
Efficiently Mining Top-K High Utility Sequential Patterns

Junfu Yin, Zhigang Zheng, Longbing Cao, Yin Song, Wei Wei

Advanced Analytics Institute

University of Technology, Sydney, Australia

{Junfu.Yin, Yin.Song, Wei.Wei-7}@student.uts.edu.au

{Longbing.Cao, Zhigang.Zheng}@uts.edu.au

Abstract—High utility sequential pattern mining is an emerg-
ing topic in the data mining community. Compared to the clas-
sic frequent sequence mining, the utility framework provides
more informative and actionable knowledge since the utility
of a sequence indicates business value and impact. However,
the introduction of “utility” makes the problem fundamentally
different from the frequency-based pattern mining framework
and brings about dramatic challenges. Although the existing
high utility sequential pattern mining algorithms can discover
all the patterns satisfying a given minimum utility, it is often
difficult for users to set a proper minimum utility. A too
small value may produce thousands of patterns, whereas a
too big one may lead to no findings. In this paper, we propose
a novel framework called top-k high utility sequential pattern
mining to tackle this critical problem. Accordingly, an efficient
algorithm, Top-k high Utility Sequence (TUS for short) mining,
is designed to identify top-k high utility sequential patterns
without minimum utility. In addition, three effective features
are introduced to handle the efficiency problem, including
two strategies for raising the threshold and one pruning for
filtering unpromising items. Our experiments are conducted on
both synthetic and real datasets. The results show that TUS
incorporating the efficiency-enhanced strategies demonstrates
impressive performance without missing any high utility se-
quential patterns.

Keywords-High utility sequential pattern mining; Top-K
sequential pattern mining

I. INTRODUCTION

Frequent sequential pattern mining [?], as one of the

fundamental research topics in data mining, discovers fre-

quent subsequences in sequence databases. It is very useful

for handling order-based business problems, and has been

successfully adopted to various domains and applications

such as complex behavior analysis [?] and gene sequence

analysis [?], [?], [?]. In the frequency-based framework for

typical sequence analysis, the downward closure property

(also known as Apriori property) [?] plays a fundamental

role in identifying frequent sequential patterns.

However, taking the frequency to measure pattern in-

terestingness may be insufficient for selecting actionable

sequences associated with expected quality and business

impact, because the patterns identified under the frequency

(support) framework do not disclose the business value

and impact. To solve the above problems, the concept

utility is introduced into sequential pattern mining to se-

lect sequences of high utility by considering the quality

and value (such as profit) of itemsets. This leads to an

emerging area, high utility pattern mining [?], [?], [?], [?],

[?] and high utility sequential pattern mining [?], [?], [?],

[?], [?], [?], which selects interesting patterns / sequential

patterns based on minimum utility rather than minimum

support. The utility-based patterns are proven to be more

informative and actionable for decision-making than the

frequency-based ones [?]. For instance, in [?], [?], the

authors discuss the extraction of profitable behaviors from

the mobile commerce environments. [?] proposes methods

to mine high utility sequences from web logs by assigning

each page an impact/significance. In [?], a USpan algorithm

is built for utility-based sequential pattern mining satisfying

a predefined minimum utility.

Although algorithms such as USpan can obtain high utility

sequences based on a given minimum utility, it is very

difficult for users to specify an appropriate minimum utility

threshold and to directly obtain the most valuable patterns.

This is because the complexity of utility-based sequence

databases (which may be different from the classic itemsets),

determining multiple factors including the distribution of the

items and utilities, density of the database, lengths of the

sequences, and so on. Consequently, it is not surprising that,

with a same minimum utility threshold, some datasets may

produce millions of patterns while others may contribute

nothing. The challenge here is that it may not be doable

to tune the threshold to capture the expected number of

patterns. This is because the sensitivity of the threshold

makes it hard to tune for a variety of databases. It may

be very costly and time consuming to achieve the proper

threshold for the desired patterns.

