns and their running time. Particularly, 

based on a basic dataset, we generate 15 additional datasets in 

terms of different data factors, to access the runtime and pattern 

number of e-RNSP and e-NSP respectively. Intensive 

experiments clearly show that e-RNSP can efficiently discover 

repetition negative patterns.   

The rest of this paper is organized as follows. The related 

work is discussed in Section 2. In Section 3, we introduce some 

basic concepts of PSP mining. In Section 4, we define the 

definition of negative containment. The e-RNSP algorithm is 

explained in Section 5, and Section 6 displays the experimental 

outcomes. Section 7 includes the conclusions and future work.  

II. RELATED WORK 

In this section, we first introduce some available methods of 

mining NSP. Further, we introduce the state-of-the-art research 

of mining RSP.  

In [17], a GSP-like way was introduced to mine for NSP, 

called NegGSP. Chen et al. designed a negative NSP mining 

approach PNSP [16]. Only the form of (¬X,Y), (X, ¬Y) and (¬X, 

¬Y) are suitable for the method in [31], which is similar to mine 

negative association rules. Lin et al. designed an algorithm 

NSPM [18] for mining negative sequential patterns, in which 

only the last element can be negative. They then extended their 

algorithm to NFSPM for mining negative fuzzy sequential 

patterns [32] and PNSPM for mining strong positive and 

negative sequential patterns [33]. In our previous work, we 

proposed an efficient NSP mining method e-NSP in [15,40]. 

E-NSP calculates NSC’s supports only by using the 

corresponding PSP information without re-scanning database 

and can handle large-scale NSP. A NSP mining method based 
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on multiple minimum supports, named e-msNSP, was proposed 

in [41]. [47] utilized the bitmap structure with a self-adaptive 

data storage strategy to improve the efficiency of e-NSP. A 

method mining NSP from both frequent and infrequent positive 

sequence, named, was proposed in [42]. Xu et al. considered 

utility when mining NSP [5]. 

Very limited work has been reported on how to identify 

RPSP from sequence datasets. The authors in [34] proposed a 

stable and efficient suffix tree-based approach for detecting the 

periodicity of outlier patterns in a time series. Meanwhile, the 

methods in [20,23,25] follow the unified definition of repetition 

sequences. The work in [20] faces the overlap issue when 

calculating the repetition times. For example, given a data 

sequence ds=< AXYABXYXA>, <XYX> appears twice in ds at 

<2,3,4> and <6,7,8> respectively, where 2,3,4 and 6,7,8 are the 

element ID in ds. Authors of [23] compressed repetition gapped 

sequential patterns and proposed an algorithm CRGSgrow. A 

navigation pattern clustering method was proposed in [25] 

based on closed repetition gapped subsequences.  An RB-EZH2 

Complex Mediates Silencing of Repetition DNA Sequences is 

proposed in [43].  

There are some other algorithms which take different 

definitions. RptGSP was proposed in [19] to mine RPSP, it uses 

the way similar to GSP to find sequential patterns, but 

calculates repetition supports in data sequences. Repetition 

expansion was introduced in [21] for DNA replication. The gap 

requirement was discussed in [22] when mining repetition 

patterns from DNA sequences. The definition of gap weight for 

sub-sequences was discussed in [24]. Different events have 

different gaps, and their paper put forward an approach EWM 

to mine repetition patterns with gap weight. However, their 

method does not discriminate overlapping subsequences and 

non-overlapping ones. Mannila et al. performed an approach of 

mining episode to catch frequent episodes within a sequence 

[25]. An episode is defined as a series of events occurring 

relatively close to one another. An episode is supported by a 

window if it is a sub-sequence of the series of events appearing 

in the window. In [29], a sequence is divided into 

non-overlapping windows. A pattern is frequent if it appears in 

at least a certain number of windows. With this definition, it is 

shown that the Apriori property applies. It simplifies the design 

of the mining algorithm by segmenting a sequence into 

windows and counting the number of windows in which a 

pattern frequently occurs. However, patterns that span multiple 

windows cannot be discovered, and in some cases, a suitable 

window width is difficult to determine. Yang et al. studied 

asynchronous periodic patterns in time series data [30]. In their 

model, shifts in the occurrence of patterns are permitted to filter 

out random noises. They also considered a range of periods 

instead of those used in [29], although there is still a limit of the 

maximum length of a period. 

A method was proposed in [27] for identifying iterative 

patterns, which captures occurrences in the semantics of 

Message Sequence Chart/Live Sequence Chart, a standard in 

software modeling. Iterative pattern is known as a series of 

events which repeat within and across sequences. Both work in 

[20] and [27] mine repetition closed subsequences with 

different underlying target formalism and semantics. Different 

search space pruning strategies and mining algorithms are used 

to efficiently mine recurrent rules. The work in [28] uses the 

definition of iterative patterns similar to [27]. It proposed an 

approach to find generators of iterative patterns and investigate 

catching of iterative generators from program execution traces. 

Generators are the minimal members of an equivalence class, 

while closed patterns are the maximal members. An 

equivalence class in turn is a set of frequent patterns with the 

same support and corresponding pattern instances.  

Other papers discussed research on sequences, but they 

didn’t consider negative sequences. The authors in [44] 

proposed a characteristic-based framework for multiple 

sequence aligners. The work in [45] includes a new 

initialization technique, which is a heuristic space-filling 

approach based on both functions to be optimized and a search 

space. In [49], a novel approach rep-PrefixSpan for mining RSP 

with multiple minimum item repetition support was proposed 

and authors of [50] utilized the cyclic model to predict likely 

consumer behavior within a certain time frame. Fan et al, 

proposed an efficient Apriori algorithm for frequent tri-patterns 

discovery [53]. [54] designed two novel algorithms for mining 

inter-sequence patterns with item constraint and [55] proposed 

an efficient way to discover maximal frequent patterns in 

transactional databases and dynamic data streams. 

In summary, existing methods were not designed to identify 

RNSP, and there are inconsistencies in defining and extracting 

repetition patterns. RNSP is thus proposed to address this gap.  

