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Abstract— Clustering ensemble is a powerful approach for im-
proving the accuracy and stability of individual (base) clustering
algorithms. Most of the existing clustering ensemble methods
obtain the final solutions by assuming that base clusterings
perform independently with one another and all objects are
independent too. However, in real-world data sources, objects are
more or less associated in terms of certain coupling relationships.
Base clusterings trained on the source data are complementary
to one another since each of them may only capture some specific
rather than full picture of the data. In this paper, we discuss the
problem of explicating the dependency between base clusterings
and between objects in clustering ensembles, and propose a
framework for coupled clustering ensembles (CCE). CCE not only
considers but also integrates the coupling relationships between
base clusterings and between objects. Specifically, we involve both
the intra-coupling within one base clustering (i.e., cluster label
frequency distribution) and the inter-coupling between different
base clusterings (i.e., cluster label co-occurrence dependency).
Furthermore, we engage both the intra-coupling between two
objects in terms of the base clustering aggregation and the
inter-coupling among other objects in terms of neighborhood
relationship. This is the first work which explicitly addresses
the dependency between base clusterings and between objects,
verified by the application of such couplings in three types of
consensus functions: clustering-based, object-based and cluster-
based. Substantial experiments on synthetic and UCI data sets
demonstrate that the CCE framework can effectively capture the
interactions embedded in base clusterings and objects with higher
clustering accuracy and stability compared to several state-of-the-
art techniques, which is also supported by statistical analysis.

I. INTRODUCTION

Clustering ensemble [1] has exhibited great potential in
enhancing the clustering accuracy, robustness and parallelism
[2] by combining results from various clustering methods.
Its objective is to produce an overall high-quality clustering
that agrees as much as possible with each of the input
clusterings. Clustering ensemble can be applied in various
settings, such as clustering heterogeneous data or privacy-
preserving information [3]. In general, the whole process of
clustering ensemble can be divided into three parts: build-
ing base clusterings, aggregating base clusterings, and post-
processing clustering. While the clustering ensemble largely
captures the common structure of the base clusterings, and
achieves a combined clustering with better quality than that of
individual clusterings, it also faces several issues that have not
been explored well in the consensus design. We illustrate the
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Fig. 1. Four possible base clusterings of 12 data objects into two clusters,
different partitions use different sets of labels.

problem with the related work and the challenge of clustering
ensemble below.

Taking the clustering ensemble described in Fig. 1 [4] as
an example, it shows four two-cluster partitions of 12 two-
dimensional data objects. The target of clustering ensemble is
to obtain a final clustering based on these four base clusterings.
As shown in Fig. 1, the four possible cluster labels for the
objects u2, u3 and u10 are {2, A,X, α}, {2, A, Y, β} and
{1, A, Y, α}, respectively. That is to say, two of the four base
clusterings put each pair of objects in the same group, and the
rest two partitions assign different cluster labels to this pair.
For instance, the first and second base clusterings distribute u2

and u3 in the same cluster, while the last two base clusterings
give distinct labels to them. In this situation, the traditional
clustering ensemble method (i.e., CSPA [2]) treats the similar-
ity between every pair of these three objects to be 0.5, which
is Sim(u2, u3) = Sim(u2, u10) = Sim(u3, u10) = 0.5. In
the last stage of post-processing clustering, thus, it is difficult
to determine the final label for these objects. The reason
is that the similarity defined here is too limited to reveal
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Fig. 2. A graphical representation of the coupled relationship between base
clusterings, where each circle denotes an object, each rectangle represents an
cluster, and an edge exists if an object belongs to a cluster.

the complete hidden relationship among the data set from
the initial results of base clustering. A conventional way is
to randomly distribute them in either an identical cluster or
different groups, which will inevitably affect the clustering
performance.

However, if we explore the information provided in Fig. 1
carefully, we are able to identify some coupling relationships
between the base clusterings and between the data objects,
apart from the consensus among initial results proposed by
traditional ensemble strategies.

On one hand, as indicated in Fig. 2, objects u2 and u3

are considered to have a high similarity value (e.g., 1) in
base clusterings 1 and 2, in which they are assigned to the
same clusters (i.e., cluster 2 and cluster A, respectively). In
contrast, their similarity value is rather low (e.g., 0) if only the
information in base clustering 4 is used, since they are grouped
into different clusters: α and β. However, cluster α and cluster
β are intuitively more similar than they appear to be, due to the
fact that they connect with two identical clusters in other base
clusterings via objects u2 and u3. Thus, the similarity (i.e., the
dashed line) between clusters α and β related with other base
clusterings should be larger than 0. The same principle also
applies to the similarity between clusters X and Y in base
clustering 3. Note that here the similarity between the same
clusters (e.g., cluster A or cluster 2) is manually set to be
1. In this way, the overall similarity between objects u2 and
u3 must be larger than 0.5 as traditional method considers.
Accordingly, objects u2 and u3 are more likely to be assigned
to the same cluster as they should be, rather than depending
on the random distribution.

On the other hand, the similarity between objects u2 and
u3 and that between u2 and u10 are identical (i.e., both 0.5).
Thus, how to distinguish them and assign the correct label to
each object? If we just consider the aforementioned coupled
relationship between base clusterings, we may fail since both
similarities will be enhanced by involving the co-occurrence
with the clusters in other base clusterings. However, we
discover that the discrepancy on the common neighborhood
domains of objects u2 with u3 and u2 with u10 is capable
to differentiate u2 and u10 in distinct clusters. Intuitively, we
notice that in Fig. 1, the number of common neighbors of
objects u2 and u3 is much larger than that of u2 and u10.
From this perspective, it is more probable that objects u2 and

u3 are in the same cluster and object u10 is in another one,
which just corresponds to the genuine partition.

Based on the above issues, we then come up with three
research questions in the following.

1) Clustering Coupling: There is likely structural relation-
ship between base clusterings since they are induced
from the same data set. How to describe the coupling
relationship between base clusterings?

2) Object Coupling: There is context surrounding two ob-
jects which makes them dependent on each other. How
to design the similarity or distance between objects to
capture their relation with other data objects?

3) Integrated Coupling: If there are interactions between
both clusterings and objects, then how to integrate such
couplings in clustering ensemble?

Intuitively, the base clusterings are expected to have some
interactions with each other, such as the co-occurrence of their
cluster labels over the same set of objects. Here, the cluster
label refers to the label of a cluster to which an object belongs,
such as α, β in Fig. 1. But most of the existing methods, such
as CSPA [2] and QMI [4], are all based on the hypothesis that
base clusterings are independent of each other. Furthermore,
the similarity between any two objects within the same cluster
is not always the same and should be distinguished. In the
existing work, however, the available approaches mostly treat
the similarity between objects to be roughly 1 if they belong
to the same cluster, otherwise 0. Such a binary measure
is rather rough in terms of capturing the relationships be-
tween objects. In addition, some controversial objects with
approximately equal similarity are observed to have different
sizes of common neighborhood domain to differentiate them
apart. But the current approaches have not addressed this
issue for clustering ensemble problem, they merely consider
the similarity between a pair of objects irrespective of other
objects. Recently, a link-based approach [5] has been proposed
to consider the cluster-cluster similarity by connected-triple
approach, which shows promising progress. But it overlooks
the interaction between objects. Besides, a clustering algorithm
ROCK for categorical data has been introduced by Guha
et al. [6] to specify the interaction of objects. However, it
is just designed for the categorical clustering and lacks the
consideration on the relationship between base clusterings.
For integrated coupling, no work has been reported that
systematically takes into account the couplings between base
clusterings and between data objects.

