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Abstract —Negative sequential patterns (NSP), which
capture both frequent occurring and non  -occurring
behaviors, become increasingly important and sometimes
play a role irreplaceable by analyzing occurring behaviors
only. Repetition sequential patterns (RSP) capture
repetitions of patterns in different sequences as well as
within a sequence and are very imp ortant to understand
the repetition relations between behaviors. Though some
methods are available for mining NSP and repetition
positive sequential patterns (RPSP), we have not found any
methods for mining repetition NSP (RNSP). RNSP can help
analysts to further understand the repetition relationships
between items and capture more comprehensive
information with  repetition properties. However, mining
RNSP is much more difficult than mining NSP due to the
intrinsic challenges of non  -occurring items. To addr  ess the
above issues, we first propose a formal definition of
repetition negative containment. Then we propose a
method to convert repetition negative containment to
repetition positive containment, which fast calculates the
repetition supports only using the corresponding RPSP's
information without re -scanning databases. Finally, we
propose an efficient algorithm, called e -RNSP, to mine
RNSP efficiently. To the best of our knowledge, e  -RNSP is
the first algorithm to efficiently mine RNSP. Intensive
experim ental results on the first four real and synthetic
datasets clearly show that e -RNSP can efficiently discover
the repetition negative patterns ; results on the fifth dataset
prove the effectiveness of RNSP which are captured by the
proposed method ; the results on the rest 16 datasets

analyze the impacts of data characteristics on  mining
process.
Index Terms — sequence analysis; repetition patterns;

negative sequential patterns;
patterns.

repetition negative sequential
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I. INTRODUCTION

EQUENTIAL data is widelyseen in realife applications

in particular behaviorssuch as highmpact behavior
analysis 1], group behavioranalysis P], contrast behavior
analysis 8], abnormal behavior detectiod]] and so forth As
an importat means for behavior analysig-9], sequence
analysis, in particular, sequential pattemining has been
increasingly explored to discover frequent subsequences in a
sequence databad@7-31,35. Since the first proposal of
sequential pattern mining, many algorithms, sucGap [10],
FreeSpan 11], PrefixSpan 12], SPADE [L3], and SPAM 4],
have been successfullgroposed toenhancethe algorithm
efficiency. The patterns mined by these algorithms, focusing
only on occurring items, are called positive sequential patterns
(PSP) But limited research has been conducted on analyzing
nonoccurring behavior sequencet], e.g., mining negative
sequentiapatterns (NSPJ5, 6, 40]. NSP, whichcontainsboth
occurring and nowccurring B6] items such as &b-c>,
sometimes play an irreplaceableler in many intelligent
systems and applications, such as intelligent transport systems
(ITS), health and medical management systems, bioinformatics,
biomedical systems, risk management, coutgenrism, and
security[15,40]. For instance, assung=<abcX> is a PSP;
s,=<ab—cY> is a NSP, where, b and c stand for medical
service codes that a patient receives in health care§ andY
stand for disease states.shows that a patient who usually
receives medical services b and thenc is likely to have
disease statuX, whereass, indicates that patients receiving
treatments ol andb but NOT c have a high probability of
having statu¥ [15].

Although many algorithms can be used to discover PSP, NSP
cannot be described or discovered by these algoritiis is
because mining NSP is much more difficult than mining PSP,
particularly due to the following three intrinsic complexities
hidden nature of noeoccurring items high computational
complexityand large negative sequential candidates (NSC)
search pace[1540]. In fact, research on NSP mining is at an
early stage, and has seen only limited progress in recent years
[5, 40. All existing methods are very iffecient and are too
specific for mining NSP, exceptdSP B0]. eNSP proposes a
method to fascalculatethe support of NSC only using the
corresponding PSP's information, without database rescanning.
By this way, eNSPobtainshigh time efficiency.

e-NSP, however, does not considlee repetitionsequential
patterns (RSP) mining problem. RSP iisportant as they



representepetitionbehaviors, and cacapture repetitions of a  (2) High computational complexityMost of existing
pattern in different sequences as well as within a sequencefriathods are very inefficient because they cateuthe support
whichthe same item(s) can occur more than once in a sequenE®NSC by additionally scanning the database after identifying
[20-26,48]. It is helpful for deeply understaimg) the relations PSP If we use the same way to obtain thpetitionsupports, it
between items in many applications, such as network attaskl bring enormous consumption both on running time and
detection DNA periodic analysis[21,51], outlier pattern spaceThereforehow to fast calculate thepetitionsupport of
detectior{34], and so 0f18,36-39,52]. For example, suppose RNSP isa significant yet difficulproblem.

dataset contains two sequences below: {Hhabababe; 20: In order to address the above critical challenges and make
<ac>} and a given minimum support threshatin_sup=2. RNSP running ®asible in realife applications, this paper
RSP mining algorithms can find patteral: occurring at least proposes an efficient algorithm, calledR&ISP, to mine RNSP

4 times and thus mark it as a frequent patternalfabababe  efficiently. To the best of our knowledge;RNSP is the first
represents the behavior that a hacker attacks a server in a salgdrithm to mine RNSPThe main contributions are as
time period, mining RSPs like ab> can help analysts to follows.

capture more useful i nf or ma tFirsg we paoposeuat defiaitiorp ta tormally cefirepetitop p e a r
within or between sequences. Some RSP mining algorithmegative containment.

have also been proposed to mine such patter@s3QJL Second, we propose a methodcmnvertthe problem of
Unfortunately, all existing RSP ining algorithms we have repetition negative containment to th@oblem ofrepetition
found only considerepetitionPSP (RPSP). positive containmentvhich lets ugastcalculatethe support of

Repetition NSP (RNSP) combines the respectiveNSC by only using theorresponding RPSP's information and
information of NSP and RPSP, representing -ooourring avoid database rescanning.
repetitionbehaviorslt can help analysts to further understand Further, a hash table is proposed to storectinesponding
the relationships Iteeen items and capture moreinformation of RPSP angroposean efficient algorithm, called
comprehensiveinformation with repetition properties For e-RNSP, to mine RNSP efficiently.
example, in auto insurance fraud detectiGgr<xy-2W> Lastly, experiments are conducted on real and synthetic
denotes ac ust o me r G6paymenb deduense, where datasets to compareRNSP with three availablSP mining
denoteghe event of a vehicle ision caused by cusb me r @nsthods, eNSP 0], NegGSP 17] and PNSP16] in terms of
own reasony denotesthe event thathe insurance company the number of patterns and their running time. Particularly,
assesssthe damagez denoteghe event of repairing car in the based on a basiatasetye generate 15 additiondhtasets in
garages that thaesurance companguggests, an@lV denotes terms of differentiata factorsto access the runtime and pattern
the event of the payment to customer byitiserance company number of eRNSP and &SP respectidg. Intensive
ssdenotes hat a customer get s t dxgerimemrsycleiinshow theRNSPcan fefficentlyddsawen 6 t
repair her/his car in the garages thasurance company repetitionnegative patterns.
suggests. This case is hormal becausanigrance company  The rest of this paper is organized as folloiMse related
doesnét force their cust omavorlsisdisaussad i Sectiomd Secdon 3we imtrodutesdme s U ¢
garages. Howeversequences,;=< xy-2W xy-2W xy-2W> basic concepts of PSP mmg. In Section 4we define the
should be highly abnormal, sinceiitdicates thathe same definition of negative containment. TheR&NSP algorithm is
eventgepetitivdy occur to the same customer which is likely &xplained in Section 5, an@&ion6 displaysthe experimental
fraud. In fact, such suspiciomg&ppen sometimes in real life. outcomes. &ction7 includes the conclusions and future work
Hence, mining such RNSP is very portant in real
applications. Il. RELATED WORK