 
TABLE I. NOTATION DESCRIPTION 

Symbol Description 

I 
A set of items, I= {i1, i2,…, in}, consisting of n 

items ik(1≤k≤n) 

s 
A sequence, s =<s1, . . . , sl>, consisting of l 

elements sj (1≤ j≤l) 

min_sup Minimum support threshold 

ns A negative sequence 

length(s) 
Length of sequence s, referring to the total 

number of items in all elements in s 

size(s) 
Size of a sequence s, referring to the total number 

of elements in s 

sup(s) The support of s 

p(ns) ns’s positive partner 

MPS(s) Maximum positive sub-sequence of ns 

1-negMS 1-neg-length maximum subsequence of ns 

1-negMSSns 1-neg-length maximum subsequence set of ns 

LCSP The left containment subsequence position 

III. PRELIMINARIES 

Assume a set of items I= {i1, i2,…, in}, an itemset is a subset 

of I. A sequence is an ordered list of itemsets. A sequence s is 

described by < s1, s2,…, sl >, where sj I (1 j  l). sj is also 

named a sequence’s element, labelled as (x1, x2,…, xm), where xk 

is an item, xk I (1 k  m), j is the id of the element. For 

simplicity, if an element only contains one item, the bracket is 

omitted, i.e., (x1) is equal to x1. An item in a sequence can 
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appear at most once in an element, but can occur multiple times 

in different elements. 

Length(s) is the length of sequence s, which is the total 

number of items in all elements in s. Size(s) is the size of s, 

coded as size(s), which is the total number of elements in s. For 

example, sequence <a(ad)de> is comprised of 4 elements a, 

(ad), d and e; meanwhile, it is also comprised of 3 items a, d 

and e.  It is a 4-size and 5-length sequence. 

Sequence s=<1,2,…,n> is named a sub-sequence of 

sequence s=< 1, 2,…, m > and s is a super-sequence of s, 

denoted as s  s, if there exists 1 j1  j2… jn m such that 

1  j1, 2  j2,…, n  jn. We also call s contains s . For 

example, <c>, <ac> and < (ab) d> are sub-sequences of < (ab) c 

d>. 

A set of tuples <sid,ds> is used to represent a sequence 

dataset D (see Table III about an example dataset for details), 

where ds is the data sequence and sid is the number of sequence. 

|D| is the number of tuples in D. The set of tuples containing 

sequence s is described as {<s>}. Sup(s) refers to the support 

of s, it is the frequency of {<s>}, i.e., sup(s)=| 

{<s>}|=|{<sid,ds>, <sid,ds>D  (sds)}|. min_sup is a 

minimum support threshold, denoted as min_sup. If sup(s) 

min_sup, then we call the sequence s is frequent. By contrast, s 

is infrequent if sup(s)< min_sup. 

PSP mining aims to discover all positive sequences that 

satisfy the minimum support. For simplicity, we often omit 

“positive” when discussing positive items, positive elements 

and positive sequences in mining PSP.  

The main symbols used in this paper are listed in Table I. 

IV. THE DEFINITIONS OF NEGATIVE CONTAINMENT 

In this section, we first introduce the constraints to negative 

sequence, then discuss the definitions of negative containment 

in e-NSP, finally propose the definitions of repetition negative 

containment. 

A. Constraints to Negative Sequences 

In real-life applications, the number of NSC and the 

identified negative sequences are usually in an enormous scale, 

and most of which are meaningless [40]. The number of NSC 

may be huge or even infinite if no constraints are added. This 

makes NSP mining very challenging. In order to solve this 

problem, some available constraints are introduced in the 

existing methods. This paper involves three constraints the 

same as e-NSP. Here we only introduce these constraints 

because of page limitation, please refer to [40] for the 

feasibility and rationality if interested. We first introduce the 

definition positive partner, which is used in the constraints.  

Definition 1. Positive Partner. Given a negative element ¬b, 

its positive partner is b, described as p(¬b), i.e., p(¬b)=b.  

A positive element b’s positive partner is b itself, i.e., p(b)=b. 

Suppose ns=<s1…sk> is a negative sequence, its positive 

partner can be obtained by converting all negative elements in 

ns to their positive partners, denoted as p(ns), i.e., 

p(ns)={<s1…sk>| si=p(si), si  ns}. For example, 

p(<¬(cd)a¬c>)=<(cd)ac>. 

Constraint 1. Frequency Constraint. We only focus on those 

negative sequences ns whose p(ns) is frequent, i.e., sup(p(ns)) > 

min_sup.  

Constraint 2. Formation Constraint. Continuous negative 

elements are not allowed in a NSC, because we cannot tell the 

right order of two continuous negative elements if there is no 

positive element between them.  

Example 1. <a ¬(ab) c a ¬c> satisfies Constraint 2, but <a 

¬(ab) c ¬a ¬c> does not. 

Constraint 3. Element Negative Constraint. An element is 

the minimum negative unit in a NSC. If an element includes 

more than one item, it is not permitted that certain items in the 

element are negative while others are not. 

Example 2. <a ¬(ab) c a ¬c> satisfies this constraint, but <a 

(¬ab) c a ¬c> doesn’t because only ¬a is negative in element 

(¬a b), while b is not. 

Definition 2. Negative Sequential Pattern (NSP). The 

support of a negative sequential pattern (NSP) is not less than 

min_sup. 

B. Negative Containment 

The definition of negative containment is very important to 

the efficiency of a NSP mining algorithm because it affects the 

efficiency of calculating the support of NSC. In e-NSP, a 

definition of negative containment that is consistent with the set 

theory was proposed. In order to fast calculate the support of 

NSC, e-NSP converts the negative containment problems to 

positive containment problems such that the support of NSC is 

fast calculated by only using the information of PSP. In order to 

do so, e-NSP defines a series of strict definitions which are not 

easily understood. This paper also uses the same definitions, 

but we simplify them in an easily understandable way: we only 

use the converted definitions and omit those preparatory 

definitions. Interested readers can refer to [40] to understand 

these definitions from negative containment angle. We use an 

example to explain them first.   
Given ds=<a(bc)d(cde)> and ns=<a¬bb¬a(cde)>, ds 

contains ns if and only if ds contains <ab(cde)> and ds doesn’t 

contain <abb(cde)> (i.e., p(<a¬bb(cde)>) and <aba(cde)> (i.e., 

p(<ab¬a(cde)>), where <ab(cde)> is the sub-sequence that 

contains all positive elements with the same order as ns, called 

Maximum Positive Sub-sequence and denoted by MPS(ns); 

<a¬bb(cde)> ( or <ab¬a(cde)>) is the sub-sequence that 

contains all positive elements and only one negative element 

with the same order as ns, called 1−neg−size maximum 

sub-sequences and denoted by 1-negMS. The set consisting of 

all 1-negMS in ns is called 1-neg-size maximum sub-sequence 

set, denoted as 1-negMSSns. For example, 

1-negMSS<a¬bb¬a(cde) >={<a¬bb (cde)>, <ab¬a(cde)> }. 

