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Abstract

SVDD has been proved a powerful tool for outlier de-
tection. However, in detecting outliers on multi-distribution
data, namely there are distinctive distributions in the data,
it is very challenging for SVDD to generate a hyper-sphere
for distinguishing outliers from normal data. Even if such
a hyper-sphere can be identified, its performance is usu-
ally not good enough. This paper proposes an multi-sphere
SVDD approach, named MS-SVDD, for outlier detection
on multi-distribution data. First, an adaptive sphere detec-
tion method is proposed to detect data distributions in the
dataset. The data is partitioned in terms of the identified
data distributions, and the corresponding SVDD classifiers
are constructed separately. Substantial experiments on both
artificial and real-world datasets have demonstrated that
the proposed approach outperforms original SVDD.1

1 Introduction

Support Vector Data Description (SVDD) [1] is one of
the best known support vector machine learning methods
[2] for one-class classification problems. In SVDD, the
training data is mapped from the input space into a higher
dimensional feature space via a kernel function [2, 3]. The
classifier is learnt to obtain an optimal hypersphere bound-
ary by enclosing the target data. The hypersphere is then
considered as a descriptive classifier to classify data into
the target or non-target class. To date, SVDD has been suc-
cessfully applied in many practical problems, such as time-

1Acknowledge the financial support of the Capital Markets CRC
* corresponding author: csbliu@it.uts.edu.au

series novelty detection [4], windows registry accesses [6],
audio signal segmentation [5] and image retrieval [7].

In the formulation of SVDD, each data point is assumed
to come from a single uniform distribution function F (x)
[1]. In this case, kernel function [3] is strong enough to
make the data compact and spherical in the feature space
guaranteeing high performance of the hypersphere classi-
fier. However, this hypothesis cannot always hold true,
because in real-life applications, the data always comes
from distinctive distribution functions [7]2. For multi-
distribution data, each distribution of data samples occupies
its individual area in feature space after kernel function is
utilized. Therefore, SVDD will reduce its performance if
single hypersphere is constructed to enclose the data from
multi-distribution functions, because some insider outliers
will be mistaken as target class, shown in Figure 1.

In order to improve the learning ability of SVDD, this
paper proposes a novel method, called multi-sphere SVDD
(MS-SVDD), for outlier detection on multi-distribution
data. Our framework is divided into two key steps, i.e., (1)
identify each data distribution in the dataset; (2) establish
SVDD for each data distribution and construct multi-SVDD
classifier for future prediction. Following our framework, a
novel and effective method, called ”Adaptive Sphere De-
tection” (ASD), is proposed to detect distinctive data dis-
tributions in the dataset. ASD can not only automatically
detect the number of data distributions, but also determines
the data structure of dataset by classifying each data point
into its belonging distribution. Substantial experiments on
both artificial and real-world datasets have shown that the
proposed approach outperforms SVDD which encloses dis-
tinctively distributed data into a single hypersphere.

2we denote these distribution functions as F1(x), F2(x), . . . , FM (x),
where M is the number of distribution functions.
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The rest of the paper is organized as follows: Section
2 discusses the limitation of SVDD. Section 3 put forwards
our approach MS-SVDD. Experiments on both artificial and
real-world datasets are presented in Section 4. Section 5
concludes this paper and gives future work.

2 Limitation of SVDD on Multi- Distribution
Data

In SVDD, the normal data is assumed to be from the
same distribution function F (x). In this case, kernel func-
tion can be strong enough to make the normal data com-
pact in the feature space so that the hypersphere can be con-
structed as a classifier with high performance. However,
this hypothesis can not always hold true, since the normal
data may come from distinctive distribution functions, i.e.,
F1(x) , F2(x), . . . , FM (x), in practical applications.

Take an example of fraud detection in insurance for fur-
ther understanding. Here, we discover that people at dif-
ferent stages of age have different behaviors in both nor-
mal and fraud, and the age stages could be [20, 30], [31,
45], [46, 65]. The behavior pattern of policy holders at
the same age stage comes from one distribution function in
a statistical view. Then all the behavior patterns are from
three distribution functions. Taking these multi-distribution
data into account, the hypothesis is transformed into: let
the training set be S = x1, x2, . . . , xl, where xi ∈ Rn,
and xi comes from one of the distribution functions, i.e,
F1(x), F2(x), . . . , FM (x), where M represents the number
of the distribution functions.

