
Abstract 

Cross-domain collaborative filtering (CDCF), 
which aims to leverage data from multiple domains 
to relieve the data sparsity issue, is becoming an 
emerging research topic in recent years. However, 
current CDCF methods that mainly consider user 
and item factors but largely neglect the heterogene-
ity of domains may lead to improper knowledge 
transfer issues. To address this problem, we propose 
a novel CDCF model, the Bilinear Multilevel Anal-
ysis (BLMA), which seamlessly introduces multi-
level analysis theory to the most successful collabo-
rative filtering method, matrix factorization (MF). 
Specifically, we employ BLMA to more efficiently 
address the determinants of ratings from a hierar-
chical view by jointly considering domain, commu-
nity, and user effects so as to overcome the issues 
caused by traditional MF approaches. Moreover, a 
parallel Gibbs sampler is provided to learn these ef-
fects. Finally, experiments conducted on a real-
world dataset demonstrate the superiority of the 
BLMA over other state-of-the-art methods. 

1 Introduction 

In the era of Web 2.0, searching for what we want and then 
finding what we really need from a huge amount of online 
information became a daunting task. As a result, various rec-
ommender systems have been proposed to alleviate the infor-
mation overload problem. As the core component of a recom-
mender system, collaborative filtering (CF) techniques have 
been widely studied in recent years. In particular, matrix fac-
torization (MF) based latent factor models [Koren, et al., 
2009, Weston, et al., 2012] have become dominant in current 
CF approaches, where MF rates the user i’s preference to item 
j according to the interaction of the user-factor vector 𝒖𝑖 and 
the item factor 𝒗𝑗 using the inner product, i.e., 𝑅𝑖𝑗 = 𝒖𝑖

𝑇𝒗𝑗. 
However, most of the real world data follows the power law, 
i.e., the majority of users are only associated with a very few 
items. Therefore, insufficient data has become the major bar-
rier for CF methods including MF, and it leads to two big 
challenges to the CF: the cold-start and data sparsity issues 
[Su and Khoshgoftaar, 2009]. 

To address these issues, the cross-domain collaborative fil-
tering (CDCF) approach, which leverage data from multiple 

domains, is becoming an emerging research topic [Li, 2011]. 
An early neighborhood based CDCF (N-CDCF) method was 
introduced in [Berkovsky, et al., 2007], but it can easily fail 
to find similar users or items when data is very sparse. It is 
possible to directly apply matrix factorization (MF) to CDCF 
(MF-CDCF) by concatenating the rating matrix of each do-
main. However, this method may not work properly for the 
cross-domain scenario. These drawbacks are revealed in an 
example using two domains Book and Music as depicted in 
Figure 1 (a). Empirically, the factors affecting users’ prefer-
ences for books are different from those affecting users’ pref-
erences for music. Therefore, due to such heterogeneities be-
tween book factors and music factors, it generally fails to find 
good estimates for 𝒖𝑖 that can simultaneously measure both 
the preferences for books and music. 

Recently, Pan, et al. [2010] proposed a transfer learning 
based MF (TLMF) for CDCF. They assume the existence of 
an auxiliary domain with dense user data so that knowledge 
learned in this domain can be transferred to the target domain. 
However, it is often impossible to find such a dense data do-
main realistically since the rating matrix is sparse for the ma-
jority of users in most domains where the power law per-
vades. To surmount this barrier, a more reasonable solution 
is to leverage the complementary data from multiple do-
mains. Collective matrix factorization (CMF) [Singh and 
Gordon, 2008] is able to leverage data from multiple domains 
by coupling the rating matrix of each domain along the com-
mon user dimension. However, all these models may still en-
counter a special cold-start problem when a user is new to the 
target domain. As shown in Figure 1 (b), the user-factor vec-
tors for users are co-determined by the feedback in auxiliary 
and target domains. If no data is available for user i in the 
target domain (marked with a red box), the user-factor vector 
𝒖𝑖 will have to be simply determined by the user preference 
data in the auxiliary domain. If such 𝒖𝑖 is directly transferred 
to the target domain and interacts with heterogeneous item 
factors to measure user preferences, it may yield a poor pre-
diction. We call this issue as the “blind-transfer”. Recall that 
the data associated with the majority of users are insufficient 
and even absent, so the above approaches commonly suffer 
from such blind-transfer issues for realistic online data. For 
current MF approaches, the rating to an item 𝑗 is fully deter-
mined by user factors, i.e., 𝒖𝑖

𝑇𝒗𝑗. Due to this reason, current 
MF models cannot relieve themselves of the blind-transfer 
issue, especially when the data is extremely sparse. 
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Figure 1: (a) The MF works around the CDCF by concatenating ma-

trices of multiple domains as a single matrix. (b) The demonstration 

of blind-transfer issue in the CMF and the TLMF. 

