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Abstract
The usual representation of quantitative data is to
formalize it as an information table, which assumes
the independence of attributes. In real-world data,
attributes are more or less interacted and coupled
via explicit or implicit relationships. Limited re-
search has been conducted on analyzing such at-
tribute interactions, which only describe a local
picture of attribute couplings in an implicit way.
This paper proposes a framework of the coupled at-
tribute analysis to capture the global dependency
of continuous attributes. Such global couplings in-
tegrate the intra-coupled interaction within an at-
tribute (i.e. the correlations between attributes and
their own powers) and inter-coupled interaction
among different attributes (i.e. the correlations be-
tween attributes and the powers of others) to form a
coupled representation for numerical objects by the
Taylor-like expansion. This work makes one step
forward towards explicitly addressing the global in-
teractions of continuous attributes, verified by the
applications in data structure analysis, data clus-
tering, and data classification. Substantial exper-
iments on 13 UCI data sets demonstrate that the
coupled representation can effectively capture the
global couplings of attributes and outperforms the
traditional way, supported by statistical analysis.

1 Introduction
Real-world data sets predominantly consist of quantitative at-
tributes in diverse domains [Saria et al., 2011], such as fi-
nance and bioinformatics. The basic knowledge representa-
tion of numerical data is an information table [Kaytoue et al.,
2011], which comprises columns designating “attributes” and
rows denoting “objects”. Each table cell thus stands for the
value of a particular attribute for a particular object. This tra-
ditional representation scheme only describes each object by
associated variables and assumes the independence of them.

Taking the fragment data of Iris (Table 1) as an exam-
ple, six plant objects are characterized by four numerical at-
tributes (i.e. “Sepal Length”, “Sepal Width”, “Petal Length”,
and “Petal Width”), and divided into three classes. For in-
stance, the petal width of plant object u1 is 0.2cm, which

Table 1: A Fragment Example of Iris Data Set

Iris Sepal.L Sepal.W Petal.L Petal.W Class
(a1) (a2) (a3) (a4)

u1 5.5 cm 4.2 cm 1.4 cm 0.2 cm Setosa
u2 5.0 cm 3.4 cm 1.5 cm 0.2 cm Setosa
u3 6.1 cm 2.9 cm 4.7 cm 1.4 cm Versicolor
u4 6.2 cm 2.2 cm 4.5 cm 1.5 cm Versicolor
u5 6.3 cm 2.7 cm 4.9 cm 1.8 cm Virginica
u6 6.0 cm 2.2 cm 5.0 cm 1.5 cm Virginica

does not reflect any interaction with other attributes. Based
on this classical representation, many data mining techniques
and machine learning tasks [Plant, 2012; Li and Liu, 2012]
including clustering and classification have been performed.
One of the critical parts in such applications is to study the
pairwise distance between plant objects. A variety of dis-
tance metrics have been developed for numerical data, such as
Euclidean and Minkowski metrics [Gan et al., 2007]. Since
plant objects u4 and u6 have identical values of “Sepal.W”
and “Petal.W”, the normalized Euclidean distance between
them is only 0.493, which is much smaller than that between
u4, u3 (i.e. 0.950) and nearly half of that between u6, u5 (i.e.
0.982). It indicates that u4 and u6 stand a good chance to be
clustered into the same group. However, in fact, u4 and u3
belong to “Versicolor”, u6 and u5 are labeled as “Virginica”.

The above instance shows that it is often problematic to
analyze the numerical data by assuming all the continuous
attributes are independent, while the traditional data repre-
sentation schemes fail to capture the genuine couplings of at-
tributes. In the real world, business and social applications
such as investors in capital markets and members in social
networking almost always see quantitative attributes coupled
with each other [Cao et al., 2011]. It is very in demand from
both practical and theoretical perspectives to develop effec-
tive representation method for analyzing continuous variables
by considering the relationships among attributes. A conven-
tional way to explore the interaction of continuous attributes
is to measure the agreement of shapes between variables via
Pearson’s correlation coefficient [Gan et al., 2007]. Nev-
ertheless, it only caters for the linear relationship between
two variables. More often, numerical variables are associated
with each other via nonlinear relationships, such as exponen-
tial and logarithmic functions. Our motivation is to consider
both linear and nonlinear relationship functions, such cou-
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Figure 1: A framework of the coupled attribute analysis.

