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Abstract—This paper presents a novel hybrid approach to
outlier detection by incorporating local data uncertainty into
the construction of a global classifier. To deal with local data
uncertainty, we introduce a confidence value to each data
example in the training data, which measures the strength
of the corresponding class label. Our proposed method works
in two steps. Firstly, we generate a pseudo training dataset
by computing a confidence value of each input example on its
class label. We present two different mechanisms: kernel k-
means clustering algorithm and kernel LOF-based algorithm,
to compute the confidence values based on the local data
behavior. Secondly, we construct a global classifier for outlier
detection by generalizing the SVDD-based learning framework
to incorporate both positive and negative examples as well
as their associated confidence values. By integrating local
and global outlier detection, our proposed method explicitly
handles the uncertainty of the input data and enhances the
ability of SVDD in reducing the sensitivity to noise. Extensive
experiments on real life datasets demonstrate that our proposed
method can achieve a better tradeoff between detection rate
and false alarm rate as compared to four state-of-the-art outlier
detection algorithms.
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I. INTRODUCTION

Outlier detection has attracted increasing attention in

machine learning and data mining areas due to its wide-

ranging applications from machine fault detection, credit

card fraud detection, network intrusion to medical diagnosis.

Outliers refer to the data objects that are markedly different

from or inconsistent with the remaining set of data [8], [13].

Traditional outlier detection algorithms typically assume that

outliers are difficult or costly to obtain due to their rare

occurrences in real-world applications. Therefore, most of

previous approaches mainly focus on modelling a represen-

tation of the normal data so as to identify outliers that do

not fit the model well.

Depending on the nature of representation models, pre-

vious approaches to outlier detection can be classified into

four broad categories: (1) distribution-based approaches [4],

in which a pre-specified probability distribution is usually

used to model the normal data and then a statistical test is

applied to detect if a data point is an outlier; (2) density-

based approaches [3], [6], [12], in which local outliers

are identified by examining the distances to their nearest

neighbors; (3) clustering-based approaches [14], which find

outliers as by-product of a clustering algorithm; (4) model-

based approaches [18], which typically use a predictive

model to characterize the normal data and detect outliers

as deviations from the model. In this category, the support

vector data description (SVDD) proposed by Tax and Duin

[25], [26] has been demonstrated to be capable of detecting

outliers in various application domains.

Despite much progress in this area, most of the existing

works on outlier detection have not explicitly dealt with the

uncertainty of the input data. An underlying assumption is

that the training dataset is perfectly labeled for building out-

lier detection models or classifiers. However, in many real-

world applications, the data may be corrupted with noise or

may only be partially complete [2], [5]. For example, sensor

networks typically generate a large amount of uncertain data

subject to sampling errors or instrument imperfections. Thus,

a normal example may behave like an outlier, even though

the example itself may not be an outlier. Such uncertain

information might introduce labeling imperfections or errors

into the training data, which further limits the accuracy of

subsequent outlier detection. Moreover, another important

observation is that, negative examples or outliers, although

very few, do exist in many applications. For example, in the

network intrusion domain, in addition to extensive data about

the normal traffic conditions in the network, there also exist

a small number of cyber attacks that can be collected to

facilitate outlier detection. Although these outliers are not

sufficient for constructing a binary classifier, they can be

incorporated into the training process to refine the decision

boundary around the normal data for outlier detection.

In this paper, we address the problem of outlier detection
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with very few labeled negative examples. In order to cope

with data uncertainty, we propose a novel hybrid approach to

outlier detection by generalizing the SVDD learning frame-

work on imperfectly labeled training dataset. Specifically,

we associate each example in the training dataset not only

with a class label but also a confidence value which mea-

sures the strength of the corresponding label. Our proposed

approach works in two steps. In the first step, we generate

a pseudo training dataset by computing a confidence value

of each input example on its class label based on the local

data behavior. Two different mechanisms are proposed to

generate the confidence values: kernel k-means clustering

methods and kernel LOF-based method. In the second step,

we construct a global classifier for outlier detection by

generalizing the SVDD-based learning process. Associated

with a confidence value, each data point can have different

contributions to the learning of the decision boundary. By

integrating local and global outlier detection, our proposed

method explicitly handles the uncertainty of the input data

and enables the ability of SVDD in reducing the sensitivity

to noise. Extensive experiments on real life datasets show

that our proposed method can offer a better tradeoff between

detection rate and false alarm rate as compared to three state-

of-the-art outlier detection algorithms.