However, RNSP mining is more difficult than NSP mining |, thjs section, we fitintroduce somavailablemethods of
and RSPmining, particularly because of the following tWo mining NSP Further, we introduce the statéthe-art research
intrinsic complexities. of mining RSP.

(1) Repetitiomegativecontainmenproblem In NSP mining, | [17], a GSPlike way was introduced to mine for NSP,
there is not a umﬂeuﬂeﬁmt_lon aboutnegatlvecon_taln_ment called NegGSPChen et al. designeal negative NSP mining
[15-18] so farbecause the hidden nature of rameurring items  5pnr0ach PNSPLE]. Only the form of(—X,Y), (X, =Y) and 6 X,

[46] makes it complicated in defining thregativeconta_inment -Y) are suitable fothe method in31], which is similar to mine
problem.For example, for a sequengg<ababababe, in PSP hegative association rules. Lin et al. designed an algorithm
mining, the support of ab> in s; is 1; in RPSP mining, the NSpM [18] for mining negative sequential patterns, in which
repetitionsupport of ab>in ssis 4 (this value may be different ony the last element can hegative. They then extended their
in different RSP mining methods). But in NSP mining, Whethfalgorithm to NFSPM for mining negative fuzzy sequential
S contains<ab-d> is inconsistent in different papeis>-18].  patterns 32] and PNSPM for mining strong positive and
In RNSP mining, does; contain<ab-d>? If yes,how many pegative sequential patternd3]. In our previous work, we
repetitiontimes thatss contains<ab-d>? Therefore, how to proposed an efficient NSP mining methodNSP in [L5,40].
definerepetitionnegativecontainment is a challenging problemg.nsp c al cul at e s NSCo s supports
unsolved. corresponding PSP information withoutgeanningdatabase
and can handle larggcale NSPA NSP mining method based



on multiple minimum supportsiamed ensNSP, was proposed different underlying target formalism and semantics. Different
in [41]. [47] utilized the bitmap structure with a sealflaptive search spae pruning strategies and mining algorithms are used
data storage strategy to improve the efficiency -0S¥. A to efficiently mine recurrent rules. The work in8J2ises the
method mining NSFrom bothfrequent anéhfrequenipositive  definition of iterative patterns similar t@7]. It proposed an
sequerce, namedwas proposed indP]. Xu et al. considered approach tdind generator®f iterative patterns and investigate
utility when mining NSP [5]. catchingof iterative generators from program execution traces.
Very limited work has been reported on how ittentify = Generators are the minimal members of an equivalence class,
RPSP from sequence dsess The authors in34] proposed a while closed patterns are the maximal members. An
stable and efficient suffix trelgased approach for detecting theequivalence class in turn is a set of frequent patterns with the
periodicity of outlier patterns in a time seridédeanwhile, he  same support and corresglang pattern instances.
methods in20,23,25] follow the unified definition ofepetition Other papers discussed research on sequences, but they
sequences. The work irR(] faces theoverlapissuewhen di dndt consi der Theeauthdrsi im 44 sequ
calculating therepetition times. For example, given a dataproposed a characteristiased framework for multiple
sequencelss< AXYABXYXA, <XYX > appears twice idsat sequencealigners. The work in 45] includes a new
<2,3,4> and 6,7,8> respectivelywhere2,3,4 and6,7,8 are the initialization technique, which is a heuristic spddkng
element ID inds Authors of P3] compressedepetitiongapped approach based on both functions to be optimized and a search
sequential patterns armmoposedan algorithm CRGSgrow. A spaceln [49], a hovel approach reprefixSpan for mining RSP
navigation pattern clustering method was proposed28) [ with multiple minimum itemrepetitionsupport was proposed
based on closa@petitiongapped subsequersceAn RBEZH2  and authors of0] utilized the cyclic model to predict likely
Complex Mediates Silencing &epetitionDNA Sequencess consumer behavior within a certain time frank@an et al,
proposed in43]. proposed an efficient Apriori algorithm for frequentgstterns
There are some other algorithms which take differemtiscovery [3]. [54] designed two novel algorithms for mining
definitions. RptGSP was proposed i®]1o mine RPSP, it uses inter-sequence patterns witkeih constraint and £ proposed
the way similar to GSP to find sequential patserbut an efficient way to discover maximal frequent patterns in
calculatesrepetition supports in data sequencd®epetition transactional databases and dynamic data streams.
expansion was introduced ial] for DNA replication.Thegap In summary, existing methods were not designed to identify
requirement wadliscussedin [22] when mining repetition RNSP, and there are inconsistencies in defining andotixiga
patterns from DNA sequences. Tdefinition of gap weight for repetitionpatterns. RNSP is thus proposed to address this gap.
subsequences wasliscussedn [24]. Different eventshave

different gapsandtheir paper put forwardnapproaclEWM TABLE |. NOTATION DESCRIPTION
to mine repetition patternswith gap weight. However, their Symbol Description
method does not discriminate overlapping subsequences and |, Asetofitems, I={i, ip, € o}, cansisting of n
nonroverlapping ones. Mavila et al. performedn approach of items iy(1<ksn) -

L . . L. A sequence, S=<s, ..., s>, consisting of |
mining episode tocatchfrequent episodes within a sequence  |S elements s (1< j<I)

[29. An episode is defined as a series of events occurring  |min_sup Minimum support threshold
relatively close to one another. An episode is supported by a