In this paper, we address the “blind-transfer” issue from a 
new perspective. The basic assumption here is that the ratings 
for items are determined not only by personal factors but also 
by domain and community effects. Let’s take an example to 
illustrate this hypothesis. We argue it is possible to predict a 
general rating 𝑟 for iPhone 5 based only on general market 
factors, even without any user’s feedback. Moreover, the us-
ers in different communities often provide biased ratings con-
trary to each other, for instance, trendspotters may give 
higher ratings (positive bias) to iPhone 5 whereas IT engi-
neers may give lower ones (negative bias). Such community-
specific bias 𝑏𝑐 is associated with the underlying community 
characteristics. As to a specific user, a personalized bias 𝑏𝑢 
is given to the general rating 𝑟, where 𝑏𝑢 can be divided into 
two parts, 𝑏𝑢,𝑔  and 𝑏𝑢,𝑠  repectively. The 𝑏𝑢,𝑔  is determined 
by domain-independent user factors that may correlate to per-
sonal status, e.g. age, position, income, whereas the  𝑏𝑢,𝑠 is 
determined by domain-specific user factors, e.g., a user may 
prefer expensive phones but cheap clothes. With all that in 
mind, the personal rating of an item can be expressed as 𝑅 =
𝑟 + 𝑏𝑐 + 𝑏𝑢,𝑔 + 𝑏𝑢,𝑠, i.e., the determinants of a personalized 
rating is governed by a multilevel factor model apart from flat 
individual factor models. Hence even when the user data is 
absent in some domain, 𝑟 + 𝑏𝑐 + 𝑏𝑢,𝑔 is still available to give 
an acceptably accurate rating. Therefore, the proposed multi-
level factor model is more complete and robust than the tra-
ditional individual-only factor models.  

To model the above hierarchical factors, we employ the 
multilevel analysis theory, also referred to as the hierarchical 
linear model, or the mixed model [Goldstein, et al., 2007, 
Snijders and Bosker, 2011]. Further, we propose a novel MF 
model that seamlessly integrates multilevel analysis theory. 
As MF is a bilinear model, our model is named the Bi-Linear 
Multilevel Analysis (BLMA). 

The main contributions of this paper include:  

 We propose an innovative approach to determine the 
personalized ratings via a multilevel factor model, 
which is more complete and robust than the classical 
flat factor models, especially when data is sparse. 

 We provide a novel CDCF model, the BLMA, which 
integrates multilevel analysis theory to the MF model.  

 We apply Bayesian inference using parallel Gibbs sam-
pling to learn parameters of the BLMA. 

 We empirically evaluate our approach and other state-
of-the-art approaches on a real-world data set. The re-
sults demonstrate the superiority of our approach. 

2 Problem Formulation 

Our solution for the CDCF problem, which has a hierarchical 
structure, is depicted in Figure 2. In this paper, we use 𝑑 to 
denote domains, 𝑑 ∈ {1, ⋯ , 𝑁𝐷}, and 𝑐 to index the commu-
nities within domain 𝑑, 𝑐 ∈ {1, ⋯ , 𝑁𝐶

𝑑}. Communities can be 
defined dedicatedly or discovered from data. Users are in-
dexed by 𝑖, for 𝑖 ∈ {1, ⋯ , 𝑁𝑈}, and in each domain, a user 𝑖 
only belongs to a community. 𝑗 is used to index items for 
each domain, for 𝑗 ∈ {1, ⋯ , 𝑁𝐼

𝑑}. The ratings (observed data) 
are denoted as 𝑹 = {𝑹𝑑𝑖𝑗|(𝑑, 𝑖, 𝑗) ∈ 𝑰𝑹} , where (𝑑, 𝑖, 𝑗) ∈ 𝑰𝑹 
indexes each observation, i.e., the rating that user 𝑖 gave to 
item 𝑗 of domain 𝑑. We use {(𝑑, 𝑖, 𝑗) ∈ 𝑰𝑹(𝑑𝑐)} to denote all 
indices associated with community 𝑐 in domain 𝑑 and simi-
larly we have  𝑰𝑹(𝑑𝑖), 𝑰𝑹(𝑖), and etc. 
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Figure 2: A hierarchical representation of CDCF problem. Users are 

nested within communities within a domain. Note the same user is 

marked with the same color across domains. 

In Figure 2, it can be observed that users are nested within 
communities within domains. This is a typical usage scenario 
of multilevel analysis [Goldstein, et al., 2007, Snijders and 
Bosker, 2011]. In particular, it is natural to employ the nested 
random effects model [Rabe-Hesketh and Skrondal, 2008] to 
analyze such a nested structure as given by Eq. (2), where 𝒂𝑑, 
𝒐𝑑𝑐(𝑖), 𝒔𝑑𝑖 are used to model the nested effects. More specif-
ically, 𝒂𝑑 = [𝑎1, ⋯ , 𝑎K]T represents the fixed effects for do-
main 𝑑  (Level-3), user 𝑖  belongs to the community 𝑑𝑐(𝑖) 
(Level-2) in domain 𝑑, and the random effects of this com-
munity are denoted as 𝒐𝑑𝑐(𝑖) ∈ ℝK×1, and 𝒔𝑑𝑖 ∈ ℝK×1 stands 
for the domain-specific random effects of user 𝑖 (Level-1).  