The rest of the paper is organized as follows. Section

II discusses previous works related to our outlier detection

problem. Section III presents our proposed method to outlier

detection in detail. Section IV reports extensive experimental

results on real-world datasets. Section V concludes the paper

and discusses possible directions for future work.

II. RELATED WORK

In this section, we discuss previous work related to our

outlier detection problem in three parts. In Section II-A, we

first review previous work on outlier detection in the data

mining area. In Section II-B, we discuss another branch of

related work on learning from imbalanced data and cost-

sensitive learning. Finally, in Section II-C, we give a brief

description of support vector data description.

A. Outlier Detection

Outlier detection techniques can be classified into four

categories: distribution-based approaches [10], density-based

approaches [6], [12], clustering-based approaches [14], [22]

and model-based approaches [8]. Distribution-based ap-

proaches [10] are the earliest algorithms developed for

outlier detection, which fit a statistical model (e.g. Normal,

Poisson, Gaussian, etc.) to the normal data and then apply a

statistical test to determine if an unseen data point belongs

to this model or not. Points that have low probability of

belonging to the learned model are detected as outliers. The

key disadvantage of distribution-based approaches is that

they rely on the assumption that the data is generated from a

particular distribution. However, this assumption often does

not hold true in practice, especially for high dimensional

real data sets.

For density-based approaches [6], [12], the main task is to

define pairwise distances between data points and identify

outliers by examining the distance or relative density of each

data point to its local neighbors. Representative methods in-

clude LOF (Local Outlier Factor) [6] and its variants, which

assign an outlier score to any given data point, depending

on its distances in the local neighborhood. The advantage of

these approaches is that they do not make any assumption

for the generative distribution of the data. However, these

approaches incur a high computational complexity in the

testing phase, since they involve calculating the distance

between each test instance and all the other instances to

compute nearest neighbors.

Clustering-based approaches [14], [22] mainly rely on

applying clustering techniques to characterize the local data

behavior. As a by-product of clustering, small clusters that

contain significantly less data points than other clusters

are considered as outliers. Clustering-based approaches are

unsupervised in nature without requiring any labeled training

data. However, the performance of unsupervised outlier

detection is limited.

Model-based approaches [15] typically characterize the

normal data via a predictive model and detect outliers as

deviations from the learned model. Among others, support

vector data description (SVDD) [25], [26] has been demon-

strated empirically to be capable of detecting outliers in

various domains. The most attractive feature of SVDD is that

it can transform the original data into a feature space and

detect global outliers more effectively for high-dimensional

data. However, its performance is sensitive to the noise

involved in the input data.

Depending on the availability of a training dataset, outlier

detection techniques described above operate in two different

modes: supervised and unsupervised. Distribution-based ap-

proaches and model-based approaches fall into the category

of supervised outlier detection, which assumes the availabil-

ity of a training dataset that has labeled instances for normal

class (as well as anomaly class sometimes). For supervised

outlier detection, obtaining accurate and representative labels

for the training dataset, especially for the anomaly class

is usually very challenging. Several techniques [1], [23],

[27] have been proposed that inject artificial anomalies into

a normal dataset to obtain a labeled training data set. In

addition, the work of [24] presents a new method to detect

outliers by utilizing the instability of the output of a classifier

built on bootstrapped training data.

The method we propose in this work is a hybrid approach

to outlier detection, which captures local data uncertainty by

generating the confidence of each input example on its class

label based on the local neighborhood. Such information is

then incorporated into the generalized SVDD framework to

enhance a global classifier for outlier detection.
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B. Difference from Imbalanced Data Classification

The outlier detection problem that we consider in this

paper is also related to the problem of imbalanced data

classification [9], in which outliers corresponding to the

negative class are extremely small in proportion as compared

to the normal data corresponding to the positive class.