In fact, the classic frequency/support based pattern mining

also faces the same challenge. Accordingly, the concept of

extracting top-k patterns has been proposed in [?], [?], [?],

[?] to select the patterns with the highest frequency. In

the top-k frequent pattern mining, instead of letting a user

specify a threshold, the top-k pattern selection algorithms

allow a user to set the number of top-k high frequency

patterns to be discovered. This makes it much easier and

more intuitive and practical than determining a minimum

support; also the determination of k by a user is more

straightforward than considering data characteristics, which

are often invisible to users, for choosing a proper threshold.

The easiness for users to determine k does not indicate

the simplicity of developing an efficient algorithm for se-

lecting top-k high utility sequential patterns. In the utility

framework, TKU [?] is the only method for mining top-

k high utility itemsets, to the best of our knowledge. No

work is reported on mining top-k high utility sequences.

There is significant difference between top-k utility itemset

mining and top-k utility sequence mining in which the order

between itemsets is considered. In fact, the problem of top-k

high utility sequence mining is much more challenging than

mining top-k high utility itemsets. First, as with high utility

itemset mining, the downward closure property does not hold

in the utility-based sequence mining. This means that the ex-

isting top-k frequent sequential pattern mining algorithms [?]

cannot be directly applied. Second, compared to top-k high

utility itemset mining [?], utility-based sequence analysis

faces the critical combinational explosion and computational

complexity caused by sequencing between itemsets. This

means that the techniques in [?] cannot be directly trans-

ferred to top-k high utility sequential pattern mining either.

Third, since the minimum utility is not given in advance, the

algorithm essentially starts the searching from 0 minimum

support. This not only incurs very high computational costs,

but also the challenge of how to raise the minimum threshold

without missing any top-k high utility sequences.

To address the above challenges, this paper proposes

an efficient algorithm to identify Top-k Utility Sequences

(TUS). The contributions of this work are as follows.

• We propose a novel framework for extracting the top-

k high utility sequential patterns. A baseline algorithm

TUSNaive is provided accordingly.

• Three strategies are proposed for effectively raising the

thresholds at different stages of the mining process.

• Substantial experiments on both synthetic and real

datasets show that the TUS algorithm can efficiently

identify top-k high utility sequences from large scale

data with large k.

The remainder of the paper is organized as follows.

Section 2 defines the problem of mining top-k high utility

sequential patterns. Section 3 details the TUS algorithm.

Experimental results and evaluation are presented in Section

4. Section 5 concludes the work.

II. PROBLEM STATEMENT

Let I = {i1, i2, ..., in} be a set of distinct items. A utility

item, or u-item, is an ordered pair (i, u), where i ∈ I
represents an item and u is a positive number representing

the utility of i, e.g. the profit of i. A utility itemset, or u-

itemset, consists of no less than one u-item, which is denoted

and defined as l = [(ij1 , u1)(ij2 , u2)...(ijn′
, un′)], where

(ijk , uk) is a u-item for 1 6 k 6 n′, and ∀k1, k2, where

1 6 k1, k2 6 n′ and k1 6= k2, ijk1 6= ijk2 . For brevity, the

brackets are omitted if a u-itemset has only one u-item. Since

the items in an itemset can be listed in any order. Without

loss of generality, we assume that u-items are listed in the

alphabetical order. A utility sequence, or u-sequence, is an

ordered list of u-itemsets, which is denoted and defined as

s = 〈l1l2 ... lm〉, where lk(1 6 k 6 m) is a u-itemset.

A u-sequence database S consists of sets of tuples 〈sid, s〉,
where sid is a unique identifier of the u-sequence s. Readers

can refer to [?] for more details.

Table I
U-SEQUENCE DATABASE

SID TID Transactions TU SU

1 1 (a,6)(d,8)(e,1) 15

112
1 2 (b,10)(c,16)(f,2) 28
1 3 (a,12)(d,4) 16
1 4 (a,6)(b,5)(f,3) 14
1 5 (a,21)(d,12)(f,6) 39

2 1 (c,20)(d,4) 24

117

2 2 (a,3)(b,5)(c,16)(f,5) 29
2 3 (c,8)(d,10)(e,3) 21
2 4 (f,6) 6
2 5 (b,20)(e,1)(f,1) 22
2 6 (a,6)(d,8)(f,1) 15

