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Abstract—Coupled behaviors, which refer to behaviors having
some relationships between them, are usually seen in many
real-world scenarios, especially in stock markets. Recently, the
coupled hidden Markov model (CHMM)-based coupled behavior
analysis has been proposed to consider the coupled relationships
in a hidden state space. However, it requires aggregation of the
behavioral data to cater for the CHMM modeling, which may
overlook the couplings within the aggregated behaviors to some
extent. In addition, the Markov assumption limits its capability
to capturing temporal couplings. Thus, this paper proposes a
novel graph-based framework for detecting abnormal coupled
behaviors. The proposed framework represents the coupled
behaviors in a graph view without aggregating the behavioral
data and is flexible to capture richer coupling information of the
behaviors (not necessarily temporal relations). On top of that,
the couplings are learned via relational learning methods and
an efficient anomaly detection algorithm is proposed as well.
Experimental results on a real-world data set in stock markets
show that the proposed framework outperforms the CHMM-
based one in both technical and business measures.

I. INTRODUCTION

Human behavior (interchangeable with ‘behavior’ in this

paper) refers to an action from a human and usually is coupled

with behaviors of his/her own and other actors. ‘Coupled’

in this paper means behaviors have certain relationships and

not independent. The couplings within an actor can be de-

fined as intra-coupled relationships (‘intra-couplings’) while

inter-coupled relationships (‘inter-couplings’) are between be-

haviors of different actors [1]. Taking the couplings into

account for anomaly detection is critical in many real-life

scenarios whereas most of existed behavior analysis methods

simply ignore these coupled relationships or only consider

part of them (please see II for a brief review). Take the

behaviors of investors in stock markets for example. ‘Place

a buy order’ (‘buy’ for short), ‘place a sell order’ (‘sell’ for

short) and ’generate a trade’ (‘trade’ for short, as an effect

of matching a buy against a sell) are three typical trading

behaviors. Intuitively, these behaviors are heterogeneous and

not independent. In other words, if these trading behaviors

are abnormal, they are coupled with each other and analyzing

them individually cannot uncover the anomaly underlying

these coupled behaviors. (please see Section III-A for further

details about how manipulations are coupled with each other.).

Analyzing such kind of behavioral anomaly should not ignore

these characteristics.

Recently, the group-based coupled behavior analysis (CBA)

[1] was proposed to provide an innovative framework to com-

prehensively analyze both intra- and inter-couplings between

behaviors of a group of actors. As an initial attempt, the

group-based CBA suggests a method to implicitly represent the

couplings in a statistical model, coupled hidden Markov model

(CHMM) [2]. For instance, suppose there are some trading

behaviors as depicted in Fig. 1(a), where buyi(1 ≤ i ≤ 4),
selli(1 ≤ i ≤ 4) and tradei(1 ≤ i ≤ 3) denote the corre-

sponding ‘buy’, ‘sell’ and ‘trade’ behaviors. To capture the

couplings between these behaviors, [1] proposed to generate

homogenous time intervals using a sliding window and aggre-

gate these behaviors according to the time intervals. As can

be seen from Fig. 1(a), buyi, selli and tradei are converted

to the corresponding aggregated behaviors buy
′

i, sell
′

i and

trade
′

i. On top of that, three chains ΦB (buy
′

1, · · · , buy
′

3),

ΦS (sell
′

1, · · · , sell
′

3) and ΦT (trade
′

1, · · · , trade
′

3) are con-

structed and a CHMM is set up to model the coupling

relationships between the above behaviors via the hidden state

space. The structure of the CHMM is shown in Fig. 1(b).

For each aggregated behavior at one time stamp t (i.e., buy
′

t,

sell
′

t and trade
′

t) there are corresponding hidden states to

each behavior (i.e., sB
t , sS

t and sT
t ). The coupled relationships

between buy
′

t, sell
′

t, trade
′

t and buy
′

t−1, sell
′

t−1, trade
′

t−1 are

reflected in the dependency of the hidden states sB
t , sS

t , sT
t and

sB
t−1, sS

t−1, sT
t−1 (similar situations to other time stamps). This

is feasible to some extent and the underlying assumption is that

coupled behaviors could be modeled as a CHMM process. This

solution, however, has some limitations: e.g., segmentation

and aggregation of the behaviors may lose important coupling

information within these aggregated behaviors; The first order

Markov assumption (i.e., only considers the couplings between

the aggregated behaviors of the current and previous time

stamps) may not be a good approximation of real coupled

behaviors.
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To overcome these weaknesses of the CHMM-based CBA,

this paper proposes a graph-based framework to capture richer

coupled relationships between behaviors and detect anomaly.