𝑹𝑑𝑖𝑗 = 𝜇𝑑 + 𝒗𝑑𝑗
𝑇 𝒖𝑑𝑖 + 𝑒𝑑𝑖𝑗                        (1) 

𝒖𝑑𝑖 = 𝒂𝑑 + 𝒐𝑑𝑐(𝑖) + 𝒔𝑑𝑖 + 𝒈𝑖                     (2) 

𝒐𝑑𝑐(𝑖) ~ 𝒩(𝟎, 𝜮𝒐
𝑑), 𝒔𝑑𝑖 ~ 𝒩(𝟎, 𝜮𝒔

𝑑), 𝒈𝑖 ~ 𝓝(𝟎, 𝜮𝑔)     (3) 

𝒗𝑑𝑗  ~ 𝒩(𝟎, 𝜮𝒗
𝑑), 𝑒𝑑𝑖𝑗  ~ 𝒩(0, 𝜎2)                  (4) 

Moreover, since users are associated with multiple do-
mains in a CDCF problem, 𝒈𝑖 ∈ ℝK×1 in Eq. (2) is used to 
model such cross-domain user factors. In fact, the 𝒈𝑖 has the 
exact counterpart in multilevel analysis, namely the crossed 
random effects model [Raudenbush, 1993, Rabe-Hesketh and 
Skrondal, 2008]. Also, in Eq. (1), 𝜇𝑑 is the mean rating of 
domain 𝑑 and 𝒗𝑑𝑗 ∈ ℝK×1 stands for the random effects for 
item 𝑗 and 𝑒𝑑𝑖𝑗 is the error associated with each observation. 
Here, the bilinear term 𝒗𝑑𝑗

𝑇 𝒖𝑑𝑖 formally represents the multi-
level effect over items as discussed previously. Since this 
model contains both fixed and random effects, it is called a 
mixed (effects) model in multilevel analysis. 

(a) (b) 



Then, one question that needs to be answered is whether to 
use fixed or random effects for domain, community and user 
level respectively. In practice, there is no definite criteria for 
determining whether fixed or random effects should be used, 
but some useful discussion can be found in several research 
papers [Gelman and Hill, 2006, Rabe-Hesketh and Skrondal, 
2008]. Here, users can be viewed as a sample from a popula-
tion since more new users may join, and the number of com-
munities may also change with user growth. So the effects of 
users and communities are treated as random. In contrast, the 
effects of a domain do not change with users, i.e., the same 
for all users, so it is modeled as fixed effects. 

3 Bayesian Bilinear Multilevel Analysis 

3.1 The Model 

For the model given by Eq. (1), if we treat 𝒗𝑑𝑗 as a known 
vector to serve as the covariates, then Eq. (1) is reduced to a 
linear mixed model (LMM). Alternatively, if 𝒖𝑑𝑖 is treated as 
known covariates, Eq. (1) becomes a linear random effects 
model. Now let us move 𝜇𝑑 from the right side to the left side 
of Eq. (1), so the reformed equation is given by: 

𝒀𝑑𝑖𝑗 = 𝒗𝑑𝑗
𝑇 𝒖𝑑𝑖 + 𝑒𝑑𝑖𝑗, where 𝒀𝑑𝑖𝑗 = 𝑹𝑑𝑖𝑗 − 𝜇𝑑       (5) 

Immediately, we find that the mixed effects 𝒖𝑑𝑖 and the ran-
dom effects 𝒗𝑑𝑗  in Eq. (5) exactly correspond to K dimen-
sional user and item factor vector in the MF. That is, we can 
seamlessly bridge multilevel analysis to the MF. Hence we 
call Eq. (1) the Bilinear Multilevel Analysis (BLMA), be-
cause the bilinear terms 𝒖𝑑𝑖 and 𝒗𝑑𝑗 are unknown and needs 
to be learned as classical MF models. 
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Figure 3: The graphical model for BLMA 

In this paper, we formalize the BLMA using a Bayesian 
probabilistic model. The corresponding graphical representa-
tion of this model is illustrated in Figure 3. Accordingly, the 
conditional distribution over the observed data 𝑹 (cf. Eq. (1)) 
can be easily written as: 

𝑝(𝑹|𝒗, 𝒖, 𝜎2) = ∏ 𝒩(𝜇𝑑 + 𝒗𝑑𝑗
𝑇 𝒖𝑑𝑖 , 𝜎2)(𝑑,𝑖,𝑗)∈𝑰𝑹

         (6) 

For Bayesian analysis of multilevel models, broadly speak-
ing, two types of prior distributions are available: (a) unin-
formative; (b) informative [Browne, 1998, Goldstein, et al., 
2007]. The uniform prior is a commonly used uninformative 
prior for fixed effects, i.e., 𝑝(𝒂𝑑) ∝ 𝐈 for the domain effects 
𝒂𝑑. In practice, it can be approximated as 𝑝(𝒂𝑑)~𝒩(𝟎, 𝑐𝐈), 
where 𝑐 is very large. For random effects, informative priors 

should be placed on variance parameters. The inverse gamma 
prior, Γ−1(𝜀, 𝜀), with small 𝜀, is often placed on scalar vari-
ance while the inverse Wishart prior, 𝒲−1(𝜈, 𝜱), is used for 
variance matrix [Browne, 1998, Browne and Draper, 2006]. 
In this paper, without loss of generality, we set 𝜀 = 0.001 for 
Γ−1(𝜀, 𝜀) and 𝜈 = K, 𝜱 = 𝐈 for all 𝒲−1(𝜈, 𝜱). Then, the pri-
ors for the variance parameters w.r.t. the random effects, 𝒐𝑑𝑐, 
𝒔𝑑𝑖, 𝒈𝑖, 𝒗𝑑𝑗 and error 𝑒𝑑𝑖𝑗, can be given as follows: 

𝑝(𝜮𝒐
𝑑) = 𝒲−1(𝜈𝑜

𝑑, 𝜱𝒐
𝑑), 𝑝(𝜮𝒔

𝑑) = 𝒲−1(𝜈𝑠
𝑑, 𝜱𝒔

𝑑)  

𝑝(𝜮𝒈) = 𝒲−1(𝜈𝑔, 𝜱𝒈), 𝑝(𝜮𝒗
𝑑) = 𝒲−1(𝜈𝑣

𝑑, 𝜱𝑣
𝑑)  

𝑝(𝜎2) = Γ−1(𝜀, 𝜀)                                                     (7) 

Obviously, this model lends itself to a full Bayesian anal-
ysis by a Markov Chain Monte Carlo (MCMC) method. 

