
 1

Abstract—Negative sequential patterns (NSP), which
capture both frequent occurring and non-occurring
behaviors, become increasingly important and sometimes
play a role irreplaceable by analyzing occurring behaviors
only. Repetition sequential patterns (RSP) capture
repetitions of patterns in different sequences as well as
within a sequence and are very important to understand
the repetition relations between behaviors. Though some
methods are available for mining NSP and repetition
positive sequential patterns (RPSP), we have not found any
methods for mining repetition NSP (RNSP). RNSP can help
analysts to further understand the repetition relationships
between items and capture more comprehensive
information with repetition properties. However, mining
RNSP is much more difficult than mining NSP due to the
intrinsic challenges of non-occurring items. To address the
above issues, we first propose a formal definition of
repetition negative containment. Then we propose a
method to convert repetition negative containment to
repetition positive containment, which fast calculates the
repetition supports only using the corresponding RPSP's
information without re-scanning databases. Finally, we
propose an efficient algorithm, called e-RNSP, to mine
RNSP efficiently. To the best of our knowledge, e-RNSP is
the first algorithm to efficiently mine RNSP. Intensive
experimental results on the first four real and synthetic
datasets clearly show that e-RNSP can efficiently discover
the repetition negative patterns; results on the fifth dataset
prove the effectiveness of RNSP which are captured by the
proposed method; the results on the rest 16 datasets
analyze the impacts of data characteristics on mining
process.

Index Terms— sequence analysis; repetition patterns;

negative sequential patterns; repetition negative sequential
patterns.

This paper is submitted in 19 Mar 2018. It is supported in part by the

National Natural Science Foundation of China (71271125, 61502260)”

Xiangjun Dong is with the School of information, Qilu University of

Technology (Shandong Academy of Sciences), Jinan 250353, (e-mail:

d-xj@163.com).
*Corresponding author. Yongshun Gong is now the Ph.D. student in

University of Technology Sydney, New South Wales 2007, Australia. (e-mail:

yongshun.gong@student.uts.edu.au).
*Corresponding author. Longbing Cao is with the Faculty of Engineering

and Information Technology, University of Technology Sydney, New South

Wales 2007, Australia (e-mail: longbing.cao@uts.edu.au).

I. INTRODUCTION

EQUENTIAL data is widely seen in real-life applications

in particular behaviors, such as high-impact behavior

analysis [1], group behavior analysis [2], contrast behavior

analysis [3], abnormal behavior detection [4], and so forth. As

an important means for behavior analysis [7-9], sequence

analysis, in particular, sequential pattern mining has been

increasingly explored to discover frequent subsequences in a

sequence database [27-31,35]. Since the first proposal of

sequential pattern mining, many algorithms, such as GSP [10],

FreeSpan [11], PrefixSpan [12], SPADE [13], and SPAM [14],

have been successfully proposed to enhance the algorithm

efficiency. The patterns mined by these algorithms, focusing

only on occurring items, are called positive sequential patterns

(PSP). But limited research has been conducted on analyzing

non-occurring behavior sequences [46], e.g., mining negative

sequential patterns (NSP) [5, 6, 40]. NSP, which contains both

occurring and non-occurring [46] items, such as <ab¬c>,

sometimes play an irreplaceable role in many intelligent

systems and applications, such as intelligent transport systems

(ITS), health and medical management systems, bioinformatics,

biomedical systems, risk management, counter-terrorism, and

security [15,40]. For instance, assume s1=<abcX> is a PSP;

s2=<ab¬cY> is a NSP, where a, b and c stand for medical

service codes that a patient receives in health care, and X and Y

stand for disease states. s1 shows that a patient who usually

receives medical services a, b and then c is likely to have

disease status X, whereas s2 indicates that patients receiving

treatments of a and b but NOT c have a high probability of

having status Y [15].

Although many algorithms can be used to discover PSP, NSP

cannot be described or discovered by these algorithms. This is

because mining NSP is much more difficult than mining PSP,

particularly due to the following three intrinsic complexities:

hidden nature of non-occurring items, high computational

complexity and large negative sequential candidates (NSC)

search space [15,40]. In fact, research on NSP mining is at an

early stage, and has seen only limited progress in recent years

[5, 40]. All existing methods are very inefficient and are too

specific for mining NSP, except e-NSP [40]. e-NSP proposes a

method to fast calculate the support of NSC only using the

corresponding PSP's information, without database rescanning.

By this way, e-NSP obtains high time efficiency.

e-NSP, however, does not consider the repetition sequential

patterns (RSP) mining problem. RSP is important as they

E-RNSP: AN EFFICIENT METHOD FOR MINING

REPETITION NEGATIVE SEQUENTIAL PATTERNS

Xiangjun. Dong, Yongshun. Gong*, and Longbing. Cao*, Senior Member, IEEE

S

 2

represent repetition behaviors, and can capture repetitions of a

pattern in different sequences as well as within a sequence, in

which the same item(s) can occur more than once in a sequence

[20-26,48]. It is helpful for deeply understanding the relations

between items in many applications, such as network attack

detection, DNA periodic analysis [21,51], outlier pattern

detection [34], and so on [18,36-39,52]. For example, suppose a

dataset contains two sequences below: {10: <ababababc>; 20:

<ac>} and a given minimum support threshold min_sup =2.

RSP mining algorithms can find pattern <ab> occurring at least

4 times and thus mark it as a frequent pattern. If <ababababc>

represents the behavior that a hacker attacks a server in a short

time period, mining RSPs like <ab> can help analysts to

capture more useful information about a pattern’s appearance

within or between sequences. Some RSP mining algorithms

have also been proposed to mine such patterns [19-30].

Unfortunately, all existing RSP mining algorithms we have

found only consider repetition PSP (RPSP).

Repetition NSP (RNSP) combines the respective

information of NSP and RPSP, representing non-occurring

repetition behaviors. It can help analysts to further understand

the relationships between items and capture more

comprehensive information with repetition properties. For

example, in auto insurance fraud detection, s3=<xy¬zW>

denotes a customer’s collision-payment sequence, where x

denotes the event of a vehicle collision caused by a customer’s

own reason, y denotes the event that the insurance company

assesses the damage, z denotes the event of repairing car in the

garages that the insurance company suggests, and W denotes

the event of the payment to customer by the insurance company.

s3 denotes that a customer gets the payment, but s/he doesn’t

repair her/his car in the garages that insurance company

suggests. This case is normal because the insurance company

doesn’t force their customers to repair car in their suggested

garages. However, sequence s4=< xy¬zW xy¬zW xy¬zW>

should be highly abnormal, since it indicates that the same

events repetitively occur to the same customer which is likely a

fraud. In fact, such suspicions happen sometimes in real life.

Hence, mining such RNSP is very important in real

applications.

However, RNSP mining is more difficult than NSP mining

and RSP mining, particularly because of the following two

intrinsic complexities.

(1) Repetition negative containment problem. In NSP mining,

there is not a unified definition about negative containment

[15-18] so far because the hidden nature of non-occurring items

[46] makes it complicated in defining the negative containment

problem. For example, for a sequence s5=<ababababc>, in PSP

mining, the support of <ab> in s5 is 1; in RPSP mining, the

repetition support of <ab> in s5 is 4 (this value may be different

in different RSP mining methods). But in NSP mining, whether

s5 contains <ab¬d> is inconsistent in different papers [15-18].

In RNSP mining, does s5 contain <ab¬d>? If yes, how many

repetition times that s5 contains <ab¬d>? Therefore, how to

define repetition negative containment is a challenging problem

unsolved.

(2) High computational complexity. Most of existing

methods are very inefficient because they calculate the support

of NSC by additionally scanning the database after identifying

PSP. If we use the same way to obtain the repetition supports, it

will bring enormous consumption both on running time and

space. Therefore, how to fast calculate the repetition support of

RNSP is a significant yet difficult problem.

In order to address the above critical challenges and make

RNSP running feasible in real-life applications, this paper

proposes an efficient algorithm, called e-RNSP, to mine RNSP

efficiently. To the best of our knowledge, e-RNSP is the first

algorithm to mine RNSP. The main contributions are as

follows.

First, we propose a definition to formally define repetition

negative containment.

Second, we propose a method to convert the problem of

repetition negative containment to the problem of repetition

positive containment, which lets us fast calculate the support of

NSC by only using the corresponding RPSP's information and

avoid database rescanning.

Further, a hash table is proposed to store the corresponding

information of RPSP and propose an efficient algorithm, called

e-RNSP, to mine RNSP efficiently.