Now we formally define negative containment. 

Definition 3. Negative containment. Given a data sequence 

ds and a negative sequence ns, ds contains ns if and only if the 

two conditions hold: (1) MPS(ns) ds; and (2) 

1−negMS1−negMSSns, p(1−negMS) ds. 

Example 5. Assume ds=<(ab)c(de)f> and (1) ns=<a c¬d>, 

1-negMSSns={<ac¬d>}, ds does not contain ns because 

p(<ac¬d>)=<acd>  ds; (2) ns'=<a¬bc¬g>, 
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1-negMSS′ns={<a ¬bc>, <ac ¬g>}, ds contains ns because 

MPS(ns’)=<ac>  ds  p(<a ¬b c>)  ds   p(<a c ¬g>)  ds. 

From Definition 3 we can see that the negative containment 

now is converted to positive containment: a data sequence 

contains a positive sequence but does not contain some other 

related positive sequences. In this way, we can calculate the 

support of negative sequences by only using the information of 

corresponding positive sequences. 

C. Repetition Negative Containment 

As a data sequence ds may contain a negative sequence ns 

more than once without overlap, we need to know the positions 

that ds contains ns from the left side of ds. This is very 

important to give a cutting point in ds and define the repetition 

negative containment problem.  

Definition 4. Left Containment Subsequence Position. For a 

data sequence ds = <e1e2…en>, and ns as a negative sequence, if 

nsds and i (1< i ≤n), s.t. MPS(ns)<e1…ei>  MPS(ns) 

<e1…ei-1>, then the id of the element ei, i, is the left 

containment subsequence position, denoted by LCSP(ns, ds)=i; 

if nsds, then  LCSP(ns, ds)=0. In particular, if ns is a 1-size 

negative sequence, such as <¬e> and <¬(ab)>, ns is not 

repetition, hence its support can be calculated per the traditional 

way of valuing support. 

Example 6. Given ns1=<a¬db>, ns2=<a¬dc>, 

ds1=<ac(bc)a(ab)cb> and ds2=<aca(ab)cb>. According to 

definition 4, MPS(ns1)=<ab> and the leftmost subsequence in 

ds1 that contains <ab> is <ac(bc)>. The id of element (bc) is 3, 

thus, LCSP(ns1, ds1)=3. Similarly, LCSP(ns2, ds2)=2.  

Definition 4 tells us the following two facts. 

 (1) The negative containment problem (whether ds contains 

ns) is converted to the positive containment problem (whether 

ds contains MPS(ns)). So the repetition negative containment 

problem is consequently converted to the repetition positive 

containment problem. 

(2) LCSP(ns, ds) gives the position of the leftmost 

subsequence that ds contains ns, identifying this position as a 

cutting point to calculate the repetition negative containment 

times subsequently.  

Algorithm 1 presents how to calculate the repetition times 

when a ns crossing over a ds. 

 

Algorithm 1: Calculate RptTimes(ns, ds). 

Input: ns: a negative sequence;  

ds =<e1e2…en>: data sequence; 

Output: repetition containment times; 

(1) t = 0;  

(2) If ns  ds { 

(3)  Until (MPS(ns) ds) Do { 

(4)  t++; 

(5)  m = LCSP(ns, ds) 

(6)  ds = <em+1…en>; 

(7) } 

(8) Return t; 

 

RptTimes (ns,ds) = RptTimes(MPS(ns),ds),  if ns  ds  (1) 

 

According to Eq. (1), the repetition negative containment 

problem is converted to the repetition positive containment 

problem, i.e. the repetition times of any NSC in a data sequence 

can be converted to a calculation of its Maximum Positive 

Sub-sequence. For example, given ns=<a¬dc>; 

ds1=<aca(ab)cb>, ds2=<abababd>. As the progress shown in 

Fig.1, LCSP(ns, ds1)=2, LCSP(ns, ds2) does not exist because 

nsds2, RptTimes (ns,ds1)=RptTimes (MPS(ns),ds1)=2. Fig. 1 

shows this process. Furthermore, the repetition times of any 

PSP can be easily got by a non-overlapping RPSP mining 

method [19]. The demonstration of Eq. (1) is shown in Section 

V (F). 

 
Fig.1 Repetition times 

V. E-RNSP ALGORITHM  

A. E-RNSP Candidate Generation 

In order to generate all non-redundant NSC from PSP, we 

use the efficient method e-NSP to generate NSC. The key 

process of generating a NSC is to convert non-contiguous 

elements in a positive pattern to their negative partners. 

The further explanation is that, to generate NSC, the 

algorithm changes any m non-contiguous elements in a RPSP to 

their negative partners. For a j size RPSP, m=1,2,…, j/2. 

For example, the NSC of <(xy) a b c > include:  

m=1, <¬(xy) a b c >, <(xy) ¬a b c >, <(xy) a ¬b c>, <(xy) a b 

¬c>; 

m=2, <¬(xy) a ¬b c>, <¬( xy) a b ¬c>, <(xy) ¬a b ¬c>. 

Obviously, we can use the above strategy to generate NSC 

that meet the condition of the three constraints described in 

Section 3.2. 
TABLE II. E-RNSP DATA STRUCTURE 

RPSP sup rsup sidHash 

<a> 5 12 
sid 10 20 30 40 50 

rt 2 1 4 3 2 

<a b> 3 5 
sid 10 20 30   

rt 2 1 2   
...  ... ... 

B. Calculate the Repetition Support of NSC 

Let ns be a n-neg-size and m-size negative sequence, for 

1-negMSi  1-negMSSns (1in), the repetition support (rsup) 

of ns can be calculated by the following three equations. 