. e _ . ns A negative sequence
yvmdow if 'F is a subsequence of theeries of gvent_s appearing Length of sequence s, referring to the total
in the window. In [B], a sequence is divided into length(s) number of items in all elements in s
non-overlapping windows. A pattern is frequent if it appears in sizds) Size of a sequence s, referring to the total number
at least a certain number of windows. With this definition, it is of elements in s
shown that the Apriori property applies. It gilifies the design sus) The support of s
of the mining algorithm by segmenting a sequence into |p(ns ns’s positive partner
windows and counting the number of windows in which a |vpgg Maximum positive sub-sequence of ns

pattern frequently occurs. However, patterns that span multiple
windows cannot be discovered, and in some cases, a suitable
window width is difficult to determine. Yang et al. studied
asynchronous periodic patterns in time series @lalp their LCsP The left containment subsequence position
model, shifts in the occurrence of patterns are permitted to filter
out random noises. They also considered a range of periods I1l. PRELIMINARIES
insteadof those used in [, although there is still a limit of the  Assume aet ofitems|= {i, i, & ,}, anitemsets a subset
maximum length of a period. of I. A sequencés an ordered list of itemsets. A sequeni®

A method wasproposed in 27] for identifying iterative  described by s;, 5, € ; >, wheres cl (1<j <1). 5 is also
patterns, which captures occurrences in the semantics Ph me d a <lenentlabeliecadxs %, € ), Wherex
Message Sequence Chart/Live Sequence Chart, a standarig 5 item, % €l (1< k < m), j is theid of the element. For
software modeling. Iterative pattern ksown asa series of gimpjicity, if an element only contains one item, the bracket is
eventswvhich repeat within and across sequences. Both work mnitted, i.e.,(x) is equal tox,. An item in a sequence can
[20] and R7] mine repetition closed subsequences with

1-negMS 1-neg-length maximum subsequence of ns

1-negMSSns | 1-neg-length maximum subsequence set of ns




appear at most once in an element, but can occur multiple time€onstraint 1 Frequency ConstrainiWe only focus on those

in different elements. negative sequenceswhosep(ns) is frequent, i.e sugp(ns)) >
Lengti(s) is the length of sequences, which is the total min sup
number of items in all elemenis s. Szgs) is the sizeof s, Constraint 2. Formation Catraint. Continuousnegative

coded asiz€s), whichis the total number of elementss. For elements are not allowed a NSC because we cannot tell the
example,sequenceca(ad)de> is comprised of elementsa, right order of two continuous negative elements if there is no
(ad), d ande; meanwhile, it is also comprised 8fitemsa, d  positive element between them.

ande. It is a4-sizeand5-lengthsequence. Example 1<a « ab) ¢ a-c> satisfiesConstraint2, but
Sequences,=< a1,a, €ay> is named asubsequenceof —ab)c-a-c>does not.
sequencss~< fi, [, €/in> ands;is asupersequencefs,, Constraint 3. Element Negative ConstraiAn elementis

denoted as, C sy, if thereexistsl< j, < j,<é <j,<msuch that the minimum negative unit in a NSC. If an element includes
o C Br, 2 o € @ B We also calb, containss,. For  More than one item, it is not permitted that certain items in the
example, €, <ac> and < @b) d> are suksequences of @b) ¢ élement are negative while others are not.
d>. Example 2<a « ab) c a—-c> satisfies this constraint, bua<

A set of tuples<sid,ds> is usedto represent a sequence(-@P)ca-c> doesnot liscegatiwen elementy &
dataseD (seeTablelll abat an example dataset for detgils (-@ b, whilebisnot. _
wheredsis thedata sequence asitlis the number ofequence ~ Definition 2. Negative Sequential Pattern (NSPyhe
ID| is the number of tuples iB. The set of tuples containing su_pport of a negative sequential pattern (NSP) is not less than
sequencss is described ag<s>}. Sugs) refers to the support MiN_sup
of s it is the frequency of{<s>}, ie., suds)=| B. Negative Containment

{<s>}|=|{<sid,ds>, <sid,ds>D A (scd9}|. min_supis @  1pe gefinition of negativeontainment is very important to
minimum support threshold, denoted mm_sup If SUHS)> e efficiency of a NSP mining algorithm because it affects the
min_sup then we call the sequenses frequent. By contras$,  efficiency of calculating the support of NSC. IaN&P, a
is mfreque.nj[ |fsup_(s)< min_sup - definition of negativeontainment that is consistemith the set

PSP mining aims to disver all positive sequences thaleory was proposed. In order to fast calculate the support of
satisfy the minimum support. For simplicity, we often omilysc ' eNSP converts the negative containment problems to
ipositiveo when discussing pq@ifve dodtdinthént ploblerT'Such ttid Suppbrf ok NsB s e | €T
and positive sequences in mining PSP . _ fast calculated by only using the information of PSP. |eorol

The main symbols used in this paper are listed in Table I. 45 5o, eNSP defines a series sffict cefinitions which are not

easily understoadThis paper also uses the same definitions,
IV. THE DEFINITIONS OF NEGATIVE CONTAINMENT butwe simplify them in an easily understandable/wae only

In this section, we first introduce the constraints to negativese the converted definitions and omit those preparatory
sequence, then discuss the definitions of negative containmdefinitions. Interested readers can refer #f)][to understand
in eNSP, finally propose the definitions mpetitionnegative these definitions from negative containment angle. use an
containment. example to explain them first.

Given ds=<a(bc)d(cde> and ns=<a-bb-a(cdg>, ds
. e containsnsif and only ifdscontains @b(cdé> anddsd o e s n 6 t

In reatlife appllcatlons, the number of NSC and thecontain ﬁbqu©> (i.e.,p(<a—|bb(cde)>) and ﬁdede> (i.e.,
identified negative sequences are usually in an enormous Scﬁ@ab—-a(cdep), where ab(cdd> is the suksequence that
and most of which are meaningled€][ The number of NSC qntains all positive elements with the same ordesasalled
may be huge or even infinite if no constraints are added. Thig;\imum Positive Subequenceand denoted byMPSNS:
makes NSP mining very chaIIeng_ing. In or_der to soIv<_a th@a—'bb(cde)> ( or <ab-a(cde>) is the suksequence that
problem, some available constraints are introduced in t8nains all positive elements and only one negative element
existing methods. This paper involves three constraints thgi, the same order ass called 1neg size maximum
same as &\SP. Here we only introduce these constralnt§ubsequenCes and denoted bypegMS The set consisting of

because of page limiiah, please refer t04[] for the 5 1 negmMsin nsis called Inegsize maximum sulsequence
feasibility and rationality if interestedVe first introduce the ¢qt denoted as -legMSS, For example

definition positive partnerwhich is used in the constraints. 1-negMS S -pb-acde >={<a-bb (cdg>, <ab-a(cde> }.
Definition 1. Positive PartneGivena negative elementb, Now we formallydefinenegativecontainment.
its positive partneis b, desribed ap(-b), i.e.,p(-b)=b. Definition 3. Negative containmeriven a data sequence
A positiveelemenbd positive partneisbitself, i.e.,p(b)=b.  gsand a negative sequents dscontainsnsif and only if the
Supposens=<s;¢ §> is a negative sequencets positive 5 conditions hold: (1) MPSng c<ds and (2)
partner can be obtained bgnvertingall negative elements in V17 negMS:1i negMSS, p(1 negM3 «ds
ns to their positive partners, dendteas p(ns), i.e., Example 5Assumeds,=< (ab)c(de)f> and ) ns=<a c-d>,
p(ng={<s,'e Sk'_>| $'=p(s), s < ng. For example, 1 neqvSS={<ac-d>}, dsdoesnot contaimsbecause
p(<~(cda~c>)=< (cdac>. p(<ac-d>)=<acd> c ds (2) ns'=<a-bc-g>,

