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Abstract— This paper presents a novel framework for de-
tecting abnormal sequences in an one-class setting (i.e., only
normal data are available), which is applicable to various do-
mains. Examples include intrusion detection, fault detection and
speaker verification. Detecting abnormal sequences with only
normal data presents several challenges for anomaly detection:
the weak discrimination of normal and abnormal sequences;
the unavailability of the abnormal data and other issues.
Traditional model-based anomaly detection techniques can solve
some of the above issues but with limited discrimination power
(because of directly modeling the normal data). In order to
enhance the discriminative power for anomaly detection, we
turn to extracting discriminative features from the generative
model based on the principle deducted from the corresponding
theoretical analysis. Then a new anomaly detection framework
is developed on top of that. The proposed approach firstly
projects all the sequential data into a model-based equal
length feature space (this is theoretically proven to have better
discriminative power than the model itself) , and then adopts a
classifier learned from the transformed data to detect anomalies.
Experimental evaluation on both the synthetic and real-world
data shows that our proposed approach outperforms several
anomaly detection baseline algorithms for sequential data.

I. INTRODUCTION

ANOMALY detection has traditionally been an important
part of behavior analysis, whose aim is to find abnormal

patterns in data that do not conform to expected (normal)
behavior [1]. Most of the traditional anomaly detection
techniques focus on static behavioral records or transactional
data [2]. But in many real life scenarios, behaviors are
dynamic and naturally organized as sequential data and the
target of anomaly detection is collections of behaviors other
than individual ones. One such example could be seen in
intrusion detection for the operating system, i.e., to detect
malicious programs (processes) from the normal execution
processes. Each process (program) is denoted by its trace,
which is a sequence of system calls used by that process from
the beginning of its execution to the end. Table I shows three
example programs in which normal and malicious ones are
mixed. Each row records the sequential system calls (e.g.,
read and open) of one program. Another example could
be found in detecting abnormal Electrocardiogram (ECG)
signals. ECG signals record the dynamic behaviors of the
heart over a period of time, which could be further utilized
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TABLE I: Some Sample Data of Operating System Call
Traces [1].

open read mmap mmap open read · · ·
open mmap mmap read open · · · · · ·
open close open close open mmap · · ·
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Fig. 1: (a) Some Sampled Signals from the ECG Data Set.
(b) Some Sample Sequences from the Synthetic Data Set.

to characterize the heart’s condition. Fig. 1(a) depicts two
sampled ECG signals, one of which is from a healthy heart
(i.e., normal) and the other is from an attacked heart (i.e.,
abnormal). From the above examples, we can intuitively find
two things: firstly, these sequences are characterized by their
dynamics; secondly, the normal and abnormal sequences are
very similar by their appearance. For the purpose of detecting
these abnormal sequential behaviors, we should consider the
dynamic characteristics of sequential data, which is different
from anomaly detection in static data. Another challenging
issue is how to discriminate these abnormal dynamic behav-
iors from highly resemblant normal behaviors.

The above scenarios form a challenging issue, that is to
detect abnormal behavioral sequences (which highly resem-
ble normal behavioral sequences) in a set of sequences. To
be more precise, the problem we will explore in this paper
can be formally stated as follows:

Definition 1: Given a set of n training normal sequences,
X tr, and a set of m test sequences X te, find a set of abnormal
sequences X a ⊂ X te.

The key challenges of the above problem are listed in the
following: Firstly, the sequences are quite dynamic, which is
not intuitive to capture. Secondly, the abnormal sequences
are usually highly similar to the normal ones in nature.
This can be seen from Table I and Fig. 1(a). In addition,
other related issues with anomaly detection for sequential
data include variable lengths of sequences, and imbalance
betweens normal and abnormal data (i.e., one-class mode in
this paper).

Several techniques [3], [1] have been proposed to solve
the problem of detecting abnormal sequences. Most of these
techniques only consider some of the issues above and can



be categorized into two types. One type is to degrade the
problem to point (static) anomaly detection. Some techniques
in this category treat a sequence as a vector of attributes
assuming that the sequences are of equal length [4] and
then point anomaly detection techniques are applied. This
is problematic when the lengths of sequences are not equal.
To avoid this problem, different similarity (or distance)-
based [5] anomaly detection techniques have been proposed.
However, the above approaches depend strongly on the
definition of similarity (or distance) measure, which could be
problematic when the data is very dynamic. For example, the
behaviors of ECG signals are changing from time to time,
following a stochastic nature. Thus, defining a proper and
robust distance measure in this setting is difficult. To avoid
this, another type of sequence anomaly detection techniques
tries to model the sequences and thus is model-based. The
model-based methods use statistical models to capture the
dynamic characteristics of the sequences. Representative
models, such as Hidden Markov Models (HMMs) [6], Finite
State Automatons (FSAs) [7] and coupled HMMs (CHMM-
s) [8] have been studied in different application domains
(e.g., operating system call data, network protocol data and
financial data). The underlying assumption of these model-
based algorithms is that normal sequences satisfy the normal
model while abnormal ones do not. Although the model-
based approaches are reasonable to some extent, we find that
directly modeling the normal data has limited discriminative
power in identifying abnormal sequences because abnormal
sequences are highly similar to normal ones. This in turn
could result in the degradation of the anomaly detection
performance.