SVDD determines a tight hypersphere without consider-
ing the possibility of multi-distribution data, and presents a
superior performance when the data really comes from the
same distribution function. For multi-distribution data, we
illustrate that the performance of SVDD will be depressed
by taking Figure 1 for understanding.

Assume the data denoted by “×”, “◦” and “Δ” comes
from three distribution functions F1(x), F2(x), and F3(x)
respectively. Meanwhile, each of the three sub-spheres
cover the normal data from the same distribution func-
tion, and the other data outside them is denoted as the out-
liers. From the purpose of outlier detection, all the outliers
from three distribution functions must be determined. How-
ever, if we just perform SVDD to confirm the classification
boundary, only outside outliers can be identified, and all the
inside outliers will be misclassified as normal data.

3 Multi-sphere SVDD on Multi-distribution
Data

In order to enhance the detection capability of SVDD on
inside outliers, this paper proposes an improved SVDD so-
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Figure 1. Illustration of SVDD for multi-
distribution data in feature space

lution. The main idea of our approach is: (1) identify the
domains of each distribution data in the training set. (2) es-
tablish corresponding one-class classifier for data from the
same distribution, and combine multiple one-class classi-
fiers for future prediction.

3.1 Determination of Data Distribution

For multi-distribution data, SVDD cannot identify the
”inside outliers”. Therefore, each data distribution must be
determined in the dataset before performing SVDD. To do
this, a novel ASD method is proposed as follows.

3.1.1 Initialization

At first, the solid sphere is defined as follows.
Definition 1: (Solid sphere) B(C, R, N) is a “solid

sphere” on the condition that data point size N inside the
sphere with the radius of R and the center of C is more than
a threshold N0.

At the first step, we intend to detect the relatively dense
areas in S by determining the solid spheres, and C, R and
N0 are initialized as follows. For the R and N0, R should
be a small value, and MinDisS ≤ R ≤ MaxDisS must
satisfy, and N0 had better be a large value. This setting can
help us to find some dense areas in S. However, if there
exist no this kind of spheres, the solid spheres can be deter-
mined by enlarging R or reducing N0.

For initialization of C, which is the center of sphere at
the seeding step, we restrict every data point in the dataset
to be C. The sphere is then denoted as B(φ(xi), R, N), i =
1, 2, . . . , l.

Let φ(xi), i = 1, 2, . . . , l be the center of the sphere, and
scan the row di,j , j = 1, 2, . . . , l or the column dj,i, j =
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Table 1. Notion Definition.
Symbol Definition

1. N0 Threshold for sphere seeding
2. d(xi, xj) Distance between φ(xi) and φ(xj).

d(xi, xj)=√
K(xi, xi, ) + K(xj , xj) − 2K(xi, xj)

3. Sk kth sub-set
4. |Sk| Sample size of Sk

Sk={ xk
1 , xk

2 , . . . ,xk
|Sk| }

5. Ck Centroid of Sk

Ck = 1
|Sk|

∑Sk

i=1 φ(xk
i )

6. COV (Sk) Variance of Sk

COV (Sk) = 1
|Sk|

∑|Sk|
i=1 (φ(xk

i ) − Ck)2

7. D(Xi, Ck) Distance between φ(xi) and Ck

D(Xi, Ck) =‖ φ(xi) − Ck ‖
8. MinDisSk

Minimum distance of two data points in Sk

MinDisSk
=

Min‖ φ(xk
i ) − φ(xk

j ) ‖, i, j = 1, . . . , |Sk|,
9. MaxDisSk

Maximum distance of two data points in
Sk

MaxDisSk
=

Max‖ φ(xk
i ) − φ(xk

j ) ‖, i, j = 1, . . . , |Sk|
10.
B(C, R, N)

Sphere with the centroid C and radius R,
sample size in sphere is N .

11. Bt
k(Ck(t),

Rk(t), Nk(t))
kth sphere after growing for t − 1 times,
Ck(t), Rk(t), Nk(t)) represent centroid,
radius and data points size enclosed in the
sphere.
Ck(t) is calculated according to notion 5.

12. Bt
k(., ., .) Abbreviation of Bt

k(Ck(t), Rk(t), Nk(t))
13. �Rk(t) Increment of radius

�Rk(t) = Rk(t + 1) − Rk(t)
14.
MinDisBt

i (.,.,.)

Minimum distances of two data points in
Bt

i (., ., .), obtained according to notion 8.
15.
COV (Bt

k(., .))
Variance of Bt

k(., ., .), can be calculated
according to notion 6.