A. Constraints to Negative Sequences



1-negMS8§l={<a-bc>, <ac -g>}, ds containsnsbecause According to Eq. (1), theepetition negative containment
MPSng)=<ac> cdsa p(<a-bc>) zdsa p(cac-g>)zds problem is converted to theepetition positive containment
From Definition 3 we caisee thathe negative containment problem, i.etherepetitiontimes of any NSC in a data sequence
now is convertedo positive containmenta data sequence can be converted to a calculation of Maximum Positive
contains a positive sequence but does not contain some otBegbsequence  For example, given ns=<a-dc>;
relatedpositive sequencesn this way, we can calculate the ds,=<aca(ab)cb>, ds,=<abababd. As the progress shown in
support of negative sequences by onlygshe information of Fig.1, LCSRns, ds;)=2, LCSRns, ds;) does not exist because

corresponding positive sequences.

C. Repetition Negative Containment

As a data sequenats may containa negative sequences
more than once without overlape need to knowhe positions
that ds containsns from the left side ofds. This is very
important to give a cutting point slsanddefinethe repetition
negative containment problem.

Definition 4.Left Containment Subsequence Positibor a
data sequenads= <e;eé g>, andnsas anegative sequence, if
nszds and 3i (1< i ), st. MPSngc<eé > A MPYn9
z<eé e.,>, then theid of the elemente, i, is the left
containment subsequence positidenoted by CSRns, d9)=i;
if nszds, then LCSRns, d9)=0. In particular, ifnsis al-size
negative sequence, such asex-and <-ab)>, ns is not

nszds, RptTimes(ns,ds)=RptTimes(MPSns),ds;)=2. Fig. 1
shows this proces Furthermore, theepetitiontimes of any
PSP can be easily got by a moverlapping RPSP mining
method [B]. The demonstration dq. (1)is shown inSection
V (F).

dss = <a c a (ab) ¢ b> ; ns=<a-~dc>

e & es &5 &5

Cannot find LCSP(ns, ds,),

End the process

Fig.1 Repetition times

repetition hence its support can be calculated per the traditional

way of valuing support.

Example 6. Given ns;=<a-~db>, ns=<a-dc>,
ds=<ac(bc)a(ab)cb> and ds=<acaab)cb>. According to
definition 4, MPSns)=<ab> and the leftmost subsequerine
ds, that contains &b> is <ag(bc)>. Theid of element §c) is 3,
thus,LCSRns,, ds)=3. Similarly, LCSRns,, ds)=2.

Definition 4 tells us the following two facts.

(1) The negative containment problem (whettiecontains
ng) is converted to the pdsie containment problem (whether

ds containsMPSng)). So therepetitionnegative containment t

problem is consequently converted to tle@etition positive
containment problem.

(2) LCSRns, dg) gives the position of the leftmost
subsequence thds contairs ns, identifying thispositionasa
cutting pointto calculate theepetitionnegative containment
timessubsequently

Algorithm 1 presents how to calculate the repetition times
when a nscrossing over a ds

Algorithm 1: Calculate RptTimegns, ds).

Input: ns: a negative sequence;
ds=<e&,€é g>: data sequence;

Output: repetition containment times;

(1)t=0;

(2) If nsc ds{

(3) Until (MPSns) zds) Do {

(4) t++;

(5) m=LCSHns, dg

(6) ds=<emi...6>;

(7) }

(8) Returnt;

RptTimegnsds) = RptTimea(MPYn9),ds), if nscds (1)

V. E-RNSP ALGORITHM

A. E-RNSP Candidate Generation

In order to geneate all noaredundantNSC from PSP, we
use the efficient methode-NSP to generateNSC. The key
process of generating a NSC is to convert-ocontiguous
elements in a positive pattern to their negative partners.

The further ex pl anatNiScn ith e
algorithmmolbe@aogebsgaouys el ement
heir negatijsé zrpamtASaAjs®, For a

For example, the NSC of xif) a b ¢ > include:

m=1, <{(xy) abc>, <(xy) mabc>, <(xy) a-bc>, <(xy)ab
-C>,

m=2, <~ (xy) a-bc>, <= (xy) a b-c>, <(xy) mab-c>.

Obviously, we carnuse the above strategy generate NSC
that meet the condition ofhe three constraints described in
Section 3.2

TABLE Il. E-RNSP DATA STRUCTURE

SuUp| rsuy sidHash
20 | 30
2 1] 4
20 | 30
2 |1 |2

RPSP

40

<a> 5 12

3 5

<a >b

B. Calculate the Repetition Support of NSC
Lendbe naegi apahksi megati ve

V1-n e giM%n e g MBLE<n),

ohsgan

seque
t pes upprosnutp (
be dc alyculhet ol | owi ng t ht

{ns} ={MP@s)} - {V] A1 - negMg}}  (2)

Eq(@ i s usedsisdot obt adata sequ
contms nshMP@®E) d$isdeda of sequenc
contMA@s, ah{plrdegM9}} isddda uni on
fropfinfegMpP based on the

C

correspy



The ordinary mefgoaltliovwe nsgu ptplidey t§ roafdi t i onal
support definitiomnk]|c,anwhsdr edld)l {cPSPHadpet(@, sidHash;| {
the nusbanms{.ofTo c arlecpud it fep a rftd) Beturn RPSPHash
ns we haverepekiomeatohcecaitr s i(18) Yelac h