plings among variables are called global interactions or global
dependency. In contrast, any method to study either the lin-
ear relationship or some specific nonlinear function only cap-
tures a local picture of the coupling relationships among vari-
ables, such as the Pearson’s correlation. For Table 1, if we
adopt the method in [Kalogeratos and Likas, 2012] by treat-
ing each correlation as the pairwise similarity entry, we then
obtain the normalized Euclidean distance between u4 and u6
as 0.223, which is still smaller than that between u4 and u3
(i.e. 0.329) but only a little larger than that between u6 and
u5 (i.e. 0.218). It means the coupling relationships are only
partially revealed with limited improvement.

So based on the traditional information table, how to de-
scribe the global interactions with the least information loss?
The idea of Taylor expansion inspires us that we can use a
Taylor-like series to quantify the global dependency, since
any analytic function can be approximated by its Taylor poly-
nomials. Therefore, we propose to represent the global cou-
pling relationships by Taylor-like expansion on attribute val-
ues, in which the Pearson’s correlations between attributes
and their extended powers (i.e. each extended attribute value
is the power of the original one) play the role of function
derivatives. From this perspective, the Pearson’s correlation
just reflects the first-order Taylor-like expansion of the global
dependency; and the mutual information based attribute in-
terdependency [Nazareth et al., 2007] is a special case, since
function log can be expressed by its Taylor series. For Table
1, the distance between plant objects is then revised by explic-
itly capturing the intrinsic correlations between attributes and
their powers. That is to say, the greater difference in “Petal.L”
is expected to remedy the little differences in other attributes
since they are correlated significantly.

Accordingly, this paper proposes a framework of the cou-
pled attribute analysis on numerical data, shown in Figure 1,
to address the aforementioned research issues. The key con-
tributions are as follows:

– We consider both the intra-coupled interaction within an
attribute, captured by the correlations between every at-
tribute and its own powers; and the inter-coupled interac-
tion among different attributes, quantified by the corre-
lations between each attribute and the powers of others.

– A coupled representation scheme is introduced for quan-
titative objects to integrate the intra-coupled and inter-
coupled interactions with the original information table

representation via Taylor-like expansion in a global way.
– The proposed coupled representation method is com-

pared with the traditional representation approach by ap-
plying data structure analysis, clustering and classifica-
tion, revealing that the couplings of continuous attributes
are essential to the learning applications.

The paper is organized as follows. In Section 2, we briefly
review the related work. Section 3 specifies the coupled in-
teractions of numerical attributes. We formalize the coupled
representation for objects in Section 4. The effectiveness of
coupled representation is demonstrated in Section 5 with ex-
tensive experiments. Finally, we end this paper in Section 6.

2 Related Work
An increasing number of researchers point out that the inde-
pendence assumption on attributes often leads to a mass of in-
formation loss, and several papers have addressed the issue of
attribute interactions. In addition to the basic Pearson’s corre-
lation [Gan et al., 2007], Jakulin and Bratko analyzed the at-
tribute dependency by information gain [Jakulin and Bratko,
2003], but they involve the label information which is only
eligible in supervised learning. While a rank-correlated mea-
sure [Calders et al., 2006] has been proposed to mine frequent
patterns, it only considers the pairwise relationship in a local
way and works on nonintuitive ranks rather than attribute val-
ues. More recently, Wang et al. put forward the coupled nom-
inal similarity in unsupervised learning [Wang et al., 2011],
but only for categorical data. A relational classifier was inves-
tigated by using multiple source relations [Bollegala et al.,
2011], which yet merely contributes to classification tasks.
Plant presented the dependency clustering by mapping ob-
jects and attributes in a cluster-specific low-dimension space
[Plant, 2012], however, the interaction mechanism is embed-
ded in the modeling process of clustering and not explic-
itly defined. Despite the current research progress, no work
has been reported that systematically takes into account the
global relationships among continuous attributes.