)}}1({{-)}({}{ 1 i
n
i negMSpnsMPSns         

(2) 

Eq. (2) is used to obtain a sid set of data sequences which 

contains ns, where {MPS(ns)} is a sid set of sequences which 

contains MPS(ns), and { n

1{ (1- )}i ip negMS } is a sid’s union set 

from {p(1-negMSi)} based on the corresponding RPSP. 
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The ordinary negative support of ns following the traditional 

support definition can be calculated by |{ns}|, where |{ns}| is 

the number of sid in {ns}. To calculate the repetition support of 

ns, we have to know the repetition times that ns occurs in each 

{ns}. Accordingly, the repetition support of ns is shown below. 

 


|}{|

1i
),()(

ns

idsnsRptTimesnsrsup (dsi{ns})      (3)  

where dsi is a data sequence and its position in {ns} is i. Then 

we can get RptTimes(ns,dsi) in terms of Eq. (1) without 

re-scanning the sequence database. 

In particular, if the size of ns is 1, i.e., it has only one 

negative element, such as <¬e> and <¬(ab)>, the repetition 

support of ns is the same as its ordinary support, as shown in Eq. 

(4): 

        rsup(ns) = sup(ns) = |D|  sup(p(ns))                (4) 

For example, given a negative sequence ns=< a ¬b c ¬d >, 

then MPS(ns)=<a c>, p(<a ¬b c>)=<a b c>, p(<a c ¬d >)=<a c 

d>. We assume that the sid set of <a c> is {10, 20, 30, 40, 50}, 

i.e., data sequences “10”, “20”, “30”, “40”, “50” contain < a c >. 

The repetition times of <a c> in the corresponding data 

sequences are 2, 2, 3, 1 and 4, respectively. The sid set of <a b c> 

is {10, 20}; {20, 40} is the sid set of <a c d>. Subsequently, {<a 

¬b c ¬d>}= {<a c>}-{{<a b c>}  a c d>}} 

={10,20,30,40,50}-{{10,20}{20,40}} ={30,50}; 

rsup(<a ¬b c ¬d>)=RptTimes(<a ¬b c ¬d>,30)+    

RptTimes(<a ¬b c ¬d >,50)=3+4=7. 

C. Data Structure and Hash Table in e-RNSP 

In order to efficiently calculate the repetition support of 

negative sequences, we design a data structure to store the 

e-RNSP related data. The data structure is shown in Table II. 

Column one stores RPSP mined by RptGSP [19]. Column two 

holds the regular support of RPSP. Column three saves their 

repetition support. Column four encloses a hash table sidHash 

<sid, rt>. The sids of data sequences contain the corresponding 

RPSP and the repetition times (rt) of the RPSP occurring in the 

corresponding data sequence. 

For example, Table II shows that, for a RPSP <a b>, its 

corresponding hash table consists of {<10, 2>, <20, 1>, <30, 

2>}, meaning that <a b> is contained in the sequences 10, 20 

and 30. The repetition times of <a b> are 2, 1 and 2, 

respectively.  

 In order to identify PSP and IPS efficiently, we use the hash 

table to store the e-RNSP data, as shown in Algorithm 2. 

Algorithm 2: Hash table creation process in e-RNSP 

Input: All RPSP and their related information; 

Output: RPSP’s hash table; 

(1) CreateHash(RPSP){ 

(2)   Create RPSPHash ; 

(3)   For (each pattern p in RPSP){ 

(4)     Create sidHash; 

(5)      For ( each data sequence ds){ 

(6)         If (ds contains p){ 

(7)            rt = RptTimes(p, ds); 

(8)            sidHash.put(p.sid, rt); 

(9)          } 

(10)     } 

(11)      PSPHash.put(p, sidHash); 

(12)   Return RPSPHash; 

(13)   }  } 

D. The e-RNSP Algorithm 

The e-RNSP algorithm mines for RNSP by only using the 

identified RPSP. 

Algorithm 3: e-RNSP 

Input: D: Sequence Dataset; min_sup; 

Output: RNSP; 

(1) RPSP = RptGSP(D); 

(2) CreateHash(RPSP) 

(3) For (each rpsp in RPSP) { 

(4)   INT rsup = 0; 

(5)   Generate NSC by Section 5.1; 

(6)   For (per nsc in NSC) { 

(7)      If (the size of nsc is one){ 

(8)  Calculate rsup by Eq. (4); 

(9)    }Else{ 

(10)         Calculate rsup by Eq. (2) and (3); 

(11)    } 

(12)    If (rsup >=  min_sup) 

(13)  RNSP.add(nsc); 

(14)   } // END OF (6) 

(15) }  // END OF (3) 

(16) Return RNSP; 

Below is the explanation of the Algorithm 3. In Section 

V(F), we provide a brief theoretical analysis of the working 

mechanism of the e-RNSP algorithm.   

(1) Line (1) finds all RPSP from the sequence database using 

the RptGSP algorithm. Meanwhile, all RPSP are saved in the 

e-RNSP data structure, as detailed in Section 5.4 (Lines (2,3));  

(2) For each RPSP, generate NSC(s) by the Candidate 

Generation method in Section 5.2 (Line (6)); 

(3) The repetition support for each nsc in NSC(s) can be 

easily calculated by Eq. (1-4) (Lines (7~24)) and then we 

determine whether they are RNSP (Lines (25~27)). 

We calculate the repetition support of 1-size nsc by using Eq. 

(4) (Lines (8~10)). Further, in lines (12) to (17), we calculate 

{ n

1{ (1- )}i ip negMS }, and obtain the sid set of ns by 

{MPS(ns)}-{ n

1{ (1- )}i ip negMS } (Lines (18~21)). Lines 

(22~24) calculate the repetition support of nsc by Eq. (3). If 

rsup(nsc) >= min_sup, then nsc is inserted into RNSP (lines 

(25~27)). 

(4) Obtain the results (Line (29)). 

E. An Example 

The above sections introduce key concepts and components 

as well as the e-RNSP algorithm for RNSP mining. This section 

uses an example to illustrate how to mine for RNSP. The 

datasets are shown in Table III. In the example, we set 

min_sup=2. 
TABLE III. EXAMPLE DATASET 

sid  ds 

10 <a b (bc)> 

20 <a b e a b e> 
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30 <(bc) f> 

40 <a (bc) c> 

50 <d e> 

The process is as follows. 