{n. Accordeéepgtiyupponhes osfhown D.bﬁéeQRNSPAIgorithm

rsup(ns) = Z.Mf)l RptTimegns, ds,) (V4 &N 5 () The e-RNSP algorithm mines for RNSP by only using the
whedges a data sequiemn §eii aﬁkd{eden?t'tﬂestPg% sition
we camRpgEiggs in ter@s wift ABeithm3:eRNSP
r€scanning the sequence dat almpatsDeSequence Datasetin_sup
In particular, if the size ohsis 1, i.e., it has only one Output: RNSP;
negative elementsuch as <e> and <-ab)>, the repetition (1) RPSP = RptGSP(D);
supporbf nsis the samas itsordinary supportas shown in Eq (2) CreateHash(RPSP)
(4): 8; Flo'\r”(_eachpsgln RPSP) {
_ — Nl _ rsup=0;
FSURNg) = SURNS) = |DJ —SuRp(ns) “) (5) Generate NSC by Section 5.1;
For example, given a negative sequense<a-bc-d>, (6) For (pemscin NSC) {
thenMPYng)=<a ¢, p(<a-bc>)=<abc>, p(<ac-d>)=<ac (7) If (the size ohscis one){
d>. We assume that tiséd se of <a ¢ is {10, 20, 30, 40, 50}, (8) Calculatersupby Eq (4);
i.e., data sequences fnNl1maes @2¢se{ A300, fA400, A500 contain
The repetition times of < c¢> in the correspondingdata (10) Calculatesupby Eq (2) and (3);
sequenceare2, 2, 3, land4, respectively Thesidset of @bc> (11) 3 _
is {10, 20}; {20, 40} is thesidset of<ac d>. Subsequentlyfjca (12) If (rsup>= min_sup
b c ->)= {<a c}{f<a b &} U {<a ¢ @} &33 F}u/\ﬁzﬁ)\igdgqs?é)
={10,20,30,40,50}{{10,20} _{20,40}} ={30,50}; (15} 1/ END OF (3)
rsupl<a -b c¢ -d>)=RptTimeg<a -b c¢ -d>30)+ (16) Return RNSP:
RptTimeg<a —b ¢ -=d >,50)=3+4=7. '
. Below is the explanation of th&lgorithm 3. In Section
C. Data Structure and Hash Table in e-RNSP V(F), we provide a brief theoretical analysis of the working
Il'n order to effi epetsiuipiponcBech@iish afthe-BRNSHagorithm.
negative, sewgqueesegn a dat a (3 Like 9 findsaRPSHrém thedequénee ddtaBage using
eRNSP related data. The datie RsGIP&IGttHN. Meahwhile, RPSPHE savedin thea b | e
Column one stores R®PSP Cril ueaRNIPWLSHUCtES Bs détalled in Section 5.4 (Lines (2,3));
holds the regular support o0f2 RP &BhRPSE QGéneraeNSAs)hby ehe Capdiddte st F
repesiupipont . Codsuemsn & olua d Readeldpatiofmethod in Section 5.2 (Line (6));
<si &, dthéof data sequences c@)nThedepdiitiod shpportforodadhBs€if RIQE) icah be
RPSP amapdthiemiets no(f t he RPSP easfyCcHléulated'ty Ed(1M) (LiRe€ (7~24)) and then we
corresponding data sequenc edetermine whether they aRNSP(Lines (25~27)).
For example, Tablél shows that, for a RPSPa<>, its We calculate theepetitionsupporiof 1-size nsdy using Eq.
corresponding hastable consists of{10, 2>, <20, 1>, <30, (4) (Lines (8~10))Further, in lines12) to (17), we calculate
2>}, meaning that & b> is contained in the sequencs 20 ¢ U {p(-negM9} }, and obtain thesid set of ns by

and 30. Therepetition times of <@ b> are 2, 1 and 2, . .
respectively. {MPEn9}-{ UL{p@-negM9} } (Lines (18~21)). Lines

In order to identify PSP and IPS efficiently, we use the ha§B2~24) calculate theepetitionsupportof nscby Eq. (3). If
table to store the-RNSP data, as shown in Algorithm 2. rsup(nsg >= min_sup thennscis inserted intoRNSP(lines

. . . (25~27)).
Algorithm 2: Hash table creation process in e-RNSP - -
Input: All RPSP and their related information; (4) Obtain the resulteLine (29)).
Output: RPSP’s hash table; E. An Example

(1) CreateHash(RPSP] The above sections introduce key concepts and components
(2) Create RPSPHash as well as the-&NSP algorithm for RNSP mining. This section

83 Fg:eizcgigatssrg pin RPSH{ uses an example to illustrate hdw mine for RNSP. The

(5)  For ( each data sequence d$){ datasets are shown in Table Ill. In the example, we set
. min_sup-2.

(6) If (dscontains p){ _ TABLE IIl. EXAMPLE DATASET

(7 rt = RptTimegp, d9); sid ds

(8) sidHash.pufp.sid, rt); 10 <a b(bo)>
(9) } 20 <abeabe




30 <(bc) f>
40 <a (bc) c>
50 <d e

The process is as follows.

(1) Mining repetition positive gquential patterns (RPSP)
using RptGSP, and storing the results in terms of tR&ISP
data structures (see Section 5.4), which are detailed in INVable

TABLE IV. EXEMPLARY RESULTS | REPETITION POSITIVE PATTERNS

Sup Rsup SidHash
= 5 [+ po o8
> | 4 | 6 10 20 3
< 3 4 11012 30 4
= | 2 |3 29509
b5 3 3 110] : 30 Z
<a>b| 3 4 19 20 41
<a >c 2 2 110] 40
<a>e| 1 2 [59
<b >b 2 2 110] 20
<b >c 2 2 }01 40
<b >e 1 2 %0
<a b 1 2 [59
a b | 2 2 9 40
<abp | 2 » 10 20

(2) Using the eRNSP generation approach to get all negative

sequential candidates (NSC).
(3) Computing these NSt@petitionsupport values based on

Eqg. (1-4). TableV shows the results, and the final RNSP are

marked in bold.

Amongthe RNSP, <ab-c>, <a-c> and «a { bc)> arethree
special ones because ytere mined as RNSButtheyarenot
mined as patterns in-SP. Obviously, not all of RNSP are
actionable for supporting decisionaking [40], especially
those patterns with only one positive element, suchhas® =
and <-a b -e>, their repetition supports are high but
misleading. How to catch those actionable RNS&uisfuture
task

F. The theoretical analysis of the working

Here, we discuss the theoretical soundness of e-RNSP from
its working mechanism perspective.

The mining process of e-RNSP could be mainly divided into
four stages. The first stage mines all RPSP and uses them to
generate negative sequential candidates (NSC). For a certain
NSC (ns9, the second stage is to identify that whether this nsc
is contained by a data sequence based on the negative
containment as discussed in Section 4.2. The third is to catch
repetition times when nsccrossing the above data sequence.
The last stage is to achieve its rsuputilizing Eq. (3) or Eq. (4).

For the first stage, this paper utilizes RptGSP[11] to capture
all RPSP and generates NSC based on the strategy in [32]. This
generation method converts non-contiguous elements in a
positive pattern to their negative partners, which means for
each NSC, MPNSQ e{RPSP}, where {RPSP} means the set
of RPSP. Accordingly, this strategy ensures that the supports of

all generated NSC could be then calculated based only on the
corresponding RPSP.