3 1 (a,18)(c,16)(d,10) 44

105

3 2 (a,6)(b,5)(f,6) 17
3 3 (d,4) 4
3 4 (b,10)(c,4)(e,5) 19
3 5 (c,4)(d,6)(e,4) 14
3 6 (b,5)(d,2) 7

Definition 1: (Sequence maximum utility) Because a se-

quence may have multiple utility values in the u-sequence

context, we choose the maximum utility [?] as the sequence’s

utility. The maximum utility of a sequence t is denoted and

defined as umax(t):

umax(t) =
∑

max{u(s′)|s′ ∼ t ∧ s′ ⊆ s ∧ s ∈ S} (1)

For example, the utility of 〈(ad)a〉 is {{26, 20, 35, 22,
37}, {34}}. The maximum utility is umax(〈(ad)a〉) = 37+
34 = 71. For brevity, we use sequence utility to represent

the maximum utility of a sequence, i.e., umax, for the rest

of the paper.

Definition 2: (Top-k high utility sequential patterns) A

sequence t is called a top-k high utility sequence if there

are less than k sequences whose utilities are no less than

umax(t). The optimal minimum utility is denoted and defined

as ξ∗ = min{umax(t)|t ∈ T }, where T means the set of

top-k high utility sequences. Given a u-sequence database S
and a number k, the problem of finding the complete set of

top-k high utility sequential patterns in S is to discover all

the itemsets whose utilities are no less than ξ∗ in S.

Example 1: Suppose the desired k number of high utility

sequences is set to 7, the top 7 high utility sequences in Table

I are shown in Table ??. The optimal minimum utility thresh-

old ξ∗ = min{151, 152, 152, 156, 156, 159, 163} = 151. If

k is set to 3, then only sequences 〈d(bcf)d(bf)(adf)〉 and

〈d(bcf)db(adf)〉 are obtained, and ξ∗ = 159. The reason of

excluding 〈d(bc)d(bf)(adf)〉 and 〈d(bcf)d(bf)(ad)〉 is to

control the number of the candidates no more than k = 3.

Table II
TOP 7 HIGH UTILITY SEQUENCES IN TABLE ??

ID Top-k high utility SU

1 〈d(bcf)d(bf)(adf)〉 163

2 〈d(bcf)db(adf)〉 159

3 〈d(bc)d(bf)(adf)〉 156

4 〈d(bcf)d(bf)(ad)〉 156

5 〈d(bc)db(adf)〉 152

6 〈d(bcf)db(ad)〉 152

7 〈(bcf)d(bf)(adf)〉 151

III. THE TUS ALGORITHM

In the previous section, we define the top-k high utility

sequential pattern mining framework. In this section, we

specify and present an efficient algorithm, TUS, for mining

top-k high utility sequential patterns. Firstly, we present a

baseline approach named TUSNaive. Then we present a tight

utility boundary for sequences, which substantially reduces

the search space. In the end, we provide a very efficient

pre-insertion strategy, which effectively raises the minimum

utility threshold.

A. TUSNaive: The Baseline Algorithm

Here we present a baseline algorithm called TUSNaive

to extract the top-k sequences with the highest utilities.

Instead of using a user specified minimum utility, TUSNaive

engages a structure named TUSList to maintain the top-k

high utility sequences on-the-fly.

TUSList is a fixed-size sorted list which is used to main-

tain the top-k high utility sequential patterns dynamically,

and a minimum utility ξ of it is set to prune the unpromising

candidates in the mining process. The mechanism can be

briefed as follows. Initially, the TUSList is empty and ξ is

set to 0. In this stage, whenever a candidate sequence comes,

it will be inserted into TUSList, and ξ stays on 0. Once the

k candidates are found, ξ is raised to the utility of the last

candidate (i.e. the least utility canidate) in TUSList. After

that, a candidate satisfying ξ is inserted into TUSList, then

the least utility candidate(s) will be eliminated. ξ is thereafter

raised to utility of the updated last candidate. The process

continues until no candidate matches ξ, and those remain

in the TUSList are the target patterns. The pseudo code of

TUSNaive is shown in Algorithm ??.