(1) Mining repetition positive sequential patterns (RPSP) 

using RptGSP, and storing the results in terms of the e-RNSP 

data structures (see Section 5.4), which are detailed in Table IV. 
 

TABLE IV. EXEMPLARY RESULTS – REPETITION POSITIVE PATTERNS 
RPSP Sup Rsup SidHash 

<a> 3 4 
10  20  40 
1   2   1 

<b> 4 6 
10  20  30  40 
2   2   1   1 

<c> 3 4 
10  30  40 
1   1   2 

<e> 2 3 
20  50 
2   1 

<(bc)> 3 3 
10  30  40 
1   1   1 

<a b> 3 4 
10  20  40 
1   2   1 

<a c> 2 2 
10  40 
1   1 

<a e> 1 2 
20 
2 

<b b> 2 2 
10  20 
1   1 

<b c> 2 2 
10  40 
1   1 

<b e> 1 2 
20 
2 

<a b e> 1 2 
20 
2 

<a b c> 2 2 
10  40 
1   1 

<a (bc)> 2 2 
10  40 
1   1 

(2) Using the e-RNSP generation approach to get all negative 

sequential candidates (NSC). 

(3) Computing these NSC repetition support values based on 

Eq. (1-4). Table V shows the results, and the final RNSP are 

marked in bold. 

Among the RNSP, <ab¬c>, <a¬c> and <a ¬(bc)> are three 

special ones because they are mined as  RNSP, but they are not 

mined as patterns in e-NSP. Obviously, not all of RNSP are 

actionable for supporting decision-making [40], especially 

those patterns with only one positive element, such as <b ¬e> 

and <¬a b ¬e>, their repetition supports are high but 

misleading. How to catch those actionable RNSP is our future 

task. 

F. The theoretical analysis of the working  

Here, we discuss the theoretical soundness of e-RNSP from 

its working mechanism perspective.  

The mining process of e-RNSP could be mainly divided into 

four stages. The first stage mines all RPSP and uses them to 

generate negative sequential candidates (NSC). For a certain 

NSC (nsc), the second stage is to identify that whether this nsc 

is contained by a data sequence based on the negative 

containment as discussed in Section 4.2. The third is to catch 

repetition times when nsc crossing the above data sequence. 

The last stage is to achieve its rsup utilizing Eq. (3) or Eq. (4). 

For the first stage, this paper utilizes RptGSP[11] to capture 

all RPSP and generates NSC based on the strategy in [32]. This 

generation method converts non-contiguous elements in a 

positive pattern to their negative partners, which means for 

each NSC, MPS(NSC){RPSP}, where {RPSP} means the set 

of RPSP. Accordingly, this strategy ensures that the supports of 

all generated NSC could be then calculated based only on the 

corresponding RPSP. 

In second stage, this paper uses the same definitions of 

negative containment in e-NSP, which converts the negative 

containment problem to positive containment problem in terms 

of set theory. We introduce briefly the conversion process as 

follows, please find detailed proof in [40]. 

{< a >}, {< b >} mean the set of tuples that respectively 

contain sequences < a >, < b > in a sequence database. The 

intersection of sequences < a > and < b > will generate four 

disjointed sets: {< (ab) >only}, {< ab >only}, {< ba >only} and {< 

ab >} {< ba >}, representing the sets of tuples that contain 

sequences < (ab) > only, < ab > only, < ba > only, and both < ab > 

and < ba > respectively, as shown in Fig. 2. 

For simplicity, let us take {<a¬b >} as an example, we have: 

{𝑎¬𝑏} = ({< 𝑎 >} − {< 𝑏 >}) ∪ {<  (𝑎𝑏) >only}

∪ {< 𝑏𝑎 >only} 

= {< 𝑎 >} − {< 𝑎𝑏 >only} ∪ ({< 𝑎𝑏 >} ∩ {< 𝑏𝑎 >}) 

= {< 𝑎 >} − {< 𝑎𝑏 >} 

This result illustrates the strategy of conversion process, i.e. 

data sequences that contain < a¬b > are the same sequences that 

contain < a > but do not contain < ab >.      

 
Fig. 2. The intersection of {< a >} and {< b >} 

 

To address the repetition containment problem, we extend 

the above conversion strategy to a cyclic conversion strategy in 

third stage. We will demonstrate that the repetition negative 

containment can also be converted into the repetition positive 

containment. 

Corollary 1. Repetition Negative Conversion Strategy. 

For a data sequence ds, and a negative sequence ns, the 

repetition negative containment can be converted to the 

following problem: if ns  ds, the repetition times that ns 

crosses through ds equal to times that MPS(ns) occurs in ds. 

Proof of Corollary 1. 

Given a data sequence ds =< d1d2 . . . dl >, and ns is a negative 

sequence. According to the negative containment in Section 4.2, 

if ns  ds, satisfying (1) MPS(ns) ds; and (2) 

1−negMS1−negMSSns, p(1−negMS) ds. Assume LCSP(ns, 

ds)=i, for the sub-sequence <di+1 di+2…dl> of ds, denote as dsi, 

1−negMS1−negMSSns, p(1−negMS) dsi. Thus, we only 

need to determine whether MPS(ns)  dsi.  

Intrinsically, the last stage is a combination process which 

incorporates the above three processes to calculate the rsup of a 

NSC crossing all the data sequences based on a set theory in 

[40]. 