In the real world, business and social applications such as
investors in capital markets and members in social networking
almost always see objects coupled with each other [7]. There is
a great demand from both practical and theoretical perspectives
to initiate new mechanisms to explicitly address the couplings
both between base clusterings and between objects, and to
explicate how to incorporate the couplings for clustering
ensemble based on consensus functions.

In this paper, we propose an effective framework for coupled
clustering ensembles (CCE) to address the aforementioned
research questions. The key contributions are as follows:



– We consider both the couplings between base cluster-
ings and between data objects, and propose a coupled
framework of clustering ensembles to form an integrated
coupling.

– We explicate our proposed framework CCE from the per-
spectives of clustering-based, object-based, and cluster-
based algorithms, and reveal that the couplings are es-
sential to clustering ensemble.

– We evaluate our proposed framework CCE with existing
clustering ensemble and categorical clustering algorithms
on a variety of benchmark data sets in terms of accuracy,
stability, and statistical significance.

The paper is organized as follows. In Section II, we briefly
review the related work. Preliminary definitions are specified
in Section III. Section IV proposes the coupled framework
CCE. Coupled relationships between base clusterings and
between objects in CCE are specified in Section V. Section
VI presents the coupled consensus functions for CCE together
with miscellaneous issues. We describe the CCE algorithms
in Section VII. The effectiveness of CCE is shown in Section
VIII with extensive experiments. We conclude this work and
address future work in Section IX.

II. RELATED WORK

Several papers [2], [3] address the issue of consensus
function for clustering ensemble. Heuristics include CSPA,
HGPA and MCLA [2] solve the ensemble problem by firstly
transforming the base clusterings into a hypergraph representa-
tion. Further, Fern and Brodley [8] further proposed HBGF to
consider the similarities between objects and between clusters
collectively. Gionis et al. [3] mapped the clustering aggrega-
tion problem to the weighted correlation clustering problem
with linear cost functions. Besides, Topchy et al. [4] introduced
a mixture probability model EM and an information-theoretic
consensus function QMI to effectively combine weak base
clusterings. Most of the existing research has been summa-
rized in [9], in which the equivalence is revealed between
basic partition difference (PD) algorithm and other advanced
methods such as Chi-squared based approaches.

All the above methods, either fail to address the inter-
actions between base clusterings and between objects (e.g.,
CSPA, QMI) or just assume the independence between them
(e.g., EM). In particular, the weighted correlation clustering
solution proposed in [3] fails to partition the objects if their
distance measures are equally 0.5. However, an increasing
number of researchers argue that clustering ensemble is also
dependent on the relationship between input partitions [5],
[10], [11]. Punera and Ghosh [10] put forward the soft cluster
ensembles, in which they used a fuzzy clustering algorithm
for the generation of base clusterings. The weighted distance
measure [11] represents a soft relation between a pair of
object and cluster. Unlike our proposed framework, those
refined solutions of different base clusterings are stacked up to
form the consensus function without explicitly addressing the
relations among input clusterings. More recently, Iam-On et

al. [5] presented a link-based approach to involve the cluster-
cluster similarity based on the interaction between clusters.
However, our method also squeezes out the intra-coupling
within base clusterings and the relationship between objects,
which means this work [5] forms just a part of our framework.

Alternatively, clustering ensemble can also be regarded as
categorical clustering by treating each base clustering as an
attribute [3]. We only illustrate the widely used categorical
clustering algorithms here. Guha et al. [6] proposed ROCK,
which uses the link-based similarity between two categorical
objects. Andritsos et al. [12] introduced LIMBO that quan-
tifies the relevant information preserved when clustering. In
summary, ROCK considers the relationship between objects
by link; LIMBO concerns the interaction between different
attributes. Neither of them takes couplings between attributes
and between objects into account together, whereas our pro-
posed framework addresses both.

Besides, in our previous work [13], we proposed a cou-
pled nominal similarity measure to specify the coupling of
attributes. In this paper, we focus on a coupled framework
for clustering ensemble, which addresses a new problem with
different challenges and also involves the coupling of objects.

III. PRELIMINARY DEFINITIONS

The problem of clustering ensemble can be formally de-
scribed as follows: U = {u1, · · · , um} is a set of m objects
for clustering; C = {bc1, · · · , bcL} is a set of L base
clusterings, each clustering bcj consists of a set of clusters
bcj = {c1j , · · · , c

tj
j } where tj is the number of clusters in

base clustering bcj (1 ≤ j ≤ L). Our goal is to find a final
clustering fc∗ = {c1∗, · · · , ct

∗

∗ } with t∗ clusters such that the
objects inside each cluster ct∗ are close to each other and the
objects in different clusters are far from each other.

We construct an information table S by mapping each
base clustering as an attribute. Here, vxj indicates the label
of a cluster to which the object ux belongs in the jth
base clustering, and Vj is the set of cluster labels in base
clustering bcj . For example, Table I [4] is the representation
of Fig. 1 as an information table consisting of twelve objects
{u1, · · · , u12} and four corresponding attributes (i.e., base
clusterings {bc1, bc2, bc3, bc4}). The cluster label α in base
clustering bc4 is mapped as the attribute value v24 of object u2

on attribute bc4, and cluster label set V4 = {α, β}.
Based on this information-table representation, we use sev-

eral concepts adapted from our previous work [13]. The “set
information function” gj(v

x
j ) specifies the set of objects whose

cluster labels is vxj in base clustering bcj . For example, we
have g4(v

2
4) = g4(α) = {u2, u7, u8, u10, u11, u12}. We adopt

the “inter-information function” φj→k(v
x
j ) to obtain a subset

of cluster labels in base clustering bck for the corresponding
objects, which are derived from the cluster label vxj in base
clustering bcj , e.g., φ4→2(α) = {A,B} derived from object
set g4(α). Besides, the “information conditional probability”
Pk|j(vk|vxj ) characterizes the percentage of the objects whose
cluster labels in base clustering bck is vk among those objects
whose cluster label in base clustering bcj is exactly vxj ,



TABLE I
AN EXAMPLE OF BASE CLUSTERINGS

HHHHU
C

bc1 bc2 bc3 bc4

u1 2 B X β
u2 2 A X α
u3 2 A Y β
u4 2 B X β
u5 1 A X β
u6 2 A Y β
u7 2 B Y α
u8 1 B Y α
u9 1 B Y β
u10 1 A Y α
u11 2 B Y α
u12 1 B Y α

formalized as:

Pk|j(vk|vxj ) =
|gk(vk) ∩ gj(v

x
j )|

|gj(vxj )|
, (III.1)

where vk is a fixed cluster label in base clustering bck. Note
that | · | is the number of elements in the specific set. For
example, we have P2|4(A|α) = 2/6 = 1/3.

All these concepts and functions form the foundation of the
framework for capturing the coupled interactions between base
clustering and between objects.

IV. COUPLED FRAMEWORK OF CLUSTERING ENSEMBLES

In this section, a coupled framework of clustering ensembles
CCE is proposed in terms of both interactions between base
clusterings and between data objects. In the framework de-
scribed in Fig. 3, the coupling of base clusterings is revealed
via the similarity between cluster labels vxj and vyj of each
base clustering bcj ; and the coupling of objects is specified
by defining the similarity between data objects ux and uy .
In addition, three models are proposed for clustering-based,
object-based, and cluster-based consensus building, revealing
that the couplings are essential to clustering ensemble.