Lastly, experiments are conducted on real and synthetic

datasets to compare e-RNSP with three available NSP mining

methods, e-NSP [40], NegGSP [17] and PNSP [16] in terms of

the number of patterns and their running time. Particularly,

based on a basic dataset, we generate 15 additional datasets in

terms of different data factors, to access the runtime and pattern

number of e-RNSP and e-NSP respectively. Intensive

experiments clearly show that e-RNSP can efficiently discover

repetition negative patterns.

The rest of this paper is organized as follows. The related

work is discussed in Section 2. In Section 3, we introduce some

basic concepts of PSP mining. In Section 4, we define the

definition of negative containment. The e-RNSP algorithm is

explained in Section 5, and Section 6 displays the experimental

outcomes. Section 7 includes the conclusions and future work.

II. RELATED WORK

In this section, we first introduce some available methods of

mining NSP. Further, we introduce the state-of-the-art research

of mining RSP.

In [17], a GSP-like way was introduced to mine for NSP,

called NegGSP. Chen et al. designed a negative NSP mining

approach PNSP [16]. Only the form of (¬X,Y), (X, ¬Y) and (¬X,

¬Y) are suitable for the method in [31], which is similar to mine

negative association rules. Lin et al. designed an algorithm

NSPM [18] for mining negative sequential patterns, in which

only the last element can be negative. They then extended their

algorithm to NFSPM for mining negative fuzzy sequential

patterns [32] and PNSPM for mining strong positive and

negative sequential patterns [33]. In our previous work, we

proposed an efficient NSP mining method e-NSP in [15,40].

E-NSP calculates NSC’s supports only by using the

corresponding PSP information without re-scanning database

and can handle large-scale NSP. A NSP mining method based

 3

on multiple minimum supports, named e-msNSP, was proposed

in [41]. [47] utilized the bitmap structure with a self-adaptive

data storage strategy to improve the efficiency of e-NSP. A

method mining NSP from both frequent and infrequent positive

sequence, named, was proposed in [42]. Xu et al. considered

utility when mining NSP [5].

Very limited work has been reported on how to identify

RPSP from sequence datasets. The authors in [34] proposed a

stable and efficient suffix tree-based approach for detecting the

periodicity of outlier patterns in a time series. Meanwhile, the

methods in [20,23,25] follow the unified definition of repetition

sequences. The work in [20] faces the overlap issue when

calculating the repetition times. For example, given a data

sequence ds=< AXYABXYXA>, <XYX> appears twice in ds at

<2,3,4> and <6,7,8> respectively, where 2,3,4 and 6,7,8 are the

element ID in ds. Authors of [23] compressed repetition gapped

sequential patterns and proposed an algorithm CRGSgrow. A

navigation pattern clustering method was proposed in [25]

based on closed repetition gapped subsequences. An RB-EZH2

Complex Mediates Silencing of Repetition DNA Sequences is

proposed in [43].

There are some other algorithms which take different

definitions. RptGSP was proposed in [19] to mine RPSP, it uses

the way similar to GSP to find sequential patterns, but

calculates repetition supports in data sequences. Repetition

expansion was introduced in [21] for DNA replication. The gap

requirement was discussed in [22] when mining repetition

patterns from DNA sequences. The definition of gap weight for

sub-sequences was discussed in [24]. Different events have

different gaps, and their paper put forward an approach EWM

to mine repetition patterns with gap weight. However, their

method does not discriminate overlapping subsequences and

non-overlapping ones. Mannila et al. performed an approach of

mining episode to catch frequent episodes within a sequence

[25]. An episode is defined as a series of events occurring

relatively close to one another. An episode is supported by a

window if it is a sub-sequence of the series of events appearing

in the window. In [29], a sequence is divided into

non-overlapping windows. A pattern is frequent if it appears in

at least a certain number of windows. With this definition, it is

shown that the Apriori property applies. It simplifies the design

of the mining algorithm by segmenting a sequence into

windows and counting the number of windows in which a

pattern frequently occurs. However, patterns that span multiple

windows cannot be discovered, and in some cases, a suitable

window width is difficult to determine. Yang et al. studied

asynchronous periodic patterns in time series data [30]. In their

model, shifts in the occurrence of patterns are permitted to filter

out random noises. They also considered a range of periods

instead of those used in [29], although there is still a limit of the

maximum length of a period.

A method was proposed in [27] for identifying iterative

patterns, which captures occurrences in the semantics of

Message Sequence Chart/Live Sequence Chart, a standard in

software modeling. Iterative pattern is known as a series of

events which repeat within and across sequences. Both work in

[20] and [27] mine repetition closed subsequences with

different underlying target formalism and semantics. Different

search space pruning strategies and mining algorithms are used

to efficiently mine recurrent rules. The work in [28] uses the

definition of iterative patterns similar to [27]. It proposed an

approach to find generators of iterative patterns and investigate

catching of iterative generators from program execution traces.

Generators are the minimal members of an equivalence class,

while closed patterns are the maximal members. An

equivalence class in turn is a set of frequent patterns with the

same support and corresponding pattern instances.

Other papers discussed research on sequences, but they

didn’t consider negative sequences. The authors in [44]

proposed a characteristic-based framework for multiple

sequence aligners. The work in [45] includes a new

initialization technique, which is a heuristic space-filling

approach based on both functions to be optimized and a search

space. In [49], a novel approach rep-PrefixSpan for mining RSP

with multiple minimum item repetition support was proposed

and authors of [50] utilized the cyclic model to predict likely

consumer behavior within a certain time frame. Fan et al,

proposed an efficient Apriori algorithm for frequent tri-patterns

discovery [53]. [54] designed two novel algorithms for mining

inter-sequence patterns with item constraint and [55] proposed

an efficient way to discover maximal frequent patterns in

transactional databases and dynamic data streams.

In summary, existing methods were not designed to identify

RNSP, and there are inconsistencies in defining and extracting

repetition patterns. RNSP is thus proposed to address this gap.

TABLE I. NOTATION DESCRIPTION

Symbol Description

I
A set of items, I= {i1, i2,…, in}, consisting of n

items ik(1≤k≤n)

s
A sequence, s =<s1, . . . , sl>, consisting of l

elements sj (1≤ j≤l)

min_sup Minimum support threshold

ns A negative sequence

length(s)
Length of sequence s, referring to the total

number of items in all elements in s

size(s)
Size of a sequence s, referring to the total number

of elements in s

sup(s) The support of s

p(ns) ns’s positive partner

MPS(s) Maximum positive sub-sequence of ns

1-negMS 1-neg-length maximum subsequence of ns

1-negMSSns 1-neg-length maximum subsequence set of ns

LCSP The left containment subsequence position

III. PRELIMINARIES

Assume a set of items I= {i1, i2,…, in}, an itemset is a subset

of I. A sequence is an ordered list of itemsets. A sequence s is

described by < s1, s2,…, sl >, where sj I (1 j l). sj is also

named a sequence’s element, labelled as (x1, x2,…, xm), where xk

is an item, xk I (1 k m), j is the id of the element. For

simplicity, if an element only contains one item, the bracket is

omitted, i.e., (x1) is equal to x1. An item in a sequence can

 4

appear at most once in an element, but can occur multiple times

in different elements.

Length(s) is the length of sequence s, which is the total

number of items in all elements in s. Size(s) is the size of s,

coded as size(s), which is the total number of elements in s. For

example, sequence <a(ad)de> is comprised of 4 elements a,

(ad), d and e; meanwhile, it is also comprised of 3 items a, d

and e. It is a 4-size and 5-length sequence.

Sequence s=<1,2,…,n> is named a sub-sequence of

sequence s=< 1, 2,…, m > and s is a super-sequence of s,

denoted as s s, if there exists 1 j1 j2… jn m such that

1 j1, 2 j2,…, n jn. We also call s contains s . For

example, <c>, <ac> and < (ab) d> are sub-sequences of < (ab) c

d>.

A set of tuples <sid,ds> is used to represent a sequence

dataset D (see Table III about an example dataset for details),

where ds is the data sequence and sid is the number of sequence.

|D| is the number of tuples in D. The set of tuples containing

sequence s is described as {<s>}. Sup(s) refers to the support

of s, it is the frequency of {<s>}, i.e., sup(s)=|

{<s>}|=|{<sid,ds>, <sid,ds>D (sds)}|. min_sup is a

minimum support threshold, denoted as min_sup. If sup(s)

min_sup, then we call the sequence s is frequent. By contrast, s

is infrequent if sup(s)< min_sup.

PSP mining aims to discover all positive sequences that

satisfy the minimum support. For simplicity, we often omit

“positive” when discussing positive items, positive elements

and positive sequences in mining PSP.

The main symbols used in this paper are listed in Table I.

IV. THE DEFINITIONS OF NEGATIVE CONTAINMENT

In this section, we first introduce the constraints to negative

sequence, then discuss the definitions of negative containment

in e-NSP, finally propose the definitions of repetition negative

containment.