Research on imbalanced data classification falls into two

main categories. The first category attempts to modify

the class distribution of training data before applying any

learning algorithms [7]. This is usually done by over-

sampling, which replicates the data in the minority class,

or under-sampling, which throws away part of the data in

the majority class. The second category focuses on making

a particular classifier learner cost sensitive, by setting the

false positive and false negative costs very differently and

incorporating the cost factors into the learning process [9].

Representative methods include cost-sensitive decision trees

[16] and cost-sensitive SVMs [11], [19]. When imbalanced

data are present, researchers have argued for the use of

ranking-based metrics, such as the ROC curve and the area

under ROC curve (AUC) [20] instead of using accuracy.

The difference between imbalanced data classification

and our outlier detection problem is that: in imbalanced

data classification, the examples from one or more mi-

nority classes are often self-similar, potentially forming

compact clusters, while in outlier detection, the outliers are

typically scattered so that the distribution of the negative

class cannot be well represented by the very few negative

training examples. To solve our problem, we can exploit

cost-sensitive learning algorithms, but the false positive and

false negative costs are usually unknown to us in real

life applications. Therefore, we exploit a novel one-class

classification method for outlier detection, which aims at

building a decision boundary around the normal data, and

utilize the few negative examples to refine the boundary.

C. Support Vector Data Description

The Support Vector Data Description (SVDD) [25] is one

of the best-known support vector learning methods for one-

class classification. Given a set of target data {xi}, i =
1, . . . , l, where xi ∈ Rm, the basic idea is to find a sphere

that contains most of target data such that its corresponding

radius R is minimized:

min F (R, o, ξi) = R2 + C

l∑

i=1

ξi,

s.t. ‖ xi − o ‖2 ≤ R2 + ξi,

ξi ≥ 0, (1)

where slack variables ξi are introduced to allow some data

points to lie outside the sphere, and C > 0 controls the

tradeoff between the volume of the sphere and the number of

errors.
∑l

i=1 ξi means the penalty for misclassified patterns.

O r i g i n a l 
b o u n a d r y 

R e f i n e d 
b o u n a d r y 

Figure 1. Motivation behind our proposed approach

By introducing Lagrange multipliers, the above optimiza-

tion problem is transformed into the dual formulation:

max

l∑

i=1

αi(xi · xi)−
l∑

i=1

l∑

k=1

αiαk(xi · xk)

s.t. 0 ≤ αi ≤ C,
∑

i

αi = 1. (2)

The solution of Equation (2) gives a set of {αi}. Data points

with αi > 0 are called the support vectors of the description.

For a test point x, the distance to the center of the sphere

is calculated as: ‖ x− o ‖2 = (x · x) − 2
∑

i αi(xi · x) +∑
i,j αiαj(xi · xj). The point x is classified as normal data

when this distance is less than or equal to the radius R.

Otherwise, it is flagged as an outlier.

To allow a more flexible description, the original data

points are typically mapped into a feature space via a

nonlinear mapping function φ(·). The mapping is performed

implicitly by replacing the inner products (·, ·) in Equation

(2) by a kernel function K(x, xi) = φ(x) · φ(xi). The most

attractive feature of SVDD is that it can transform the input

data into a feature space and detect global outliers effectively

for high-dimensional data. However, its performance is sen-

sitive to the noise involved in the input data. Our proposed

method generalizes SVDD to incorporate the confidence of

class labels into the training process, which mitigates the

effect of noise on outlier detection.

III. OUR PROPOSED ALGORITHM

In this section, we provide a detailed description about

our proposed approach to outlier detection. Given a set

of training data D which consists of l normal examples

and a small amount of n outlier (or abnormal) examples,

the objective is to build a classifier using both normal

and abnormal training data and the classifier is thereafter

applied to classify unseen test data. However, subject to

sampling errors or device imperfections, an normal example

may behave like an outlier, even though the example itself

may not be an outlier. Such error factors might result in

an imperfectly labeled training data, based on which the

subsequent outlier detection becomes grossly inaccurate.
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To deal with label imperfections, we propose to associate

each input data with a confidence value, which indicates the

likelihood of an input data belonging to its corresponding

class label. Such information is thereafter incorporated into

the construction of a global classifier for outlier detection.

The motivation behind our proposed method is illustrated

in Figure 1. In the figure, positive examples are depicted

as circles and negative examples squares. The size of the

circles/squares indicates their associated confidence values.