In terms of the clustering coupling, relationships within
each base clustering and the interactions between distinct base
clusterings are induced from the coupled nominal similarity
measure COS in [13]. The intra-coupling of base cluster-
ings captures the cluster label frequency distribution, while
the inter-coupling of base clusterings considers the cluster
label co-occurrence dependency [13]. Object coupling also
focuses on the intra and inter-coupling, in which intra-coupling
combines all the results of base clusterings for data objects,
whereas inter-coupling is explicated by the neighborhood rela-
tionship [6] among different data objects. The object coupling
also leads to a more accurate similarity (∈ [0, 1]) between
data objects. Moreover, as indicated in Fig. 3, the data objects
and base clusterings are associated through the corresponding
clusters, i.e., the position of an object in a clustering is
determined by which cluster the object belongs to. Therefore,
an integrated coupling is derived by treating each cluster label
as an attribute value and then defining the similarity between
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Fig. 3. A coupled framework of clustering ensembles (CCE), where L9999K
indicates the intra-coupling and ←→ refers to the inter-coupling.

objects grounded on the similarity between cluster labels over
all base clusterings.

Given a set of m objects U and a set of L base clusterings
C, we specify those interactions and the coupled consensus
functions of CCE below in the following two sections.

V. COUPLED RELATIONSHIP IN CCE

In this section, we introduce how to describe the coupling of
base clusterings and how to represent the coupling of objects.

A. Coupling of Clusterings

Since all the base clusterings are conducted on the same data
objects, intuitively we assume there must be some relationship
among those base clusterings. The coupling of base clusterings
is proposed from the perspectives of intra-coupling and inter-
coupling. The intra-coupling of base clusterings indicates
the involvement of cluster label occurrence frequency within
one base clustering, while inter-coupling of base clusterings
means the interaction of other base clusterings with this base
clustering [13]. Accordingly, we have:

Definition 5.1: (IaCSC) The Intra-coupled Clustering
Similarity for Clusters between cluster labels vxj and vyj of
base clustering bcj is:

δIaCj (vxj , v
y
j ) =

|gj(vxj )| · |gj(v
y
j )|

|gj(vxj )|+ |gj(vyj )|+ |gj(vxj )| · |gj(v
y
j )|

,

(V.1)
where gj(v

x
j ) and gj(v

y
j ) are the set information functions.

By taking into account the frequency of cluster labels,
IaCSC characterizes the cluster similarity in terms of cluster
label occurrence times. As clarified by [13], Equation (V.1)
is a well-defined similarity measure and satisfies two main
principles: greater similarity is assigned to the cluster label pair
which owns approximately equal frequencies; the higher these
frequencies are, the closer are the two clusters. For example,
in Table I, we have δIaCj (α, β) = 3/4.

IaCSC considers the interaction between cluster labels
within an base clustering bcj . It does not involve the coupling
between base clusterings (e.g., between base clusterings bck
and bcj(k ̸= j)) when calculating cluster label similarity. For
this, we discuss the dependency aggregation, i.e., inter-coupled
interaction.



Definition 5.2: (IeRSC) The Inter-coupled Relative Simi-
larity for Clusters between cluster labels vxj and vyj of base
clustering bcj based on another base clustering bck is:

δj|k(v
x
j , v

y
j |Vk) =

∑
vk∈∩

min{Pk|j(vk|vxj ), Pk|j(vk|vyj )},

(V.2)
where vk ∈ ∩ denotes vk ∈ φj→k(v

x
j ) ∩ φj→k(v

y
j ), φj→k

is the inter-information function, and Pk|j is the information
conditional probability formalized in Equation (III.1).

Definition 5.3: (IeCSC) The Inter-coupled Clustering
Similarity for Clusters between cluster labels vxj and vyj of
base clustering bcj is:

δIeCj (vxj , v
y
j |{Vk}k ̸=j) =

L∑
k=1,k ̸=j

λkδj|k(v
x
j , v

y
j |Vk), (V.3)

where λk is the weight for base clustering bck,∑L
k=1,k ̸=j λk = 1, λk ∈ [0, 1], Vk(k ̸= j) is a cluster

label set of base clustering bck different from bcj to enable
the inter-coupled interaction, and δj|k(v

x
j , v

y
j |Vk) is IeRSC.

According to [13], relative similarity δj|k is an improved
similarity measure derived from MVDM proposed by Cost and
Salzberg [14]. It considers the similarity of two cluster labels
vxj and vyj in base clustering bcj on each possible cluster label
in base clustering bck to capture the co-occurrence comparison
between them. Further, the similarity δIeCj between the cluster
pair (vxj , v

y
j ) in base clustering bcj can be calculated on

top of δj|k by aggregating all the relative similarity on base
clusterings other than bcj . For the parameter λk, in this
paper, we simply assign λk = 1/(L − 1). For example, in
Table I, we obtain δ4|2(α, β|V2) = 1/3 + 1/2 = 5/6 and
δIeC4 (α, β|{V1, V2, V3}) = 1/3×5/6+1/3×5/6+1/3×4/6 =
7/9 if we take λ1 = λ2 = λ3 = 1/3.

Thus, IaCSC captures the base clustering frequency distri-
bution by calculating occurrence times of cluster labels within
one base clustering, and IeCSC characterizes the base cluster-
ing dependency aggregation by comparing co-occurrence of
the cluster labels in objects among different base clusterings.
Finally, there is an eligible way to incorporate these two
couplings together, specifically:

Definition 5.4: (CCSC) The Coupled Clustering Sim-
ilarity for Clusters between cluster labels vxj and vyj of
clustering bcj is:

δCj (v
x
j , v

y
j |{Vk}Lk=1) = δIaCj (vxj , v

y
j ) · δ

IeC
j (vxj , v

y
j |{Vk}k ̸=j),

(V.4)
where δIaCj and δIeCj are IaCSC and IeCSC, respectively.

As indicated in Equation (V.4), CCSC gets larger by in-
creasing either IaCSC or IeCSC. For example, in Table I, we
could consider the coupled similarity of cluster labels α and
β to be δCj (α, β|{V1, V2, V3, V4}) = 3/4× 7/9 = 7/12.

Here, we choose the multiplication of these two com-
ponents. The rationale is twofold: (1) IaCSC is associated
with how often the cluster label occurs while IeCSC reflects
the extent of the cluster difference brought by other base
clusterings. Hence intuitively, the multiplication of them in-
dicates the total amount of the cluster difference; (2) the
multiplication method is consistent with the adapted simple
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Fig. 4. An example of the coupled similarity for cluster labels α and β, where
L9999K indicates the intra-coupling and ←→ refers to the inter-coupling, the
value along each line is the corresponding similarity.

matching distance introduced in [15], which considers both
the category frequency and matching distance.

Fig. 4 summarizes the whole process to calculate the cou-
pled similarity for two cluster labels α and β. As indicated
here, the similarity value between cluster labels α and β
is 7/12, which is larger than 0 as the existing methods
regard. Thus, CCSC discloses the implicit relationship on
both the frequency of cluster labels (intra-coupling) in each
base clustering and the co-occurrence of cluster labels (inter-
coupling) across different base clusterings.

B. Coupling of Objects

In the previous section, we present the coupling of base
clusterings from the aspects of intra-coupled similarity and
inter-coupled similarity between cluster labels. Here, we pro-
ceed by considering the coupling relationships among objects.
Similarly, we assume the objects interact with each other both
internally and externally.