A. Constraints to Negative Sequences

In real-life applications, the number of NSC and the

identified negative sequences are usually in an enormous scale,

and most of which are meaningless [40]. The number of NSC

may be huge or even infinite if no constraints are added. This

makes NSP mining very challenging. In order to solve this

problem, some available constraints are introduced in the

existing methods. This paper involves three constraints the

same as e-NSP. Here we only introduce these constraints

because of page limitation, please refer to [40] for the

feasibility and rationality if interested. We first introduce the

definition positive partner, which is used in the constraints.

Definition 1. Positive Partner. Given a negative element ¬b,

its positive partner is b, described as p(¬b), i.e., p(¬b)=b.

A positive element b’s positive partner is b itself, i.e., p(b)=b.

Suppose ns=<s1…sk> is a negative sequence, its positive

partner can be obtained by converting all negative elements in

ns to their positive partners, denoted as p(ns), i.e.,

p(ns)={<s1…sk>| si=p(si), si ns}. For example,

p(<¬(cd)a¬c>)=<(cd)ac>.

Constraint 1. Frequency Constraint. We only focus on those

negative sequences ns whose p(ns) is frequent, i.e., sup(p(ns)) >

min_sup.

Constraint 2. Formation Constraint. Continuous negative

elements are not allowed in a NSC, because we cannot tell the

right order of two continuous negative elements if there is no

positive element between them.

Example 1. <a ¬(ab) c a ¬c> satisfies Constraint 2, but <a

¬(ab) c ¬a ¬c> does not.

Constraint 3. Element Negative Constraint. An element is

the minimum negative unit in a NSC. If an element includes

more than one item, it is not permitted that certain items in the

element are negative while others are not.

Example 2. <a ¬(ab) c a ¬c> satisfies this constraint, but <a

(¬ab) c a ¬c> doesn’t because only ¬a is negative in element

(¬a b), while b is not.

Definition 2. Negative Sequential Pattern (NSP). The

support of a negative sequential pattern (NSP) is not less than

min_sup.

B. Negative Containment

The definition of negative containment is very important to

the efficiency of a NSP mining algorithm because it affects the

efficiency of calculating the support of NSC. In e-NSP, a

definition of negative containment that is consistent with the set

theory was proposed. In order to fast calculate the support of

NSC, e-NSP converts the negative containment problems to

positive containment problems such that the support of NSC is

fast calculated by only using the information of PSP. In order to

do so, e-NSP defines a series of strict definitions which are not

easily understood. This paper also uses the same definitions,

but we simplify them in an easily understandable way: we only

use the converted definitions and omit those preparatory

definitions. Interested readers can refer to [40] to understand

these definitions from negative containment angle. We use an

example to explain them first.
Given ds=<a(bc)d(cde)> and ns=<a¬bb¬a(cde)>, ds

contains ns if and only if ds contains <ab(cde)> and ds doesn’t

contain <abb(cde)> (i.e., p(<a¬bb(cde)>) and <aba(cde)> (i.e.,

p(<ab¬a(cde)>), where <ab(cde)> is the sub-sequence that

contains all positive elements with the same order as ns, called

Maximum Positive Sub-sequence and denoted by MPS(ns);

<a¬bb(cde)> (or <ab¬a(cde)>) is the sub-sequence that

contains all positive elements and only one negative element

with the same order as ns, called 1−neg−size maximum

sub-sequences and denoted by 1-negMS. The set consisting of

all 1-negMS in ns is called 1-neg-size maximum sub-sequence

set, denoted as 1-negMSSns. For example,

1-negMSS<a¬bb¬a(cde) >={<a¬bb (cde)>, <ab¬a(cde)> }.

Now we formally define negative containment.

Definition 3. Negative containment. Given a data sequence

ds and a negative sequence ns, ds contains ns if and only if the

two conditions hold: (1) MPS(ns) ds; and (2)

1−negMS1−negMSSns, p(1−negMS) ds.

Example 5. Assume ds=<(ab)c(de)f> and (1) ns=<a c¬d>,

1-negMSSns={<ac¬d>}, ds does not contain ns because

p(<ac¬d>)=<acd> ds; (2) ns'=<a¬bc¬g>,

 5

1-negMSS′ns={<a ¬bc>, <ac ¬g>}, ds contains ns because

MPS(ns’)=<ac> ds p(<a ¬b c>) ds p(<a c ¬g>) ds.

From Definition 3 we can see that the negative containment

now is converted to positive containment: a data sequence

contains a positive sequence but does not contain some other

related positive sequences. In this way, we can calculate the

support of negative sequences by only using the information of

corresponding positive sequences.

C. Repetition Negative Containment

As a data sequence ds may contain a negative sequence ns

more than once without overlap, we need to know the positions

that ds contains ns from the left side of ds. This is very

important to give a cutting point in ds and define the repetition

negative containment problem.

Definition 4. Left Containment Subsequence Position. For a

data sequence ds = <e1e2…en>, and ns as a negative sequence, if

nsds and i (1< i ≤n), s.t. MPS(ns)<e1…ei> MPS(ns)

<e1…ei-1>, then the id of the element ei, i, is the left

containment subsequence position, denoted by LCSP(ns, ds)=i;

if nsds, then LCSP(ns, ds)=0. In particular, if ns is a 1-size

negative sequence, such as <¬e> and <¬(ab)>, ns is not

repetition, hence its support can be calculated per the traditional

way of valuing support.

Example 6. Given ns1=<a¬db>, ns2=<a¬dc>,

ds1=<ac(bc)a(ab)cb> and ds2=<aca(ab)cb>. According to

definition 4, MPS(ns1)=<ab> and the leftmost subsequence in

ds1 that contains <ab> is <ac(bc)>. The id of element (bc) is 3,

thus, LCSP(ns1, ds1)=3. Similarly, LCSP(ns2, ds2)=2.

Definition 4 tells us the following two facts.

 (1) The negative containment problem (whether ds contains

ns) is converted to the positive containment problem (whether

ds contains MPS(ns)). So the repetition negative containment

problem is consequently converted to the repetition positive

containment problem.

(2) LCSP(ns, ds) gives the position of the leftmost

subsequence that ds contains ns, identifying this position as a

cutting point to calculate the repetition negative containment

times subsequently.

Algorithm 1 presents how to calculate the repetition times

when a ns crossing over a ds.

Algorithm 1: Calculate RptTimes(ns, ds).

Input: ns: a negative sequence;

ds =<e1e2…en>: data sequence;

Output: repetition containment times;

(1) t = 0;

(2) If ns ds {

(3) Until (MPS(ns) ds) Do {

(4) t++;

(5) m = LCSP(ns, ds)

(6) ds = <em+1…en>;

(7) }

(8) Return t;

RptTimes (ns,ds) = RptTimes(MPS(ns),ds), if ns ds (1)

According to Eq. (1), the repetition negative containment

problem is converted to the repetition positive containment

problem, i.e. the repetition times of any NSC in a data sequence

can be converted to a calculation of its Maximum Positive

Sub-sequence. For example, given ns=<a¬dc>;

ds1=<aca(ab)cb>, ds2=<abababd>. As the progress shown in

Fig.1, LCSP(ns, ds1)=2, LCSP(ns, ds2) does not exist because

nsds2, RptTimes (ns,ds1)=RptTimes (MPS(ns),ds1)=2. Fig. 1

shows this process. Furthermore, the repetition times of any

PSP can be easily got by a non-overlapping RPSP mining

method [19]. The demonstration of Eq. (1) is shown in Section

V (F).

Fig.1 Repetition times

V. E-RNSP ALGORITHM

A. E-RNSP Candidate Generation

In order to generate all non-redundant NSC from PSP, we

use the efficient method e-NSP to generate NSC. The key

process of generating a NSC is to convert non-contiguous

elements in a positive pattern to their negative partners.

The further explanation is that, to generate NSC, the

algorithm changes any m non-contiguous elements in a RPSP to

their negative partners. For a j size RPSP, m=1,2,…, j/2.

For example, the NSC of <(xy) a b c > include:

m=1, <¬(xy) a b c >, <(xy) ¬a b c >, <(xy) a ¬b c>, <(xy) a b

¬c>;

m=2, <¬(xy) a ¬b c>, <¬(xy) a b ¬c>, <(xy) ¬a b ¬c>.

Obviously, we can use the above strategy to generate NSC

that meet the condition of the three constraints described in

Section 3.2.
TABLE II. E-RNSP DATA STRUCTURE

RPSP sup rsup sidHash

<a> 5 12
sid 10 20 30 40 50

rt 2 1 4 3 2

<a b> 3 5
sid 10 20 30

rt 2 1 2
...