Intuitively, the higher confidence we have on a label, the

larger force we want to have on that sample towards the

decision boundary. The dashed line is the original decision

boundary derived from the standard SVDD training, and the

solid line is the refined decision boundary after taking labels’

confidence values into consideration.

Based on this idea, our proposed method works in two

steps as follows:

• In the first step, we generate a pseudo training dataset
by computing a confidence value for each input data

on its class label based on local data behavior.

• In the second step, we construct a global SVDD-based

classifier for outlier detection by using both normal and

abnormal examples as well as the confidence values

associated with their class labels.

In the following, we describe the two steps in detail.

A. Computing Confidence on the Class Labels

The main task of this step is to create a pseudo training

dataset by computing a confidence value for each input data

on its class label. The generated pseudo training data consists

of two parts: (x1,mT (x1)), . . . , (xl,mT (xl)) for l normal

examples and (xl+1,m
N (xl+1)), . . . , (xl+n,m

N (xl+n)) for

n abnormal examples, were mT (x1) and mN (xj) indicate

the likelihood of example x belonging to the the normal

class and the outlier class, respectively.

We propose two different schemes to compute a confi-

dence value for each input data, inspired by clustering-based

and density-based approaches to outlier detection. The basic

idea is to capture the local data uncertainty by examining the

relative distances of each input data to its local neighbors.

1) Kernel K-Means Clustering Method: We adopt the

kernel k-means clustering algorithm to generate a confidence

value for each input data. Based on a nonlinear mapping

function φ : x → φ(x), kernel k-means clustering minimizes

the following objective function:

J =
k∑

i=1

l+n∑

j=1

‖φ(xj)− φ(vi)‖2, (3)

where k is the number of clusters and vi is the cluster center

of the ith cluster.

By solving this optimization problem, k-means clustering

returns a set of local clusters, in which data points belonging

to a same cluster are more similar to each other. Intuitively,

for a data point, if most of data point in the same cluster are

normal, it would have a high probability of being normal,

and if there is an outlying point that doe not belong to

any cluster, it would have a high probability of being an

outlier. Therefore, we calculate the confidence values as

follows. For a given cluster j, assume there exist lpj normal

examples and lnj negative examples. The confidence value of

a normal example belonging to the normal class is calculated

as mT (xt) = lpj /l
p
j + lnj . Similarly, the confidence value

of an abnormal example belonging to the negative class is

computed as mN (xn) = lnj /l
p
j + lnj .

The advantage of kernel k-means is that it can partition

the dataset into a set of local clusters that are non-linearly

separable in the input space. However, the main limitation

is that it does not work well on datasets with varying

densities by using a global distance function, which causes

the generated confidence values to be inaccurate.

2) Kernel LOF-based Method: To cope with datasets

with varying densities, we propose a local density-based

method to compute a confidence value for each input data.

Inspired by the LOF algorithm [6], the basic idea is to

examine the relative distance of a point to its local neighbors.

Specifically, we extend the original LOF into the kernel

space by using kernel methods and generate the confidence

values in the kernel space instead of the input space.

For each point xi, we first compute its local reachability

density, which is the average reachability distance based on

the k-nearest neighbors of xi.

lrdk(xi) =
1

k

∑

xj∈Nk(xi)

reach-listk(xi, xj), (4)

where Nk(xi) is a set of k-nearest neighbors of point xi.
Here, reach-listk(xi, xj) denotes the reachability distance of

object xi with respect to object xj in the feature space. It is

computed as the larger value between A and B, where A is

the actual distance between xj and xi, and B is the distance

between xi and its kth nearest neighbor. Interested readers

please refer to [6] for detailed definitions.

After the local reachability density lrdk(xi) is computed,

for the point xi, we find its lrd-neighborhood Nlrd(xi) =
{xj ∈ D | ‖φ(xi) − φ(xj)‖2 ≤ lrdk(xi)}. The distance

between xi and xj in the feature space is computed as

‖φ(xi)−φ(xj)‖2 = K(xi, xi)+K(xj , xj)−2K(xi, xj). (5)

For a positive sample, suppose that there exist lt examples

out of |Nlrd(xi)| nearest neighbors belonging to the positive

class. The confidence value of xt towards positive class is de-

fined as mT (xt) = lt/|Nlrd(xi)|, where |Nlrd(xi)| denotes

the number of nearest neighbors in the lrd-neighborhood.