3.2 Inference 

MCMC methods aim to generate samples from a joint poste-
rior 𝑝(𝚯|𝒀)  of all unknown parameters 𝚯 . In the BLMA, 
𝚯 = {𝒂, 𝒐, 𝒔, 𝒈, 𝒗, 𝚺𝒐, 𝚺𝒔, 𝚺𝒗, σ2} represents fixed/random ef-
fects and variances. Directly sampling all parameters in 𝚯 
from the joint posterior is intractable in the BLMA because 
the product of two random variables, 𝒗𝑑𝑗

𝑇 𝒖𝑑𝑖, does not belong 
to any distribution in general. Fortunately, the Gibbs sampler 
can approximate the joint posterior by sampling each variable 
in 𝚯 in turn, conditioned on other variables with current val-
ues. Best of all, the Gibbs sampling algorithm for the BLMA 
is nearly identical to that for the LMM, since the BLMA is 
reduced to the LMM when sampling 𝒖 conditioning on 𝒗, 
and vice versa. 

Referring to the Gibbs samplers for the LMM [Browne, 
1998, Browne and Draper, 2000, Goldstein, et al., 2007], we 
design a parallel sampling algorithm for the BLMA below: 

Algorithm 1: Parallel Gibbs sampling scheme for the BLMA 

 Draw samples for 𝜳 = {𝒂, 𝒐, 𝒔, 𝒈, 𝚺𝒐, 𝚺𝒔, 𝜮𝒈, σ2} as LMM 

when 𝒗 is given and acts as the covariates. 

1. For 𝑑 ∈ {1, ⋯ , 𝑁𝐷}, sample the domain effects 𝒂𝑑  in 

parallel: 

𝒂𝑑|𝒗, 𝜳\𝒂𝑑 ~ 𝒩(𝒂̂𝑑 , 𝜮̂𝑑)                  (8) 

where 𝜮̂𝑑 = 𝜎2(∑ 𝒗𝑑𝑗𝒗𝑑𝑗
𝑇

(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑) )
−1

  

𝒂̂𝑑 = 𝜮̂𝑑 [∑
𝑣𝑑𝑗[𝑹𝑑𝑖𝑗−𝜇𝑑−𝒗𝑑𝑗

𝑇 (𝒐𝑑𝑐(𝑖)+𝒔𝑑𝑖+𝒈𝑖)]

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑) ]  

2. For 𝑐 ∈ {1, ⋯ , 𝑁𝐶
𝑑}, sample the community effects 𝒐𝑑𝑐 

in parallel for each domain 𝑑: 

𝒐𝑑𝑐|𝒗, 𝜳\𝒐𝑑𝑐 ~ 𝒩(𝒐̂𝑑𝑐 , 𝜮̂𝑑𝑐)               (9) 

where 𝜮̂𝑑𝑐 = (∑
𝒗𝑑𝑗𝒗𝑑𝑗

𝑇

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑𝑐) + 𝜮𝒐
𝑑−1

)
−1

 

𝒐̂𝑑𝑐 = 𝜮̂𝑑𝑐 [∑
𝒗𝑑𝑗[𝑹𝑑𝑖𝑗−𝜇𝑑−𝒗𝑗

𝑇(𝒂𝑑+𝒔𝑑𝑖+𝒈𝑖)]

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑𝑐) ]  

3. For 𝑖 ∈ {1, ⋯ , 𝑁𝑈}, sample the global user effects 𝒈𝑖 in 

parallel: 

𝒈𝑖|𝒗, 𝜳\𝒈𝑖 ~ 𝒩(𝒈̂𝑖 , 𝜮̂𝑖)                (11) 



where 𝜮̂𝑖 = (∑
𝒗𝑑𝑗𝒗𝑑𝑗

𝑇

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑖) + 𝜮𝒈
−1)

−1

 

𝒈̂𝑖 = 𝜮̂𝑖 [∑
𝒗𝑑𝑗[𝑹𝑑𝑖𝑗−𝜇𝑑−𝒗𝑑𝑗

𝑇 (𝒂𝑑+𝒐𝑑𝑐(𝑖)+𝒔𝑑𝑖)]

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑖) ]  

4. For 𝑖 ∈ {1, ⋯ , 𝑁𝑈}, sample the domain-specific user ef-

fects 𝒔𝑑𝑖 in parallel for each domain 𝑑: 

𝒔𝑑𝑖|𝒗, 𝜳\𝒔𝑑𝑖 ~ 𝒩(𝒔̂𝑑𝑖 , 𝜮̂𝑑𝑖)              (10) 

where 𝜮̂𝑑𝑖 = (∑
𝒗𝑑𝑗𝒗𝑑𝑗

𝑇

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑𝑖) + 𝜮𝒔
𝑑−1

)
−1

 