VI. Experiments and Evaluation 

The experiments on 15 synthetic and real databases have 
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been conducted to compare with three available NSP mining 

methods, e-NSP [40], NegGSP [17] and PNSP [16] from two 

aspects: the number of patterns and their running time for 

identifying negative patterns. To compare their performance, 

we make PNSP and NegGSP to follow the same constraints and 

definitions in e-NSP. All algorithms are coded in Java and 

executed in a Windows 7 Professional PC with Intel Core i5 

CPU of 3.2GHz, 4GB memory. In the experiments, all supports 

(and minimum supports) are calculated in terms of the 

percentage of the frequency |< s >| of a pattern s compared to 

the number of sequences |D| in the database. 
TABLE V. EXAMPLE RESULTS – NSC AND REPETITION SUPPORTS 

(MIN_SUP=2) 
 

RPSP NSC Related RPSP sup rsup 
<a> <¬a> <a> 2 2 

<b> <¬b> <b> 1 1 
<c> <¬c> <c> 2 2 

<e> <¬e> <e> 3 3 

<(bc)> <¬(bc)> <(bc)> 2 2 

<a b> <¬a b> 
<a ¬b> 

<b>, <a b> 
<a>, <a b> 

1 
2 

1 
2 

<a c> <¬a c> 
<a ¬c> 

<c>, <a c> 
<a>, <a c> 

1 
1 

1 
2 

<a e> <¬a e> 
<a ¬e> 

<e>, <a e> 
<a>, <a e> 

1 
2 

1 
2 

<b b> <¬b b> 
<b ¬b> 

<b>, <b b> 
<b>, <b b> 

2 
2 

2 
2 

<b c> <¬b c> 
<b ¬c> 

<c>, <b c> 
<b>, <b c> 

1 
2 

1 
3 

<b e> <¬b e> 
<b ¬e> 

<e>, <b e> 
<b>, <b e> 

1 
3 

1 
4 

<a b e> <¬a b e> 
<a ¬b e> 
<a b ¬e> 

<¬a b ¬e> 

<b e>, <a b e> 
<a e>, <a b e> 
<a b>, <a b e> 

<b>, <a b>, <b e> 

0 
0 
2 
1 

0 
0 
2 
1 

<a b c> <¬a b c> 
<a ¬b c> 
<a b ¬c> 

<¬a b ¬c> 

<b c>, <a b c> 
<a c>, <a b c> 
<a b>, <a b c> 

<b>, <a b>, <b c> 

0 
0 
1 
1 

0 
0 
2 
1 

<a (bc)> <¬a (bc)> 
<a ¬(bc)> 

<(bc)>, <a (bc)> 
<a>, <a (bc)> 

0 
1 

0 
2 

A. Datasets 

We use the following data factors: C, T, S, I, DB and N to 

describe and observe the effect of data characteristics on 

algorithm performance, which are defined to describe 

characteristics of sequence data [40]. C: Average number of 

elements per sequence; T: Average number of items per element; 

S: Average size of maximal potentially large sequences; I: 

Average size of items per element in maximal potentially large 

sequences; DB: The number of sequences; N: The number of 

items.  

Four source databases are applied in this experiment. The 

synthetic databases are generated by IBM data generator. 

Dataset 1 (DS1), C8_T6_S6_I6_DB10k_N100; 

Dataset 2 (DS2), C12_T4_S6_I6_DB10k_N100; 

Dataset 3 (DS3), C15_T8_S20_I0_DB10k_N100; 

 
(a) Results on DS1 

 
(b) Results on DS2 

 
(c) Results on DS3 

 

(d) Results on DS4 

Fig.3 The Number of Patterns Comparison 

Dataset 4 (DS4) is the real application dataset about health 

insurance claim sequences. This data contains 5,269 customers, 

each sequence stands for one customer. The average size in a 

sequence is 21. The maximum size of a sequence is 144, and the 

minimum size is 1. The size of this dataset is around 5M. We 

use the above four datasets to evaluate the mining performance 

of e-RNSP. 

Dataset 5 (DS5) is a real dataset which contains 9 sets of 

sanitized user data drawn from the command histories of 8 

UNIX computer users at Purdue over the course of up to 2 years. 

Due to the confidentiality of DS4, we choose this real-life 

dataset to present the patterns mined by our approach. 

 We further create Dataset 6 (DS6: C12_T10_S20_I10_DB 

1k_N100). Based on it, we generate 15 additional datasets in 

terms of different data factors, denoted as DS 6.x (x = 1…15), 

to access the runtime and pattern number of e-RNSP and e-NSP 

influenced by different data factors. For instance, DS6 = 

C12_T10_S20_I10_DB1k_N100, DS6.1=C13_T10_S20_I10_ 

DB1k_N100, and DS6.2=C14_T10_S20_I10_DB1k_N100 are 

different on factor C, which means they have different average 

numbers of elements in a sequence, while the other factors are 

fixed. These datasets are listed in Table VII. 

B. The Ability of Mining Patterns 

The number of negative patterns mined by e-NSP, Neg-GSP 

and PNSP respectively are the same because we use a unified 

negative containment definition for all of them. Therefore, here 

we just need to compare e-RNSP with e-NSP, and the results 

are shown in Fig. 3. e-RNSP has the ability of mining more 

negative patterns than e-NSP at the same min_sup, because it 
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caters for the repetition negative patterns when calculating the 

NSC support.  

The number of RNSP is greatly affected by the distribution 

of a dataset. The more repetition items in a dataset are, the more 

the number of RNSP are. The repetition items in DS3 are more 

than the other datasets, so the gap between the two lines on DS3 

is larger than the other. More details about the pattern number 

impacted by data factors are discussed in Sections 6.4 and 6.5. 

To reveal the strength of e-RNSP, we choose two real-life 

results mined from DS5, shown in Table VI. It is clear that these 

two RNSP have the higher repetition supports but the lower 

traditional support, which might be ignored if setting a small 

support threshold. The first e-RNSP means if an operator uses 

‘is’ to list the catalogue, he will not use the instruction ‘finger’ 

to search user’s information but often utilize ‘cd’ to change 

other catalogues. The second RNSP presents that if the operator 

did not use ‘rm’ to delete files after listing the catalogue, it has a 

high probability of changing and showing the next catalogue 

subsequently.  
TABLE VI. EXAMPLE RESULTS OF DS5 

 RNSP sup rsup 

1 <is, ¬finger, cd> 46 122 

2 <is, ¬rm, cd, is> 40 72 

C. Computational Cost 

For observing the efficiency of e-RNSP, we conduct 

experiments on DS1 and DS2 with four algorithms and just run 

e-RNSP and e-NSP on DS3 and DS4. In the following 

comparisons, all positive patterns are identified by RptGSP, 

negative patterns are further mined by e-RNSP, e-NSP, 

NegGSP and PNSP. So their runtime of mining PSP are the 

same.  In order to show their difference, we just need to 

compare their runtime on mining negative patterns.  Fig. 4 and 

Fig. 5 show the comparisons. 