3 Coupled Interactions of Attributes
The couplings of continuous attributes are proposed in terms
of both intra-coupled and inter-coupled interactions. Below,
the intra-coupled and inter-coupled relationships, as well as
the integrated coupling, are formalized and exemplified.

The usual way to represent data is to use an information ta-
ble S =< U,A, V, f >, where universe U = {u1, · · · , um}
consists of finite data objects; A = {a1, · · · , an} is a finite
set of continuous attributes; V =

⋃n
j=1 Vj is a collection of

attribute value sets, in which Vj = {aj .v1, · · · , aj .vtj} is
the set of tj attribute values from attribute aj(1 ≤ j ≤ n);
and f =

⋃n
j=1 fj , fj : U → Vj is an information function

which assigns a particular value of attribute aj to each object.
For instance, Table 1 is an information table composed of six
objects {u1, · · · , u6} and four attributes {a1, a2, a3, a4}, the
attribute value of object u1 on attribute a4 is f4(u1) = 0.2.

Based on S, we aim to capture the interactive relationships
within a numerical attribute (intra-coupled) and among differ-
ent continuous attributes (inter-coupled). A common method



Table 2: The Extended Information Table of Iris Data Set
Ã 〈a1〉1 〈a1〉2 〈a2〉1 〈a2〉2 〈a3〉1 〈a3〉2 〈a4〉1 〈a4〉2
u1 5.50 30.25 4.20 17.64 1.40 1.96 0.20 0.04
u2 5.00 25.00 3.40 11.56 1.50 2.25 0.20 0.04
u3 6.10 37.21 2.90 8.41 4.70 22.09 1.40 1.96
u4 6.20 38.44 2.20 4.84 4.50 20.25 1.50 2.25
u5 6.30 39.69 2.70 7.29 4.90 24.01 1.80 3.24
u6 6.00 36.00 2.20 4.84 5.00 25.00 1.50 2.25

to explore the relationship between continuous attributes is
to calculate the Pearson’s correlation coefficient [Gan et al.,
2007], which measures the agreement of shapes between vari-
ables. In detail, the Pearson’s product-moment correlation
coefficient between attributes aj and ak is formalized as

Cor(aj , ak) =

∑
u∈U (fj(u)− µj)(fk(u)− µk)√∑

u∈U (fj(u)− µj)2
√∑

u∈U (fk(u)− µk)2
,

(3.1)
where µj , µk are the respective mean values of aj , ak.

However, the Pearson’s correlation coefficient only de-
scribes the linear relationship between two variables. It is in-
sufficient if we consider this coefficient just between each pair
of continuous attributes. So we expect to expand the numer-
ical space spanned by n continuous attributes with more di-
mensions, and then expose the coupling relationships of con-
tinuous attributes by exploring the correlation between every
two updated attributes. The idea of increasing dimensional-
ity is also consistent with [Li and Liu, 2012], which extends
attribute information but lacks the dependency therein.

Firstly, we lodge some more attributes to the original con-
tinuous space. Each attribute aj is accompanied with L − 1
more attributes: 〈aj〉2, 〈aj〉3, · · · , 〈aj〉L. The attribute value
of 〈aj〉p (1 ≤ p ≤ L) is the p-th power of the corresponding
value of attribute aj . That is to say, 〈aj〉p.vt = (aj .vt)

p for
all the attribute values aj .vt ∈ Vj . For example, the values
of 〈aj〉2 and 〈aj〉3 are the square and cube of the attribute
values in Vj , respectively. In this way, data can then be repre-
sented as an m × L · n extended information table, in which
the (L · (j − 1) + p)-th column corresponds to the updated
attribute 〈aj〉p. Here, the denotations aj and 〈aj〉1 are equiv-
alent. For instance, Table 2 is an extended information table
of the original Table 1 if we set L = 2 for simplicity.