B. Calculate the Repetition Support of NSC

Let ns be a n-neg-size and m-size negative sequence, for

1-negMSi 1-negMSSns (1in), the repetition support (rsup)

of ns can be calculated by the following three equations.

)}}1({{-)}({}{ 1 i
n
i negMSpnsMPSns

(2)

Eq. (2) is used to obtain a sid set of data sequences which

contains ns, where {MPS(ns)} is a sid set of sequences which

contains MPS(ns), and { n

1{ (1-)}i ip negMS } is a sid’s union set

from {p(1-negMSi)} based on the corresponding RPSP.

 6

The ordinary negative support of ns following the traditional

support definition can be calculated by |{ns}|, where |{ns}| is

the number of sid in {ns}. To calculate the repetition support of

ns, we have to know the repetition times that ns occurs in each

{ns}. Accordingly, the repetition support of ns is shown below.

|}{|

1i
),()(

ns

idsnsRptTimesnsrsup (dsi{ns}) (3)

where dsi is a data sequence and its position in {ns} is i. Then

we can get RptTimes(ns,dsi) in terms of Eq. (1) without

re-scanning the sequence database.

In particular, if the size of ns is 1, i.e., it has only one

negative element, such as <¬e> and <¬(ab)>, the repetition

support of ns is the same as its ordinary support, as shown in Eq.

(4):

 rsup(ns) = sup(ns) = |D| sup(p(ns)) (4)

For example, given a negative sequence ns=< a ¬b c ¬d >,

then MPS(ns)=<a c>, p(<a ¬b c>)=<a b c>, p(<a c ¬d >)=<a c

d>. We assume that the sid set of <a c> is {10, 20, 30, 40, 50},

i.e., data sequences “10”, “20”, “30”, “40”, “50” contain < a c >.

The repetition times of <a c> in the corresponding data

sequences are 2, 2, 3, 1 and 4, respectively. The sid set of <a b c>

is {10, 20}; {20, 40} is the sid set of <a c d>. Subsequently, {<a

¬b c ¬d>}= {<a c>}-{{<a b c>} a c d>}}

={10,20,30,40,50}-{{10,20}{20,40}} ={30,50};

rsup(<a ¬b c ¬d>)=RptTimes(<a ¬b c ¬d>,30)+

RptTimes(<a ¬b c ¬d >,50)=3+4=7.

C. Data Structure and Hash Table in e-RNSP

In order to efficiently calculate the repetition support of

negative sequences, we design a data structure to store the

e-RNSP related data. The data structure is shown in Table II.

Column one stores RPSP mined by RptGSP [19]. Column two

holds the regular support of RPSP. Column three saves their

repetition support. Column four encloses a hash table sidHash

<sid, rt>. The sids of data sequences contain the corresponding

RPSP and the repetition times (rt) of the RPSP occurring in the

corresponding data sequence.

For example, Table II shows that, for a RPSP <a b>, its

corresponding hash table consists of {<10, 2>, <20, 1>, <30,

2>}, meaning that <a b> is contained in the sequences 10, 20

and 30. The repetition times of <a b> are 2, 1 and 2,

respectively.

 In order to identify PSP and IPS efficiently, we use the hash

table to store the e-RNSP data, as shown in Algorithm 2.

Algorithm 2: Hash table creation process in e-RNSP

Input: All RPSP and their related information;

Output: RPSP’s hash table;

(1) CreateHash(RPSP){

(2) Create RPSPHash ;

(3) For (each pattern p in RPSP){

(4) Create sidHash;

(5) For (each data sequence ds){

(6) If (ds contains p){

(7) rt = RptTimes(p, ds);

(8) sidHash.put(p.sid, rt);

(9) }

(10) }

(11) PSPHash.put(p, sidHash);

(12) Return RPSPHash;

(13) } }

D. The e-RNSP Algorithm

The e-RNSP algorithm mines for RNSP by only using the

identified RPSP.

Algorithm 3: e-RNSP

Input: D: Sequence Dataset; min_sup;

Output: RNSP;

(1) RPSP = RptGSP(D);

(2) CreateHash(RPSP)

(3) For (each rpsp in RPSP) {

(4) INT rsup = 0;

(5) Generate NSC by Section 5.1;

(6) For (per nsc in NSC) {

(7) If (the size of nsc is one){

(8) Calculate rsup by Eq. (4);

(9) }Else{

(10) Calculate rsup by Eq. (2) and (3);

(11) }

(12) If (rsup >= min_sup)

(13) RNSP.add(nsc);

(14) } // END OF (6)

(15) } // END OF (3)

(16) Return RNSP;

Below is the explanation of the Algorithm 3. In Section

V(F), we provide a brief theoretical analysis of the working

mechanism of the e-RNSP algorithm.

(1) Line (1) finds all RPSP from the sequence database using

the RptGSP algorithm. Meanwhile, all RPSP are saved in the

e-RNSP data structure, as detailed in Section 5.4 (Lines (2,3));

(2) For each RPSP, generate NSC(s) by the Candidate

Generation method in Section 5.2 (Line (6));

(3) The repetition support for each nsc in NSC(s) can be

easily calculated by Eq. (1-4) (Lines (7~24)) and then we

determine whether they are RNSP (Lines (25~27)).

We calculate the repetition support of 1-size nsc by using Eq.

(4) (Lines (8~10)). Further, in lines (12) to (17), we calculate

{ n

1{ (1-)}i ip negMS }, and obtain the sid set of ns by

{MPS(ns)}-{ n

1{ (1-)}i ip negMS } (Lines (18~21)). Lines

(22~24) calculate the repetition support of nsc by Eq. (3). If

rsup(nsc) >= min_sup, then nsc is inserted into RNSP (lines

(25~27)).

(4) Obtain the results (Line (29)).

E. An Example

The above sections introduce key concepts and components

as well as the e-RNSP algorithm for RNSP mining. This section

uses an example to illustrate how to mine for RNSP. The

datasets are shown in Table III. In the example, we set

min_sup=2.
TABLE III. EXAMPLE DATASET

sid ds

10 <a b (bc)>

20 <a b e a b e>

 7

30 <(bc) f>

40 <a (bc) c>

50 <d e>

The process is as follows.

(1) Mining repetition positive sequential patterns (RPSP)

using RptGSP, and storing the results in terms of the e-RNSP

data structures (see Section 5.4), which are detailed in Table IV.

TABLE IV. EXEMPLARY RESULTS – REPETITION POSITIVE PATTERNS
RPSP Sup Rsup SidHash

<a> 3 4
10 20 40
1 2 1

 4 6
10 20 30 40
2 2 1 1

<c> 3 4
10 30 40
1 1 2

<e> 2 3
20 50
2 1

<(bc)> 3 3
10 30 40
1 1 1

<a b> 3 4
10 20 40
1 2 1

<a c> 2 2
10 40
1 1

<a e> 1 2
20
2

<b b> 2 2
10 20
1 1

<b c> 2 2
10 40
1 1

<b e> 1 2
20
2

<a b e> 1 2
20
2

<a b c> 2 2
10 40
1 1

<a (bc)> 2 2
10 40
1 1

(2) Using the e-RNSP generation approach to get all negative

sequential candidates (NSC).

(3) Computing these NSC repetition support values based on

Eq. (1-4). Table V shows the results, and the final RNSP are

marked in bold.

Among the RNSP, <ab¬c>, <a¬c> and <a ¬(bc)> are three

special ones because they are mined as RNSP, but they are not

mined as patterns in e-NSP. Obviously, not all of RNSP are

actionable for supporting decision-making [40], especially

those patterns with only one positive element, such as <b ¬e>

and <¬a b ¬e>, their repetition supports are high but

misleading. How to catch those actionable RNSP is our future

task.

F. The theoretical analysis of the working

Here, we discuss the theoretical soundness of e-RNSP from

its working mechanism perspective.

The mining process of e-RNSP could be mainly divided into

four stages. The first stage mines all RPSP and uses them to

generate negative sequential candidates (NSC). For a certain

NSC (nsc), the second stage is to identify that whether this nsc

is contained by a data sequence based on the negative

containment as discussed in Section 4.2. The third is to catch

repetition times when nsc crossing the above data sequence.

The last stage is to achieve its rsup utilizing Eq. (3) or Eq. (4).

For the first stage, this paper utilizes RptGSP[11] to capture

all RPSP and generates NSC based on the strategy in [32]. This

generation method converts non-contiguous elements in a

positive pattern to their negative partners, which means for

each NSC, MPS(NSC){RPSP}, where {RPSP} means the set

of RPSP. Accordingly, this strategy ensures that the supports of

all generated NSC could be then calculated based only on the

corresponding RPSP.