From fig. 4 we can see that e-RNSP and e-NSP are much 

faster than the other algorithms. E-RNSP spends 3% to 20% of 

the running time of PNSP and NegGSP on DS1 and DS2. For 

example, e-RNSP spends 3.7% to 17.6% of Neg-GSP running 

time on DS1 when min_sup decreases from 0.17 to 0.13. 

E-RNSP and e-NSP are both efficient, because they only need 

to calculate the NSC support based on identified positive 

partners, while Neg-GSP and PNSP have to re-scan the whole 

datasets.  

However, from Fig. 5 we can see that the running time of 

e-RNSP is also higher than e-NSP, especially when min_sup 

decreases. The reasons are as follows. 

(1) In order to calculate the repetition support, e-RNSP has to 

count the number of times that a NSC repetition occurs in the 

database, whereas e-NSP does not need to do so.  

(2) The number of NSC generated from e-RNSP is larger 

than that in e-NSP, because e-RNSP needs to consider the RSP 

problem when it mines PSP, but e-NSP mines PSP only.  

In our future work, we will further study the method to 

increase the efficiency of e-RNSP.  

 
(a) Results on DS1 

 
(b) Results on DS2 

Fig.4 Runtime Comparison 1 

 

(a) Results on DS3 

 

(b) Results on DS4 

Fig.5 Runtime Comparison 2 

D. Performance Analysis of the Impact of Different Data 
Factors 

1) Effect of C on Pattern Number 

Here we analyze the impact of tuning data factor C on the 

pattern number of e-RNSP and e-NSP while fixing other factors 

T, S, I, DB and N. C is the size of data sequence, and its 

increase directly causes the increase of rsup in e-RNSP. So the 

number of RNSP increases quickly with the increase of C (the 

maximum number of RNSP can be mined when setting C to 15). 

Although the number of NSP also increases with the increase of 

C, its increasing speed is slower than that in e-RNSP. 
2) Effect of T on Pattern Number 

This is to adjust data factor T while fixing others to observe 

its impact on the pattern number. The increase of T will 

increase the number of RNSP and NSP (the maximum number 

of NSP can be mined when setting T to 14). This is because, 
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with T increasing, i.e., the average number of items per element 

increasing, the number of NSC increases. Hence, the number of 

RNSP and NSP increase. 
3) Effect of S on Pattern Number 

This is to adjust data factor S while fixing others to observe 

its impact on the pattern number. The increase of S will 

decrease the number of RNSP and NSP (the maximum number 

of RNSP can be mined when setting S to 14). This is because, 

with S increasing, i.e., the average size of maximal potentially 

large sequences increasing, the number of NSC decreases. 

Hence, the number of RNSP and NSP decrease. 
4) Effect of I on Pattern Number 

This is to tune the factor I to observe its impact on the pattern 

number. With I increasing, the numbers of RNSP and NSP 

increase too (the maximum number of RNSP can be mined 

when setting I to 16). But e-RNSP increases proportionally 

faster than e-NSP, and the gap thus increases too. 
5) Effect of DB on Pattern Number 

The effect of DB on Pattern Number will be discussed in 

Section 6.5 (scalability test). 
6) Effect of N on Pattern Number 

Similarly, we adjust N while fixing all other data factors. 

Increasing N will decrease repetition items in data sequence, 

which further decrease the support of sequences (the maximum 

number of RNSP can be mined when setting N to 200). Hence, 

the numbers of RNSP and NSP decrease with the increase of N.  

In summary, e-RNSP can perform efficiently from the 

various data factor perspectives. 

 

 
Fig.6 Pattern Number Comparison on Various Factors 
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TABLE VII. DATASET CHARACTERISTICS ANALYSIS RESULTS 

Data 

factors 
Dataset ID min_sup 

RNSP 

number by 

e-RNSP 

(n1) 

NSP 

number by 

e-NSP 

(n2) 

NSC 

number by 

e-RNSP 

(n3) 

NSC 

number by 

e-NSP 

(n4) 

RNSP 

time by 

e-RNSP 

(t1, ms) 

NSP 

time by 

e-NSP 

(t2, ms) 

t1/n3 

*1000 

(ns) 

t2/n4 

*1000 

(ns) 

(t1/n3)/ 

(t2/n4) 