Next, the correlation between each pair of the updated L ·n
attributes is calculated. It reflects the global coupling rela-
tionships of continuous attributes from both the linear and
nonlinear aspects, based on the modeling of variables. Below,
we actually use the revised correlation coefficient by taking
into account the p-values for testing the hypothesis of no cor-
relation between attributes. Each p-value is the probability of
getting a correlation as large as the observed value by random
chance, when the true correlation is zero. If p-value is small,
say less than 0.05, then the correlation Cor(aj , ak) is signif-
icant. Thus, the revised correlation coefficient is defined as

R Cor(aj , ak) =

{
Cor(aj , ak) if p-value < 0.05,

0 otherwise.
(3.2)

In this way, the revised correlation is endowed with the
statistical significance, which makes the correlation between

variables more reasonable and reliable. That is to say, we only
consider those significant coupling relationships of attributes
rather than simply involving all of them. The reason is that in
the latter case, the over-fitting problem on modeling the cou-
pling relationships may arise, which will inevitably violate
the inherent interaction mechanism of attributes. Based on
this revised correlation, we propose the intra-coupled inter-
action and inter-coupled interaction of continuous attributes.
Below, L is the maximal power, 1 ≤ p, q ≤ L, aj = 〈aj〉1.

On one hand, the intra-coupled interaction is quantified as
the correlations between attribute aj and its powers 〈aj〉p.

Definition 3.1 The Intra-coupled Interaction within numer-
ical attribute aj is represented as anL×Lmatrix RIa(aj), in
which the (p, q) entry describes the correlation between the
updated attributes 〈aj〉p and 〈aj〉q . Specifically,

RIa(aj) =


θ11(j) θ12(j) . . . θ1L(j)
θ21(j) θ22(j) . . . θ2L(j)

...
...

. . .
...

θL1(j) θL2(j) . . . θLL(j)

 , (3.3)

where θpq(j) = R Cor(〈aj〉p, 〈aj〉q) is the Pearson’s corre-
lation coefficient between 〈aj〉p and 〈aj〉q .

Based on Table 1, for attribute a4, we then have RIa(a4) =(
1 0.989

0.989 1

)
as the intra-coupled interaction within a4.

It means the correlation coefficient between the attribute
“Petal.W” and its seconder power is as high as 0.989, which
signifies that they are rather closely related.

On the other hand, the inter-coupled interaction captures
the correlations between each attribute aj and all the powers
of other attributes ak (k 6= j). Accordingly, we have
Definition 3.2 The Inter-coupled Interaction between at-
tribute aj and other attributes ak (k 6= j) is quantified as
an L × L · (n − 1) matrix RIe(aj |{ak}k 6=j), in which the
(p, (i − 1) · L + q) entry represents the correlation of the
updated attributes 〈aj〉p and 〈aki

〉q . Specifically,

RIe(aj |{ak}k 6=j) = (3.4)
η11(j|k1) . . . η1L(j|k1) . . . η11(j|kn−1) . . . η1L(j|kn−1)
η21(j|k1) . . . η2L(j|k1) . . . η21(j|kn−1) . . . η2L(j|kn−1)

...
. . .

...
. . .

...
. . .

...
ηL1(j|k1) . . . ηLL(j|k1) . . . ηL1(j|kn−1) . . . ηLL(j|kn−1)

 ,

where {ak}k 6=j = {ak1
, · · · .akn−1

} is the set of attributes
other than aj , and ηpq(j|ki) = R Cor(〈aj〉p, 〈aki

〉q) is the
Pearson’s correlation coefficient between 〈aj〉p and 〈aki

〉q .

For instance, in Table 1, we have the inter-coupled inter-
action of attribute a4 with others (i.e. a1, a2, and a3) to be

RIe(a4|{a1, a2, a3}) =(
0.939 0.945 −0.850 −0.854 0.984 0.982
0.925 0.933 0.000 −0.813 0.951 0.952

)
.