In terms of the intra-perspective, the object ux is coupled
with uy by involving the cluster labels of all the base clus-
terings for them. The similarity between ux and uy could
be defined as the average sum of the similarity between the
associated cluster labels ranging over all the base clusterings.
Formally, we have:

Definition 5.5: (IaOSO) The Intra-coupled Object Simi-
larity for Objects between objects ux and uy with respect to
all the base clustering results of these two objects is:

δIaO(ux, uy) =
1

L
·

L∑
j=1

δCj (v
x
j , v

y
j |{Vk}Lk=1), (V.5)

where δCj (v
x
j , v

y
j , {Vk}Lk=1) refers to CCSC between cluster

labels vxj and vyj of base clustering bcj .
In this way, all the CCSCs δCj (1 ≤ j ≤ L) with each

base clustering bcj are summed up for two objects ux and
uy . For example, the similarity between u2 and u3 in Table
I is δIaO(u2, u3) = 0.655 and δIaO(u2, u10) = 0.684,
which are both larger than 0.5 as provided by the traditional
approach. We find that the intra-coupled object similarity
between objects u2 and u10 is a little bit greater than that
between u2 and u3, which may somewhat mislead the final



clustering in the post-procession stage. To solve this problem,
we also involve the coupling between objects to further expose
the interaction on the object level.

As indicated in [6], the set theory-based similarity measure
for categorical values, such as the Jaccard coefficient [15],
often fails to capture the genuine relationship when the hidden
clusters are not well-separated and there is a wide variance in
the sizes of clusters. This is also true for our proposed IaOSO,
since it considers the similarity between only the two objects
in question as well. However, it does not reflect the properties
of the neighborhood of the objects. Therefore, we present our
new coupled similarity for objects based on the notions of
neighbor and IeOSO as follows.

Definition 5.6: A pair of objects ux and uy are defined to
be neighbors if the following holds:

δSim(ux, uy) ≥ θ, (V.6)

where δSim denotes any similarity measure for objects, θ ∈
[0, 1] is a given threshold.

In the above definition on neighbor, the similarity measure
can be the Jaccard coefficient [6] for objects described by cat-
egorical attributes, or Euclidean dissimilarity [15] for objects
depicted by continuous attributes. The neighbor set of object
ux can be denoted as:

NSim
ux

= {uz|δSim(ux, uz) ≥ θ}, (V.7)

which collects all the neighbors of ux to form an object set
Nux

. For example, u3 and u10 are the neighbors of object
u2, since δSim(u2, u3) = δSim(u2, u10) = 1/3 ≥ 0.3 if we
adopt the Jaccard coefficient as the similarity measure and
set θ = 0.3, and then the neighbor set of u2 is Nu2 =
{u1, u3, u4, u5, u6, u7, u10, u11}.

Further, we can embody the inter-coupled interaction be-
tween different objects by exploring the relationship between
their neighborhood. Intuitively, objects ux and uy more likely
belong to the same cluster if they have a larger overlapping in
their neighbor sets Nux and Nuy . Accordingly, below we use
the common neighbors to define the inter-coupled similarity
for objects.

Definition 5.7: (IeOSO) The Inter-coupled Object Sim-
ilarity for Objects between objects ux and uy in terms of
other objects uz is defined as the ratio of common neighbors
of ux and uy upon all the objects in U .

δIeO(ux, uy|U) =
1

m
·|{uz ∈ U |uz ∈ NSim

ux
∩NSim

uy
}|, (V.8)

where NSim
ux

and NSim
uy

are the neighbor sets of objects ux

and uy based on δSim, respectively.
Thus, IeOSO builds the inter-coupled relationship between

each pair of objects by capturing the global knowledge on the
neighborhood of them. For example, δIeO(u2, u3|U) = 0.583
and δIeO(u2, u10|U) = 0.417 when setting δSim to be Jaccard
coefficient and θ = 0.3.

Finally, the intra-coupled and inter-coupled interactions
could be considered together to induce the following coupled
similarity for objects by exactly specializing the similarity
measure δSim in (V.7) to be IaOSO δIaO in Equation (V.5).

TABLE II
AN EXAMPLE OF NEIGHBORHOOD DOMAIN FOR OBJECT

Object Neighborhood Domain
u2 {u1, u3, u4, u5, u6, u7, u8, u10, u11, u12}
u3 {u1, u2, u4, u5, u6, u7, u8, u9, u10, u11, u12}
u10 {u2, u3, u6, u7, u8, u9, u11, u12}

Object Pair Common Neighbors
u2, u3 {u1, u4, u5, u6, u7, u8, u10, u11, u12}
u2, u10 {u3, u6, u7, u8, u11, u12}

Definition 5.8: (CCOSO) The Coupled Clustering and
Object Similarity for Objects between objects ux and uy

is defined when δSim is in particular regarded as δIaO.
Specifically:

δCO(ux, uy|U) =
1

m
·|{uz ∈ U |uz ∈ N IaO

ux
∩N IaO

uy
}|, (V.9)

where sets of objects N IaO
ux

= {uz|δIaO(ux, uz) ≥ θ} and
N IaO

uy
= {uz|δIaO(uy, uz) ≥ θ}.

In this way, the coupled similarity takes into account both
the intra-coupled and inter-coupled relationships between two
objects. At the same time, it also considers both the intra-
coupled and inter-coupled interactions between base clus-
terings, since one of the components IaOSO of CCOSO is
built on top of them. Thus, we call it the coupled clustering
and object similarity for objects (CCOSO). For example,
the corresponding neighbors of objects u2, u3 and u10 are
described in the Table II below, here θ = 0.65.

From this table, we observe that the number of common
neighbors of objects u2 and u3 (i.e., 9) is truly larger than that
of objects u2 and u10 (i.e., 7), which correctly corresponds to
our claim in Section I. Based on Equation (V.9), we obtain
δCO(u2, u3|U) = 0.75 and δCO(u2, u10|U) = 0.5. It means
that the similarity between objects u2 and u3 is larger than
that between u2 and u10, which effectively remedies the issue
caused by δIaO(u2, u3) < δIaO(u2, u10).

VI. COUPLED CONSENSUS FUNCTION IN CCE

There are many ways to define the consensus function
such as pairwise agreements between base clusterings, co-
associations between data objects, and interactions between
clusters. Some of the criteria focus on the estimation of
similarity between base clusterings [9], [4], some are based
on the similarity between data objects [2], and others are
associated with the similarity between clusters [8], [5]. In the
following, we specify the coupled versions of clustering-based,
object-based, and cluster-based criteria individually.

A. Clustering-based Coupling

The clustering-based consensus function captures the pair-
wise agreement between base clusterings. Note that each
base clustering bcj defines an associated similarity matrix
(BCj)m×m that stores the information for each pair of objects
about their similarity. Each entry BCj(x, y) of the matrix
represents the similarity between objects ux and uy within
the base clustering bcj .



The usual way to define the entry BCj(x, y) of similarity
matrix BCj is to justify whether objects ux and uy are in the
same cluster of base clustering bcj , i.e., whether ux and uy

have the same cluster label. Formally:

BCj(x, y) =

{
1 if vxj = vyj ,

0 otherwise,
(VI.1)

where vxj and vyj are the cluster labels of ux and uy in base
clustering bcj , respectively. Then, given two base clusterings
bcj1 and bcj2 , a common measure of discrepancy is the
partition difference (PD) [9]:

SCg(bcj1 , bcj2) =
∑

1≤x,y≤m

[BCj1(x, y)−BCj2(x, y)]
2
,

(VI.2)
where x and y refer to the indexes of objects ux and uy

respectively. However, this traditional way is too rough to
characterize the similarity between objects, and it assumes the
independence among the base clusterings.