𝒔̂𝑑𝑖 = 𝜮̂𝑑𝑖 [∑
𝒗𝑑𝑗[𝑹𝑑𝑖𝑗−𝜇𝑑−𝒗𝑑𝑗

𝑇 (𝒂𝑑+𝒐𝑑𝑐(𝑖)+𝒈𝑖)]

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑𝑖) ]  

5. Sample variance parameters, 𝚺𝒐, 𝚺𝒔, 𝜮𝒈, σ2: 

𝜮𝒐
𝑑|𝜳\𝜮𝒐

𝑑  ~ 𝒲−1(𝜈𝑜
𝑑 + 𝑁𝐶

𝑑 , 𝜱𝒐
𝑑 + ∑ 𝒐𝑑𝑐𝒐𝑑𝑐

𝑇
𝑐 )  

𝚺𝒔
𝑑|𝜳\𝜮𝒔

𝑑 ~ 𝒲−1(𝜈𝑠
𝑑 + 𝑁𝑈 , 𝜱𝒔

𝑑 + ∑ 𝒔𝑑𝑖𝒔𝑑𝑖
𝑇

𝑖 )  

𝜮𝒈|𝜳\𝜮𝒈 ~ 𝒲−1(𝜈𝑔 + 𝑁𝑈 , 𝜱𝒈 + ∑ 𝒈𝑖𝒈𝑖
𝑇

𝑖 )  

σ2|𝜳\σ2 ~ Γ−1(𝜀 + |𝑹| 2⁄ , 𝜀 + ∑ 𝑒𝑑𝑖𝑗
2 2⁄𝑑,𝑖,𝑗∈𝑰𝑹

)  

where 𝑒𝑑𝑖𝑗 = 𝑹𝑑𝑖𝑗 − 𝜇𝑑 − 𝒗𝑑𝑗
𝑇 𝒖𝑑𝑖 

 Draw samples for 𝜳 = {𝒗, 𝚺𝒗, 𝜎2} as the LMM when 𝒖 is 

given and acts as the covariates. 

1. For 𝑗 ∈ {1, ⋯ , 𝑁𝐶
𝑑}, sample the item effects 𝒗𝑑𝑗 in par-

allel for each domain 𝑑: 

𝒗𝑑𝑗|𝒖, 𝜳\𝒗𝑑𝑗  ~ 𝒩(𝒗̂𝑑𝑗 , 𝜮̂𝑑𝑗)             (12) 

where 𝜮̂𝑑𝑗 = (∑
𝒖𝑑𝑖𝒖𝑑𝑖

𝑇

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑) + 𝜮𝒗
𝑑−1

)
−1

 

           𝒗̂𝑑𝑗 = 𝜮̂𝑑𝑗 [∑
𝒖𝑑𝑖[𝑹𝑑𝑖𝑗−𝜇𝑑]

𝜎2(𝑑,𝑖,𝑗)∈𝑰𝑹(𝑑) ]  

2. Sample variance parameters, 𝚺𝒗
𝑑 , σ2: 

𝚺𝒗
𝑑|𝜳\𝜮𝒗~𝒲−1(𝜈𝑣 + 𝑁𝐼

𝑑 , 𝜱𝒗 + ∑ 𝒗𝑑𝑗𝒗𝑑𝑗
𝑇

𝑗 )  

σ2|𝜳\σ2 ~ Γ−1(𝜀 + |𝑹| 2⁄ , 𝜀 + ∑ 𝑒𝑑𝑖𝑗
2 2⁄(𝑑,𝑖,𝑗)∈𝑰𝑹

)  
 

Note that appropriate initial values can fairly speed up the 
convergence of MCMC methods. For the BLMA, we may use 
a MF method, such as the BPMF [Salakhutdinov and Mnih, 
2008], to generate initial values, 𝒗𝑑 and 𝜮𝒗

𝑑, w.r.t. items for 
each domain 𝑑. Then, using 𝒗 as the covariates for the LMM, 
we can initialize 𝒂, 𝒐, 𝒔, 𝒈, 𝚺𝒐, 𝚺𝒔, σ2  by the likelihood esti-
mates [Browne and Draper, 2006, Goldstein, et al., 2007]. 

3.3 Prediction 

After the burn-in period, MCMC methods can predict miss-
ing ratings, 𝑹̂𝑑𝑖𝑗, in terms of the predictive posterior mean, 
𝔼(𝑹̂𝑑𝑖𝑗|𝑹). This mean is often computed by the Monte Carlo 
approximation from S samples: 

𝔼(𝑹̂𝑑𝑖𝑗|𝑹) ≈
1

𝑆
∑ 𝔼(𝑹̂𝑑𝑖𝑗|𝒖𝑑𝑖

(𝑠)
, 𝒗𝑑𝑗

(𝑠)
, 𝑹)𝑆

𝑠=1   

𝔼(𝑹̂𝑑𝑖𝑗|𝒖𝑑𝑖
(𝑠)

, 𝒗𝑑𝑗
(𝑠)

, 𝑹) = 𝜇𝑑 + 𝒗𝑑𝑗
(𝑠)𝑇

𝒖𝑑𝑖
(𝑠)

          (13) 

where the mean w.r.t. each sample is obtained according to 
Eq. (6), and the effects 𝒖𝑑𝑖

(𝑠)
= 𝒂𝑑

(𝑠)
+ 𝒐𝒅𝒄(𝒊)

(𝑠)
+ 𝒔𝑑𝑖

(𝑠)
+ 𝒈𝑖

(𝑠)
 and 

𝒗𝑑𝑗
(𝑠)

 are sampled from the Markov chain by Eq. (8) ~ (12). 