Thus, we capture the hidden relationship that “Petal.W”
has negative correlation with “Sepal.W”, but is positively and
closely related with “Sepal.L” and “Petal.L” as well as their
second powers, which are consistent with our intuition. In



particular, there is no significant correlation between the sec-
ond power of “Petal.W” and “Sepal.W”, indicating the rele-
vant p-value must be at least as large as 0.05. This shows that
the involvement of both the intra-coupled interaction and the
inter-coupled interaction largely enriches the global coupling
than the correlation coefficient which only considers every
pair of the original attributes.

4 Coupled Representation for Objects
In this section, a coupled representation scheme for numerical
objects is proposed by integrating the intra-coupled and inter-
coupled interactions of continuous attributes.

In the extended information table S̃, each quantitative ob-
ject is described by L · n updated variables Ã = {〈a1〉1, · · · ,
〈a1〉L, · · · , 〈an〉1, · · · , 〈an〉L}. The updated information
function f̃pj (u) assigns the corresponding value of attribute
〈aj〉p to object u. The attribute values of aj and its powers
for u are presented as a vector ũ(aj) = [f̃1j (u), · · · , f̃Lj (u)],
while the attribute values of other attributes and their pow-
ers for u are summarized in another vector ũ({ak}k 6=j) =

[f̃1k1
(u), · · · , f̃Lk1

(u), · · · , f̃1kn−1
(u), · · · , f̃Lkn−1

(u)]. For in-
stance, in Table 2, ũ1(a4) = [0.20, 0.04], ũ1({a1, a2, a3}) =
[5.50, 30.25, 4.20, 17.64, 1.40, 1.96].

Further, the coupled interactions are incorporated into a
new object representation scheme reflecting the couplings
within and between numerical attributes.
Definition 4.1 The Coupled Representation for numerical
object u on the continuous attribute aj is a 1 × L vector
uc(aj |Ã, L), in which the (1, p) component corresponds to
the updated attribute 〈aj〉p. Specifically,

uc(aj |Ã, L) = ũ(aj)�w ⊗ [RIa(aj)]
T (4.1)

+ũ({ak}k 6=j)� [w,w, · · · ,w︸ ︷︷ ︸
n−1

]⊗ [RIe(aj |{ak}k 6=j)]
T ,

where w = [1/(1!), 1/(2!), · · · , 1/(L!)] is a constant 1 × L
vector, [w,w, · · · ,w] is a 1×L ·(n−1) vector concatenated
by n − 1 constant vectors w. “�” denotes the Hadamard
product1, and “⊗” represents the matrix multiplication.

For instance, in Table 1, we calculate that uc
1(a4|Ã, 2) =

[10.92, 14.50], where 10.92 and 14.50 are the respective val-
ues of 〈a4〉1 and 〈a4〉2. Below, the reason to choose such a
coupled representation method is clarified. If the above Equa-
tion (4.1) is expanded, for instance, we obtain the (1, p) ele-
ment (corresponds to 〈aj〉p) of the vector uc(aj |Ã, L) as

uc(aj |Ã, L).〈aj〉p = θp1(j) · f̃1
j (u) +

n−1∑
i=1

ηp1(j|ki)
1!

f̃1
ki
(u)

+
θp2(j)

2!
f̃2
j (u) +

n−1∑
i=1

ηp2(j|ki)
2!

f̃2
ki
(u) + · · ·

+
θpL(j)

L!
f̃L
j (u) +

n−1∑
i=1

ηpL(j|ki)
L!

f̃L
ki
(u), (4.2)

1Hadamard product is a binary operation that takes two row vec-
tors of the same size, and produces another vector where each (1, i)
element is the product of the (1, i) elements of the original vectors.