Similarly, for a negative example, assume there exist ln ex-

amples out of |Nlrd(xi)| nearest neighbors belonging to the

negative class, The confidence value of xn towards negative

class in feature space is given as mN (xn) = ln/|Nlrd(xi)|.
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B. Constructing Soft-SVDD Classifiers

After generating a pseudo training dataset, the next step is

to build a global SVDD-based classifier for outlier detection.

Below, we give a new formulation of SVDD by using

both normal and abnormal data as well as the associated

confidence on the class labels.

1) Primal Formulation: Since the membership functions

mT (xi) and mN (xj) indicate the degree of the belonging-

ness of data example xi toward target class and negative

class, the solution to soft-SVDD can be achieved by solving

the following optimization problem:

min F = R2 + C1

l∑

i=1

mT (xi)ξi + C2

l+n∑

j=l+1

mN (xj)ξj

s.t. ‖ xi − o ‖2 ≤ R2 + ξi,

‖ xj − o ‖2 ≥ R2 − ξj ,

ξi ≥ 0, ξj ≥ 0, (6)

Above, Parameters C1 and C2 control the tradeoff between

the sphere volume and the errors. Parameters ξi are ξj are

defined as a measure of error, as in SVDD. The terms

mT (xi)ξi and mN (xj)ξj can be therefore considered as a

measure of error with different weighing factors. Note that

a smaller value of mT (xi) could reduce the effect of the

parameter ξi in Equation (6), such that the corresponding

data example xi becomes less significant in the training.

2) Dual Problem: To solve the above optimization prob-

lem, we introduce Lagrange multipliers αT
i ≥ 0, αN

j ≥ 0,

βT
i ≥ 0, βN

j ≥ 0, and convert problem (6) into problem (7).

L = R2 + C1

l∑

i=1

mT (xi)ξi + C2

l+n∑

j=l+1

mN (xj)ξj

−
l∑

i=1

αT
i (R

2 + ξi − ‖ Φ(xi)− o ‖2)−
l+n∑

j=l+1

βN
j ξj

−
l∑

i=1

βT
i ξi −

l+n∑

j=l+1

αN
j (‖ Φ(xj)− o ‖2 −R2 − ξj).

(7)

Setting the partial derivatives of L with respect to R, o, ξi, ξj
equal to zeros respectively, we can obtain

∂L

∂R
= 0 −→

l∑

i=1

αT
i −

l+n∑

j=l+1

αN
j = 1,

∂L

∂o
= 0 −→

l∑

i=1

αT
i (o− Φ(xi)) =

l+n∑

j=l+1

αN
j (o− Φ(xj)),

∂L

∂ξi
= 0 −→ αT

i + βT
i = C1m

T (xi),

∂L

∂ξj
= 0 −→ αN

j + βN
j = C2m

N (xj).

Replacing these into Equation (7), we get the following dual

formulation:

max

l∑

i=1

αT
i K(xi, xi) + 2

l∑

i=1

l+n∑

j=l+1

αT
i α

N
j K(xi, xj)

−
l+n∑

j=l+1

αN
j K(xj , xj)−

l∑

i=1

l∑

k=1

αT
i α

T
kK(xi, xk)

−
l+n∑

j=l+1

l+n∑

v=l+1

αN
j αN

v K(xj , xv)

s.t. 0 ≤ αT
i ≤ C1m

T (xi),
0 ≤ αN

j ≤ C2m
N (xj),

l∑

i=1

αT
i −

l+n∑

j=l+1

αN
j = 1. (8)

By setting αi = αT
i (i = 1, 2, . . . , l), αi = αN

i (i = l +
1, l + 2, . . . , l + n), Ci = C1m

T (xi)(i = 1, 2, . . . , l) and

Ci = C2m
N (xi)(i = l+1, l+2, . . . , l+n), the optimization

Problem (8) is rewritten as follows:

max

l+n∑

i=1

αiK(xi, xi)−
l+n∑

i=1

l+n∑

j=1

αiαjK(xi, xj) (9)

s.t. 0 ≤ αi ≤ Ci i = 1, 2, . . . , l + n,
l+n∑

i=1

αi = 1.