The framework mainly consists of three stages. The first stage

is to represent the behaviors in a graph structure. Fig. 1(c)

describes the proposed graph structure for representation of

the coupled behaviors. It has two main advantages compared

to the CHMM-based framework: firstly, the behaviors are not

aggregated and this avoids the possible loss of coupled rela-

tionship information in the aggregated behaviors; secondly, the

coupled relationships are not limited to the temporal Markov

assumption and in Fig. 1(c) the possible coupled relationships

between behaviors are indicated by directed links. These links

are generated by some behavioral properties of the behaviors

(for further details, please refer to IV), which indicate possible

coupled relationships. For example, the behaviors are made

at neighboring time stamps or the behaviors are made by

the investors belonging to the same branch. On the basis of

this graph-based coupled behavior model, in the second stage,

relational learning methods [3] are adopted to capture more

comprehensive coupled relationships of the normal behaviors.

After that, the third stage further detects abnormal coupled

behaviors (e.g., manipulations in stock markets) using the

learned coupling model of the normal behaviors.

A. Contributions

While the coupled behaviors can be found in many real-

world fields, such as group-based manipulations in stock

markets and criminal behaviors, only limited efforts have been

done for such behavior analysis. In this paper, a novel graph-

based CBA framework has been proposed and a case study

is presented to detect abnormal coupled behaviors (manipu-

lations) in stock markets under the proposed framework. The

main contributions of this paper are summarized as following.

• The introducing of a graph-based representation for

coupled behavior analysis. More specifically, this paper

has made a first attempt to explain and model coupled

relationships between behaviors based on a graph-based

stucture, to the best of our knowledge.

• We further explore how to learning the coupled rela-

tionships between behaviors in the graph-based CBA

framework, including how to preprocess the transactional

data and model the coupled relationships via relational

learning. In addition, this paper also proposes the corre-

sponding anomaly detection techniques.

• Extensive experiments on a real-world data set from an

Asian stock market have been done as a case study. From

both the views of technical and business performance,

the experiments explore the comparison of the proposed

framework and the previous CHMM-based framework.

Different anomaly scores are compared as well.

B. Structure of this paper

The rest of this paper is organized as follows. Firstly,

related work is given in Section II. In Section III, the CBA

problem is illustrated by a case study of detecting abnormal

coupled trading behaviors in stock markets and a CHMM-

based framework is reviewed. Then section IV describes our

proposed framework of representing the behaviors in a graph

and modeling the Couplings via relational learning algorithms

and how to perform anomaly detection within the framework.

Experimental results on a real data set of Asian stock market

are given in Section V. Section VI concludes this paper.

II. RELATED WORK

Below we briefly list a few related fields of our work.

Coupled behavior analysis and anomaly detection are closely

related to this paper in the sense of solving similar problems

while statistical relational learning (SRL) is related to this

paper in terms of methodologies.

A. Coupled Behavior Analysis.

One closely related area is group-based CBA proposed by

[1], [4]. From the perspective of CBA, there are intra- and

inter- couplings relationships between behaviors, as mentioned

in Section I. Most of existing researches on behavior studies,

however, focus mainly on discovering intra-relationship be-

tween behaviors. For example, frequent pattern mining [5], a

popular data mining technique in market basket analysis and

custom behavior analysis, only considers the intra-couplings.

For example, frequent itemset mining [6], [7] only consider

the intra-couplings within each single transaction. Similarly,

frequent sequence mining [8], [9] only considers the intra-

couplings within a behavioral sequence of an individual,

resulting in absence of analyzing the coupled relationships

between different behavioral sequences. A comprehensive

analysis of intra and inter relationships is beyond most of the

current individual behavior analysis techniques, to the best

of our knowledge. As an initial attempt, [1], [4] suggested

a CHMM-based framework and indicates the couplings in a

hidden state space. Although its success to some extend, as

mentioned before, it is limited by the coupling information

loss because of the transformation of behavioral data (in order

to suit the structure of CHMMs) and the Markov assumption.

Thus, an alternative modeling strategy is necessary, which is

one of the main motivations of this paper.