Table 3: The Coupled Representation of Iris Data Set
Ã 〈a1〉1 〈a1〉2 〈a2〉1 〈a2〉2 〈a3〉1 〈a3〉2 〈a4〉1 〈a4〉2
u1 22.99 23.00 10.74 10.74 10.05 10.04 10.92 14.50
u2 20.09 20.10 6.70 6.69 10.80 10.77 11.48 14.30
u3 41.20 41.27 −7.76 −8.58 34.40 34.32 35.10 36.92
u4 41.13 41.20 −9.35 −10.30 36.35 36.24 37.03 38.22
u5 44.66 44.74 −9.87 −11.21 38.55 38.45 39.28 40.86
u6 42.32 42.39 −11.84 −12.79 37.92 37.82 38.52 39.63

which resembles the Taylor expansion [Jia and Zhang, 2008]
of functions. The right side of the above Equation (4.2) is
expected to accurately exhibit the intrinsic complete coupled
representation uc(aj |Ã) for object u on the updated attribute
〈aj〉p, when the maximal power L tends to infinity, i.e.

uc(aj |Ã) = lim
L→+∞

uc(aj |Ã, L). (4.3)

Further, it is a common practice to approximate a function
by using a finite number of terms of its Taylor series. Thus,
we intend to approximate the intrinsic complete coupled rep-
resentation by fixing a positive integer L to largely capture
the global interactions of attributes with a tolerable residual
error. In the empirical study followed, the maximal power L
is evaluated according to the clustering accuracy.

Finally, when all the n original attributes are considered,
we obtain the global coupled representation for numerical ob-
ject u to be a concatenated vector:

uc(Ã, L) = [uc(a1|Ã, L),uc(a2|Ã, L), · · · ,uc(an|Ã, L)].
(4.4)

Therefore, each object is now represented as a 1 × L · n nu-
merical vector incorporated with the couplings of continuous
attributes. We then obtain an m× L · n coupled information
table Sc when all the objects in universe U follow the above
steps. For instance, based on Table 1, the coupled information
table shown in Table 3, is the new representation.

So far, we have obtained the global coupled representa-
tion Sc for continuous data. The coupled representation for
numerical objects reflects the mutual influence and interac-
tions of attributes, and reserves far more coupling relation-
ships from continuous data than the original representation.
Back to the case discussed in Section 1, we obtain that the
normalized Euclidean distance between u4 and u6 is 0.448
based on Sc, larger than both the normalized distances be-
tween u4, u3 (i.e. 0.354) and between u6, u5 (i.e. 0.419).
Similarly, the normalized distance between u3, u5 (i.e. 0.830)
is also greater than them. It means that u4, u6 and u3, u5 are
unlikely to be clustered together, which is consistent with the
real situation and verifies that our proposed coupled represen-
tation is effective in capturing the implicit relationships.

5 Empirical Study
In this section, several experiments are performed on 13 UCI
data sets (i.e. Table 4) to show the effectiveness of our pro-
posed coupled representation scheme for numerical objects.
Two data representation schemes are considered and com-
pared: the original representation as an information table S
and the coupled representation as a coupled information ta-
ble Sc. Each column of S and Sc is normalized to have zero



Table 4: Description of Data Sets
Data Set Object Attribute Class Short Form

Iris 150 4 3 Ir
Planning 182 12 2 Pl

Parkinsons 195 22 2 Par
Seeds 210 7 3 See

Segment 210 19 7 Seg
Ionos 351 34 2 Io

Patient 583 9 2 Pat
Blood 748 5 2 Bl
Vowel 990 10 11 Vo

Red Wine 1599 11 6 Rw
Waveform 5000 21 3 Wa
Navigation 5456 24 4 Na
Telescope 19020 10 2 Te
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Figure 2: The performance of L on six data sets: the average
accuracy with ± sample standard deviation error bars.

mean and standard deviation as one, so as to eliminate value
differences in the order of magnitudes.

The experiments are divided into two categories: parame-
ter estimation and learning applications. Note that the number
of runs is set to be 100 to obtain the corresponding average
results with their sample standard deviations. The number of
clusters is fixed to be the number of real classes.

5.1 Parameter Estimation
As indicated in Equation (4.2), the proposed coupled repre-
sentation for numerical objects is strongly dependent on the
maximal power L. Here, we conduct several experiments to
study the performance ofLwith regard to the clustering accu-
racy of k-means. The maximal power L is set to range from
L = 1 to L = 10 since L! becomes extremely large when
L grows, which means L = 10 is probably large enough to
obtain most of the information in Equation (4.2).