Alternatively, we can focus on the entry BCj(x, y) to
incorporate the coupling of base clusterings as follows:

BCC
j (x, y) = δCj (v

x
j , v

y
j |{Vk}Lk=1), (VI.3)

SC
Cg(bcj1 , bcj2) =

∑
1≤x,y≤m

[BCC
j1(x, y)−BCC

j2(x, y)]
2
,

(VI.4)
where δCj refers to CCSC in Definition 5.4. We denote this
newly proposed clustering-based coupling to be CgC.

Intuitively, SC
Cg calculates the sum of similarity between

objects that belong to different base clusterings bcj1 and bcj2 .
A target clustering fc∗ thus should be:

fc∗ = arg
c1,··· ,ct∗

min
L∑

j=1

SC
Cg(fc, bcj), (VI.5)

where fc = {c1, · · · , ct∗} denotes the candidate set of clusters
for final clustering fc∗. According to [4], the optimization
problem in (VI.5) then can be heuristically approached by k-
means operating in the normalized object-label space OL with
each entry to be:

OL(ux, v
y
j ) = δCj (v

x
j , v

y
j |{Vk}Lk=1)− µy(δCj ), (VI.6)

where ux is an object, vyj is a cluster label in bcj , and µy(δCj )

is the mean of δCj (v
x
j , v

y
j |{Vk}Lk=1) for every cluster.

B. Object-based Coupling

The object-based consensus function captures the co-
associations between objects. Given two objects ux and uy ,
based on all the base clustering results, a simple and obvious
heuristic to describe the similarity between ux and uy is the
entry-wise average of the L associated similarity matrices
induced by the L base clusterings. In this way, it yields an
overall similarity matrix BC∗ with a finer resolution [2].
Formally, we have:

BC∗(x, y) =
1

L
·

L∑
j=1

BCj(x, y). (VI.7)

The entry of the induced overall similarity matrix BC∗

is the weighted average sum of each associated pairwise
similarity BCj between objects of every base clustering.
However, the common pairwise similarity measure BCj(x, y)
is rather rough since only 1 and 0 are considered as defined in
Equation (VI.1). Relationship neither within nor between base
clusterings (i.e., bcj1 and bcj2 ) is explicated. Besides, most
existing work [1], [8], [3] only uses the similarity measure
between objects when clustering them. It thus does not involve
the context (i.e., neighborhood) of the objects.

To solve the first two issues above, we regard the entry
BC∗(x, y) of the overall similarity matrix to be IaOSO:

SIaC
O (ux, uy) = BC∗(x, y) = δIaO(ux, uy), (VI.8)

where δIaO is defined in (V.5). Here, SIaC
O captures the

intra-coupled interactions within two objects as well as both
the intra-coupled and inter-coupled interactions among base
clusterings. Alternatively, we can also assign BCj(x, y) of
base clustering bcj to be δCj (V.4), in the same way as Equation
(VI.3); then, the overall similarity matrix BC∗ is obtained
by averaging the associated similarity matrix BCj over all
the base clusterings according to (VI.7). Afterwards, METIS
is applied to the overall similarity matrix BC∗ to produce
the final clustering fc∗. We denote this newly proposed intra-
coupled object-based coupling method as OC-Ia.

Further considering the above third issue, both the intra-
couplings and inter-couplings of clusterings and of objects are
incorporated as follows:

SC
O (ux, uy) = BC∗(x, y) = δCO(ux, uy|U), (VI.9)

where δCO is defined in (V.9). Since we would like to
maximize the sum of δCO(ux, uy|U) (V.9) for data object
pairs ux, uy belonging to a single cluster, and at the same
time, minimize the sum of δCO(ux, uy|U) for ux and uy

in different clusters. Accordingly, the desired final clustering
fc∗ = {c1∗, · · · , ct

∗

∗ } with t∗ clusters can be obtained by
maximizing the following criterion function:

fc∗ = arg
c1,··· ,ct∗

max

t∗∑
t=1

mt ·
∑

ux,uy∈ct

SC
O (ux, uy) ·m
m

1+2f(θ)
t

,

(VI.10)
where ct denotes the tth cluster of size mt, m is the total
number of objects, and f(θ) = (1− θ)/(1+ θ). The rationale
of the above function is twofold: on one hand, one of our
goals is to maximize δCO(ux, uy|U) for all pairs of objects
in the same cluster ux, uy ∈ ct; on the other hand, we divide
the total CCOSO (i.e., SC

O = δCO) involving pairs of objects
in cluster ct by the expected sum of δCO in ct, which is
m

1+2f(θ)
t /m [6]; and then weigh this quantity by mt, i.e.,

the number of objects in ct. Dividing by the expected sum of
δCO prevents the case of a clustering in which all objects are
assigned to a single cluster and objects with very small coupled
similarity value between them from being put in the same
cluster [6]. Subsequently, we adapt the standard agglomerative
hierarchical clustering algorithm to obtain the final clustering



fc∗ by solving Equation (VI.10) [6]. We abbreviate this newly
proposed hierarchical object-based coupling to be OC-H.

C. Cluster-based Coupling

The cluster-based consensus function characterizes the in-
teractions between every two clusters. One of the basic ap-
proaches based on the relationship between clusters is MCLA
proposed by Strehl and Ghosh [2]. The idea in MCLA is to
yield object-wise confidence estimates of cluster membership,
to group and then to collapse related clusters represented as
hyperedges. The similarity measure of clusters in MCLA is
Jaccard matching coefficient [15], formally:

SCr(c
t1
j1
, ct2j2) =

|ct1j1 ∩ ct2j2 |
|ct1j1 ∪ ct2j2 |

, (VI.11)

where ct1j1 and ct2j2 are the t1th cluster of base clustering bcj1
and the t2th cluster of base clustering bcj2 , respectively.

The above similarity measure SCr considers neither cou-
pling between base clusterings nor interaction between objects.
Therefore, it is in lack of the capability to reflect the essential
link and relationship among data. In order to remedy this
problem, we define the coupled similarity between clusters
ct1j1 and ct2j2 in terms of both the coupled relationships between
clusterings and between objects. The average sum of every
two-object pairs in ct1j1 and ct2j2 respectively is selected here to
specify the coupled similarity between clusters:

SC
Cr(c

t1
j1
, ct2j2) =

1

mt1mt2

∑
ux∈c

t1
j1

,uy∈c
t2
j2

SO(ux, uy), (VI.12)

where mt1 and mt2 are the sizes of clusters ct1j1 and ct2j2 ,
respectively; SO(ux, uy) is the coupled similarity for objects,
it can be either δIaO (V.5) or δCO (V.9). If SO = δIaO,
the cluster-based coupling includes the intra and inter-coupled
interaction between base clusterings as well as the intra-
coupled interaction between objects; if SO = δCO, it reveals
both the intra and inter-coupled interactions between base
clusterings and between objects. Afterwards, METIS is used
based on the cluster-cluster similarity matrix to conduct meta-
clustering as in [2]. We denote the cluster-based coupling as
CrC (including CrC-Ia with δIaO and CrC-C with δCO).