In second stage, this paper uses the same definitions of
negative containment in e-NSP, which converts the negative
containment problem to positive containment problem in terms
of set theory. We introduce briefly the conversion process as
follows, please find detailed proof in [40].

{< a >}, {< b >} mean the set of tuples that respectively
contain sequences < a >, < b > in a sequence database. The
intersection of sequences < a > and < b > will generate four
disjointed sets: {< (ab) >*™}, {< ab>""}, {< ba>""} and {<
ab >} {< ba >}, representing the sets of tuples that contain
sequences < (ab) > °", < ab>°", < ba>°", and both < ab>
and < ba> respectively, as shown in Fig. 2.

For simplicity, let us take {<a—-b >} as an example, we have:

5T

()

This result illustrates the strategy of conversion process, i.e.
data sequences that contain < a—b > are the same sequences that
contain < a> but do not contain < ab>.

A
{<bazm} |
- {<b>}

{<a b>N<ha>}

{<a b>omy}
{<a>}

{<(ab)>wm}

Fig. 2. The intersection of {< a >} and {< b >}

To address theepetitioncontainment problem, we extend
the aboveconversion strateglp a cyclic conversion strategy in
third stage. We will demonstrate that tregpetition negative
containment can also be converted into riygetitionpositive
containment.

Corollary 1.RepetitionNegative Conversion Strategy.

For a data sequends, and a negative sequenng the
repetition negative containment can be converted hbe t
following problem: if ns < ds the repetitiontimes thatns
crosses througtisequal to times that MPB8¢) occurs inds

Proof of Corollary 1.

Given a data sequends=<d,d,. . .d, >, andnsis a negative
sequence. According to the negative contanhin Section 4.2,
if ns < ds satisfying (1) MPSng <ds and (2)
V1 negM&E 11 negMS, p( InegMJ zds Assumd.CSRns,
d9)=i, for the subsequence &.; di.,€ d> of ds denote asls,
V1l negMS:11 negMSS, p( InegM$ zds. Thus, we only
need to determine whethg#Pns)  ds.

Intrinsically, the last stage is a combinatiprocess which
incorporates the above three processes to calculatsuthef a

NSC crossing all the data sequences based on a set theory in

[40].

VI. Experiments and Evaluation
The experiments on 15 synthetic and real Hates have



been conductetb comparewith threeavailableNSP mining
methods, eNSP §0], NegGSP 17] and PNSP 16] from two
aspects: the number of patterns and their running time for
identifying negative patterns. To compare their performance,
wemake PNSP andegGSP tdollow the same comaintsand
definitions ine-NSP. All algorithmsare coded in Java and
executedn a Windows 7 Professional PC with Intel Core i5
CPU of 3.2GHz, 4GB memorin the experiments, all supports
(and minimum supports) are calculated in terms of the

Number of patterns

3500

0.18
min-sup

(b) Results on DS2

0.19

017

percentage fathe frequency< s >| of a patterns compared to - -—é-RNspi Ds3 ' :
. @ —e-c-NS|
the number of sequencigy in the database. § 2500 o0
TABLE V. EXAMPLE RESULTS I NSC AND REPETITION SUPPORTS ézoou-
(MIN_SuP=2) 5 1500 |
g 1000 oy
RPSP NSC Related RPSP sup [ rsup Z 500 ke e A T
<a> <aa> <a> 2 2 e i
<b> <a b <b> T T 0 oa7 0.36 035 0.34 0.33
< <ac < 2 2 nin-sup
(c) Results on DS3
<& ae <e> 3 3
<b ¥ <a® ¥ <b ¥ 2 2 o ‘
<a >b <aa>b <pb>,<a >b 1 1 ——e-RNSP| DS4
<aab> <a>,<a >b 2 2 2
<a >c <@a>c <c>,<a >c¢ I I £ 10000
<aac> <a>,<a >cC 1 2 L
<a >e <aa>e <e>,<a >e 1 1 5
<aéde> <a>, <a >e 2 2 £ 5000
b >b <ab >b <b>,<b >b 7 2 =
<bab> <b> <b >b 2 2 5 ; A A
<b >c <ab>c <c>,<b >c 1 1 0.1 0.09 0.08 0.07 0.06
<bac> <b> <b >c 2 3 min-sup
Pl R =R 3] 4 (d) Results on DS4
<a b <da | <b ,ea> b 0 0 Fig.3 The Number of Patterns Comparison
<agAb> el <a ga g 8 (2)
<abae> <a 2 . . .
<da b | <b <ab<>,b<b >d 1 1 Dataset 4DS4 is the real application dataset about health
a b Aa b <b ,ea> b 0 0 insurance claim sequencasis data contains 5,269 customers
aaprel 2 2l Y9 eachsequence stands fonecustomerThe averagsizein a
<aa & | <b><a >pb >¢ 1 1 sequence is 21. Teaximumsize ofa sequence #44, and the
<abp | <@ab <(b ¥, <ab p 0 0 minimumsizeis 1. The ske of this datasés around 5SMWe
<ada(b <a>,<a(b p 1 2 .
use the above four datasets to evaluate the mining performance
A. Datasets of eRNSP.

We use the following data factor&, T, S, |, DBandN to
describe and observe the effect dadtal characteristics o

Dataset 5[0SH is a real dataset which contains 9 sets of

n sanitized user data drawn from the command histories of 8

algorithm performance which are defined to describe UNIX computer users _at_Purdueerthe course of_upto 2_years
characteristics of sequence da#@][ C: Average number of DUe to the confidentiality of DS4, we chootigs reallife

elements per sequence; T: Average number of items per ele
S: Average size of maximal potentially large sequentes;
Average size of items per element in maximal potentially lar
sequences; DBThe numberof sequencesN: The numberof

items.

Four source dabmsesare appliedin this experimentThe
synthetic databases are generated by IBM data generator
Dataset 1(DS1), C8_T6_S6_16_DB10k_N100;

Dataset ADS2, C12_T4_S6_I6_DB10k_N100;
Dataset DS3, C15_T8_S20_10_DB10k_N100;

8000
g 7000
2
% 6000
Qo
‘S 5000
g 000
2 4
=1
Z 3000

2000

0.17

0.16

0.15 0.14

min-sup

(a) Results on DS1

niigiaset to present the patterns mined by our approach.