Figure 2 shows the performance of L on six data sets. It
is clear that the clustering accuracy of coupled representation
generally reaches to a stable point when L takes the value 3
or 4, which means that L = 3 or L = 4 is empirically large
enough to capture the global couplings of attributes. As a
general trend, the accuracy goes up when L increases. Only
except Blood and Telescope, the correlation coefficients be-
tween the accuracy and L are significantly around 0.75 for
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Figure 3: Data structure index comparisons on nine data sets.

the rest data. But the increasing rate of accuracy gets smaller
as L grows. This is consistent with Equation (4.2), since a
large value of L! acting as the denominator makes the corre-
sponding item rather small. In the experiments followed, we
fix L to be 3 or 4 and report the better results between them.

Another important observation is k-means based on the
coupled representation always outperforms that built on the
original representation when L ≥ 2, though a small deviation
exists. That is to say, our proposed representation is useful
and effective to discover the coupled relationships embedded
in the continuous attributes. In addition, the null hypothesis
that k-means with the coupled representation is better than the
original k-means in terms of the accuracy is accepted. How-
ever, we can see that our coupled method does not perform
stably well when L = 1. The reason is the case of L = 1
just reflects the linear relationship among attributes and only
captures a local picture of the global interactions.

5.2 Learning Applications
In this part, three groups of experiments are conducted on
extensive data sets for machine learning applications.

Cluster Structure Analysis
Experiments are performed to explicitly specify the internal
structures for the labeled numerical data. The data representa-
tion methods are evaluated with the given labels and the clus-
tering internal descriptors: Relative Distance (RD), Davies-
Bouldin Index (DBI) [Davies and Bouldin, 1979], Dunn In-
dex (DI) [Dunn, 1974], and Sum-Distance (SD). In detail,
RD is the ratio of average inter-cluster distance upon aver-
age intra-cluster distance; SD is the sum of object distances
within all the clusters. Since the internal criteria seek the clus-
ters with a high intra-cluster similarity and a low inter-cluster
similarity, larger RD, larger DI, smaller DBI, and smaller SD
indicate the stronger cluster differentiation capability, which
corresponds to a superior representation scheme.

The cluster structures produced by different representation
schemes are analyzed on nine data sets. The normalized re-
sults are shown in Figure 3, which shows that, with the excep-
tion of only one item (i.e. Vowel on DI), the corresponding
RD and DI indexes for the coupled representation are larger
than those for the original representation; while the associ-
ated DBI and SD indexes for the former are always smaller



Table 5: Clustering Comparisons on Six Data Sets with ± Sample Standard Deviation
Data Set Iris Parkinsons Seeds Segment Vowel Navigation Avg

Accuracy

LC-OR 0.660 ± 0.00 0.744 ± 0.00 0.348 ± 0.00 0.157 ± 0.00 0.111 ± 0.00 0.404 ± 0.00 0.404
LC-CR 0.690 ± 0.00 0.799 ± 0.00 0.382 ± 0.00 0.229 ± 0.00 0.224 ± 0.00 0.495 ± 0.00 0.470
SC-OR 0.783 ± 0.08 0.728 ± 0.05 0.852 ± 0.13 0.496 ± 0.06 0.337 ± 0.01 0.400 ± 0.00 0.599
SC-CR 0.905 ± 0.03 0.770 ± 0.06 0.891 ± 0.00 0.566 ± 0.06 0.423 ± 0.06 0.485 ± 0.01 0.673

NMI

LC-OR 0.579 ± 0.00 0.005 ± 0.00 0.011 ± 0.00 0.034 ± 0.00 0.064 ± 0.00 0.000 ± 0.00 0.116
LC-CR 0.628 ± 0.00 0.050 ± 0.00 0.050 ± 0.00 0.229 ± 0.00 0.365 ± 0.00 0.034 ± 0.00 0.226
SC-OR 0.606 ± 0.05 0.016 ± 0.03 0.657 ± 0.17 0.464 ± 0.07 0.397 ± 0.01 0.010 ± 0.00 0.358
SC-CR 0.752 ± 0.02 0.056 ± 0.11 0.703 ± 0.00 0.497 ± 0.05 0.394 ± 0.11 0.037 ± 0.00 0.407

than those for the latter. It shows that our proposed coupled
representation, which effectively captures the global interac-
tions of attributes, is superior to the original method in terms
of differentiating objects in distinct clusters.