In second stage, this paper uses the same definitions of

negative containment in e-NSP, which converts the negative

containment problem to positive containment problem in terms

of set theory. We introduce briefly the conversion process as

follows, please find detailed proof in [40].

{< a >}, {< b >} mean the set of tuples that respectively

contain sequences < a >, < b > in a sequence database. The

intersection of sequences < a > and < b > will generate four

disjointed sets: {< (ab) >only}, {< ab >only}, {< ba >only} and {<

ab >} {< ba >}, representing the sets of tuples that contain

sequences < (ab) > only, < ab > only, < ba > only, and both < ab >

and < ba > respectively, as shown in Fig. 2.

For simplicity, let us take {<a¬b >} as an example, we have:

{𝑎¬𝑏} = ({< 𝑎 >} − {< 𝑏 >}) ∪ {< (𝑎𝑏) >only}

∪ {< 𝑏𝑎 >only}

= {< 𝑎 >} − {< 𝑎𝑏 >only} ∪ ({< 𝑎𝑏 >} ∩ {< 𝑏𝑎 >})

= {< 𝑎 >} − {< 𝑎𝑏 >}

This result illustrates the strategy of conversion process, i.e.

data sequences that contain < a¬b > are the same sequences that

contain < a > but do not contain < ab >.

Fig. 2. The intersection of {< a >} and {< b >}

To address the repetition containment problem, we extend

the above conversion strategy to a cyclic conversion strategy in

third stage. We will demonstrate that the repetition negative

containment can also be converted into the repetition positive

containment.

Corollary 1. Repetition Negative Conversion Strategy.

For a data sequence ds, and a negative sequence ns, the

repetition negative containment can be converted to the

following problem: if ns ds, the repetition times that ns

crosses through ds equal to times that MPS(ns) occurs in ds.

Proof of Corollary 1.

Given a data sequence ds =< d1d2 . . . dl >, and ns is a negative

sequence. According to the negative containment in Section 4.2,

if ns ds, satisfying (1) MPS(ns) ds; and (2)

1−negMS1−negMSSns, p(1−negMS) ds. Assume LCSP(ns,

ds)=i, for the sub-sequence <di+1 di+2…dl> of ds, denote as dsi,

1−negMS1−negMSSns, p(1−negMS) dsi. Thus, we only

need to determine whether MPS(ns) dsi.

Intrinsically, the last stage is a combination process which

incorporates the above three processes to calculate the rsup of a

NSC crossing all the data sequences based on a set theory in

[40].

VI. Experiments and Evaluation

The experiments on 15 synthetic and real databases have

 8

been conducted to compare with three available NSP mining

methods, e-NSP [40], NegGSP [17] and PNSP [16] from two

aspects: the number of patterns and their running time for

identifying negative patterns. To compare their performance,

we make PNSP and NegGSP to follow the same constraints and

definitions in e-NSP. All algorithms are coded in Java and

executed in a Windows 7 Professional PC with Intel Core i5

CPU of 3.2GHz, 4GB memory. In the experiments, all supports

(and minimum supports) are calculated in terms of the

percentage of the frequency |< s >| of a pattern s compared to

the number of sequences |D| in the database.
TABLE V. EXAMPLE RESULTS – NSC AND REPETITION SUPPORTS

(MIN_SUP=2)

RPSP NSC Related RPSP sup rsup
<a> <¬a> <a> 2 2

 <¬b> 1 1
<c> <¬c> <c> 2 2

<e> <¬e> <e> 3 3

<(bc)> <¬(bc)> <(bc)> 2 2

<a b> <¬a b>
<a ¬b>

, <a b>
<a>, <a b>

1
2

1
2

<a c> <¬a c>
<a ¬c>

<c>, <a c>
<a>, <a c>

1
1

1
2

<a e> <¬a e>
<a ¬e>

<e>, <a e>
<a>, <a e>

1
2

1
2

<b b> <¬b b>
<b ¬b>

, <b b>
, <b b>

2
2

2
2

<b c> <¬b c>
<b ¬c>

<c>, <b c>
, <b c>

1
2

1
3

<b e> <¬b e>
<b ¬e>

<e>, <b e>
, <b e>

1
3

1
4

<a b e> <¬a b e>
<a ¬b e>
<a b ¬e>

<¬a b ¬e>

<b e>, <a b e>
<a e>, <a b e>
<a b>, <a b e>

, <a b>, <b e>

0
0
2
1

0
0
2
1

<a b c> <¬a b c>
<a ¬b c>
<a b ¬c>

<¬a b ¬c>

<b c>, <a b c>
<a c>, <a b c>
<a b>, <a b c>

, <a b>, <b c>

0
0
1
1

0
0
2
1

<a (bc)> <¬a (bc)>
<a ¬(bc)>

<(bc)>, <a (bc)>
<a>, <a (bc)>

0
1

0
2

A. Datasets

We use the following data factors: C, T, S, I, DB and N to

describe and observe the effect of data characteristics on

algorithm performance, which are defined to describe

characteristics of sequence data [40]. C: Average number of

elements per sequence; T: Average number of items per element;

S: Average size of maximal potentially large sequences; I:

Average size of items per element in maximal potentially large

sequences; DB: The number of sequences; N: The number of

items.

Four source databases are applied in this experiment. The

synthetic databases are generated by IBM data generator.

Dataset 1 (DS1), C8_T6_S6_I6_DB10k_N100;

Dataset 2 (DS2), C12_T4_S6_I6_DB10k_N100;

Dataset 3 (DS3), C15_T8_S20_I0_DB10k_N100;

(a) Results on DS1

(b) Results on DS2

(c) Results on DS3

(d) Results on DS4

Fig.3 The Number of Patterns Comparison

Dataset 4 (DS4) is the real application dataset about health

insurance claim sequences. This data contains 5,269 customers,

each sequence stands for one customer. The average size in a

sequence is 21. The maximum size of a sequence is 144, and the

minimum size is 1. The size of this dataset is around 5M. We

use the above four datasets to evaluate the mining performance

of e-RNSP.

Dataset 5 (DS5) is a real dataset which contains 9 sets of

sanitized user data drawn from the command histories of 8

UNIX computer users at Purdue over the course of up to 2 years.

Due to the confidentiality of DS4, we choose this real-life

dataset to present the patterns mined by our approach.

 We further create Dataset 6 (DS6: C12_T10_S20_I10_DB

1k_N100). Based on it, we generate 15 additional datasets in

terms of different data factors, denoted as DS 6.x (x = 1…15),

to access the runtime and pattern number of e-RNSP and e-NSP

influenced by different data factors. For instance, DS6 =

C12_T10_S20_I10_DB1k_N100, DS6.1=C13_T10_S20_I10_

DB1k_N100, and DS6.2=C14_T10_S20_I10_DB1k_N100 are

different on factor C, which means they have different average

numbers of elements in a sequence, while the other factors are

fixed. These datasets are listed in Table VII.

B. The Ability of Mining Patterns

The number of negative patterns mined by e-NSP, Neg-GSP

and PNSP respectively are the same because we use a unified

negative containment definition for all of them. Therefore, here

we just need to compare e-RNSP with e-NSP, and the results

are shown in Fig. 3. e-RNSP has the ability of mining more

negative patterns than e-NSP at the same min_sup, because it

 9

caters for the repetition negative patterns when calculating the

NSC support.

The number of RNSP is greatly affected by the distribution

of a dataset. The more repetition items in a dataset are, the more

the number of RNSP are. The repetition items in DS3 are more

than the other datasets, so the gap between the two lines on DS3

is larger than the other. More details about the pattern number

impacted by data factors are discussed in Sections 6.4 and 6.5.

To reveal the strength of e-RNSP, we choose two real-life

results mined from DS5, shown in Table VI. It is clear that these

two RNSP have the higher repetition supports but the lower

traditional support, which might be ignored if setting a small

support threshold. The first e-RNSP means if an operator uses

‘is’ to list the catalogue, he will not use the instruction ‘finger’

to search user’s information but often utilize ‘cd’ to change

other catalogues. The second RNSP presents that if the operator

did not use ‘rm’ to delete files after listing the catalogue, it has a

high probability of changing and showing the next catalogue

subsequently.
TABLE VI. EXAMPLE RESULTS OF DS5

 RNSP sup rsup

1 <is, ¬finger, cd> 46 122

2 <is, ¬rm, cd, is> 40 72

C. Computational Cost

For observing the efficiency of e-RNSP, we conduct

experiments on DS1 and DS2 with four algorithms and just run

e-RNSP and e-NSP on DS3 and DS4. In the following

comparisons, all positive patterns are identified by RptGSP,

negative patterns are further mined by e-RNSP, e-NSP,

NegGSP and PNSP. So their runtime of mining PSP are the

same. In order to show their difference, we just need to

compare their runtime on mining negative patterns. Fig. 4 and

Fig. 5 show the comparisons.