16. η Parameter
17.
NBi(.,.,.)∩Bk(.,.,.)

Sample size of data points belonging to
Bi(., ., .) and Bk(., ., .) together

18. λ0 Threshold for spheres merging

19.
Bend

k (., ., ., )
Abbreviation of

Bend
k (Ck(end), Rk(end), Nk(end)

20.
D(x, Ck(end))

Distance between φ(xi) and Ck(end),
which can be calculated according to no-
tion 7.

21.
D(x, Bend

k (., ., .))
Distance between φ(xi) andBend

k (., ., .)

D(x, Bend
k (., ., .))=

D(x, Ck(end)) − Rk(end)
22. Rj Radius of jth one-class classifier.
23. oj Centroid of jth one-class classifier.
24. Cj Parameter of jth one-class classifier.

A

B

C

D

E

Figure 2. Initialization

1, 2, . . . , l to confirm which data points are covered in the
sphere, i.e., which data point satisfies dj,i ≤ R or di,j ≤ R.

After this, assume g0 solid spheres have been determined
in S as follows.

B1(φ(xk1), R1, N1), . . . , Bi(φ(xki
), Ri, Ni), . . . ,

Bg0(φ(xkg0
), Rg0 , Ng0), (1)

where

xki
∈ S, R1 = R2 = · · · = Rg0 , Ni ≥ N0 i = 1, . . . , g0.

(2)
Let us consider Figure 2 for example. Five solid spheres,
represented by A, B, C, D and E, have been determined in
the data set at the initialization.

3.1.2 Sphere Growing

Although the solid spheres represent some dense areas in
S, it is not enough. Because we want not only to find the
high-density areas, but also to identify the multi-distribution
data, we need to enlarge the spheres radius to catch more
data points from the same distribution function.

We first present the following formula for sphere grow-
ing strategy of Bt

k(., ., .).

Rk(t + 1) = Rk(t) + �Rk(t) (3)

�Rk(t) = f(Rk(t), COVk(t), Nk(t)) (4)

f(.) is a function related to Rk(t), COVk(t), Nk(t) of
Bt

k(., ., .). Assume Bt
k(., ., .) and Bt

p(., ., .) are two spheres
to grow, we have the following three rules.

Rule 1: If Rk(t) = Rp(t), COVk(t) = COVp(t) yet
Nk(t) > Np(t) holds true, then we let �Rk(t) > �Rp(t).

Rule 2: If Nk(t) = Np(t), COVk(t) = COVp(t) and
Rk(t) < Rp(t) holds true, and then we let �Rk(t) >
�Rp(t).

Rule 3: If Nk(t) = Np(t), Rk(t) = Rp(t) but
COVk(t) < COVp(t), then we let �Rk(t) < �Rp(t).

Let

MR(t) = Min{Ri(t)}, i = 1, 2, . . . , ge (5)

MN(t) = Max{Ni(t)}, i = 1, 2, . . . , ge (6)

MC(t) = Max{COVi(t)}, i = 1, 2, . . . , ge (7)
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ge is the number of spheres need to increase their radius at
the time of t. We then present the relationship between the
elements in f function as follows.

�Rk(t) =
MR(t)
Rk(t)

Nk(t)
MN(t)

COVk(t)
MC(t)

· � (8)

� =
1
ge

ge∑

i=1

MinDisBt
i (.,.,.)

(9)

From (9), we can see that each solid sphere Bt
k(., ., .) k =

1, 2, . . . , ge grows individually. We let the centroid Ck(t)
and Rk(t + 1) to be the new sphere center and radius, then
the new sphere Bt+1

k (Ck(t + 1), Rk(t + 1), Nk(t + 1)) is
obtained.

3.1.3 Sphere Stopping

In this method, there exist two cases to stop sphere grow-
ing. After Bt

k(., ., .) increases the radius by �Rk(t), some
new data points will be included by the enlarged sphere
Bt+1

k (., ., .). We denote them as

xk
N1

, xk
N2

, . . . , xk
Nh

, h = Nk(t + 1) − Nk(t). (10)

If all of the data points xk
Ni

, i = 1, 2 . . . , h have already
been covered by other sphere, i.e.,

∀i, ∃ j and tt −→ xk
Ni

∈ Btt
j (., ., .)