Data Clustering Evaluation
Two classical clustering approaches are single linkage algo-
rithm (LC) [Ackerman and Ben-David, 2011] and spectral
clustering (SC) [Luxburg, 2007]. These two methods are
evaluated when incorporating the original (LC-OR, SC-OR)
and coupled (LC-CR, SC-CR) representation schemes. The
external clustering quality measures include Accuracy and
Normalized Mutual Information (NMI). As described in [Cai
et al., 2005], the larger these indexes, the better the clustering.

Table 5 reports the results of the four approaches on six
data sets in terms of external measures. The higher scores
are highlighted in boldface, when LC-CR compared with LC-
OR and SC-CR compared with SC-OR. This table indicates
LC-CR and SC-CR respectively outperform their baseline al-
gorithms LC-OR and SC-OR on both measures for almost all
the data, except only one italic bold value. The maximal av-
erage improvement rate across all the data is 95.67%, while
the minimal is 12.35%. Statistical testing also supports the
results that LC-CR performs better than LC-OR and SC-CR
outperforms SC-OR, at 95% significance level. Another inter-
esting observation is that SC is mostly superior to LC, which
also agrees with such a statement in [Luxburg, 2007].

Data Classification Evaluation
To further verify the superiority of our proposed coupled
method, we use the k-nearest neighbor (KNN) algorithm
[Figueiredo et al., 2011] to compare the classification qual-
ity. KNN is a type of instance-based learning, classifying ob-
jects based on the closest training examples in the attribute
space. We carry out experiments on six data sets. As we
know, a better data representation approach corresponds to a
better classification result, i.e. higher Accuracy, higher Preci-
sion, higher Recall, and higher Specificity [Figueiredo et al.,
2011]. We use the 10-fold cross-validation with K = 4.

The results of KNN based on distinct representations are
shown in Figure 4. KNN upon the coupled representation re-
markably outperforms the original KNN for all the data sets
in terms of all the evaluation measures. The maximal relative
improvement rate across all the data sets is 138.89%, while
the minimal rate is 5.51%. All the results are supported by
a statistical significant test at 95% significance level. Similar
results can also be observed by KNN when K takes other in-
tegers, which again suggests the effectiveness and superiority
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Figure 4: Data classification comparisons on six data sets: the
average values with ± sample standard deviation error bars.

of our proposed coupled method.
It is also noted that the improvement on Patient is rela-

tively small with respect to all the measures. The reason is the
coupled interactions among the attributes of Patient is weak.
Only around 45% pairs of attributes and their powers have
significant coupling relationships, compared to the average
percentage of around 78% on other data sets.

6 Conclusion
We have proposed a coupled representation scheme for ob-
jects via teasing out the interactions of numerical attributes.
Those interactions are quantified as the intra-coupled rela-
tionship described by the Pearson’s correlations between at-
tributes and their own powers, and the inter-coupled relation-
ship characterized by the correlations between attributes and
the powers of others. Both interactions are integrated to form
the Taylor-like expansion based coupled representation for
quantitative objects in a global way. The selection of the max-
imal power is empirically studied, reporting that L = 3 or 4
is large enough to capture the global coupling relationships.
Substantial experiments have verified that the coupled rep-
resentation outperforms the original on data structure, data
clustering and classification, supported by statistical analysis.

We are currently enriching this framework of the coupled
attribute analysis on numerical data by also addressing the
coupling relationships for objects and clusters. In the fu-
ture, we will work on modeling the coupling relationships for
mixed data with both numerical and categorical attributes.
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