Algorithm 1: TUSNaive(p,S)

1 Scan S for items to be concatenated to p;

2 for Each of the items do

3 Let i be the item, p′ = p+ i and S′ = S(p′);
4 if u(p′) > TUSList.ξ then

5 p′ → TUSList;

6 TUSNaive(p′,S ′);

7 return TUSList;

B. Pre-insertion

Although TUSNaive correctly extracts the top-k high

utility sequences, it traverses too many invalid sequence

candidates since the minimum threshold starts from 0. This

directly degrades the performance of the mining task. To

overcome this problem, we further propose three effective

strategies, i.e., two for raising the minimum utility threshold

and one for reducing the search space, to improve the

performance. We start from the pre-insertion strategy.

Strategy 1: (Pre-insertion) The pre-insertion strategy in-

serts the utilities of both the 1-sequences and u-sequences

to the TUSList before the mining process.

The pre-insertion is an effective strategy for rasing the

minimum utility in TUSList. After the raw sequences are

successfully stored in the memory, it needs to calculate the

utility of each sequence. In this phase, we use a hash table

to record the maximum utility of every distinct item in the

sequences. For example, in Table ??, the maximum utility

of a in s1 is the utility of a5, i.e. 21. The other maximum

utilities are {b : 10, c : 16, d : 12, e : 1, f : 6}. After

s1 is finished, s1 itself will be inserted into the TUSList,

and labeled as a u-sequence. The purpose is to prevent the

sequence from being double-inserted, otherwise it will miss

truly top-k high utility sequences. Similarly, after s2 and s3
are scanned, the 1-sequences will be calculated and added

to the hash table, and both s2 and s3 will be inserted into

the TUSList. After the sequences are scanned, the hash table

is {a:45, b:40, c:52, d:32, e:9, f:18}. All of the items are

actually 1-sequences, they are all inserted into the TUSList.

With the three u-sequences and their utilities, the utilities

in the TUSList is {117, 112, 105, 52, 45, 40, 32}, and the

minimum utility ξ = 32 after pre-insertion.

As seen from the example, the pre-insertion strategy ef-

fectively raises the minimum threshold to a reasonable level

before mining, and prevents from generating unpromising

candidates.

C. Sorting concatenation order

The sorting concatenation order strategy is applied in

the main mining process. It effectively identifies potential

high utility sequences, and the utilities can be calculated and

inserted into TUSList prior to those low utility sequences. As

a result, the minimum utility ξ quickly raises to ξ∗ without

traversing too many invalid candidates, and the efficiency

is therefore substantially improved. Now we discuss the

method in details.

The term concatenation means an item is appended to a

k-sequence to obtain a (k+1)-sequence. There are two types

of concatenations: I-Concatenation and S-Concatenation. S-

Concatenation means an item is appended as a 1-itemset

to the sequence, while I-Concatenation means an item is

added to the last itemset of the sequence. For example, c S-

Concatenates to 〈b〉 result in 〈bc〉, and the I-Concatenation

leads to 〈(bc)〉. More examples are in Figure ??.

<>

<a> <f><e><d><c>

<aa> <ba> <(bc)> <cb> <ea><(ce)> <db> <ff>

I-Concatenation S-Concatenation
<dbaaa>

<(bcf)d><aa(df)> <d(bc)d> <d(bcf)> <dbaa> <e(adf)>

<aad> <(bcf)> <d(bc)> <dba> <eaa> <e(ad)>

Figure 1. The concatenations for the examples in Table ??

A sequential pattern mining algorithm usually follows

a pattern-growth method to mine the expected sequences.

The proposed TUS and TUSNaive algorithm, as mentioned

above, are in this class. For example, in Figure ??, one of

the searching paths is 〈〉 → 〈a〉 → 〈aa〉 → 〈aad〉 → ...

Once this path is over, it will recursively search the other

branches until no more candidates left.

Suppose we are standing on the root 〈〉. We have 6

different ways, that is a to f , to choose to continue the

mining process. Which one should we concatenate to the

root first? Once the first candidate and its offsprings are

finished checking, what order should be applied to the oth-

ers? Does it make difference? In threshold-based high utility

sequence mining, there is no such concerns. Because the

minimum utility ξ is a fixed number from the beginning to

the end. It means that whatever order is used, the candidates

they checked are always the same. However, in the top-k

framework, the order of concatenating items does matter.