1 ≤ j ≤ g, 1 ≤ tt ≤ t, i = 1, . . . , h, (11)

g is the number of spheres at time of t. Then Bt
k(., ., .)

stops.
Another case is if

Rk(t + 1) − Rk(t)
Nk(t + 1) − Nk(t)

< η
Rk(t) − Rk(t − 1)
Nk(t) − Nk(t − 1)

(12)

holds true, then Bt
k(., ., .) stops. This setting can forbid the

sphere to cover the data points from other distribution func-
tion.

3.1.4 Sphere Merger

Assume at time of t + 1, all the spheres stop growing and
gm spheres are acquired, i.e.,

Bt1
1 (., ., .), . . . , Bti

i (., ., .), . . . , Btgm
gm (., ., .),

1 ≤ i ≤ gm ti ∈ {1, 2, . . . , t + 1}. (13)

Because more than one solid spheres may be generated
within one data distribution, we then automatically merge
the spheres belonging to the same distribution as follows.
Consider sphere Bti

i (., ., .) and Btk

k (., ., .), and let

Nik = Min{Ni(ti), Nk(tk)}, ti, tk ∈ {1, 2, . . . , t + 1},
(14)

Yes

No

Initialization

Sphere Merger

Shpere Stopping Judge

Rest Patterns Assignment

Sphere Growing

   Training Set S

   Data Distributions

Figure 3. The work flow of ASD method

then, we obtain

λik =
N

B
ti
i (.,.,.)∩B

tk
k (.,.,.)

Nik
. (15)

If λik is larger than a threshold λ0, merge Bti
i (., ., .) and

Btk

k (., ., .). In this way, all the spheres covering the same
data distribution merge, and distinctive data distributions
are detected automatically.

3.1.5 Rest Data Assignment

After the procedures of sphere growing, stopping and
merger, gf spheres have been determined in the dataset S,
i. e.,

Bend
1 (C1(end), R1(end), N1(end)), . . . ,

Bend
gf

(Cgf
(end), Rgf

(end), Ngf
(end)). (16)

If some data points are not included in one of these gf

spheres, they will be assigned into one sphere as follows.
For data point x, it is assigned into

arg min(D(x, Bend
i (., ., .))

i=1,...,gf

. (17)

The work flow of “ASD” method is illustrated in Figure 3.

3.1.6 Discussion Of ”ASD” Method

ASD method can not only detect the relatively dense areas
in the dataset, but also identify the multi-distribution data
through enlarging and merging these spheres. ASD can au-
tomatically determine the number of data distributions ac-
cording to the data structure.
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It is noted that some clustering algorithms, such as K-
mean and density clusterings, can also be used to determine
multi-distribution data, but they are subject to some con-
straints. In K-Mean , K should be known beforehand. Den-
sity clustering always detects the highest dense areas [8].

3.2 Establish SVDD Classifier

After gf spheres have been determined, they are put into
sub-sets S1, S2, . . . , Sgf

, respectively. The following task
is how to utilize the data in each sub-set to construct the
classifiers for outlier detection. We propose a multi-sphere
approach to solve this problem, as follows.

The purpose of kernel function K(, ., ) in SVDD is to
render the data much more compact in feature space, and
then the hypersphere can be constructed as the classifier.
When the data comes from different distributions, if all the
data is enclosed by one hypersphere, the classification ac-
curacy will be greatly decreased because some internal out-
liers are neglected inside the hypersphere. Therefore, our
approach is proposed to utilize multi-spheres covering the
sub-datasets. By doing this, the whole QP function can be
transferred into a series of sub-QP problems, as follows:

min R2
j + Cj

|Sj |∑

i=1

ξj
i

s.t.‖ φj(x
j
i ) − oj ‖2 ≤ R2

j + ξj
i , i = 1, 2, . . . , |Sj |,

ξj
i ≥ 0, xj

i ∈ Sj

i = 1, 2, . . . , |Sj |, j = 1, 2, . . . , gf . (18)

After solving these sub-QP problems, we can obtain the
hypersphere center Oj and radius Rj of each sub-classifier.
For an unknown data, it is regarded as a normal data when

R2
j = ‖ φj(x

j
k) − oj ‖2

. By contraries, x is classified as an
outlier.

4 Experiments

In this section, we conduct the experiments on both arti-
ficial and real-world datasets to investigate the performance
of our proposed approach. In addition, K-mean and density
clustering methods are also considered to detect the differ-
ent distributions of data.