From fig. 4 we can see that e-RNSP and e-NSP are much

faster than the other algorithms. E-RNSP spends 3% to 20% of

the running time of PNSP and NegGSP on DS1 and DS2. For

example, e-RNSP spends 3.7% to 17.6% of Neg-GSP running

time on DS1 when min_sup decreases from 0.17 to 0.13.

E-RNSP and e-NSP are both efficient, because they only need

to calculate the NSC support based on identified positive

partners, while Neg-GSP and PNSP have to re-scan the whole

datasets.

However, from Fig. 5 we can see that the running time of

e-RNSP is also higher than e-NSP, especially when min_sup

decreases. The reasons are as follows.

(1) In order to calculate the repetition support, e-RNSP has to

count the number of times that a NSC repetition occurs in the

database, whereas e-NSP does not need to do so.

(2) The number of NSC generated from e-RNSP is larger

than that in e-NSP, because e-RNSP needs to consider the RSP

problem when it mines PSP, but e-NSP mines PSP only.

In our future work, we will further study the method to

increase the efficiency of e-RNSP.

(a) Results on DS1

(b) Results on DS2

Fig.4 Runtime Comparison 1

(a) Results on DS3

(b) Results on DS4

Fig.5 Runtime Comparison 2

D. Performance Analysis of the Impact of Different Data
Factors

1) Effect of C on Pattern Number

Here we analyze the impact of tuning data factor C on the

pattern number of e-RNSP and e-NSP while fixing other factors

T, S, I, DB and N. C is the size of data sequence, and its

increase directly causes the increase of rsup in e-RNSP. So the

number of RNSP increases quickly with the increase of C (the

maximum number of RNSP can be mined when setting C to 15).

Although the number of NSP also increases with the increase of

C, its increasing speed is slower than that in e-RNSP.
2) Effect of T on Pattern Number

This is to adjust data factor T while fixing others to observe

its impact on the pattern number. The increase of T will

increase the number of RNSP and NSP (the maximum number

of NSP can be mined when setting T to 14). This is because,

 10

with T increasing, i.e., the average number of items per element

increasing, the number of NSC increases. Hence, the number of

RNSP and NSP increase.
3) Effect of S on Pattern Number

This is to adjust data factor S while fixing others to observe

its impact on the pattern number. The increase of S will

decrease the number of RNSP and NSP (the maximum number

of RNSP can be mined when setting S to 14). This is because,

with S increasing, i.e., the average size of maximal potentially

large sequences increasing, the number of NSC decreases.

Hence, the number of RNSP and NSP decrease.
4) Effect of I on Pattern Number

This is to tune the factor I to observe its impact on the pattern

number. With I increasing, the numbers of RNSP and NSP

increase too (the maximum number of RNSP can be mined

when setting I to 16). But e-RNSP increases proportionally

faster than e-NSP, and the gap thus increases too.
5) Effect of DB on Pattern Number

The effect of DB on Pattern Number will be discussed in

Section 6.5 (scalability test).
6) Effect of N on Pattern Number

Similarly, we adjust N while fixing all other data factors.

Increasing N will decrease repetition items in data sequence,

which further decrease the support of sequences (the maximum

number of RNSP can be mined when setting N to 200). Hence,

the numbers of RNSP and NSP decrease with the increase of N.

In summary, e-RNSP can perform efficiently from the

various data factor perspectives.

Fig.6 Pattern Number Comparison on Various Factors

 11

TABLE VII. DATASET CHARACTERISTICS ANALYSIS RESULTS

Data

factors
Dataset ID min_sup

RNSP

number by

e-RNSP

(n1)

NSP

number by

e-NSP

(n2)

NSC

number by

e-RNSP

(n3)

NSC

number by

e-NSP

(n4)

RNSP

time by

e-RNSP

(t1, ms)

NSP

time by

e-NSP

(t2, ms)

t1/n3

*1000

(ns)

t2/n4

*1000

(ns)

(t1/n3)/

(t2/n4)