B. Anomaly Detection.

Another field related to this paper is anomaly detection

[10]. According to [10], this paper could fall into the category

of collective anomaly detection, which means a collection of

related instance (i.e. behaviors in this paper) is anomalous with

respect to the entire data set. Most work of this category only

consider intra-coupled relationships, such as [11] and [12],

which means the behaviors are analyzed individually for each

actor. By contrast, this paper explores the anomaly not only in

intra- but also inter-couplings. In addition, this paper is also

operate in semi-supervised mode [10], assuming that only the

normal class has been labeled for training. This is reasonable

and applicable because the abnormal behavioral data is usually

hard to obtain.
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(a) An Example of Some Coupled Trading Behav-
iors in Stock Markets
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(b) The Structure of the CHMM
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(c) The Structure of the Graph-based Coupled
Behavior Model

Fig. 1. The Coupled Behaviors and The Corresponding Two Different Models

C. Statistical Relational Learning.

Traditional statistical machine learning approaches assume

that a random sample of homogeneous objects is from single

distribution and independent to others. However, the charac-

teristics of real world data sets violate the above assumption

more often than not. They usually are: (1) multi-relational,

heterogeneous and semi-structured; (2) noisy and uncertain.

To fill the gap between the real world and the traditional

machine learning, SRL has been proposed and become increas-

ingly concerned by both the academic and industrial fields

[13]. Meanwhile, a newly emerging research area, statistical

relational learning [13] has been exploring the dependence

relationships in relational heterogeneous data, such as aca-

demic networks and World Wide Web, which can be utilized

in the setting of coupled behavior analysis. Most of the current

relational learning focus on classification of instances, given

the label of some instances. Generally speaking, there are

two types of SRL models in terms of inference: individual

inference [14], [15] and collective inference [16], [17], [18],

[19]. While collective inference model, such as relational

dependency networks (RDNs) [3], utilize the related instance

to infer one instance’s label, individual inference models does

not and thus getting rid of high computational collective

inference. Individual inference models, such as relational

Bayesian classifiers (RBCs) [15] and relational probability

trees (RPTs) [14], [20], typically transform relational data

into propositional form so that conventional machine learning

techniques (e.g., Bayesian classifiers and probability tree) can

be applied. In this paper, relational learning is used to learning

the couplings between coupled behaviors on the basis of the

graph representation.

III. PROBLEM FORMATION

A. A Case Study in stock markets

In stock markets, the trading transactions are made up of

trading actions from investors on their desired securities at

particular trading prices, volumes and time points. As a toy

example, Table I excerpts several order transactions of some

investors and the corresponding trades made by them in an

Asian stock market. Common sense tells us these transactional

behaviors are not isolated but coupled with other in certain

relationships that sometimes could be anomalous. In fact,

domain knowledge experts have identified Investor (1) and

(2) as cooperative manipulators in this excerpt dataset. Such

sophisticated manipulators carefully place quotes with specific

prices, volumes and times to maximize personal benefits. As

can be seen from Table I, investor (2) first placed a large buy

at 10:00:35 to mislead other buyers after his/her partner (1)’s

sell. To confuse other investors, (2) further placed a sell at

10:01:23 while (1) placed a buy at 10:01:38. After that other

investors such as (4) and (5) followed up by submitting buy

quotes at the same price as (2)’s sell. In this way, investor

(1) and (2) cooperate to mislead other investors and sell

the stocks at a higher price. Thus, the trading behaviors are

coupled with each other and the coupling relationships may

become abnormal when manipulations happen. Analysis of

such coupled behaviors is considered to be a vital point of

detecting the anomaly exists in the stock markets. The next

sections will review the formalization of the CBA problem.

B. Coupled Behavior Analysis Problem.

Suppose there are I actors, an actor i undertakes mi be-

haviors bi1,bi2, · · · ,bimi
. Each actor i’s jth behavior bij

is associated with a behavioral type T (bij) = t(bij
. Each

behavioral type t ∈ T has a number of associated properties

P
t = (P t

1 , P t
2 , · · · , P t

n)(n may vary for different t value).

Thus, each behavior bij is associated with a set of behavioral

property value (a vector) (p
tbij

1 , · · · , p
tbij
n ) determined by its

behavioral type tbij
. Then a behavior feature matrix FM(b)

for all actors for a specific period of time can be represented

as follows [1]:

FM(b) =











b11 b11 · · · b1mmax

b21 b21 · · · b2mmax

...
...