All the programs are written in Matlab 7.0, and the
SVDD is implemented by using the SVM-KM toolbox 3.
The RBF kernel is used in our experiments, because RBF
kernel function always offers a better performance than
other kernel functions [2]. The RBF kernel induces an

3http://asi.insa-rouen.fr/enseignants/arakotom/toolbox/index.html
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Figure 4. Artificial Dataset

infinite-dimensional kernel space, where the kernel width
parameter controls the scaling of the mapping, i.e.,

K(x, xi) = exp(−‖ x − xi ‖2
2/2σ2). (19)

For RBF kernel function, the value of parameter σ is
chosen in {0.1, 0.2, 0.3, 0.4}, and C is in the range of
{0.0001, 0.001, 0.01, 0.1}. Sixty percents of data points are
randomly selected for training, and the rest are regarded as
testing set. Grid search method [9] is used to determine the
kernel parameters.

4.1 Artificial Dataset

The artificial datasets are generated from 3 normal dis-
tribution functions with 5 attributes. The sample sizes are
1000, 1500, 2000 and 2500, respectively, and outliers from
each class are generated at the same time. Because the sam-
ples of datasets come from three distribution functions, we
set K to 3 for K-mean method.

The results of SVDD, K-mean-based SVDD and den-
sity clustering-based SVDD are illustrated in Figure 4. It is
clear that, the three clustering approaches can work better
than original SVDD. That is to say, after the distributions
of data are determined using no matter K-mean, density
method or ASD, the accuracies have been greatly improved
compared to enclosing the whole dataset in a single hyper-
sphere. Additionally, compared with K-mean and density
clustering method, our ASD method always achieves supe-
rior performance.

4.2 Real-world dataset

We utilize a real-world underground gas pipelines (UGS)
dataset to compare the performance of our approach and
SVDD. The UGS dataset consists of 306 data points for un-
derground gas pipelines and each data point is described
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using nine numerical attribute: Pipe wall thickness (PWT),
Coating Type (CT), Buried Year (BY), The Number of
Years of Operation (TNYO), Coating Resistance (CR),
Leakage Point Line Density (LPLD), Soil Corrosion (SC),
Anode or Not (AN), Potential. In the dataset, all the gas
pipelines are classified into five categories, i.e., from level
1 to level 5. If a gas pipeline belongs to level 4 or 5, that
means it must be repaired.

For the purpose of one-class classification, we follow the
operation in [1] to obtain five sub-datasets in our experi-
ments. Specifically, take each of the five classes out of the
dataset, and the other four classes are considered as target
class. After this operation, five sub-datasets are achieved:
UGS (1), UGS (2), UGS (3), UGS (4) and UGS (5). Here,
the number in the bracket represents the class which is taken
out of the dataset. What’s more, for the data coming from
the same distribution function, the outlier patterns are drawn
from a Gaussian distribution with zero mean and standard
deviation is added into some patterns in the dataset accord-
ing to [10]. The outlier is added as a vector with the same
number of dimensions as the dataset has. The standard de-
viation σi of the entire data along the dimension i is first
obtained. In order to model the difference in outlier in-
formation on different dimensions, we define the standard
deviation σi along dimension i, whose value is randomly
drawn from the range [0, 2ρ · σi]. In the experiment ρ is set
as 1.5, Then, for dimension i, we add outlier from a random
distribution with standard deviation σi. By this way, pattern
xj is added the outlier and regarded as an outlier pattern.

The accuracy of SVDD, K-mean-base SVDD, density-
based SVDD and ASD-based SVDD in feature space are
shown from Figure 5. We have the following observations:

(1) Our proposed framework can handle the multi-
distribution data efficiently, after we use K-mean, density
clustering method or ASD methods to determine the distri-
bution of data in the dataset. The performance is improved
compared with original SVDD.

(2) Compared with K-mean and density clustering
method, our ASD method always achieves better perfor-
mance.

5 Conclusions and Future Work

In SVDD for outlier detection, the performance will be
reduced when handling multi-distribution data. In order to
address this issue, our approach is proposed to detect out-
liers on multi-distribution data. Following the framework,
an ASD method is proposed to determine the data distribu-
tions within the dataset, and then we propose multi-sphere
method to enclose the detected distributions of data, respec-
tively. Sufficient experiments on both artificial and real-
world datasets show that our approach outperforms original
SVDD.
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Figure 5. UGS Dataset

In the future, we will investigate on-line SVDD for
multi-distribution data.
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