Noted that the domain-specific effects 𝒔̂𝑑𝑖
(𝑠)

 do not exist if 
user 𝑖 is new in domain 𝑑, we can simply let it be the popu-
lation mean of user factors, that is 𝟎 (cf. Eq. (3)), or the com-
munity sample mean, namely ∑ 𝒔̂𝑑𝑘

(𝑠)
𝑘∈𝑪𝑑(𝑖) /|𝑪𝑑(𝑖)|, where 

𝑪𝑑(𝑖) returns all non-cold-start users from 𝑖’s community. 

3.4 Discussions 

So far we have presented the prediction method for the 
BLMA, now we can formally explain why the BLMA can 
work and how it avoids the blind-transfer issue in the CDCF.  

In the BLMA, the domain effects 𝒂̂𝑑 is regressed from the 
data for all items (cf. Eq. (8)) in a domain, so 𝑟𝑑𝑖𝑗 = 𝜇𝑑 +
𝒗𝑑𝑗

𝑇 𝒂𝑑, gives the general rating to item 𝑗, which is fixed for 
all users. The community effects 𝒐̂𝑑𝑐 is estimated according 
to the ratings given by the users in this community (cf. Eq. 
(9)), so 𝑏𝑐𝑖𝑗 = 𝒗𝑑𝑗

𝑇 𝒐𝑑𝑐 provides the community-specific bias. 
As to the user level, 𝒈̂𝑖 is estimated from user’s feedbacks 
over all domains (cf. Eq. (11)), so 𝑏𝑑𝑖𝑗

𝑔
= 𝒗𝑑𝑗

𝑇 𝒈𝑖 gives the bias 
based on a user’s global preference. 𝒔̂𝑑𝑖  is estimated from 
user’s feedbacks in a domain (cf. Eq. (10)), so 𝑏𝑑𝑖𝑗

𝑠 = 𝒗𝑑𝑗
𝑇 𝒔𝑑𝑖 

gives the bias according to domain-specific preferences. 
Hence 𝑹̂𝑑𝑖𝑗 = 𝑟𝑑𝑖𝑗 + 𝑏𝑐𝑖𝑗 + 𝑏𝑑𝑖𝑗

𝑠 + 𝑏𝑑𝑖𝑗
𝑔

 provides a multilevel 
effects based rating predictor as given by Eq. (13). 

It has been demonstrated that leveraging social links [Ma, 
et al., 2008] or neighborhood data [Koren, 2008] can signifi-
cantly improve prediction performance. Here, the BLMA 
goes a step further, it models not only the community effects 
to correlate users but also the other effects of domains and 
individuals to discover similarities. Such multilevel effects 
are particularly useful when individual user data is insuffi-
cient. If we remove the domain effects 𝒂𝑑, community effects 
𝒐𝑑𝑐 , and domain-specific user effects 𝒔𝑑𝑖  from Eq. (2), the 
BLMA degenerates to the CMF where only the flat single-
level user factors 𝒈𝑖 are modeled. Obviously, simply using 
𝒈𝑖 is vulnerable to the heterogeneity issue as discussed at the 
beginning. In comparison, the domain effects 𝒂𝑑  and the 
community effects 𝒐𝑑𝑐 enable the BLMA to more efficiently 
tackle issues of domain heterogeneity and data sparsity. 

Another point of concern is the membership of commu-
nity. These memberships can be directly assigned according 
to real-world memberships. For example, fan clubs for cars 
and groups for games are two types of easily retrieved mem-
berships from two different domains. If such ready-made 
memberships are not available, we can discover them from 
data [Fortunato, 2010]. In this paper, we only consider a user 
belonging to a single community within a domain, but the 
multiple membership can also be dealt with easily by assign-
ing different weights [Browne, et al., 2001]. 

4 Related Work 

We propose to solve the CDCF problem by using the BLMA, 
which can be regarded as an approach that couples multilevel 
analysis with MF. Hence, the applications of multilevel anal-
ysis and MF based approaches for CDCF are the two most 
relevant research areas. 

Codebook Transfer [Li, et al., 2009] assumes some cluster-
level rating patterns, which are represented by a codebook, 



can be found between the rating matrices in two related do-
mains. The Rating-Matrix Generative Model [Li, et al., 2009] 
extends this idea with a probabilistic model to solve collec-
tive transfer learning problems. In reality, there are many 
cold-start users for most domains. Therefore, it is always out 
of the question to seek common patterns among domains 
without user data. The Coordinate System Transfer [Pan, et 
al., 2010] learns the user-factor matrix 𝐔A from an auxiliary 
rating matrix in the first step, and then generates the user-
factor matrix 𝐔T for the target domain based on 𝐔A, with the 
regularization of penalizing the divergence between 𝐔A and 
𝐔T. As pointed out at the beginning, this approach will run 
into the blind-transfer issue for cold-start users. Therefore, all 
the above approaches are not applicable to the CDCF prob-
lem over multiple domains as studied in this paper. 