Hence, we propose a novel anomaly detection framework
to deal with the issue of limited discriminative power in the
traditional model-based approaches. The main contributions
of this paper are listed as follows:

• Based on the analysis of Bayes error, we provide the
theoretical principle of extracting discriminative features
for one-class anomaly detection.

• A flexible three-phase implementation framework is
proposed: Phase 1 extracts discriminative features from
the sequences based on the aforementioned theoretical
feature extractor principle; Phase 2 learns a discrimi-
native classifier (e.g., SVM) on this new feature space;
Phase 3 applies the learned classifier to detect fraudu-
lent sequences.

The remainder of this paper is organized as follows. Sec-
tion II reviews the existing model-based anomaly detection
and discusses its limitations, followed by theoretical analysis
for enhancing the discriminative power for anomaly detection
in Section III. Section IV proposes an implementation frame-
work based on the theoretical analysis. After that, Section V
and VI describe empirical results on both synthetic and real-
world data sets. Section VII concludes this paper.

II. MODEL-BASED ANOMALY DETECTION AND ITS
LIMITATIONS

In this part, we briefly review the commonly-used model-
based framework to handle one-class anomaly detection for
sequential data [9], [6], [8] and point out its limitation from
the theoretical perspective.

A. The Anomaly Detection Algorithm

The goal of sequence anomaly detection is to take an input
sequence x and assign it to two discrete classes y where
y = 1,−1 (1 denotes normal class and −1 denotes abnor-
mal class). Generally speaking, the model-based framework
detects anomaly by thresholding the likelihood

Pθ∗
1
(x) < Th0 (1)

where Pθ∗
1
(x) = P (x; θ∗|y = 1) (and this form of notation

has similar meanings in the rest of the paper), θ∗1 is the
normal model parameters (and usually estimated as θ̂1 from
training data X tr) for normal class. The sample x satisfies
Equation 1 is detected as an anomaly. The model-based
algorithm consists of two stages: the first stage is to profile
the normal sequence with a generative model θ̂1 while the
second stage is to detect abnormal sequences in the test data
set according to Equation 1.

B. Limitations: Theoretical Analysis

As reviewed in the above, the one-class sequence anomaly
detection is to predict discrete class labels (i.e., normal or ab-
normal), which is similar to the aim of classification problem.
In fact, the difference between the problem considered in this
paper and the classification one is the availability of training
data. In this paper, only normal data is available for training
and thus can be seen as a special case of classification
problem, which is helpful to theoretical analysis.

For a standard classification problem, assuming we know
the ‘oracle’ (i.e., true) parameters θ∗ (θ∗1 denotes the param-
eters for the normal class and θ∗−1 denotes the parameters
for the abnormal class) for generating the data, classifying
an input x is to threshold the posterior probability P (y =
1|x; θ∗) [10] with a threshold 1

2 , which is equivalent to the
following oracle classifier (and the proof can be found in
Appendix A):

Pθ∗
1
(x) < Th1 · Pθ∗

−1
(x) (2)

The sample x satisfies Equation 2 is detected as an anomaly.
Compared to Equation 1, we can see that the model-based
anomaly detection algorithm does not consider the term
Pθ∗

−1
(x) for classification decision making and thus has less

discriminative power for classification, which could harm
the anomaly detection result. Here the Bayes error [10] is
adopted to measure the performance of the anomaly detection
algorithms. It is also an indicator of the discriminative power
since good discrimination leads to good anomaly detec-
tion performance. Suppose the oracle classifier expressed
as Equation 2 has the oracle Bayes error L∗ for all x ∈
X , the performance of the model-based anomaly detection



algorithm expressed as Equation 1 could not achieve good
approximation to L∗ in general cases. To enhance the dis-
criminative power for anomaly detection, we try to find
another method whose classification performance could have
a better approximation to L∗, which will be discussed in the
following sections.

III. HOW TO ENHANCE THE DISCRIMINATIVE POWER:
THEORETICAL ANALYSIS

The above section has pointed out the limitation of the
model-based anomaly detection algorithm and our aim is to
find a method to approximate the oracle Bayes error L∗.
Inspired by [11], Section III-A first proposes a well-founded
performance measure to theoretically evaluate the approx-
imation, and then an approximation method of extracting
proper features combined with a classifier is suggested in
Section III-B.