After solving the above dual problem, we obtain the

Lagrange multipliers αi(1 ≤ i ≤ l + n), which give the

centroid of the minimum sphere as a linear combination of

xi:

o =

l+n∑

i=1

αiΦ(xi). (10)

Above, we find only the patterns with αi �= 0 construct the

centroid of the minimum sphere, and these pattern are called

support vectors.

3) Decision Boundary Construction: By applying

Karush-Kuhn-Tucker conditions [28], we then obtain the

radius R of the decision hyperplane. Assume xu is one

of the patterns lying on the surface of sphere, R can be

calculated as follows:

R2 = ‖xu − o‖2
= K(xu, xu) + (o, o)− 2K(xu, o)

= K(xu, xu) +
l+n∑

i=1

l+n∑

k=1

αiαkK(xi, xk)

−2
l+n∑

i=1

αi(xi, xu) (11)
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To classify a test point x, we just calculate its distance to

the centroid of the hypersphere. If this distance is less than

or equal to R, i.e.

‖x− o‖2 ≤ R2, (12)

x is accepted as the normal data. Otherwise, it is detected

as an outlier.

4) Complexity Analysis: The computational complexity

of solving the optimization Problem (9) is O(l+n)2. Since

outliers only take a very small portion of the training set, i.e.

n� l, Soft-SVDD has approximately the same complexity

as the standard SVDD (O(l2)).

IV. EXPERIMENTAL EVALUATION

To validate the effectiveness of our proposed method, we

perform extensive experiments on 10 real life datasets. For

all reported results, the test platform is a Dual 2.8GHz Intel

Core2 T9600 PC with 3.45GB RAM.

A. Baselines and Metrics

We implemented two variants of our proposed method us-

ing two mechanisms to compute the confidence values: ker-

nel k-means clustering and kernel LOF, which are referred to

as CLU-Soft-SVDD and LOF-Soft-SVDD, respectively. For

comparison, four state-of-the-art outlier detection algorithms

are used as baselines.

1) The first one is kernel k-means clustering [22], [8]

which finds outliers from resulting clusters in the

feature space.

2) The second one is the kernel-LOF algorithm, which

generalizes the LOF algorithm [6] by computing the

outlier factor in the feature space.

The first two baselines are used to show the improvement

of our proposed method over clustering-based and density-

based approaches to outlier detection.

3) The third one is SVDD [25], which builds a one-

class classifier solely based on the normal data. This

baseline is used to test the ability of our proposed

method in reducing the sensitivity of SVDD to noise.

4) The fourth algorithm is the cost-sensitive SVM (CS-

SVM) [19], which assigns different costs to the normal

data and abnormal data so as to learn a binary classifier

for outlier detection. This baseline is used to test the

effectiveness of our proposed method when very few

labeled negative examples are available for training.

The performance of outlier detection algorithms can be

evaluated based on two error rates: detection rate and false
alarm rate. The detection rate is computed as the ratio of the

number of correctly detected outliers to the total number of

outliers. The false alarm rate is computed as the ratio of the

number of normal examples that are incorrectly detected as

outliers to the total number of normal examples. We compare

the six algorithms using the ROC curve which plots the

detection rate against the false alarm rate. We also explicitly

compute the AUC values [20] to compare the six algorithms.

A desirable algorithm with a high detection rate and a low

false alarm rate should have an AUC value closer to one.

B. Datasets and Parameter Settings

In our experiments, we used 10 real life datasets that

have been used earlier by other researchers for outlier

detection [17], [29]. These datasets include Abalone class

1-8, Spambase other, Thyriod hyperfunction, Waveform 1,

Satellite Grey soil, Delft pump 5x1, Diabetes present, Breast

Wisconsin, Heart Cleveland, and Arrhythmia normal 1. To

perform outlier detection with very few abnormal data, we

randomly selected 50% of positive data and a small number

of abnormal data for training, such that 95% percent of the

training data belong to the positive class and only 5% percent

belong to the negative class. All the remaining data are used

for testing.