Since ξ is dependent on the candidate inside the TUSList,

we should put the high utility candidates to TUSList as soon

as possible so that ξ increases to ξ∗ shortly. Now we present

a few definitions to illustrate the concepts.

Definition 3: (Ending u-item and pivot) Suppose that all

the (u-)items in the (u-)sequences are listed alphabetically.

Let s = 〈l1l2...ln〉 be a u-sequence, t = 〈t1t2...tm〉 be a

sequence and s ≃ t. Assume that sa = 〈la1
la2

...lam
〉, where

lam
= [(ip1

, up1
)(ip2

, up2
)...(ipq

, upq
)], sa ⊆ s and sa ∼ t.

(ipq
, upq

) is called the ending u-item of t in s. Additionally,

(ipq
, upq

) is called pivot or projection point iff there is no

sb = 〈lb1 lb2 ...lbm〉 where sb ⊆ s and sb ∼ t such that

bm < am.

For example, the ending u-items of 〈(ad)a〉 in s1 are a3,

a4 and a5, where the pivot is a3. For 〈d(bf)〉 in s1, the

ending u-items are f2 and f4.

Definition 4: (Ending u-item maximum utility) The end-

ing u-item maximum utility is denoted and defined as

u(t, i, s) = max{u(s′)|s′ ∼ t ∧ s′ ⊆ s ∧ i ∈ s′} (2)

where t is a sequence, s is a u-sequence, i is an ending

u-item of t in s. Specifically, we use up(t, s) to denote the

pivot maximum utility, i.e.

up(t, s) = u(t, ip, s) (3)

where ip is the pivot.

For example, u(〈(ad)a〉, a3, s1) = max(26) =
26, u(〈(ad)a〉, a4, s1) = max(20, 22) = 22 and

u(〈(ad)a〉, a5, s1) = max(35, 37) = 37. Obviously, the

ending u-item utility of a sequence is a subset of the

utility of itself. The pivot maximum utility of 〈(ad)a〉 is

up(〈(ad)a〉, s1) = u(〈(ad)a〉, a3, s1) = 26.

Definition 5: (Sequence-Projected Utilization) The

Sequence-Projected Utilization (SPU) of a sequence t in S
is denoted and defined as SPU(t)

SPU(t) =
∑

i∈s∧s∈S

(urest(i, s) + up(t, s)), (4)

where i is the pivot of t in s, and

urest(i, s) =
∑

i′∈s∧i≺i′

u(i′) (5)

urest means the sum of the utilities of the u-items after the

pivot (exclusive). For example, urest(a5, s1) = u(d, 12) +
u(f, 6) = 12 + 6 = 18 and urest(f5, s1) = 0. The meaning

of SPU is the pivot utility plus the rest u-sequence utility.

For example, SPU(〈a〉, s1) = up(〈a〉, s1)+urest(a1, s1) =
6+106 = 112. Similarly, SPU(〈a〉, s2) = 3+90 = 93 and

SPU(〈a〉, s3) = 18 + 87 = 105. Therefore, SPU(〈a〉) =
112 + 93 + 105 = 310.

Definition 6: (Item concatenation order) Given a se-

quence t and two items a, b. Let ta and tb be the sequences

of a and b concatenated to t respectively, where ta 6= tb. We

say a is prior to b, denoted as a⊲ b, if either of following

conditions is true:

• SPU(ta) > SPU(tb), or

• SPU(ta) = SPU(tb) and

i) ta is I-Concatenated from t, and tb is S-Concatena-

ted from t, or

ii) both ta and tb are I-Concatenated or S-Concatena-

ted from t, but a is alphabetically smaller than b.

Generally, a⊲ b means that the utilities of ta’s offspring

candidates are likely higher than that of tb. Taking 〈aa〉
in Figure ?? as an example, in u-sequence 1, items b, d

and f can be I-Concatenated to 〈aa〉, and the SPUs are

17, 22 and 15 respectively. Obviously, d ⊲ b ⊲ f holds in

u-sequence 1. It also reveals the fact that d3 ≺ b4 ≺ f4.