D. Miscellaneous Issues

How to Generate Base Clusterings: There are several
existing methods to provide diverse base clusterings: using
different clustering algorithms, employing random or different
parameters of some algorithms, and adopting random subsam-
pling or random projection of the data. Since our focus is
mainly on the consensus function, we use k-means on random
subsampling [8] of the data as the base clustering algorithm
in our experiments. The number tj of base clustering bcj is
pre-defined for each data set and remains the same for all
clustering runs.

How to Post-process Clustering: In the proposed CCE
framework, we mainly focus on the consensus function based
on pairwise interactions between base clusterings, between

objects and between clusters. Those interactions are described
by the corresponding similarity matrices. Thus, a common
and recommended way to combine the base clusterings is
to recluster the objects using any reasonable similarity-based
clustering algorithm. In our experiments, we choose k-means,
agglomerative algorithm [6] and METIS [2] due to their
popularity in clustering ensemble.

VII. ALGORITHM AND ANALYSIS

In previous sections, we have discussed the coupled frame-
work of clustering ensembles CCE from the perspectives
of coupling of clusterings, coupling of objects, and coupled
consensus functions. They are all based on the intra and inter-
coupled interactions between clusterings and between objects.
Therefore, in this section, we design two algorithms CCSC1

(Algorithm 1) and CCOSO (Algorithm 2) to compute the
coupled similarity for each pair of cluster labels and the
coupled similarity for objects ux and uy , respectively.

Algorithm 1: Coupled Similarity for Clusters CCSC

Data: Object set U = {u1, · · · , um} and ux, uy ∈ U , base
clustering set C = {bc1, · · · , bcL}, and weight
λ = (λk)1×L.

Result: Similarity matrix CCSC between cluster labels.
1 begin
2 maximal cluster label r(j)←− max(Vj)
3 for every cluster label pair (vxj , v

y
j ∈ [1, r(j)]) do

4 U1 ←− {i|vij == vxj }, U2 ←− {i|vij == vyj }
// Compute intra-coupled similarity

between cluster labels vxj and vyj .
5 δIaCj (vxj , v

y
j ) = (|U1||U2|)/(|U1|+ |U2|+ |U1||U2|)

6 δCj (vxj , v
y
j |{Vk}Lk=1)←−

δIaCj (vxj , v
y
j ) · IeCSC(vxj , v

y
j )

7 CCSC(vxj , v
y
j )←− δCj (vxj , v

y
j |{Vk}Lk=1)

8 end

9 Function IeCSC(vxj , v
y
j , U1, U2)

10 begin
11 for each base clustering (bck ∈ C) ∧ (bck ̸= bcj) do
12 φ←− {vxk |x ∈ U1} ∩ {vyk |y ∈ U2}
13 for every intersection vzk ∈ φ do
14 U0 ←− {i|vik == vzk}
15 ICPx ←− |U0 ∩ U1|/|U1|
16 ICPy ←− |U0 ∩ U2|/|U2|
17 Min(x,y) ←− min(ICPx, ICPy)

18 δj|k(v
x
j , v

y
j |Vk) = sum[Min(x,y)]

// Compute inter-coupled similarity
between two cluster labels vxj and vyj .

19 δIeCj (vxj , v
y
j |{Vk}k ̸=j) = sum[λk · δj|k(vxj , vyj |Vk)]

20 return IeCSC(vxj , v
y
j ) = δIeCj (vxj , v

y
j |{Vk}k ̸=j)

As shown in these two algorithms, the computational com-
plexity for CCSC is O(LT 3), and the computational complex-
ity for CCOSO is O(L2T 3 + 2m), where L is the number of

1All the cluster labels of each base clustering need to be encoded as
numbers, starting at one and increasing to the maximum which is the
respective number of clusters in this base clustering.



base clusterings, T is the maximal number of clusters in all
the base clusterings, and m is the total number of objects.

Algorithm 2: Coupled Similarity for Objects CCOSO

Data: Object set U = {u1, · · · , um} and ux, uy ∈ U , base
clustering set C = {bc1, · · · , bcL}, and threshold
θ ∈ [0, 1].

Result: Similarity CCOSO(ux, uy) between objects ux, uy .
1 begin
2 for each base clustering bcj ∈ C do
3 δCj (vxj , v

y
j |{Vk}Lk=1)←− CCSC(vxj , v

y
j )

// Compute intra-coupled similarity
between two objects ux and uy.

4 δIaO(ux, uy) = 1/L · sum[δCj (vxj , v
y
j |{Vk}Lk=1)]

5 neighbor sets Nux = Nuy = ∅
6 for objects (uz1 , uz2 ∈ U) ∧ (uz1 ̸= ux) ∧ (uz2 ̸= uy) do
7 if δIaO(ux, uz1) ≥ θ then
8 Nux = {uz1} ∪Nux

9 if δIaO(uy, uz2) ≥ θ then
10 Nuy = {uz2} ∪Nuy

// Compute inter-coupled similarity
between two objects ux and uy.

11 δCO(ux, uy|U) = 1/m · |Nux ∩Nuy |
12 CCOSO(ux, uy)←− δCO(ux, uy|U)
13 end

VIII. EMPIRICAL STUDY

This section presents the performance evaluation of the cou-
pled framework CCE in terms of the clustering-based (CgC),
object-based (OC-Ia and OC-H), and cluster-based (CrC-Ia
and CrC-C) couplings. The experiments are conducted on 11
synthetic and real data sets to validate accuracy and stability
of various consensus functions.

A. Data Sets

The experimental evaluation is conducted on eight data sets,
including two synthetic data sets (i.e., Sy1 and Sy2, which are
2-Gaussian and 4-GaussianN, respectively) and nine real-life
data sets from UCI. Table III summarizes the details of these
data sets, where m is the number of objects, n is the number
of dimensions, and tp is the number of pre-known classes.
Those true classes are only used to evaluate the quality of
the clustering results, not in the process of aggregating base
clusterings. The number of true classes is only used to set
the number of clusters both in building the base clusterings
and in the post-processing stage. Since we do not involve the
information of attributes after building base clusterings, we
order the data sets according to the number of objects ranging
from 150 to 1484. Note that the second synthetic data set Sy2
[16] is initially created in two dimensions and later added with
four more dimensions of uniform random noise.

B. Selection of Parameters and Algorithms

As previously presented, our experiments are designed from
the following three perspectives:

TABLE III
DESCRIPTION OF DATA SETS

Data Set m n tp Source
Sy1 200 2 2 modified from [2]
Sy2 400 6 4 modified from [16]
Iris 150 4 3 UCI repository

Wine 178 13 3 UCI repository
Seg 210 19 7 UCI repository

Glass 214 9 6 UCI repository
Ecoli 336 7 8 UCI repository
Ionos 351 34 2 UCI repository
Blood 748 5 2 UCI repository
Vowel 990 10 11 UCI repository
Yeast 1484 8 10 UCI repository

1) Clustering-based: Besides the partition difference (PD)
proposed in [9], QMI is also an effective clustering-
based criterion [4], which has proved to be equivalent
with Category Utility Function in [9]. We will compare
the clustering-based coupling (CgC) with its baseline
method PD [9], EM and QMI [4].

2) Object-based: In this group, we will compare the intra-
coupled object-based coupling OC-Ia with its baseline
method CSPA [2], and compare the hierarchical object-
based coupling OC-H with CSPA [2] and with the cat-
egorical clustering algorithms: ROCK [6] (the baseline
method of OC-H) and LIMBO [12].