For all the algorithms, the Gaussian RBF kernel was used

in the experiments

K(x, xi) = exp(−‖ x− xi ‖2/2σ2). (13)

We used cross-validation on the training data to tune the

parameters for CLU-Soft-SVDD, LOF-Soft-SVDD, SVDD

and CS-SVM. The parameter σ in the RBF kernel was

searched in the range from 2−3 to 24. In addition, the

parameter C in SVDD, as well as C1, C2 in Soft-SVDD

and CS-SVM was selected from 20 to 24. All the reported

ROC and AUC results are based on this setting.

For CLU-Soft-SVDD and kernel k-means, we varied the

number of clusters from 2 to l+n
2 and obtained the optimal

number of clusters k∗ by minimizing the external criteria

in [21]. For LOF-Soft-SVDD, we set the number of nearest

neighbors k used for computing confidence values to the

number of negative samples in the training set. For kernel

LOF, we followed the experimental setting in [6] to compute

the maximum LOF by varying k in the range from 30 to 50.

C. Classification Accuracy

We first performed experiments to compare the classifi-

cation accuracy of the six algorithms. For each dataset, we

generated the training data by randomly selecting positive

examples and negative examples at the ratio of 95% to

5%, and applied the six algorithms to the training data and

evaluated the performance on the remaining test data. Figure

2 shows the ROC curves for six out of 10 datasets. Our

proposed method, CLU-Soft-SVDD and LOF-Soft-SVDD,

can be observed to outperform other baselines. Note that,

due to limited space, we only show the ROC curves for

six datasets, and in the following experiments, we will also

report detailed analysis results for six datasets. However, the

reported results are all consistent on the 10 datasets.

1The 10 datasets used in our experiments are all available online from
http://homepage.tudelft.nl/n9d04/occ/index.html
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(c) Thyroid
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(d) Waveform

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

  

 

 

LOF−based Soft SVDD
Clustering−Based Soft SVDD
SVDD
CS−SVM
LOF
Clustering

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

  

 

 

LOF−based Soft SVDD
Clustering−Based Soft SVDD
SVDD
CS−SVM
LOF
Clustering

310



Table I
AVERAGE AUC VALUES AND THE STANDARD DEVIATIONS ON THE 10 DATASETS

CLU- LOF- Kernel- Kernel
Datasets Soft-SVDD Soft-SVDD SVDD CS-SVM LOF k-Means

Abalone 0.894±0.033 0.911±0.035 0.878±0.041 0.855±0.044 0.848±0.041 0.842±0.048
Spambase 0.849±0.059 0.866±0.054 0.830±0.076 0.814±0.079 0.808±0.082 0.749±0.090
Thyroid 0.821±0.045 0.840±0.042 0.806±0.042 0.812±0.050 0.769±0.058 0.756±0.068

Waveform 0.924±0.036 0.936±0.026 0.919±0.045 0.866±0.049 0.837±0.069 0.815±0.069
Satellite Grey soil 0.935±0.044 0.944±0.045 0.907±0.052 0.917±0.050 0.870±0.058 0.859±0.062

Delf Pump 0.961±0.057 0.963±0.039 0.948±0.042 0.942±0.060 0.938±0.072 0.927±0.079
Diabetes 0.753±0.072 0.769±0.068 0.736±0.078 0.726±0.089 0.652±0.098 0.601±0.116

B.Wisconsin 0.958±0.033 0.977±0.038 0.943±0.039 0.942±0.043 0.908±0.050 0.873±0.078
H.Cleveland 0.753±0.059 0.797±0.078 0.728±0.098 0.746±0.073 0.674±0.127 0.648±0.128
Arrhythmia 0.903±0.063 0.913±0.052 0.853±0.073 0.872±0.063 0.832±0.081 0.798±0.079

x

y

z

Pattern x

vector

uncertain pattern
vx

v

Figure 3. Illustration of the method used to add the noise to a data
example: x is an original data example, v is a noise vector, xv is the new
data example with added noise. Here we have xv = x + v.