The S-Concatenation is also in the situation. For example,

since a4 ≺ b4 ≺ f4 ≺ d5, we can easily tell a ⊲ b ⊲

f ⊲ d without calculating. Basically, in a single u-sequence,

a ≺ b means that a has more remaining utility than b, so a

should be concatenated earlier than b. Back to the database,

although SPU(ta) > SPU(tb) may not mean a ≺ b in all

u-sequences, it reflects that ta projected less utility than tb
in the database. When SPU(ta) = SPU(tb), we apply the

normal sequential pattern growth rules. In our experience,

there is nearly no chance for two concatenation items have

the same SPU . In most of time, SPU(ta) is either higher

or lower than SPU(tb). Based on Definition ??, we present

the strategy below.

Strategy 2: (Sorting concatenation order) Given a se-

quence t, and the items can be concatenated to t are

a1, a2, ..., an. Then ak1
, ak2

, ..., akn
is the order to be con-

catenated to t, where ak1
⊲ ak2

⊲ ...⊲ akn
.

For example, assume t = 〈a〉. Items b, c, d, e, f are able

to I-Concatenate to 〈a〉, and the SPUs of 〈(ab)〉, 〈(ac)〉,
〈(ad)〉, 〈(ae)〉 and 〈(af)〉 are 192, 172, 186, 98 and 161
respectively. Similarly, a to f can be S-Concatenated to 〈a〉,
and the corresponding SPUs are 145, 189, 181, 157, 72
and 164. Therefore, the items concatenation order for 〈a〉 is

bi ⊲ bs ⊲ di ⊲ ds ⊲ ci ⊲ fs ⊲ fi ⊲ ds ⊲ as ⊲ ei.
1

D. Sequence-Reduced Utility

In this part, we provide a tighter sequence boundary and

a novel pruning strategy. The following example illustrates

the problem.

Definition 7: (Sequence-Reduced Utilization) Let I =
{i1, i2, ..., in} be a set of distinct items, and B,W ⊆ I,

where B is named as blacklist and W is named as whitelist,

and B ∪ W = I, B ∩ W = ∅. Given a sequence t, a u-

sequence s = 〈l1l2...ln〉. Suppose s ≃ t, let ip be the pivot of

t in s and ip ∈ lm, where 1 ≤ m ≤ n. The SRU(Sequence-

Reduced Utilization) of a sequence t in s is denoted and

defined as SRU(t, s)

SRU(t, s) =up(t, s) +
∑

ip≺i′∧i′∈lm

u(i′)

+
n∑

k=m+1

∑

i′∈lk∧i′∈W

u(i′)

Given an item i, the SRU of i in t’s projection database is

denoted and defined as

SRU(i, t) =
∑

{SRU(t, s)|i′ ∼ i ∧ i′ ∈ lk ∧ s ∈ S} (6)

Item i ∈ W if and only if SRU(i, t) ≥ ξ.

Strategy 3: Keep refreshing the blacklist, until all the

items in the whitelist satisfy SRU(i, t) ≥ ξ.

IV. EXPERIMENTS

In this section, we evaluate the performance of TUS on

a variety of datasets. Since there is no algorithm can solve

the top-k high utility sequence mining, and it is not easy

to upgrade the existing method such as [?] either, we thus

compare TUS with TUSNaive, which is a baseline approach

without pre-insertion, sorting and SRU as described in

1bi and bs means I-Concatenation and S-Concatenation respectively,
similar to the others.

Table III
CHARACTERISTICS OF THE SYNTHETIC DATASETS

Characteristics DS1 [?] DS2 [?]

Average itemset per sequence C 10 8

Average items per itemset T 2.5 2.5

Average itemsets in maximum sequences S 10 6

Average items in maximum sequences I 2.5 2.5

Number of sequences D 100k 10k

Number of different items N 1k 10k

Section ??, ?? and ?? respectively. TUSNaive with different

strategies are also compared.