3) Cluster-based: Based on MCLA [2], HBGF is another
promising cluster-based criterion [8]. It also collectively
considers the similarity between objects and clusters
but lacks the discovery of coupling. Iam-On et al.
[5] proposed a link-based approach (LB), which is an
improvement on HBGF. Below, cluster-based coupling
CrC (including CrC-Ia and CrC-C) is compared with
their baseline method MCLA [2], HBGF [8], and LB [5]
(including LB-P and LB-S).

As indicated in Section VI-D, k-means on random subsam-
pling [8] of the data is used to produce a diversity of base
clusterings; k-means and agglomerative algorithm are used to
post-process the coupled consensus functions CgC and OC-
H, respectively, and METIS is adopted to post-process the
consensus functions OC-Ia, CrC-Ia and CrC-C. The following
parameters of the clustering ensemble are especially important:

– θ: The neighbor threshold in (V.6) is defined to be the
average IaOCO and Jaccard coefficient [6] values of
pairwise objects for OC-H and ROCK, respectively.

– L: The ensemble size (i.e., the number of base cluster-
ings) is taken to be L = 10.

– tj , t∗: The number of clusters in the base clustering bcj
and final clustering fc∗ are both regarded as the number
of pre-known classes tp, i.e., tj = t∗ = tp.

– λk: The weight λk for base clustering bck in Definition
5.3 on IeCSC is simplified as λk = 1/L = 1/10.

– NR: The number of runs for each clustering ensemble
is fixed to be NR = 50 to obtain corresponding average
results for the evaluation measures below.

Other parameters of the compared methods remain the same
as the original approaches.



TABLE IV
EVALUATION MEASURES ON BASE CLUSTERINGS

Data Set AC NMI CSI
Max Avg Min Max Avg Min Avg

Sy1 0.955 0.950 0.945 0.745 0.720 0.693 0.714
Sy2 0.503 0.460 0.385 0.406 0.406 0.406 0.698
Iris 0.927 0.827 0.513 0.750 0.656 0.427 0.791

Wine 0.708 0.689 0.556 0.441 0.424 0.388 0.659
Seg 0.586 0.529 0.433 0.548 0.496 0.410 0.820

Glass 0.517 0.479 0.449 0.338 0.307 0.276 0.602
Ecoli 0.687 0.512 0.470 0.539 0.437 0.398 0.530
Ionos 0.712 0.704 0.650 0.131 0.107 0.014 0.670
Blood 0.739 0.709 0.707 0.017 0.016 0.013 0.780
Vowel 0.373 0.354 0.339 0.435 0.415 0.388 0.802
Yeast 0.384 0.332 0.319 0.250 0.220 0.218 0.817

Since each clustering ensemble method divides data objects
into a partition of tp (i.e., the number of true classes) clusters,
we then evaluate the clustering quality against the correspond-
ing true partitions by using these external criteria: accuracy
(AC) [13], normalized mutual information (NMI) [13], and
combined stability index (CSI) [16]. AC and NMI describe
the degree of approximation between obtained clusters and
the true data classes. CSI reveals the stability between them
across NR = 50 runs, it reflects the deviation of the results
across different runs. In fact, the larger AC or NMI or CSI
is, the better the clustering ensemble algorithm is. Note that
the correspondence problem between the derived clusters and
the known classes need to be solved before evaluation. The
optimal correspondence can be obtained using the Hungarian
method [4] with O((tp)3) complexity for tp clusters.

C. Experimental Results

Based on the evaluation measures (i.e., AC, NMI and CSI),
Table IV displays the performance of the base clustering
algorithm (i.e., k-means) over synthetic and real data sets. Note
that Max, Avg, and Min represent the maximal, average, and
minimum corresponding evaluation scores among input base
clusterings, respectively.

In the following, the experimental results are presented and
analyzed in three groups: clustering-based comparison which
focuses on the evaluation of coupling between base cluster-
ings, object-based comparison which studies the utility of
intra-coupling and inter-coupling between objects, and cluster-
based comparison which identifies the jointed effect of cou-
plings both between base clusterings and between objects. We
individually analyze the clustering performance by considering
the couplings step by step within each group of experiments,
and the comparison across these three groups is out of scope
of this paper. Note that all the values reported on AC and
NMI are the averages across multiple clustering ensembles
(i.e., exactly 50 runs), CSI value reveals the total deviation
apart from the average of 50 runs in each experiment, and the
improvement rate below refers to the absolute difference value
between two evaluation scores.

Clustering-based Comparison: Fig. 5 shows the per-
formance comparison of different clustering-based ensemble
methods over two synthetic and six real-life data sets in terms
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Fig. 5. Clustering-based comparisons.

of AC and CSI. Due to the space limitation, the results on only
eight data sets are reported; and the performance on NMI,
which is similar to that on AC, is not provided here. It is
clear that our proposed CgC usually generates data partitions
of higher quality than its baseline model PD and other com-
pared approaches, i.e., EM and QMI. Specifically, in terms of
accuracy, the AC improvement rate ranges from 1.59% (QMI
on Sy1) to 10.20% (EM on Seg), and there has been significant
CSI improvement (from 0.69% to 27.35%) except one case:
Glass. Overall, the average improvement rate for AC across
all the methods over every data set is 3.71%, and the average
improvement rate of CgC on CSI is 7.26%. Also, in several
data sets such as Sy1, Sy2, Seg, Blood and Yeast, their AC
measures exceed the maximum of AC in the corresponding
base clusterings, i.e., Max(AC) in Table IV. Besides, all the
AC and CSI values of CgC are higher than the corresponding
average values of base clustering. Another observation is that
none of the other three compared consensus functions is the
absolute winner among them, while QMI is the best in most
cases, followed by PD and with EM to be the worst one. But
our proposed CgC outperforms all the compared algorithms
on almost every data set. The improvement level is associated
with the accuracy of base clusterings: the higher accuracy
of base clusterings corresponds to relative smaller level of
improvement. Statistical analysis, namely t-test, has been done
on the AC of our CgC, with 95% confidence level. The null
hypothesis that CgC is better than base clusterings and the
best result of other methods in terms of AC is accepted.

Therefore, we obtain the empirical conclusion that cluster-
ing accuracy and stability can be further improved with CgC
by involving the couplings of clusterings. The improvement
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Fig. 6. Object-based comparisons.

rate is dependent on the accuracy of base clusterings.

Object-based Comparison: The evaluation (i.e., NMI and
CSI) of distinct object-based ensemble methods are exhib-
ited in Fig. 6. Eight data sets with smaller size are chosen
because of the high computational complexity in this group
of experiments. Due to the space limitation, the performance
on AC, which is similar to that on NMI, is not reported
here. We observe that, with the exception of a few items,
our proposed OC-Ia mostly outperforms the ensemble method
CSPA and categorical clustering algorithm ROCK in terms of
both NMI and CSI. Our proposed OC-H has the largest NMI
and CSI values over most of the data sets. Here, it can be
clearly seen that our proposed OC-Ia and OC-H both achieve
better clustering quality when compared to their respective
baseline methods CSPA and ROCK. The average NMI and CSI
improvement rates for the former pair are 4.25% and 6.76%,
respectively, and those values for the latter pair are 20.80% and
30.10%. When compared with Table IV, all the NMI and CSI
values of OC-Ia and OC-H are greater than the corresponding
average values of base clustering, and several NMI values are
even larger than that of the maximum in base clustering, e.g.,
Sy2 and Iris. It is also noteworthy that the evaluation scores of
categorical clustering algorithm LIMBO are comparable with
our proposed OC-Ia, but worse than OC-H. The reason is that
LIMBO also considers the coupling between attributes from
the perspective of information theory, but without the concern
of the coupling between objects. However, also as a categorical
clustering algorithm, ROCK leads to a poor performance in the
clustering ensemble, since it only focuses on the interaction
between objects but overlooks the relationship between base
clusterings. Statistical test supports the results on NMI.