. . .
...

bI1 bI1 · · · bImmax











. (1)

where mmax = max{m1,m2, . . . , mI} , and for each ac-

tor i, if mi < mmaxthe corresponding element bij(mi <



TABLE I
AN EXPERT OF THE ‘ORDER’ AND ‘TRADE’ RECORDS IN STOCK

MARKETS

(a) Examples of buy and sell orders

Investor Time Direction Price Volume

(1) 09:59:52 Sell 12.0 155

(2) 10:00:35 Buy 11.8 2000

(3) 10:00:56 Buy 11.8 150

(2) 10:01:23 Sell 11.9 200

(1) 10:01:38 Buy 11.8 200

(4) 10:01:47 Buy 11.9 200

(5) 10:02:02 Buy 11.9 250

(2) 10:02:04 Sell 11.9 500

(b) Examples of the corresponding trades

Investor Time Direction Price Volume

(4) 10:02:04 Buy 11.9 200

(5) 10:02:04 Buy 11.9 250

(2) 10:02:04 Sell 11.9 450

j ≤ mmax) is defined as ∅, which means no action. Thus,

the intra-couplings are reflected by the relationship between

elements within one row of the above matrix, whereas the

relationships between elements of different rows indicate the

inter-couplings. Specifically, Actor i’s behavior bij are intra-

coupled with other behaviors of the same actor in terms of

the corresponding function θi
k(·)(1 < j ≤ mi, k 6= j) and

inter-coupled with other actors’ behaviors in terms of the

corresponding function ηi
k(·)(1 < k ≤ I, k 6= i), with non-

determinism.

Definition 1 (Coupled Behaviors): Coupled behaviors b re-

fer to behaviors bi1j1 and bi2j2 that are coupled in terms

of the relationship f(θi1i2
j1j2

(·))((i1 = i2) ∧ (j1 6= j2)) or

f(ηi1i2
i1i2

(·))((i1 6= i2) ∧ (j1 6= j2)), where (1 ≤ i1, i2 ≤
I) ∧ (1 ≤ j1, j2 ≤ mmax).

Theorem 1 (Coupled Behavior Analysis (CBA)): The anal-

ysis of coupled behavior is to build the objective function g(·)
under the condition that behaviors are coupled with each other

by coupling function f(·), and satisfy the following conditions:

f(·) := f(θ(·), η(·)). (2)

g(·)|(f(·) ≥ f0) ≥ g0. (3)

The above definitions formalize the problem of CBA and

give the roadmap to solve this issue. But in real-applications,

identifying both functions θ(·) and η(·) and the coupling

function f(·) is usually beyond the capability of current

knowledge because of the inherent unobservable and non-

deterministic properties of coupling relationships. For simplic-

ity and efficiency, [4], [1] proposed a coupled CHMM-based

approach to represent the coupling in the hidden state space,

which will be reviewed in the following before the description

of our proposed framework.

C. CHMM-based Coupled Behavior Modeling

CHMM [2] is a statistical model designed to model mul-

tiple processes with coupled relationships and each process

is represented by a univariate or multivariate time series,

which means the time interval between instances are uniform.

Human behaviors (instances), though, may not meet the above

condition of uniform time interval more often than not. Thus,

the CHMM-based framework suggests to convert the coupled

behaviors to sequences and then use sliding time window to

aggregate the behavioral instances to cater for the utilization

of CHMM [1], as indicated by Fig. 1(a).

In the case study of [1], they build three hidden Markov

models (HMMs) [21] for one CHMM: HMMB for buy

sequence ΦB , HMMS for sell sequence ΦS and HMMT for

trade sequence ΦT , as shown in Fig. 1(b). One HMM can

be denoted of a set of conditional probability densities (CPDs)

in terms of A,B, C, π as follows: λHMM = (A,B, π), where

B is the observation probability distribution conditioned on

the hidden state and π is the initial hidden state distribution

and A,C is the conditional probability density of the current

hidden state st conditioned on the previous hidden state st−1

(i.e., p(st|past
) and the parent node of st is only st−1), which

models the couplings between behaviors. Correspondingly, a

CHMM modeling three trading sequences can be expressed

as λCHMM = (A,B, C, π). Then, A CHMM-based CBA

framework can be built based on the following mapping

relationships [1]:

CBA problem → CHMM Modeling (4)

f(θ(·), η(·)) → (A,B, C, π) (5)

Meanwhile, as pointed out before, in order to build CHMM for

analyzing the anomaly underlies the coupled trading behaviors

[4], [1] converts the transactional data into behavior sequences

and aggregating them, which makes the data suitable for

CHMM-based modeling. Arguably, this kind of conversion

may lose the information of important coupled relationships

between behaviors. Motivated by this end, in next section,

we present a novel graph-based CBA framework for a better

modeling of coupled behaviors.