We conduct experiments on 2 synthetic (DS1 and DS2,

which are generated as [?] using the settings in Table ??)

and 2 real datasets (DS3 [?] and DS4 [?]) to compare the

efficiency of TUS with TUSNaive, in terms of computational

costs on different data sizes and data characteristics. To make

the top-k and threshold based approaches comparable, we

run top-k approaches first. After getting the utility of the

k-th pattern, that is the optimal minimum utility in Defi-

nition ??, we use this value as the minimum threshold for

running the threshold-based methods. The TUS algorithm

is implemented in C++ of Microsoft Visual Studio 2010.

All experiments are conducted on a virtual machine in a

server with Intel Xeon CPU of 3.10GHz, 8GB memory and

Windows 8 system.

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

T
im
e
(S
e
c
.)

K

Tus

TusNaive

TusNaive+

TusNaive+I

TusNaive+S

(a) DS1

0 1000 2000 3000 4000 5000
10

1

10
2

10
3

10
4

10
5

T
im
e
(S
e
c
.)

K

Tus

TusNaive

TusNaive+

TusNaive+I

TusNaive+S

(b) DS2

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

10
5

T
im
e
(S
e
c
.)

K

Tus

TusNaive

TusNaive+

TusNaive+I

TusNaive+S

(c) DS3

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

T
im
e
(S
e
c
.)

K

Tus

TusNaive

TusNaive+

TusNaive+I

TusNaive+S

(d) DS4

Figure 2. Execution Time of Different Stategies

We conduct experiments to evaluate the performance of

TUS, in terms of computational costs, on datasets DS1

to DS4. Different strategies were compared to show their

corresponding performance on the datasets as well. In Figure

??, TUSNaive+ refers to TUNaive with SRU; TUSNaive+I

refers to TUNaive with SRU and pre-insertion; TUSNaive+S

refers to TUNaive with SRU and sorting.

The results show that TUS is generally 10 - 1000+ times

faster than TUSNaive. For DS4 TUSNaive cannot finish the

mining with a very small k (with k = 20) in 24+ hours.

Besides, the gap between TUS and TUSNaive increases

with the increase of k. The results also show that TUS,

TUSNaive+I and TUSNaive+S are generally faster than

TUSNaive+ from Figure ??. That indicates the proposed

three optimization measures, including SRU , sorting and

pre-insertion, are effective for top-k pattern mining.

Generally, TUSNaive+I is faster than TUSNaive+S when

k is small. After k exceeds a certain number, TUSNaive+S

outperforms TUSNaive+I. For example, k = 1000 in Figure

??, Figure ??, k = 2000 in Figure ??, k = 20 in Figure

??. This is because TUSNaive+S starts the mining from 0

while TUSNaive+I does not, pre-insertion directly prunes

unpromising branches than the sorting strategy. The sorting

strategy always traverses the higher estimated utility can-

didates first. This guarantees ξ raising to ξ∗ shortly, while

TUSNaive+I does not. So when k is large, sorting is better

than pre-insertion.

V. CONCLUSIONS

In this paper, we have proposed an efficient algorithm

named TUS for mining top-k high utility sequential patterns

from utility-based sequence databases. TUS guarantees there

is no sequence missed during the mining process. We have

developed a new sequence boundary and a corresponding

pruning strategy for effectively filtering the unpromising

candidates. Moreover, a pre-insertion and a sorting strategy

has been introduced to raise the minimum utility threshold.

The mining performance is enhanced significantly since both

the search space and the number of candidates are effectively

reduced by the proposed strategies. Both synthetic and real

datasets have been used to evaluate the performance of TUS,

which is shown to substantially outperform the baseline

algorithms, and the performance of TUS is close to the

optimal case of the state-of-the-art utility sequential pattern

mining algorithms.

REFERENCES

[1] R. Agrawal and R. Srikant, Mining sequential patterns, ICDE
1995, pp. 3-14.

[2] C. F. Ahmed, S. K. Tanbeer and B. Jeong, Mining High Utility
Web Access Sequences in Dynamic Web Log Data, SNPD
2010, pp.76-81.

[3] C. F. Ahmed, S. K. Tanbeer and B. Jeong, A Novel Approach
for Mining High-Utility Sequential Patterns in Sequence
Databases, ETRI, 2010, vol.32, pp.676-686.