C=12
DS6=C12_T10_S20

_I10_DB1k_N100

0.44 4365 364 25786 9740 889 219 34.48 22.48 1.53

0.46 3242 129 19765 6811 717 140 36.28 20.55 1.76

0.48 2528 26 15598 5018 593 125 38.02 24.91 1.53

C=13

DS6.1=C13_T10_S

20_I10_DB1k_N10

0

0.44 10102 645 78909 33385 2528 780 32.04 23.36 1.37

0.46 7698 251 61133 23909 1966 561 32.16 23.46 1.37

0.48 5827 59 47149 17127 1622 406 34.40 23.71 1.45

C=14

DS6.2=C14_T10_S

20_I10_DB1k_N10

0

0.44 21999 1074 255651 86606 8174 2262 31.97 26.12 1.22

0.46 15847 344 187575 58213 6084 1544 32.44 26.52 1.22

0.48 11885 84 142612 41012 4696 1124 32.93 27.41 1.20

C=15

DS6.3=C15_T10_S

20_I10_DB1k_N10

0

0.44 40850 1724 657109 258587 21263 6973 32.36 26.97 1.20

0.46 28341 573 467934 168421 14368 4617 30.71 27.41 1.12

0.48 20545 111 347521 113561 11263 3151 32.41 27.75 1.17

T=8
DS6.4=C12_T8_S2

0_I10_DB1k_N100

0.44 1558 152 6967 2554 250 62 35.88 24.28 1.48

0.46 1194 62 5530 1883 250 47 45.21 24.96 1.81

0.48 951 18 4405 1373 187 47 42.45 34.23 1.24

T=10
DS6=C12_T10_S20

_I10_DB1k_N100

0.44 4365 364 25786 9740 889 219 34.48 22.48 1.53

0.46 3242 129 19765 6811 717 140 36.28 20.55 1.76

0.48 2528 26 15598 5018 593 125 38.02 24.91 1.53

T=12

DS6.5=C12_T12_S

20_I10_DB1k_N10

0

0.44 11928 719 94430 35777 3010 843 31.88 23.56 1.35

0.46 8848 264 71475 25132 2278 609 31.87 24.23 1.32

0.48 6716 83 54793 17754 1841 499 33.60 28.11 1.20

T=14

DS6.6=C12_T14_S

20_I10_DB1k_N10

0

0.44 23374 1122 260022 82539 8268 2060 31.80 24.96 1.27

0.46 16699 351 187848 55017 6037 1419 32.14 25.79 1.25

0.48 12462 78 142026 38485 5445 982 38.34 25.52 1.50

S=14

DS6.7=C12_T10_S

14_I10_DB1k_N10

0

0.44 9618 512 72176 22129 2403 530 33.29 23.95 1.39

0.46 7221 211 54539 15362 1950 421 35.75 27.41 1.30

0.48 5438 78 42056 10548 1560 265 37.09 25.12 1.48

S=16

DS6.8=C12_T10_S

16_I10_DB1k_N10

0

0.44 7952 442 59822 20620 1950 484 32.60 23.47 1.39

0.46 6116 193 46341 14626 1544 357 33.32 24.41 1.37

0.48 4567 57 35074 10056 1217 281 34.70 27.94 1.24

S=18

DS6.9=C12_T10_S

18_I10_DB1k_N10

0

0.44 6281 372 40975 15662 1389 358 33.90 22.86 1.48

0.46 4786 174 31905 11231 1154 265 36.17 23.60 1.53

0.48 3605 43 24235 7751 920 188 37.96 24.25 1.57

S=20
DS6=C12_T10_S20

_I10_DB1k_N100

0.44 4365 364 25786 9740 889 219 34.48 22.48 1.53

0.46 3242 129 19765 6811 717 140 36.28 20.55 1.76

0.48 2528 26 15598 5018 593 125 38.02 24.91 1.53

I=10
DS6=C12_T10_S20

_I10_DB1k_N100

0.40 4365 364 25786 9740 889 219 34.48 22.48 1.53

0.42 3242 129 19765 6811 717 140 36.28 20.55 1.76

0.44 2528 26 15598 5018 593 125 38.02 24.91 1.53

I=12

DS6.10=C12_T10_

S20_I12_DB1k_N1

00

0.40 9185 1550 44352 18521 1466 343 33.05 18.52 1.78

0.42 6842 792 33306 13033 1107 249 33.24 19.11 1.74

0.44 5120 364 25435 9157 889 187 34.95 20.42 1.71

I=14

DS6.11=C12_T10_

S20_I14_DB1k_N1

00

0.40 14822 2092 81319 28823 2386 515 29.34 17.87 1.64

0.42 10691 1020 59718 19286 1825 343 30.56 17.78 1.72

0.44 7888 445 44615 13181 1435 234 32.16 17.75 1.81

I=16

DS6.12=C12_T10_

S20_I16_DB1k_N1

00

0.40 27318 4069 146127 52033 4040 874 27.65 16.80 1.65

0.42 19958 2152 108510 36353 3058 624 28.18 17.17 1.64

0.44 14354 981 79329 24510 2293 421 28.90 17.18 1.68

N=200

DS6.13=

C12_T10_S20_I10_

DB1k_N200

0.13 84754 70363 108177 92026 2122 764 19.62 8.30 2.36

0.14 62707 50293 80757 67090 1639 562 20.30 8.38 2.42

0.15 43780 34476 57287 46690 1264 421 22.06 9.02 2.45

N=300

DS6.14=

C12_T10_S20_I10_

DB1k_N300

0.13 15326 12458 16401 13449 374 93 22.80 6.92 3.30

0.14 10780 8695 11511 9460 280 94 24.32 9.94 2.45

0.15 8393 6727 9001 7374 218 78 24.22 10.58 2.29

N=400

DS6.15=C12_T10_

S20_I10_DB1k_N4

00

0.13 6159 4992 5104 5104 156 47 30.56 9.21 3.32

0.14 4807 3923 4002 4002 141 31 35.23 7.75 4.55

0.15 3703 2956 3028 3028 125 21 41.28 6.94 5.95

 12

E. Scalability Test

e-RNSP calculates support based on calculation not on

re-scanning database, thus its performance is sensitive to the

size of data sequence. If a dataset is huge, it produces a large

number of data sequences. The scalability test is conducted to

evaluate the e-RNSP performance on large datasets. Fig. 7

shows the results of e-RNSP on datasets DS6 in terms of

different data sizes: from 5 times (see the results corresponding

to label ‘X6’) of its original size to 25 times, with minimum

supports 0.4 and 0.46 respectively.

Fig. 7. Scalability Test on Data Factor DB on DS6

Fig. 7 shows that the growth of running time of e-RNSP follows a roughly

linear relationship with the data size increase on different minimum supports.

VII. CONCLUSION AND FUTURE WORK

Repetition sequential patterns (RSP) are usually used to

understand those special behaviors with repetition sequences

and thus have attracted increasing attention in recent years. We

have not found any work to identify repetition negative

sequential patterns (RNSP), which can capture non-occurring

repetition behavioral patterns. RNSP can play a role

irreplaceable by RSP to understand such issues that a lung

cancer patient iteratively avoiding certain treatment

combinations may cause a lower survival rate. In this paper, we

define the repetition negative containment problem and

propose an efficient RNSP mining algorithm, named e-RNSP.

e-RNSP has been tested on both real-world and synthetic

databases and compared with three available NSP methods:

e-NSP, NegGSP and PNSP. The experiments and comparisons

on 15 databases have clearly demonstrated that e-RNSP could

efficiently capture interesting repetition negative patterns.

Not all of patterns mined by e-RNSP are actionable. We will

consider constraints on RNSP to enhance the actionability of

RNSP findings, and improve the mining efficiency by using

bitmap strategy. In addition, in pattern mining, it is an open

issue to verify the correctness and completeness of patterns

discovered by a pattern mining algorithm. We will explore this

further with the NSP research.

ACKNOWLEDGMENT

This work was partially supported by National Natural

Science Foundation of China (71271125), and Natural Science

Foundation of Shandong Province, China (ZR2018MF011),

and Australian Research Council Linkage grant

(DP130102691).

REFERENCES

[1] L. Cao., Y. Zhao, and C. Zhang, “Mining Impact-Targeted Activity

Patterns in Imbalanced Data”, IEEE Trans. on Knowledge and Data

Engineering, vol.20, no. 8, pp. 1053-1066, 2008.

[2] L. Cao, Y. Ou and P.S Yu, “Coupled Behavior Analysis with

Applications”, IEEE Trans. on Knowledge and Data Engineering, vol. 24,

no. 8, pp. 1378-1392, 2012.

[3] Z. Zheng, W. Wei, C. Liu, W. Cao and L. Cao, Maninder Bhatia. “An

effective contrast sequential pattern mining approach to taxpayer behavior

analysis”, World Wide Web, vol. 19, no. 4, pp. 633-651, 2016.

[4] Y. Song, L. Cao, X. Wu, G. Wei, W. Ye and W. Ding, “Coupled Behavior

Analysis for Capturing Coupling Relationships in Group-based Market

Manipulation”, In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp.976-984, 2012.

[5] T. Xu, T. Li, and X. Dong, “Efficient High Utility Negative Sequential

Patterns Mining in Smart Campus”. IEEE Access, vol. 6, pp. 23839 - 23847,

2018.

[6] Y. Gong, C. Liu and X. Dong, “Research on Typical Algorithms in

Negative Sequential Pattern Mining”. The Open Automation and Control

Systems Journal, vol.7, pp. 934-941, 2015.

[7] L. Cao. and P.S. Yu, “Behavior Computing: Modeling, Analysis, Mining

and Decision”, 2012.

[8] L. Cao, “Behavior informatics: A new perspective”. IEEE Intelligent

Systems, vol. 29, no. 4, pp. 62-80, 2014.

[9] L. Cao, “In-depth Behavior Understanding and Use: The Behavior

Informatics Approach”, Information Science, vol. 180, no. 17, pp.

3067-3085, 2010.

[10] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations

and performance improvements”, International Conference on Extending

Database Technology, pp. 1-17, 1996.

[11] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu,

“Freespan: frequent pattern-projected sequential pattern mining”, In

Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp.355-359, 2000.

[12] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M.C.

Hsu, “Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth”, International Conference on Data

Engineering, pp.215-226, 2001.

[13] M. J. Zaki, “Spade: An efficient algorithm for mining frequent sequences”,

Machine Learning, vol. 42, no. 1-2, pp. 21-60, 2001

[14] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining

using a bitmap representation,” In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data

mining, pp. 429-435, 2002.

[15] X. Dong, Z. Zheng, L. Cao, Y. Zhao, C.Q. Zhang, J.J. Li, W. Wei and Y.M.

Ou, “E-NSP: Efficient negative sequential pattern mining based on

identified positive patterns without database rescanning.” International

Conference on Information and Knowledge Management, Proceedings, pp.

825-830, 2011

[16] S. Hsueh, M. Lin and C. Chen, “Mining Negative Sequential Patterns for

E-commerce Recommendations.” Proceedings of the 2008 IEEE

Asia-Pacific Services Computing Conference, pp.1213-1218, 2008.

[17] Z. Zheng, Y. Zhao, Z. Zuo and L. Cao, “Negative-GSP: An Efficient

Method for Mining Negative Sequential Patterns.” The 8th Australian

Data Mining Conference. vol.101, pp. 63-67, 2009.

[18] N. Lin, H. Chen, and W. Hao, “Mining negative sequential patterns.” In

process. of the 6th WSEAS International Conference on Applied Computer

Science, Hangzhou, China, pp. 654–658, 2007.

[19] Y. Gong, X. Dong, X. Han and R. Hou, “Mining Non-overlapping

Repetitive Sequential Patterns by Improving GSP Algorithm”, The Open

Cybernetics & Systemics Journal, vol. 9, pp. 473-477, 2015.

[20] B. Ding, D. Lo and J. Han, “Efficient Mining of Closed Repetition Gapped

Subsequences from a Sequence Database.” International Conference on

Data Engineering, pp. 1024-1035, 2009.

[21] L. Brooke. Heidenfelder and D. Michael. Topal, “Effects of sequence on

repeat expansion during DNA replication.” Nucleic Acids Research, vol.

31, no. 24, pp. 7159-7164, 2003.

[22] M. Zhang, B. Kao, D. Cheung and K. Yip, “Mining periodic patterns with

gap requirement from sequences,” ACM Transactions on Knowledge

 13

Discovery from Data, vol.1, issue. 2, no.7, pp. 1-40, 2007.

[23] Y. Tong, L. Zhao, D. Yu, S. Ma, Z. Cheng and K. Xu, “Mining

Compressed Repetition Gapped Sequential Patterns Efficiently,” In

International Conference on Advanced Data Mining and Applications, pp.

652-660, 2009.

[24] E. Lee, W. Kim, J. Ryu and U. Kim, “Efficient Weighted Mining of

Repetition Subsequences,” In Web Society, 2009. SWS'09. 1st IEEE

Symposium on, pp. 66-70. IEEE, 2009.