C=12 
DS6=C12_T10_S20

_I10_DB1k_N100 

0.44 4365 364 25786 9740 889 219 34.48  22.48  1.53  

0.46 3242 129 19765 6811 717 140 36.28  20.55  1.76  

0.48 2528 26 15598 5018 593 125 38.02  24.91  1.53  

C=13 

DS6.1=C13_T10_S

20_I10_DB1k_N10

0 

0.44 10102 645 78909 33385 2528 780 32.04  23.36  1.37  

0.46 7698 251 61133 23909 1966 561 32.16  23.46  1.37  

0.48 5827 59 47149 17127 1622 406 34.40  23.71  1.45  

C=14 

DS6.2=C14_T10_S

20_I10_DB1k_N10

0 

0.44 21999 1074 255651 86606 8174 2262 31.97  26.12  1.22  

0.46 15847 344 187575 58213 6084 1544 32.44  26.52  1.22  

0.48 11885 84 142612 41012 4696 1124 32.93  27.41  1.20  

C=15 

DS6.3=C15_T10_S

20_I10_DB1k_N10

0 

0.44 40850 1724 657109 258587 21263 6973 32.36  26.97  1.20  

0.46 28341 573 467934 168421 14368 4617 30.71  27.41  1.12  

0.48 20545 111 347521 113561 11263 3151 32.41  27.75  1.17  

T=8 
DS6.4=C12_T8_S2

0_I10_DB1k_N100 

0.44 1558 152 6967 2554 250 62 35.88  24.28  1.48  

0.46 1194 62 5530 1883 250 47 45.21  24.96  1.81  

0.48 951 18 4405 1373 187 47 42.45  34.23  1.24  

T=10 
DS6=C12_T10_S20

_I10_DB1k_N100 

0.44 4365 364 25786 9740 889 219 34.48  22.48  1.53  

0.46 3242 129 19765 6811 717 140 36.28  20.55  1.76  

0.48 2528 26 15598 5018 593 125 38.02  24.91  1.53  

T=12 

DS6.5=C12_T12_S

20_I10_DB1k_N10

0 

0.44 11928 719 94430 35777 3010 843 31.88  23.56  1.35  

0.46 8848 264 71475 25132 2278 609 31.87  24.23  1.32  

0.48 6716 83 54793 17754 1841 499 33.60  28.11  1.20  

T=14 

DS6.6=C12_T14_S

20_I10_DB1k_N10

0 

0.44 23374 1122 260022 82539 8268 2060 31.80  24.96  1.27  

0.46 16699 351 187848 55017 6037 1419 32.14  25.79  1.25  

0.48 12462 78 142026 38485 5445 982 38.34  25.52  1.50  

S=14 

DS6.7=C12_T10_S

14_I10_DB1k_N10

0 

0.44 9618 512 72176 22129 2403 530 33.29  23.95  1.39  

0.46 7221 211 54539 15362 1950 421 35.75  27.41  1.30  

0.48 5438 78 42056 10548 1560 265 37.09  25.12  1.48  

S=16 

DS6.8=C12_T10_S

16_I10_DB1k_N10

0 

0.44 7952 442 59822 20620 1950 484 32.60  23.47  1.39  

0.46 6116 193 46341 14626 1544 357 33.32  24.41  1.37  

0.48 4567 57 35074 10056 1217 281 34.70  27.94  1.24  

S=18 

DS6.9=C12_T10_S

18_I10_DB1k_N10

0 

0.44 6281 372 40975 15662 1389 358 33.90  22.86  1.48  

0.46 4786 174 31905 11231 1154 265 36.17  23.60  1.53  

0.48 3605 43 24235 7751 920 188 37.96  24.25  1.57  

S=20 
DS6=C12_T10_S20

_I10_DB1k_N100 

0.44 4365 364 25786 9740 889 219 34.48  22.48  1.53  

0.46 3242 129 19765 6811 717 140 36.28  20.55  1.76  

0.48 2528 26 15598 5018 593 125 38.02  24.91  1.53  

I=10 
DS6=C12_T10_S20

_I10_DB1k_N100 

0.40 4365 364 25786 9740 889 219 34.48  22.48  1.53  

0.42 3242 129 19765 6811 717 140 36.28  20.55  1.76  

0.44 2528 26 15598 5018 593 125 38.02  24.91  1.53  

I=12 

DS6.10=C12_T10_

S20_I12_DB1k_N1

00 

0.40 9185 1550 44352 18521 1466 343 33.05  18.52  1.78  

0.42 6842 792 33306 13033 1107 249 33.24  19.11  1.74  

0.44 5120 364 25435 9157 889 187 34.95  20.42  1.71  

I=14 

DS6.11=C12_T10_

S20_I14_DB1k_N1

00 

0.40 14822 2092 81319 28823 2386 515 29.34  17.87  1.64  

0.42 10691 1020 59718 19286 1825 343 30.56  17.78  1.72  

0.44 7888 445 44615 13181 1435 234 32.16  17.75  1.81  

I=16 

DS6.12=C12_T10_

S20_I16_DB1k_N1

00 

0.40 27318 4069 146127 52033 4040 874 27.65  16.80  1.65  

0.42 19958 2152 108510 36353 3058 624 28.18  17.17  1.64  

0.44 14354 981 79329 24510 2293 421 28.90  17.18  1.68  

N=200 

DS6.13= 

C12_T10_S20_I10_

DB1k_N200 

0.13 84754 70363 108177 92026 2122 764 19.62  8.30  2.36  

0.14 62707 50293 80757 67090 1639 562 20.30  8.38  2.42  

0.15 43780 34476 57287 46690 1264 421 22.06  9.02  2.45  

N=300 

DS6.14= 

C12_T10_S20_I10_

DB1k_N300 

0.13 15326 12458 16401 13449 374 93 22.80  6.92  3.30  

0.14 10780 8695 11511 9460 280 94 24.32  9.94  2.45  

0.15 8393 6727 9001 7374 218 78 24.22  10.58  2.29  

N=400 

DS6.15=C12_T10_

S20_I10_DB1k_N4

00 

0.13 6159 4992 5104 5104 156 47 30.56  9.21  3.32  

0.14 4807 3923 4002 4002 141 31 35.23  7.75  4.55  

0.15 3703 2956 3028 3028 125 21 41.28  6.94  5.95  
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E. Scalability Test 

e-RNSP calculates support based on calculation not on 

re-scanning database, thus its performance is sensitive to the 

size of data sequence. If a dataset is huge, it produces a large 

number of data sequences. The scalability test is conducted to 

evaluate the e-RNSP performance on large datasets. Fig. 7 

shows the results of e-RNSP on datasets DS6 in terms of 

different data sizes: from 5 times (see the results corresponding 

to label ‘X6’) of its original size to 25 times, with minimum 

supports 0.4 and 0.46 respectively. 

 
Fig. 7. Scalability Test on Data Factor DB on DS6 

 

Fig. 7 shows that the growth of running time of e-RNSP follows a roughly 

linear relationship with the data size increase on different minimum supports. 

VII. CONCLUSION AND FUTURE WORK 

Repetition sequential patterns (RSP) are usually used to 

understand those special behaviors with repetition sequences 

and thus have attracted increasing attention in recent years. We 

have not found any work to identify repetition negative 

sequential patterns (RNSP), which can capture non-occurring 

repetition behavioral patterns. RNSP can play a role 

irreplaceable by RSP to understand such issues that a lung 

cancer patient iteratively avoiding certain treatment 

combinations may cause a lower survival rate. In this paper, we 

define the repetition negative containment problem and 

propose an efficient RNSP mining algorithm, named e-RNSP. 

e-RNSP has been tested on both real-world and synthetic 

databases and compared with three available NSP methods: 

e-NSP, NegGSP and PNSP. The experiments and comparisons 

on 15 databases have clearly demonstrated that e-RNSP could 

efficiently capture interesting repetition negative patterns. 

Not all of patterns mined by e-RNSP are actionable. We will 

consider constraints on RNSP to enhance the actionability of 

RNSP findings, and improve the mining efficiency by using 

bitmap strategy. In addition, in pattern mining, it is an open 

issue to verify the correctness and completeness of patterns 

discovered by a pattern mining algorithm. We will explore this 

further with the NSP research.   
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