IV. PROPOSED FRAMEWORK

A. Preliminaries

As shown in Fig. 1(c), a group of coupled behaviors can

be represented by a typed, attributed graph GB = (VB , EB).
The nodes VB represent behaviors (e.g., buyi(1 ≤ i ≤ 4),
selli(1 ≤ i ≤ 4) and tradei(1 ≤ i ≤ 4)) and the edges

EB represent potential coupled relations among the behaviors

(e.g., the directed edges in Fig. 1(c) and please refer to

Section IV-B for how to generate them). Suppose we have a

group of behaviors, each behavior bi ∈ VB is associated with

a type T (bi) = tbi
and each behavior type t ∈ T has a number

of associated attributes X
t = (Xt

1, · · · , X
t
m) (Xt ⊂ X,

where X = {X1, X2, · · · , Xn} is the whole attribute set

associated with the coupled behaviors: e.g., trading price,

trading volume). An example can be seen in Fig. 2(b). There

are no hidden variables in our proposed graph-based model

and we directly model the couplings of behaviors by a set of

CPDs of all the behavioral attributes X in a relational setting.



Specifically, for any specific attribute instance xi of Xi in

a behavior b, the CPD p(Xi = xi|paxi
) is conditioned on

the attribute values of other behaviors linked to b (as well as

other attribute values of b itself). In this sense, the couplings

between behaviors are considered in the form of a set of CPDs

(in a relational setting 1) for different behavioral attribute

values of the coupled behaviors conditioned on related values

(similar to the A,C of the CHMM framework). Then, A

relational learning-based CBA framework can be built based

on the following mapping relationships:

CBA problem → SRL Modeling (6)

f(θ(·), η(·)) → p(Xi = xi|paxi
), Xi ∈ X (7)

The following content describes how the proposed frame-

work works, which includes three stages: data preprocessing,

modeling coupled behaviors via relational learning and the

corresponding anomaly detection algorithm.

B. Data Preprocessing

Let us review the behavior feature matrix defined in Equa-

tion 1, this feature matrix encodes all the behaviors that are

coupled together for analysis. Intuitively, the space for analyze

the couplings among these behaviors are almost infinite. For

a coupled behavior bj in n coupled behaviors, it could be

possibly coupled to any one of the remaining n− 1 behaviors

and the corresponding search space is O(C1
n−1). Generally, if

considering it to be coupled to any k, 1 ≤ k ≤ n − 1, the

possible search space could be O(Ck
n−1). Thus, if we sum

up the search space and the overall search space could be

O(2n−1), which means computational complex is exponential

to the increase of the number of coupled behaviors. This is

intractable when the number of the coupled behaviors is large.

Alternatively, we could limit the search space suggested by

some reference behavioral properties of the behaviors indi-

cating the possible coupled relationships. Then the remaining

behavioral properties can be defined as analysis properties,

which are used for learning the coupled relationships between

the behaviors in terms of CPDs in a relational setting. The

formal definition of such two properties is as following.

Definition 2 (Reference Property): A reference property R

refers to the behavioral property which is used to generate the

possible underlying coupled relationships between behaviors,

usually user-defined.

Definition 3 (Analysis Property): A analysis property A

refers to the behavioral property which is used to learn the

coupled relationships between behaviors.

Let us see an example to clarify these definitions. Recall

the Case Study in stock markets described in Section III. As

mentioned above, there are three type of behaviors in stock

markets: ‘buy’, ‘sell’ and ‘trade’. These behaviors are coupled

with each other and exhibit different relationships which may

indicate the manipulation of the market. As shown in Fig. 2(a).

1This CPD is not the same as the CPD in a flat setting which only consider
the dependency of intrinsic attribute values (i.e., the attribute values within
the same instance), for further details, please refer to [3].

Sell1

Sell2

Sell3

Trade1

Trade2

Buy1

Buy2

Price

Volume

Time

Order No.