A. Objective Function

It is straightforward to see that the oracle classifier E-
quation 2 has the most discriminative power for classifying
normal and abnormal sequences which achieves the oracle
Bayes error L∗. Thus, it is desirable that the theoretical Bayes
error of the proposed anomaly detection algorithm should
approach L∗ as close as possible. Here we consider a linear
classifier wTfθ̂(x) + b combined with a feature extractor
fθ̂(x) (fθ̂(x) : X → RD and w ∈ RD and b ∈ R) to
approximate the oracle classifier. The corresponding Bayes
error is

R(fθ̂) = min
w∈S,b∈R

Ex,yΦ[−y(wT fθ̂(x) + b)] (3)

where S = {w|w ∈ RD}, Φ[a] is the step function (which
is 1 if a > 0 and 0 otherwise), and Ex,y denotes the
expectation with respect to the true distribution p(x, y|θ∗).
R(fθ̂) is at least as large as the oracle Bayes error L∗ and
R(fθ̂) = L∗ only if the linear classifier implements the
same decision rule as the oracle classifier [12]. Usually w
and b can be determined by a learning algorithm and we
assume the optimal learning algorithm is used. When w and
b are optimally chosen, the remaining part to determine is
the feature extractor fθ̂(x) that minimize R(fθ̂)−L∗, which
describes how close the Bayes error to the oracle one.

Now it is natural to design a feature extractor that min-
imizes the objective function R(fθ̂) − L∗. Direct optimiza-
tion of this function is difficult because there exists a non
differentiable function Φ. Alternatively, we turn to minimize
its upper bound 2D(fθ̂), which generally has the following
relationship with the objective function [10]:

R(fθ̂)− L∗ ≤ 2D(fθ̂). (4)

where D(fθ̂) = minw∈RD,b∈R Ex|F (wT fθ̂(x)+b)−P (y =
1 | x; θ∗)| and F (t) = 1

(1+exp(−t)) . Thus, D(fθ̂) becomes an
alternative object function to minimize whose minimization
leads to the minimization of R(fθ̂) − L∗ in terms of upper
bounds.
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Fig. 2: The Flow Chart and Algorithm of the Proposed
Framework

B. Proposed Feature Extractor

On the basis of the above object function, we further
propose a feature extractor that achieves small D(fθ̂). It is
straightforward to see that a feature extractor fθ̂(x) satisfies

wT fθ̂(x) + b = F−1(P (y = 1|x; θ∗)) for all x ∈ X (5)

with certain values of w and b, we have D(fθ̂) = 0, which
is the minimum point. However, since the oracle parameter
θ∗ is unknown, we cannot construct this optimal feature
extractor fθ̂ according to F−1(P (y = 1|x; θ∗)). However,
it can be approximated by its Taylor expansion at the point
θ̂1 estimated from the training data. The corresponding
approximate optimal feature extractor is as follows:

fθ̂(x) := (∂θ∗
11
g(θ̂1), · · · , ∂θ∗

1p
g(θ̂1))

T (6)

where g(θ∗1) = logPθ∗
1
(x), ∂θ∗

1i
g(θ̂1) (1 ≤ i ≤ p) is g(θ∗1)’s

gradient with respect to θ∗1i at point θ̂1 and can be seen as a
function of x since θ̂1 is fixed. Thus the extracted feature is
a set of functions of x. The proof can be found in Appendix
B. It is also notable that the theoretical performance of the
proposed feature extractor with optimal classifier is better
than that of the model-based algorithm and the proof can be
found in Appendix C.

IV. PROPOSED IMPLEMENTATION FRAMEWORK

Motivated by the theoretical analysis of enhancing the
discriminative power for the model-based anomaly detection
algorithm, we further propose an efficient implementation
framework, called model-based discriminative feature (MDF)
anomaly detection framework. A key challenge regarding
implementation is to choose proper w of the classifier for
anomaly detection, since the principle of feature extractor is
already given. An overview of the MDF framework is shown
in Fig. 2. More specifically, Phase 1 is to extract the features
on the basis of fθ̂ in the form of Equation 6. Then in Phase
2, based on the extracted features, the corresponding optimal
w is learned using a one-class support vector machine
(SVM). Finally, the anomaly detection task is performed by
the learned classifier produced in Phase 3. The following
sections will describe the details of the three phases.

A. Phase 1: Feature Extraction

For the first phase, we need to choose a proper model
to extract features based on it. In this paper, we assume
that sequences could be well modeled by hidden Markov



Models (HMMs), because its expressive power of modeling
real-world dynamic behavioral process, such as speech signal
[13], biological sequence[14], gestures [15] and videos [16].