We further creat®ataset 6 PS6 C12_T10_S20 110 DB

gfé&NmQ- Based on it, wgenerate 15 additionalatasets in
e

rms of differentlata factorsdenotedasDS6x (x =1 € 1 5)
to access the runtime and pattern numbefRNSP and eNSP
influenced by differentdata factors For instance,DS6 =
C12 T10_S20_110_DB1k_N100, DS6.C43 T10_S20_110_
DB1k_N100, and>S6.2C14 T10_S20_110_DB1k_N100 are
different on factoC, which means they have different average
numbers of elements in a sequence, while the other factors are
yxed. These datasets are |

B. The Ability of Mining Patterns

The number of negfive patterns mined byNMSP, NegGSP
and PNSP respectively are the same because we use a unified
negative containment definition for all of them. Therefore, here
we just need to compareRNSP with eNSP, and the results
are shown in Fig3. eRNSP hasltte ability of mining more
negative patterns thanNSP at the sammin_sup because it

ste



caters for theepetitionnegative patterns when calculating the
NSC support.

The number of RNSP is greatly affected by the distribution
of a dataset. The morepetitonitems in a dataset are, the more
the number of RNSP are. Thepetitionitems in DS3 are more

than the other datasets, so the gap between the two lines on DS3

is larger than the other. More details about the pattern number
impacted by data factors arisclissed in Sections 6.4 and 6.5.
To reveal the strength ofRNSP, we choose two relifie
results miredfrom DS5 shownin TableVI. It is clear that these
two RNSP have the higheepetitionsupports but the lower
traditional support, which might be igred if setting a small
support threshold. The firstRNSP means if an operator uses

Gs6 to | ist the c atirstruotigndiegerd h e
to search userods i n€tddr mat icdhirman
other catalogued he second RNSP preds that if the operator
did nomb tueedél ete files after
high probability of changing and showing the next catalogue
subsequently.
TABLE VI. EXAMPLE RESULTS OF DS5
RNSP sup rsup
1 <is, afinger, ccd> 46 122
2 <is,arm, cd, is 40 72

C. Computational Cost

For observing the efficiency of-RNSP, we conduct
experiments on DS1 and DS2 with four algorithms and just run
e-RNSP and &NSP on DS3 and DS4in the following
comparisons, all positive patterns are identified byGSR
negative patterns are further mined by -BNSP, eNSP,
NegGSP and PNSP. So their runtime of mining PSP are the
same. In order to show their difference, we just need to
compare their runtime on mining negative patterffig. 4 and
Fig. 5 show the comarisons.

From fig. 4 we can see thatRNSP and €\NSP are much
fasterthan the othealgorithms E-RNSPspend3%to 20% of
therunning timeof PNSP and NegGSéh DS1 and DS2. For
example, eRNSP spends 3.7% to 17.6% of Ne§Prunning
time on DS1 when min_sup decreases from 0.17 to 0.13.
E-RNSP and €NSP are both efficient, because they only need
to calculate the NSC support based on identified positive
partners, while Ne@sSP and PNSP have togean the whole
datasets.

Runtime(ms)

10*

—+-e-RNSP Ds1
-=-e-NSP

—*-Neg-GSP|
PNSP

— Sl o i e Y
0.17 0.16 0.15 0.14 0.13
min-sup

(a) Results on DS1

—e—c-RNSP DS2
||—®-e-NSP
—*-Neg-GSP
PNSP

/

s it h
0.2 0.19 0.18 0.17 0.16 ue, I
min-sup

(b) Results on DS2

Fig.4 Runtime Comparison 1

<10

Runtime(

Runtime(ms)

—e-e-RNSP DS3

0.37 0.36 0.35 0.34 0.33
min-sup

(a) Results on DS3

<10*

—-e-RNSP) DS4
—-e-NSP
)
g mpr == =7 .
0.1 0.09 0.08 0.07 0.06

min-sup
(b) Results on DS4

Fig.5 Runtime Comparison 2

D. Performance Analysis of the Impact of Different Data
However,from Fig. 5 we can see #t the running time of Factors

e-RNSP is also higher thanNSP, especiallyvhen min_sup 1) Effect of C on Pattern Number

decreass The reasons are as follows.

Here we analyze the impact of tuning data factor C on the
(1) In order to calculate thepetitionsupport, eRNSP has to pattern number of-&NSPand&NSP whi | e

yXing o

count the number of times that a NSC repetition occurs intfe 5 | DB and N. C is the size of data sequence, and its

databaseyhereas éNSP does not need to do so.

increase directly causes the increasesopin e RNSP. So the

(2) The number of NSC generated frorRBISP is larger number of RNSP increases quickly with the increase @h€
than that in eNSP, because RNSP needs to consider the RSRnaximum numbr of RNSP can be mined when setting C o 15

problemwhen itmines PSP, but-BSPmines PSP only.
In our future work, we will further study the thed to
increase the efficiency ofRNSP.

Although the number of NSP also increases with the increase of
C, its increasing speed is slower than that RNSP.
2) Effect of T on Pattern Number

This is to adjust data factdrwh i | e

yxing other

its impact on the pattern number. The increaserT ofill
increase the number of RNSP and N8 maximum number
of NSP can be mined when setting T to.IPis is because,



10

with T increasing, i.e., the averagember of items per element increase toqthe maximum number of RNSP can be mined
increasing, theumber of NSGncreases. Hence, the number ofvhen setting | to 16)But eRNSP increases proportionally
RNSP and NSkhcrease. faser than eNSP,and the gap thus increases too.
3) Effect of S on Pattern Number 5) Effect of DB on Pattern Number
This is to adjust data f ac tToereffe@ of B onlPaternyNurnber gvill betdiscassedsin t 0 0
its impact on the pattern number. The increase of S whkction 6.5 (scalability test).
decrease the number of RNSP and NtB® maximum number 6) Effect of N on Pattern Number
of RNSP can be mined when setting S to. T)s is because, Si mi |l arly, we adjust N while
with S increasing, i.e., the average size of maximal potentialljcreasing N will decreasepetitionitems in data sequence,
large sequences increasing, the number of NSC decrea¥#¥ch further decrease the support of sequeftbesmaximum
Hence, the number of RNSP and NSP decrease. number of RNSP can be mined when setting N to.288hce,
4) Effect of | on Pattern Number the numbers of RNSP and NSP decrease with the increase of N.
This is to tune the factor | to observe its impact on the patternin summary, eRNSP c an perform e ci
number. With | increasing, the numbers of RNSP and NSRrious data factor perspectives.

i & 4 Factor C (min-sup=0.48
«10* Factor C (min-sup=0.44) «10* Factor C (min-sup=0.46) 25 %10 { p=048)
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Fig.6 Pattern Number Comparison on Various Factors



TABLE VII. DATASET CHARACTERISTICS ANALYSIS RESULTS

RNSP

NSP

NSC

NSC

RNSP

NSP

Data . number by | number by | number by | number by | time by |time b *t1/n3 *tzlm ta/ns)/

factors|  DaasetID |min_sug" TR 0e Y| e Y N ENSP | e.NSP | |e.RNSP | e.NSP (1:30 (1:30 ((tz/m))
(n) (n2) (n3) (ng) (t, ms) | (tz, ms)