Price

Volume

Time

Order No.1

Order No.2

Price

Volume

Time

Order Number

(a) The coupled behaviors with refer-
ence and analysis properties

Sell1

Sell2

Sell3

Trade1

Trade2

Buy1

Buy2

Price

Volume.

Price

Volume

Price

Volume

(b) Link generation using reference
properties

Fig. 2. An example for illustration of reference and analysis properties

The three kinds of behaviors all have the corresponding

behavioral properties. In terms of coupled behaviors, these

properties can be divided into reference property (indicating

possible couplings) and analysis property(for analysis of cou-

plings under the constrain of possible couplings). For example,

in Fig. 2(a), the behavioral properties of ‘buy’ are: ‘Price’,

‘Volume’, ‘Time’ and ‘Order No.’. The reference property

can be ‘Time’ and ‘Order No.’. The property ‘Time’ may

become a clue of the coupled behaviors neighboring in time.

This is reasonable because beyond the time constrain the

behaviors have less chance to be coupled. Consequently, these

possible coupled behaviors are linked for further analysis, as

shown in Fig. 2(b). Similarly, another property ‘Order No.’

of ‘buy’ and ‘trade’ behaviors points out the corresponding

‘trade’ behaviors (also have order Numbers). These possible

relationships are also generated in terms of links between the

behaviors. Other links between these behaviors are generated

as long as users are interested in such possible couplings.

C. Modeling Coupled Behaviors via Relational Learning

After obtaining the graph structure of the coupled behaviors,

we further explore the learning of couplings between the

behaviors (i.e., a set of CPDs.). In some cases, estimating

all the CPDs may not be of the direct interest. For example,

in stock markets, the ‘trade’ behavior directly influence the

price of a specific security and the ‘buy’ and ‘sell’ behaviors

have indirect impact on the price fluctuation. In other words,

in stock market, the manipulators control the market through

deliberately arranging the trading prices of the securities

which are decided by ‘trade’ behaviors directly. To detect the

anomaly in stock markets, we are more interested in modeling

the fluctuation of ‘trade’ behaviors’ price attribute values and

its dependency on other related trading behaviors’ attribute

values. Thus, we alternatively model the CPD of the price at-

tribute values conditioned on other related behavioral attribute

values. Consequently, we need to specify the ‘target behavior’

(e.g., the ‘trade’ behaviors) and the ‘target behavioral property’

(e.g., the ‘price’ attribute) and their formal definition is as

following:

Definition 4 (Target Behavior): A target behavior b
(t)
i is

determined by its behavioral type t
b

(t)

i

. Usually, one behav-



TABLE II
AN EXAMPLE OF FLAT THE COUPLED BEHAVIORAL DATA

RF1 RF2 · · · RFn

trade1 rf11 rf21 · · · rfn1

trade2 rf12 rf22 · · · rfn2

ioral type of behaviors are indicated as target behaviors by

prior domain knowledge.

Definition 5 (Target Behavioral Property): A target behav-

ioral property X
t
b
(t)

i is usually one of the properties belonging

to one behavioral type and specified by prior domain knowl-

edge as well.

In consequence, in order to model the coupled relation-

ships among behaviors, we could estimate the CPD becomes

p(X
t
b
(t)

i = x|pax)., underlies which the coupled relations

between behaviors are considered: To learn the p(X
t
b
(t)

i =
x|pax) is challenging because the parent node of a behavioral

attribute instance could be heterogenous. A possible method

is to flat the parent nodes (the attribute values of linked

behaviors) into relational features. [14], [15] and [3] proposed

different strategies to flat data using relational features. For

example, the ‘trade’ behaviors in Fig. 2(b) can be trans-

formed into TABLE II by generating the relational features

RF1, · · · , RFn.

a) Modeling of Conditional Probability Distribution:

Theoretically, any models learn the conditional probability

distribution can be used for our task for coupled behaviors

learning. Here we discuss two different conditional probability

models: relational probability trees (RPTs) [14] and relational

Bayesian classifiers (RBCs) [15]. The main differences be-

tween the two methods are how to generate relational features

and how to use them.