Although the CMF [Singh and Gordon, 2008] can address 
the CDCF problem over multiple domains by coupling the 
common user dimension, it still suffers from the blind-trans-
fer issue. Moreover, CMF uses a set of weights to trade off 
the loss of the fitting rating matrix from each domain. How-
ever, searching an optimal combination of weights to tune the 
prediction performance is a heuristic and computationally ex-
pensive task. In comparison, the BLMA applies Bayesian 
analysis to assign priors on all variables and learns them by 
Gibbs sampling. In fact, we have shown that the BLMA can 
be reduced to the flat Bayesian CMF [Singh and Gordon, 
2012] by removing all high level group effects. 

The multilevel analysis [Snijders and Bosker, 2011] is a 
popular statistic model theory, which has been widely studied 
and applied to many areas, including economics, education, 
sociology, biology, health, and beyond [Raudenbush, 1993, 
Gelman and Hill, 2006, Goldstein, et al., 2007, Rabe-Hesketh 
and Skrondal, 2008]. The BLMA brings multilevel analysis 
from the traditional linear world to the bilinear world and 
brings multilevel effects to the MF instead of the traditional 
individual factors. Being an integrated approach with more 
robust models for tackling complex data sets, the BLMA is 
proposed for applications beyond the CDCF problem. 

5 Experiments 

The experiments were conducted on a real-world dataset, that 
is, the ratings for Amazon products. We evaluated the predic-
tion performance using the BLMA and other state-of-the-art 
approaches to demonstrate the superiority of our model. 

Table 1: Statistics of Amazon dataset for evaluation 

Domain # Items Density avg. # ratings/user 

Book 6000 0.0097 57 

Music 5000 0.0062 30 

DVD 3000 0.0124 37 

VHS 3000 0.0117 35 

5.1 Data Preparation 

The dataset was crawled from the publicly available Amazon 
website, where it contains 1,555,170 users and 1-5 scaled rat-
ings over 548,552 different products covering four domains: 
393,558 books, 103,144 music CDs, 19,828 DVDs and 
26,132 VHS video tapes [Leskovec, et al., 2007]. Obviously, 

these domains are different but there are some common user 
factors to affect preferences across these domains, so this da-
taset is highly suitable for testing the CDCF algorithms. 

We filtered out users who have rated at least 50 books or 
30 music CDs so that there are enough observations to be split 
in various proportions of training and testing data for our 
evaluation. Finally, 2,505 users were selected, and in addition 
we retrieved all items rated by these users in these four do-
mains and set aside top K rated items for each domain respec-
tively. We use 𝓓 to denote this extracted data set. Table 1 
shows the statistics of 𝓓. In this experiment, we evaluated the 
prediction performance by using Book and Music CD as the 
testing domains respectively. Accordingly, we constructed a 
set of different training/testing sets as follows. 

 Sparse data cases: We constructed two different spar-
sities of training sets by respectively holding out 80% 
and 25% of ratings for the Book domain from 𝓓, when 
testing the prediction over books. The hold-out data 
serves as the ground truth for testing. Likewise, we con-
structed two other training sets when testing the predic-
tion over music CDs by respectively holding out 80% 
and 25% of ratings for the Music CD domain from 𝓓. 

 Cold-start cases: To simulate the cold-start cases, we 
constructed two training sets by randomly selecting half 
of users and holding out all their data from the Book and 
the Music CD domains respectively. 

5.2 Metrics and Comparative Methods 

The Mean Absolute Error (MAE) is the most widely used 
evaluation metric to measure the prediction quality for col-
laborative filtering. In Eq. (14), 𝑟𝑖,𝑗  denotes the true rating 
user 𝑖 gave to item 𝑗, 𝑟̂𝑖,𝑗 is the predicted rating, and 𝑁 = |𝑻| 
is the number of ratings in the testing set. 

MAE = ∑ 𝐴𝐵𝑆(𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)𝑟𝑖,𝑗∈𝑻 𝑁⁄               (14) 

In this experiment, a group of state-of-the-art methods for 
the CDCF problem are given by: 

 MF-SGD: The most well-known MF method for single 
domain CF by minimizing the squared error by stochas-
tic gradient descent [Koren, et al., 2009]. It is simply 
run over the rating matrix of the testing domain. 

 N-CDCF-U: The user-based neighborhood method as 
mentioned at the beginning. Here we use 10 closest us-
ers as the neighborhood. 

 N-CDCF-I: The item-based neighborhood model. We 
use k=10 closest items as the neighborhood. 

 MF-CDCF: The MF model described at the beginning. 
It is run over the concatenated rating matrix that mixes 
the items of four domains. 

 CMF: It couples the rating matrices of four domains on 
the user dimension [Singh and Gordon, 2008]. 

Since this dataset does not explicitly provide memberships 
of communities, we have to generate communities from data 
for the BLMA. As the community detection algorithm is not 
the focus of this paper, we simply employ hierarchical clus-
tering algorithm to generate 50 communities for each domain. 