[25] C. Ma and W. Shen, “Clustering Navigation Patterns using Closed

Repetition Gapped Subsequence,” Logistics Systems and Intelligent

Management, vol.3, pp. 1660 -1663, 2010.

[26] H. Mannila, H. Toivonen and A.I. Verkamo, “Discovery of frequent

episodes in event sequences,” Data mining and knowledge discovery, vol.

1, no.3, pp.259-289, 1997.

[27] D. Lo, S.-C. Khoo and C. Liu, “Efficient mining of iterative patterns for

software specification discovery,” in Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data

mining, pp. 460-469, 2007.

[28] D. Lo, J. Li, L. Wong and S.-C. Khoo, “Mining Iterative Generators and

Representative Rules for Software Specification Discovery,” IEEE

Transactions on Knowledge and Data Engineering, vol.32, no.2, pp.

282-296, 2011.

[29] J. Han, G. Dong and Y. Yin, “Efficient mining of partial periodic patterns

in time series database,” In Data Engineering, Proceedings., 15th

International Conference on, pp. 106-115, 1999.

[30] J. Yang, W. Wang, and P.S. Yu, “Mining asynchronous periodic patterns

in time series data,” IEEE Transactions on Knowledge and Data

Engineering, vol. 15, no.3, pp. 613-628, 2003.

[31] W. Ouyang and Q. Huang, “Mining negative sequential patterns in

transaction databases.” In Proc. of International Conference on Machine

Learning and Cybernetics, pp. 830-834, 2007.

[32] N. Lin, H. Chen, W. Hao, H. Chueh and C. Chang, “Mining Negative

Fuzzy Sequential Patterns.” In Proceedings of the 7th WSEAS

international conference on simulation, modelling and optimization,

pp.52-57, 2007.

[33] N. Lin, H. Chen, W. Hao, H. Chueh and C. Chang, “Mining Strong

Positive and Negative Sequential Patterns.” WSEAS Transactions on

Computers, vol. 7, no. 3, pp. 119-124, 2008.

[34] F. Rasheed and R. Alhajj, “A Framework for Periodic Outlier Pattern

Detection in Time-Series Sequences.” Cybernetics, IEEE Transactions on,

vol. 44, no. 5, pp. 569 - 582, 2014.

[35] S. Zhang, Z. Du and J. Wang, “New Techniques for Mining Frequent

Patterns in Unordered Trees.” Cybernetics, IEEE Transactions on, vol. 45,

no. 6, pp. 1113 – 1125, 2014.

[36] J. Luna, J. Romero, C. Romero and S. Ventura, “On the Use of Genetic

Programming for Mining Comprehensible Rules in Subgroup Discovery.”

Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp. 2329 -2341, 2014.

[37] Y. Chen and T.K. Huang, “Discovering fuzzy time-interval sequential

patterns in sequence databases.” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on. Vol. 35, no. 5, pp. 959 - 972, 2005.

[38] I. Traore, I. Woungang, Y. Nakkabi, M.S. Obaidat. A.A.E. Ahmed and B.

Khalilian, “Dynamic Sample Size Detection in Learning Command Line

Sequence for Continuous Authentication.” Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 5, pp.1343 - 1356,

2012.

[39] Z. Liu; L. Bruton, J. Bezdek, J. Keller, S. Dance, N. Bartley and C. Zhang,

“Dynamic image sequence analysis using fuzzy measures.” Systems, Man,

and Cybernetic, vol. 31, no. 4, pp.557 - 572, 2001.

[40] L. Cao, X. Dong and Z. Zheng, “e-NSP: Efficient negative sequential

pattern mining.” Artificial Intelligence, vol. 235, pp. 156-182, 2016.

[41] T. Xu, X Dong, J. Xu and Y. Gong, “E-msNSP: Efficient negative

sequential patterns mining based on multiple minimum supports.”

International Journal of Pattern Recognition and Artificial Intelligence,

vol. 31, no. 2, pp.1-17, 2017.

[42] Y. Gong, T. Xu, X. Dong and G. Lv, “e-NSPFI: Efficient Mining Negative

Sequential Pattern from both Frequent and Infrequent Positive Sequential

Patterns.” International Journal of Pattern Recognition and Artificial

Intelligence, vol. 31, no.2, pp.1-20, 2017.

[43] C. Ishak, A. Marshall, D. Passos, et al., “An RB-EZH2 Complex Mediates

Silencing of Repetition DNA Sequences.” Molecular Cell, vol. 64, no.6, pp.

1074-1087, 2016.

[44] R.L. Alvaro, V. Leonardo, C. Mauro and M. A. Vega-Rodríguez, “A

Characteristic-Based Framework for Multiple Sequence Aligners.” IEEE

Transactions on Cybernetics, vol. 48, no.1, pp. 41-51, 2018.

[45] S. Elsayed, R. Sarker, C. Coello and A. Carlos, “Sequence-Based

Deterministic Initialization for Evolutionary Algorithms.” IEEE

Transactions on Cybernetics, vol. 47, no. 9, pp. 2911-2923, 2017.

[46] L. Cao, P. Yu and V. Kumar, “Nonoccurring Behavior Analytics.” IEEE

Intelligent Systems, vol. 30, no. 6, pp. 4-11, 2015.

[47] X. Dong, Y. Gong and L. Cao, “F-NSP+: A fast negative sequential

patterns mining method with self-adaptive data storage.” Pattern

Recognition, vol. 84, pp. 13-27, 2018.

[48] I. H. Toroslu, “Repetition support and mining cyclic patterns.” Expert

Systems with Applications, vol. 25, no. 3, pp.303-311, 2003.

[49] Y. H. Hu, C.F Tsai, C.T Tai and I. C Chiang, “A novel approach for mining

cyclically repeated patterns with multiple minimum supports.” Applied

Soft Computing, vol. 28, pp.90-99, 2015.

[50] D.A Chiang., C.T Wang, S.P Chen and C.C Chen, “The cyclic model

analysis on sequential patterns.” IEEE Transactions on Knowledge and

Data Engineering, vol. 21, no. 11, pp. 1617-1628, 2009.

[51] Y. Li, Y. Zhao, G. Wang, et al., “ELM-Based Large-Scale Genetic

Association Study via Statistically Significant Pattern.” IEEE Transactions

on Systems Man and Cybernetics Systems, issue. 99, pp.1-14, 2017.

[52] D. Fradkin and F. Mrchen, “Mining sequential patterns for classification.”

Knowledge and Information Systems, vol. 45, no. 3, pp. 731-749, 2015.

[53] M. Fan, Z. Zhang, W. Zhai and R. Shen, "Frequent pattern discovery with

tri-partition alphabets." Information Sciences, pp. 1-18, 2018.

[54] T. Le, A. Nguyen, B. Huynh, B. Vo, and W. Pedrycz, “Mining constrained

inter-sequence patterns: a novel approach to cope with item constraints.”

Applied Intelligence, vol. 48, no. 5, pp. 1327-1343, 2018.

[55] M.R, Karim, M. Cochez, O.D. Beyan, C.F. Ahmed and S. Decker,

“Mining maximal frequent patterns in transactional databases and

dynamic data streams: A spark-based approach”. Information Sciences,

vol. 432, pp. 278-300, 2018.

Xiangjun Dong received the Ph.D degrees in
computer applications from Beijing Institute of
Technology in 2005. From 2007 to 2009, he was
a postdoctoral position in School of Management
and Economics, Beijing Institute of Technology.
He is currently the Professor and master’s tutor
of School of Information, Qilu University of
Technology (Shandong Academy of Sciences) in
Jinan, China. He is the author of more than 70
academic papers. His research interests include

data mining, association rules, sequential pattern mining and negative
sequential pattern mining. He is a director of Shandong Computer
Federation.

Yongshun Gong is now working toward the
Ph.D. degree in the Faculty of Engineering and
IT, University of Technology Sydney, Australia.
His principal research interest covers the data
science and machine learning, in particular, the
following areas: traffic analysis; crowd flow
prediction; matrix factorization and sequential
pattern mining. He has published 5 journal
papers and 3 international conference
publications, including Pattern Recognition and
CIKM.

Longbing Cao (SM’06) received the PhD
degree in pattern recognition and intelligent
systems from the Chinese Academy of Science,
and the PhD degree in computing sciences from
the University of Technology Sydney. He is a
professor and the founding director of the UTS
Advanced Analytics Institute. His current
research interests include data science, artificial
intelligence, behavior informatics, and their
enterprise applications. He is a senior member of
the IEEE

http://h-s.www.engineeringvillage.com.qlu.vpn358.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bRubio-Largo%2C+Alvaro%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://h-s.www.engineeringvillage.com.qlu.vpn358.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&category=authorsearch&searchtype=Quick&searchWord1=%7bVanneschi%2C+Leonardo%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