b) Relational Bayesian Classifiers: RBCs are simple

Bayesian classifiers to model relational data, which in this

paper is coupled behavior data. Similar to the independence

assumption of the naive Bayesian classifier, RBCs flat the

relational data into propositional data through multiset esti-

mators, such as average value, independent value and average

probability [15]. For example, consider the ‘trade’ behavior

as the target behavior and its price property as the target

behavioral property in Fig. 2(b). To estimate the relational

CPD for the attribute price values on behavior trade, the

RBC considers all the attribute values associated with the

related behaviors buy, sell, trade and treats them as inde-

pendent relational features. The CPD can be estimated as

p(x|pax) ∝ p(x)p(rf1|x)p(rf2|x) . . . p(rfn)(rf1 to rfn refer

to the relational feature values). Please refer to [15] for further

details.

c) Relational Probability Trees: An alternative way to

estimate the CPD by a RPT. The RPT algorithm uses aggre-

gation functions (e.g, mode, count, proportion and degree) [14]

to transform the relational feature to a propositional feature,

which is different to the RBC algorithm. After that a probabil-

ity tree is construct to select proper features to represent the

desired CPD. For example, consider the ‘trade’ behavior as the

target behavior and its price property as the target behavioral

property in Fig. 2(b). A possible if-then rule generated by the

RPT could be if RF1 > T0 then p(price = price1) = 80%
(e.g., RF1 could be the average price of related buy behaviors

and T0 is a constant). A set of this kind of rules could

represent the CPD we want to estimate. In other words, the

RPT algorithm automatically generates and selects aggregated

relational features to model the CPD of the target behavioral

property values (e.g., price values in Fig. 2(b)) of the target

behavior (e.g., the trade behavior in Fig. 2(b)) conditioned on

other related behavioral attribute values. Please refer to [14]

for further details.

D. Abnormal Coupled Behaviors Detection

Having modeled the normal coupled behaviors, we must

further determine whether the new coming coupled behaviors

are normal or abnormal. An intuitive solution to this problem

is to calculation the conditional likelihood (CL) given the

observations of the coupled behaviors based on the normal

model M (i.e. the CPD learned), which is CL(bk) =
∏

bi∈bk p(X
t
b
(t)

i = x|rf1i, rf2i, · · · , rfni;M). This can be

also used to predict the value of the target behavior property

and then compared to the true value of the property. The

obtained performance measure (e.g., area under ROC curve

(AUC) and accuracy) can also be used to check how well the

coupled behaviors are modeled by the normal model as well.

Thus, in this paper, we integrate the performance measure

and the corresponding CL value as the anomaly score for the

coupled behaviors.

AS(bk) = CL(bk) ∗ AUC(bk) ∗ Accuracy(bk) (8)

The assumption is that abnormal trading behaviors are less

likely to be predicted based on normal behaviors and have a

low CL value.

The algorithm for detecting abnormal coupled behaviors is

described in Algorithm 1. As shown in Algorithm 1, step 1

is train a normal model M0 of all the coupled behaviors in

the training set. Step 2 to 7 is a loop process to calculate

the corresponding anomaly score of each group of coupled

behaviors in the testing set. If the anomaly score is lower

than some predefined threshold, the corresponding group of

coupled behaviors is judged as anomaly. The output of this

baseline algorithm is the set of anomaly.

V. EMPRICAL RESULTS

A. The Data set

The experimental data set is from an Asian stock market.

It covers 388 valid trading days from 1 June 2004 to 31

December 2005. The data is partitioned into two sets sug-

gested by domain experts. The training data set consists of

transactions collected from 1 June 2004 to 31 December 2004,

by filtering those transactions associated with the identified

alerts. We treat it as ’normal’ data. The remainder of the

transactional data form the test set. The behavioral data of

each trading day in the training and testing set can be seem



Algorithm 1 Model-based Anomaly Detection

Input: A Training set {b1,b2, · · · ,bN},
A Testing set {b1,b2, · · · ,bM},
A Model Type M ,
A Threshold Th0.

Output: An anomaly set A.
1: Train one M0 model on the training set {b1,b2, · · · ,bN, }.

2: for all b
k in the Testing set do

3: Compute the anomaly score of b
k given the model M0:

AS(bk|M0)
4: if AS(bk|M0) < Th0 then

5: b
k → A

6: end if
7: end for

as b
j (1 ≤ j ≤ N) and b

k (1 ≤ k ≤ M) in Algorithm 1,

respectively. Those transactions with alerts are not removed

from the test set so that the test set is made up of both normal

and abnormal coupled trading behaviors. Alerts fired by the

existing surveillance system are referred as rough benchmark

for us to evaluate the performance of our proposed algorithm.