[4] C. F. Ahmed, S. K. Tanbeer, B. Jeong and T. Lee, Efficient
tree structures for high utility pattern mining in incremental
databases, TKDE, 2009, vol. 21, pp. 1708-1721.

[5] L. Cao. Actionable Knowledge Discovery and Delivery,
WIREs Data Mining and Knowledge Discovery, 2012, Vol.
2, Issue 2, pp. 149 - 163.

[6] L. Cao and P. Yu, Behavior Computing, Springer, 2012.
[7] Y. L. Cheung and A. W. Fu, Mining frequent itemsets without

support threshold: with and without item constraints, TKDE,
2004, Vol. 16, pp. 1052-1069.

[8] K. Chuang, J. Huang and M. Chen, Mining Top-K Frequent
Patterns in the Presence of the Memory Constraint, VLDB
Journal, 2008, Vol. 17, pp. 1321-1344.

[9] G. Dong and J. Pei, Sequence Data Mining, Springer, USA,
2007.

[10] J. Han, J. Wang, Y. Lu and P. Tzvetkov, Mining Top-K
Frequent Closed Patterns without Minimum Support, ICDM
2012, PP. 211-218.

[11] Y. Liu, W. Liao and A. Choudhary, A two-phase algorithm
for fast discovery of high utility itemsets, PAKDD 2005, vol.
3518, pp. 689-695.

[12] M. Liu and J. Qu, Mining high utility itemsets without
candidate generation, CIKM 2012, pp. 55-64

[13] J. Liu, K. Wang and B. Fung, Direct Discovery of High Utility
Itemsets without Candidate Generation, ICDM 2012, pp. 984-
989

[14] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q.
Chen, U. Dayal and M.C. Hsu.,PrefixSpan: mining sequential
patterns efficiently by prefix-projected pattern growth, ICDE
2001, pp. 215-224.

[15] T. M. Quang, S. Oyanagi and K. Yamazaki, ExMiner: An Effi-
cient Algorithm for Mining Top-K Frequent Patterns, ADMA
2006, pp. 436C447.

[16] L. Shen, H. Shen, P. Prithard and R. Topor,Finding the N
largest itemsets, ICDM 1998, pp. 211-222

[17] B. Shie, H. Hsiao, V. S. Tseng and P. S. Yu, Mining high
utility mobile sequential patterns in mobile commerce envi-
ronments, DASFAA 2011, pp.224-238.

[18] V. S. Tseng, C.-W. Wu, B.-E. Shie and P. S. Yu, UP-Growth:
an efficient algorithm for high utility itemset mining, KDD
2010, pp. 253-262.

[19] P. Tzvetkov, X. Yan and J. Han, TSP: Mining Top-K Closed
Sequential Patterns, ICDM 2003, pp. 347-354.

[20] J. Wang and J. Han, TFP: An Efficient Algorithm for Mining
Top-K Frequent Closed Itemsets, TKDE, 2005, Vol. 17, pp.
652-664.

[21] C. Wu, B. Shie, V. S. Tseng and P. S. Yu, Mining top-K high
utility itemsets, KDD 2012, pp. 78-86.

[22] J. Yin, Z. Zheng and L. Cao, USpan: an efficient algorithm
for mining high utility sequential patterns, KDD 2012, pp.
660-668.

[23] M. J. Zaki, SPADE: An Efficient Algorithm for Mining Fre-
quent Sequences, Machine Learning, 2001, vol. 42, pp. 31-60.

[24] U. Yun, J.J. Leggett, WSpan: Weighted Sequential Pattern
mining in large sequence databases, Proc. of the Third Int’l
Conf. on IEEE Intelligent Systems, 2006, pp. 512 - 517.

[25] B.-E. Shie, V. S. Tseng and P. S. Yu, Mining interesting user
behavior patterns in mobile commerce environments, Applied
Intelligence, 2013, Volume 38, Issue 3, pp. 418-435.

[26] http://www.informit.com/store/microsoft-sql-server-2008-an
alysis-services-unleashed-9780672330018

[27] http://www.kdd.org/kdd-cup-2000-online-retailer-website-clic
kstream-analysis