Thus, the involvement of intra-coupling between objects
(e.g., OC-Ia) and inter-coupling between objects (e.g., OC-
H) can both enhance the clustering quality, while the latter
one performs a bit better.

Cluster-based Comparison: Table V reports the experi-
ment results with the cluster-based ensemble methods by using
evaluation measures: AC, NMI and CSI. The two highest
measure scores of each experimental setting are highlighted in
boldface. The last column is the average value for associated
measures across all the data sets. As this table indicates, our
proposed CrC-Ia and CrC-C mostly get the first two positions
on every individual data set, and their average evaluation
scores are the corresponding largest two among all the average
values. For AC, the average improvement rate of CrC-Ia and
CrC-C against other methods ranges from 1.84% to 6.79%;
for NMI, the minimal and maximal average improvement
rates are 2.19% and 6.56%, respectively; for CSI, this rate
falls between 2.02% and 12.44%. Resembling the above
comparisons, all the evaluation scores of CrC-Ia and CrC-C
are at least not smaller than the corresponding average values
of base clustering, with several AC and NMI values even
greater than the relevant maximal scores in base clustering,
e.g., Sy2 and Wine. Another significant observation is that the
average AC and NMI improvement rates of CrC-C on CrC-Ia
are only 1.86% and 1.42% respectively, which are smaller than
those of CrC-Ia and CrC-C on other compared methods. We
know that CrC-C built on CrC-Ia also involves the common
neighborhood of objects. When most of the base clusterings
have a relative consistent grouping of the objects, the chance
to encounter the situation that half of the base clusterings put
two objects in the same cluster while the rest half separate
them in different groups is rare. Therefore, the improvement
made by CrC-C upon CrC-Ia is minor or even negative in this
scenario, such as Seg and Yeast whose CSI values across 10
base clusterings are as high as 0.820 and 0.817 in Table IV,
respectively. However, for a majority of cases, different base
clusterings result in various results. Thus, CrC-C is expected
to have a better performance in particular when differentiating
those questionable objects, compared to CrC-Ia. All the results
on AC and NMI are supported by a statistical significant test
with a confidence level at 95%.

Consequently, the clustering quality benefits from both the
couplings between clusterings and between objects. However,
the inter-coupling of objects is dependent on the consistency of
base clustering results, which affects the improvement degree.

We draw the following three conclusions to address the
research questions proposed in Section I: 1) Base clusterings
are indeed coupled with each other, and the consideration of
such couplings can result in better clustering quality; 2) The
inclusion of coupling between objects further improves the
clustering accuracy and stability; 3) The improvement level
brought by the coupling of base clusterings is associated with
the accuracy of base clusterings, while the improvement degree
caused by the inter-coupling of objects is dependent on the
consistency of base clustering results.



TABLE V
CLUSTER-BASED COMPARISONS ON AC, NMI AND CSI

Data Set Sy1 Sy2 Iris Wine Seg Glass Ecoli Ionos Blood Vowel Yeast Avg

AC

MCLA 0.945 0.501 0.875 0.702 0.560 0.472 0.528 0.711 0.680 0.365 0.341 0.607
HBGF 0.949 0.503 0.877 0.690 0.532 0.445 0.468 0.684 0.528 0.379 0.301 0.578
LB-P 0.952 0.504 0.878 0.703 0.582 0.459 0.530 0.711 0.719 0.330 0.328 0.609
LB-S 0.951 0.486 0.844 0.690 0.560 0.483 0.539 0.711 0.713 0.364 0.332 0.607

CrC-Ia 0.954 0.513 0.893 0.731 0.579 0.482 0.539 0.721 0.713 0.394 0.379 0.627
CrC-C 0.969 0.518 0.902 0.764 0.579 0.511 0.587 0.742 0.723 0.430 0.378 0.646

NMI

MCLA 0.725 0.406 0.744 0.429 0.526 0.318 0.510 0.129 0.015 0.411 0.223 0.403
HBGF 0.710 0.389 0.706 0.355 0.486 0.316 0.444 0.109 0.007 0.414 0.206 0.377
LB-P 0.723 0.406 0.745 0.429 0.548 0.318 0.511 0.130 0.016 0.420 0.221 0.406
LB-S 0.724 0.363 0.687 0.412 0.531 0.335 0.502 0.130 0.015 0.394 0.210 0.391

CrC-Ia 0.734 0.436 0.752 0.556 0.543 0.323 0.511 0.164 0.018 0.445 0.226 0.428
CrC-C 0.764 0.456 0.753 0.580 0.540 0.337 0.539 0.171 0.019 0.477 0.228 0.442

CSI

MCLA 0.950 0.710 0.876 0.828 0.775 0.554 0.640 0.937 0.897 0.783 0.774 0.793
HBGF 0.953 0.703 0.761 0.712 0.716 0.594 0.528 0.839 0.642 0.736 0.742 0.721
LB-P 0.954 0.713 0.860 0.829 0.840 0.601 0.673 0.943 0.893 0.774 0.786 0.806
LB-S 0.943 0.662 0.787 0.846 0.767 0.601 0.594 0.926 0.892 0.757 0.727 0.773

CrC-Ia 0.967 0.736 0.892 0.868 0.878 0.621 0.649 0.955 0.897 0.808 0.817 0.826
CrC-C 0.963 0.752 0.910 0.880 0.880 0.639 0.679 0.957 0.940 0.872 0.822 0.845

IX. CONCLUSION AND FUTURE WORK

Clustering ensemble has been introduced as a more accurate
alternative to individual (base) clustering algorithms. However,
the existing approaches mostly assume the independency be-
tween base clusterings, and overlook the coupling between
objects in terms of neighborhood. This paper proposes a novel
framework for coupled clustering ensembles, i.e. CCE, to
incorporate interactions both between base clusterings and
objects. CCE caters for cluster label frequency distribution
within one base clustering (intra-coupling of clusterings),
cluster label co-occurrence dependency between distinct base
clusterings (inter-coupling of clusterings), base clustering ag-
gregation between two objects (intra-coupling of objects), and
neighborhood relationship among other objects (inter-coupling
of objects), which has been shown to improve learning accu-
racy and stability. Substantial experiments have verified that
the consensus functions incorporated with these couplings
significantly outperform nine state-of-art techniques in terms
of clustering-base, object-based and cluster-based ensembles
as well as the algorithm to produce base clusterings (k-means).

This work verifies that the couplings between clusterings
and between objects are essential to the clustering ensemble
problem. The coupling of clusterings can enhance the cluster-
ing quality in most cases, and the improvement level depends
on the accuracy of base clusterings. The inter-coupling of
objects is associated with the consistency of base cluster-
ing results, which leads to fluctuated improvement on the
clustering quality. Thus, what is the relationship between the
coupling of base clusterings and their individual performance?
What is the relationship between the coupling of objects
and the consistency? How about introducing a weight to
control the coupling of objects during the process of clustering
ensemble? How to fix the weights λk of base clustering bck in
IeCSC rather than simply treating them to be equal? We are
currently working on these potential issues, and will involve
the coupling of clusters in our future work.
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