Because it is very costly and time-consuming to label the data,

the above evaluation method is suitable and reasonable.

B. Performance Measure

In this paper, we evaluate the performance of our pro-

posed algorithms from both technical and business perspec-

tive. True positive TP , true negative TN , false positive

FP and false negative FN are counted in terms of treat-

ing the abnormal cases as the positive class. The technical

performance of a framework is then evaluated by accuracy

( TP+TN
TP+FN+FP+TN

), precision ( TP
TP+FP

), recall ( TP
TP+FN

),

and specificity ( TN
FP+TN

). On the other hand, two business

metrics, return and abnormal return [22], are used as indicators

for abnormal dynamics surveillance of the market. Empirically,

the trading days with exceptional patterns are more likely to

incur a higher return and abnormal return than those without

exceptional trading. Return refers to the gain or loss for a

single security or portfolio over a specific period, which is

calculated by Return = ln pt

pt−1
, where pt and pt−1 are the

trade prices at time t and t−1, respectively. Abnormal return is

defined as the difference between the actual return of a single

security or portfolio and the expected return over a given time

period. The expected return is the estimated return based on an

asset pricing model, using a long-term historical average, or

multiple valuations. The formula to compute abnormal return

is as AbnormalReturn = Return − (γ + ξReturnmarket),
where Returnmarket is the observed return for the market

index, γ and ξ are the estimated parameters using previous

return observations.

C. Comparison of Different relational models and the CHMM

We tested the two different CBA framework based on two

different relational models (denoted as ‘CBA-RBC’ and ‘CBA-

RPT’, respectively) on the test data set and compared them

to the CHMM-based CBA framework (denoted as ‘CBA-
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Fig. 3. Technical and Business Performance of the Four Models

CHMM’)2. Fig. 3 shows both their technical performance. The

horizontal axis (P-Num) stands for the number of detected

group-based abnormal behaviors (of a trading day), and the

vertical axis represents the values of technical measures (ac-

curacy, precision, recall or specificity) or business measures

(return and abnormal return). As can be seen from Fig. 3(a),

Fig. 3(b), Fig. 3(c) and Fig. 3(d), both the two relational

learning-based CBA frameworks perform better than the pre-

vious proposed CHMM-based framework. Specifically, when

P−num = 11, the precision of the RBC-based framework can

be 100.02% higher than that of the CHMM-based framework.

Simialr trends can be seen in other measures. This proves

the data transformation in the CHMM-based framework may

cause information loss and lead to poorer performance. Of

the two relational models, the CBA-RBC performs the best in

terms of all the measures. This is may be because the way

the RBC constructs relational features are more close to the

real situation in this case, compared to the RPT, which may

be helpful to capture more comprehensive couplings between

behaviors.

D. Exploration of Different Anomaly Scores

Here we compare four anomaly scores, denoted as ‘AS1’,

‘AS2’, ‘AS3’ and ‘AS4’, respectively. The ‘AS1’ is defined as

in Equation 8, while AS2(bk) = Accuracy(bk), AS3(bk) =
AUC(bk) and AS4(bk) = CL(bk). The experimental results

2The performance results are the averaged values of different time sliding
windows [4].
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Fig. 4. Technical and Business Performance of the Four Anomaly Scores

3 on the data set is shown in Fig. 4. The horizontal and vertical

axes in Fig. 4 have the same meanings of that in Fig. 3.

From the picture, we can see our proposed anomaly score

‘AS1’ performs the best. An intuitive explanation is that ‘AS1’

consider the most comprehensive aspects to in the four scores

for comparison.

VI. CONCLUSIONS

We introduce a challenging issue of detecting abnormal

trading coupled behaviors and propose a graph-based CBA

framework. The graph model avoids the data transformation

and the Markov assumption in the previous CHMM-based

framework, and is expected to have a more accurate modeling

of the coupled relationships between the behaviors, which

is helpful to further anomaly detection. In the case study

of detecting abnormal trading behaviors in stock markets,

we have demonstrated that the graph-based CBA framework

performs better than the CHMM-based framework and the

proposed anomaly score is effective compared to alternative

scores. Additional research includes applying our proposed

CBA framework to other scenarios, such as social security

and social welfare data mining where people’s behaviors are

also coupled with each other, and investigations on capturing

the dynamics of the coupled relationships between normal

behaviors which may change over time.

3Only the performance results of CBA-RBC are reported because of limited
space and other models exhibit similar trends.
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