Figure 3 illustrates the basic idea of the method used to

add the noise to data examples. Specifically, the standard

deviation σ0
i of the entire data along the ith dimension was

first obtained. In order to model the difference in noise on

different dimensions, we defined the standard deviation σi

along the ith dimension, whose value was randomly drawn

from the range [0, 2 · σ0
i ]. Then, for the ith dimension,

we added noise from a random distribution with standard

deviation σi. In this way, a data example xj was added with

the noise, which can be presented as a vector

σxj = [σ
xj
1 , σ

xj
2 , · · · , σxj

n−1, σ
xj
n ]. (14)

Here, n denotes the number of dimensions for a data

example xj , and σ
xj
i , i = 1, · · ·n represents the noise added

into the ith dimension of the data example.

In our experiments, we made the percentage of the data

corrupted by noise vary from 0% to 30%, and applied

the six methods on these datasets. Figure 4 shows the

AUC values achieved by the six algorithms with respect to

different percentages of training data corrupted by noise.

We can see that, as more noise is added into the training

data, the overall performance of the six methods degrades.

This occurs because, when more noise is involved, target

class becomes more indistinguishable from negative class.

However, we can clearly see that, the two methods, LOF-

soft-SVDD and CLU- soft-SVDD, can still consistently

yield higher accuracy than kernel LOF, kernel k-means,

SVDD, and CS-SVM. This concludes that, our proposed

soft-SVDD can effectively reduce the effect of noise.

E. Impact of Imbalanced Data Distribution

So far we have demonstrated that our proposed method

can consistently outperform CS-SVM when the number

of abnormal data is much smaller than the number of

normal data. However, it is still interesting to see how the

performance of the three algorithms would be affected when

more abnormal data are available for training.

Table II
COMPARISON OF AUC VALUES WITH RESPECT TO DIFFERENT RATIOS

OF NORMAL DATA SIZE TO ABNORMAL DATA SIZE IN THE TRAINING

DATASET

Datasets Ratio CLU- LOF- CS-SVM
Soft-SVDD Soft-SVDD

98:2 0.887 0.892 0.765
Abalone 95:5 0.904 0.913 0.842

90:10 0.913 0.918 0.915
98:2 0.835 0.843 0.746

Spambase 95:5 0.840 0.850 0.803
90:10 0.844 0.858 0.853
98:2 0.804 0.813 0.786

Thyroid 95:5 0.813 0.836 0.812
90:10 0.825 0.840 0.836
98:2 0.934 0.939 0.706

Waveform 95:5 0.944 0.955 0.856
90:10 0.957 0.966 0.953
98:2 0.946 0.951 0.826

Delft Pump 95:5 0.961 0.963 0.942
95:10 0.968 0.968 0.961

Satellite 95:2 0.924 0.935 0.807
Grey soil 95:5 0.935 0.944 0.917

90:10 0.938 0.948 0.944

Table II shows the AUC values with respect to different

ratios of normal data size to abnormal data size in the

training data. It is noted that as more abnormal examples are

added into the training dataset, CS-SVM offers increasing
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(f) Satellite Grey soil

Figure 4. Comparison of AUC values with respect to different percents of training data corrupted by noise

accuracy. This is because more negative examples can offer

more information from negative class to build a more accu-

rate SVM. However, when the ratio of normal data size to

abnormal data size are 98 : 2 and 95 : 5 for which the num-

ber of abnormal examples are very few, LOF-Soft-SVDD

and CLU-Soft-SVDD can remarkably outperform CS-SVM.

This is because, based on insufficient abnormal data, CS-

SVM cannot construct an accurate decision boundary to

distinguish two classes. This indicates that, our proposed

method can yield higher accuracy in real-world applications

where abnormal data are very scarce.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new model-based approach

to outlier detection by introducing a confidence value to

each input data into the SVDD training phase. Our proposed

method first captures the local uncertainty by computing

a confidence value based on each example’s local data

behavior, and then builds a global classifier for outlier de-

tection by extending the SVDD-based learning framework.

Experiments on 10 real life datasets have shown that our

proposed method can achieve a better tradeoff between

detection rate and false alarm rate for outlier detection.

We plan to extend our work in several directions. First, we

would like to investigate how to design better mechanisms to

generate confidence values based on the data characteristics

in a given application domain. Second, we will look into how

to use an online process to learn the hypersphere boundary

of Soft-SVDD in streaming environments.
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