0.44 4365 364 25786 9740 889 219| 34.48| 22.48 1.53

C=12 D?fgcljléi-lzlﬁl_l%%o 0.46 3242 129 19765 6811 717 140| 36.28| 20.55 1.76

- - 0.48 2528 26 15598 5018 593 125 38.02| 24.91 1.53

DS6.1=C13_T10_S 0.44 10102 645 78909 33385 2528 780| 32.04| 23.36 1.37

C=13 |{20_110_DB1k_N10 0.46 7698 251 61133 23909 1966 561| 32.16| 23.46 1.37

0 0.48 5827 59 47149 17127 1622 406| 34.40| 23.71 1.45

DS6.2=C14 T10_S 0.44 21999 1074 255651 86606 8174 2262 31.97| 26.12 1.22

C=14 {20_110_DB1k_N10 0.46 15847 344 187575 58213 6084 1544| 32.44| 26.52 1.22

0 0.48 11885 84 142612 41012 4696 1124| 32.93| 27.41 1.20

DS6.3=C15_T10_S 0.44 40850 1724 657109 258587 21263| 6973 32.36| 26.97 1.20

C=1520_110_DB1k_N10 0.46 28341 573 467934 168421| 14368 4617| 30.71| 27.41 1.12

0 0.48 20545 111 347521 113561| 11263 3151 32.41| 27.75 1.17

0.44 1558 152 6967 2554 250 62| 35.88| 24.28 1.48

T=8 (l)jslis[é_DCBliETl?ﬁg(Z) 0.46 1194 62 5530 1883 250 47| 45.21| 24.96 1.81

- - - 0.48 951 18 4405 1373 187 47| 42.45| 34.23 1.24

0.44 4365 364 25786 9740 889 219| 34.48| 22.48 1.53

T=10 D?facééillﬁ—ﬁ)%o 0.46 3242 129 19765 6811 717 140| 36.28| 20.55 1.76

- - - 0.48 2528 26 15598 5018 593 125| 38.02| 24.91 1.53

DS6.5=C12_T12_S 0.44 11928 719 94430 35777 3010 843| 31.88| 23.56 1.35

T=12 |{20_110_DB1k_N10 0.46 8848 264 71475 25132 2278 609 31.87| 24.23 1.32

0 0.48 6716 83 54793 17754 1841 499| 33.60| 28.11 1.20

DS6.6=C12_T14 S 0.44 23374 1122 260022 82539 8268| 2060| 31.80| 24.96 1.27

T=14 |20_110_DB1k_N10 0.46 16699 351 187848 55017 6037 1419| 32.14| 25.79 1.25

0 0.48 12462 78 142026 38485 5445 982| 38.34| 25.52 1.50

DS6.7=C12_T10_S 0.44 9618 512 72176 22129 2403 530| 33.29| 23.95 1.39

S=14 |14 _110_DB1k_N10 0.46 7221 211 54539 15362 1950 421| 35.75| 27.41 1.30

0 0.48 5438 78 42056 10548 1560 265 37.09| 25.12 1.48

DS6.8=C12_T10_S 0.44 7952 442 59822 20620 1950 484| 32.60| 23.47 1.39

S=16 |16_110_DB1k_N10 0.46 6116 193 46341 14626 1544 357| 33.32| 24.41 1.37

0 0.48 4567 57 35074 10056 1217 281| 34.70| 27.94 1.24

DS6.9=C12_T10_S 0.44 6281 372 40975 15662 1389 358| 33.90| 22.86 1.48

S=18 (18 110_DB1k_N10 0.46 4786 174 31905 11231 1154 265 36.17| 23.60 1.53

0 0.48 3605 43 24235 7751 920 188| 37.96| 24.25 1.57

0.44 4365 364 25786 9740 889 219| 34.48| 22.48 1.53

S=20 D?facééz-lzlﬁﬁ%%o 0.46 3242 129 19765 6811 717 140| 36.28| 20.55 1.76

- - - 0.48 2528 26 15598 5018 593 125 38.02| 24.91 1.53

0.40 4365 364 25786 9740 889 219| 34.48| 22.48 1.53

1=10 D?facééz-lzlﬁﬁsozoo 0.42 3242 129 19765 6811 717 140| 36.28| 20.55 1.76

- - — 0.44 2528 26 15598 5018 593 125 38.02| 24.91 1.53

DS6.10=C12_T10_ 0.40 9185 1550 44352 18521 1466 343| 33.05| 18.52 1.78

1=12 |S20_112_DB1k_N1 0.42 6842 792 33306 13033 1107 249| 33.24| 19.11 1.74

00 0.44 5120 364 25435 9157 889 187| 34.95| 20.42 1.71

DS6.11=C12_T10_ 0.40 14822 2092 81319 28823 2386 515| 29.34| 17.87 1.64

1=14 |S20_114 DB1k_N1 0.42 10691 1020 59718 19286 1825 343| 30.56| 17.78 1.72

00 0.44 7888 445 44615 13181 1435 234| 32.16| 17.75 1.81

DS6.12=C12_T10_ 0.40 27318 4069 146127 52033 4040 874| 27.65| 16.80 1.65

1=16 [S20_116_DB1k_N1 0.42 19958 2152 108510 36353 3058 624| 28.18| 17.17 1.64

00 0.44 14354 981 79329 24510 2293 421| 28.90| 17.18 1.68

DS6.13= 0.13 84754 70363 108177 92026 2122 764 19.62| 8.30 2.36

N=200|C12_T10_S20_I110_ 0.14 62707 50293 80757 67090 1639 562| 20.30| 8.38 242

DB1k_N200 0.15 4378( 34476 57287 46690 1264 421| 22.06 9.02 2.45

DS6.14= 0.13 15326 12458 16401 13449 374 93| 22.80| 6.92 3.30

N=300|C12_T10_S20_110_ 0.14 10780 8695 11511 9460 280 94| 24.32| 9.94 245

DB1k_N300 0.15 8393 6727 9001 7374 218 78| 24.22| 10.58 2.29

DS6.15=C12_T10_ 0.13 6159 4992 5104 5104 156 47| 30.56| 9.21] 3.32

N=400|S20_110_DB1k_N4 0.14 4807 3923 4002 4002 141 31| 35.23 7.75 4.55

00 0.15 3703 2956 3028 3028 125 21| 41.28] 6.94] 5.95

11



E. Scalability Test
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e-RNSP calculates support based on calculation not on

re-scanning database, thus its performance is sensitive to

size ofdata sequencéf a dataset is huge, it produces a Iargﬁ] L. Cao, Y. Zhao, and . Zhang
number ofdata sequencedhe scalability test is conducted to atterns. in ! \ i

evaluate the -®NSP performance on large datasets. Fig.
shows the results of-RNSP on dataset®S5 in terms of
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