The similarity for the clustering algorithm is computed by: 

𝑠𝑖𝑚𝑡(𝑢𝑚, 𝑢𝑛) =
1

2
𝑠𝑡(𝑢𝑚, 𝑢𝑛)  +

1

2|𝑨|
∑ 𝑠𝑑(𝑢𝑚, 𝑢𝑛)𝑑∈𝑨   

where 𝑠(𝑢𝑚, 𝑢𝑛) = (𝑛𝑖𝑗 𝑛𝑖𝑗 + 20⁄ )𝑐𝑜𝑠𝑖𝑛𝑒〈𝑢𝑚, 𝑢𝑛〉 , 𝑛𝑖𝑗  de-
notes the number of items rated by both 𝑢𝑚 and 𝑢𝑛 [Koren, 
2008], 𝑡 denotes the target domain, and 𝑨 denotes other do-
mains. It assigns more weight to the similarity of the target 
domain 𝑡 so as to create the domain-specific communities. 

The dimensionality of factors and hyper-parameters for all 
comparative methods are determined by cross validation. The 
improvement becomes not significant, and even decreases for 
some models, after the dimensionality is increased above 30. 

5.3 Results 

We first evaluated the prediction performance using the 
above constructed training/testing sets for sparse data cases. 
Table 2 reports the results of all comparative methods. 

Table 2: MAE of comparative models for the sparse data cases 

 Book Music CD 

Model 75% 20% 75% 20% 

MF-SGD 0.597 0.833 0.749 0.942 

N-CDCF-U 0.488 0.776 0.701 0.906 

N-CDCF-I 0.728 0.850 0.776 1.062 

MF-CDCF 0.503 0.753 0.715 0.832 

CMF 0.452 0.751 0.686 0.817 

BLMA 0.321 0.702 0.632 0.771 

From Table 2, we can find that the CDCF methods achieve 
much better performance than the single-domain CF method, 
i.e., MF-SGD. Therein, our model, the BLMA, significantly 
outperforms all other comparative methods over all testing 
cases, and at least 18% improvement is achieved for any case 
comparing to MF-SGD, which illustrates that the BLMA can 
better capture the determining factors for predicting ratings 
even when the user data is not sufficient. The N-CDCF-U 
also achieves reasonable performance when the data is rela-
tive dense, i.e., the 75% training set, but its performance de-
generates very rapidly when the data becomes sparser. It is 
because the neighborhood based method usually fails to find 
any global similarity among users when the data is sparse [Su 
and Khoshgoftaar, 2009]. For the MF based CDCF models, 
the CMF outperforms the MF-CDCF because the CMF pro-
vides an effective way to transfer knowledge between do-
mains whereas the MF-CDCF simply aggregates all available 
data together, ignoring heterogeneities in different domains. 

Then, we evaluated the prediction performance for cold-
start cases. Figure 4 illustrates the results of all comparative 
methods. Once again, the BLMA models achieve better per-
formance than other approaches. In this experiment, we find 
that the CMF lags much behind the BLMA. Although the 
CMF captures common user factors across all domains, it 
does not correlate users, nor does it model domain-specific 
factors. In cold-start cases, the CMF inevitably suffers from 
the blind-transfer issue. In comparison, the BLMA captures 
multilevel effects instead of just individual effects. Such de-
sign enables the BLMA leveraging the knowledge learned 
from the domain-level and the community-level data even 

when the individual-level data are not available. Specially, 
the BLMA-C (using the community mean cf. § 3.3) outper-
forms the BLMA-P (using the population mean), which illus-
trates that leveraging neighbors’ feedbacks can more effec-
tively improve the accuracy when a user’s data is absent. 

 
Figure 4: MAE of comparative models for the cold-start cases 

Figure 5 (a) plots the sampled domain effects, 𝒂𝑑, of all 
four domains, and the cosine similarities between each pair 
of 𝒂𝑑 are also provided in (b). The larger similarity may re-
flect the smaller domain heterogeneity to share knowledge. 
As to a specific effect 𝑎𝑘 ∈ 𝒂𝑑 , it is positive in some do-
mains, which results in a larger item factor 𝑣𝑘 ∈ 𝒗𝑑 contrib-
utes more to the rating, i.e. 𝑎𝑘𝑣𝑘. In contrast, 𝑎𝑘 is negative 
in other domains, so the larger 𝑣𝑘 (e.g. the price of an item) 
gives the more negative contribution to the rating, e.g., higher 
price may yield lower rating. Moreover, the random effects 
model is often used in the analysis of variance (ANOVA). 
Figure 5 (c) shows the sampled variances for community ran-
dom effects, 𝒐𝑑, of the Book and Music domain. A large var-
iance for a community effect, 𝑜𝑘 ∈ 𝒐𝑑, reflects users in dif-
ferent communities having quite different views to the item 
effect 𝑣𝑘 ∈ 𝒗𝑑 (e.g. the genre of music) whereas a small var-
iance reflects very close views to 𝑣𝑘 over all communities. 

 
Figure 5: (a) The domain effects of all four domains; (b) The cosine 

similarity between each pair of domain effects; (c) The variances of 

community effects of the Book and Music domain. 

6 Conclusions 

In this paper, we propose the BLMA approach to solve the 
CDCF problem by employing a multilevel effects model to 
overcome the vulnerabilities of flat individual effects model 
in traditional MF approaches. The experimental results indi-
cate that the BLMA can achieve much better performance 
than other state-of the-art models. Since the BLMA provides 
an integrated approach by coupling the multilevel analysis 
with the MF, we also expect it to become a general frame-
work for new applications other than the CDCF problem. 
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