Here we first review the basic notions of HMMs and then
give out the form of derivatives ∂θ∗

1i
g(θ̂1) (1 ≤ i ≤ p) used

for feature extraction. Formally, a first-order HMM can be
formally defined by:

• A set of Q possible hidden states denoted as Q =
{1, 2, · · · , Q}, where i(1 ≤ i ≤ Q) is a possible hidden
state. The state at time t is denoted as qt and qt ∈ Q.

• The hidden state transition matrix is A = aij , where
aij = P (qt+1 = j|qt = i), 1 ≤ i, j ≤ Q is the
probability for the transition from i to j.

• The observation vector xt at time t is supposed to
be governed by the corresponding conditional prob-
ability distribution bj(xt) (1 ≤ j ≤ Q). When
the observation vectors are discrete symbols, bj(xt)
(1 ≤ j ≤ Q) for each hidden state j is usu-
ally associated with the multinomial distribution as
bj(xt) =

∏K
k=1 µ

xtk

jk . Here we use the 1-of-K scheme
(i.e., xt = [xt1, · · · , xtK ]T , subects to

∑
k xtk = 1) to

represent the discrete observation as a K-dimensional
vector where K is the number of vocabulary for
the discrete symbols. When the observation vectors
are continuous, xt (with hidden state j) is usu-
ally assumed to subject to a mixture of Gaussian
distributions

∑K
k=1 cjkN (xt|µjk,Σjk), where cjk is the

mixture coefficient for the kth Gaussian mixture in the
state j, N is a Gaussian distribution density with the
mean vector µjk and the covariance matrix Σjk.

• The initial state probability distribution π =
(π1, π2, · · · , πQ), where πi = P (q1 = i), 1 ≤ i ≤ Q.

Thus, an HMM can be denoted as θ = {A,B, π}. Let x
be an observation sequence, the parameters of an HMM are
approximately learned using the Baum-Welch algorithm [17]
given a set of sequences X tr. On the other hand, the partial
derivatives of g(θ∗1) at the point of θ̂1 = {Â, B̂, π̂} can be
calculated by using ξ̂t and γ̂t, which can be obtained by the
forward-backward algorithm [13]. Specifically, ξ̂t(i, j) is the
probability of being in state i at time t and state j at time
t + 1 given the model θ̂1 and the observation sequence x,
which is ξ̂t(i, j) = P (qt = i, qt+1 = j|x; θ̂1). For discrete
observations, γ̂t(j) is the probability of being in state j at
time t, which is γ̂t(j) = P (qt = j|x; θ̂1); for continuous
observations, γ̂t(j, k) is the probability of being in state j at
time t with the kth Gaussian mixture component accounting
for xt, which is γ̂t(j, k) = P (qt = j,Mjt = k|x; θ̂1), where
Mjt is a random variable indicating the mixture component
at time t in state j. Then partial derivatives of g(θ∗1) with
respect to the parameters θ∗1 at a point θ̂1 (estimated from
the training data) are as following [18]:

∂a∗
ij
g(θ̂1) =

T−1∑
t=1

ξ̂t(i, j)

âij
(7)

for discrete observations:

∂π∗
i
g(θ̂1) =

γ̂t(i)

π̂i

∂µ∗
jk
g(θ̂1) =

∑T
t=1 γ̂t(j)xtk

µ̂jk
(8)

for continuous observations:

∂π∗
i
g(θ̂1) =

γ̂t(i, 1)

π̂i

∂c∗jkg(θ̂1) =

T∑
t=1

γ̂t(j, k)

ĉij

∂µ∗
ij
g(θ̂1) =

T∑
t=1

γ̂t(j, k)[Σ̂
−1
jk ]

T
(xt − µ̂jk)

∂Σ̂∗
jk
g(θ̂1) =

T∑
t=1

γ̂t(j, k)

2
[G− vec(Σ̂−1

jk )] (9)

where vec(F ) = [F11, F12, · · · , FM1, FMN ]T when F is a
matrix of size M × N . G = [(xt − µ̂jk)

TΣ−1
jk ⊗ (xt −

µ̂jk)
TΣ−1

jk ]
T and ⊗ denotes the kronecker product. Then

the algorithm for the feature extractor can be summarized
in Algorithm 1: step 1 estimates parameters θ̂1 of the HMM
from the training data; then step 2-9 extract the discriminative
feature using Equation 7-9 for each sequence x ∈ X tr∪X te.

Algorithm 1 The Proposed Feature Extractor

Input: A Training set X tr , A Testing set X te,
Output: The transformed features S.

1: Given X tr train an HMM θ̂1.
2: for all x ∈ X tr ∪ X te do
3: Given θ̂1, construct the corresponding discriminative fea-

tures
4: if x is discrete then
5: Construct features according to Equation 7 and 8 as:

fθ̂(x) = (∂a∗
11
g(θ̂1), · · · , ∂π∗

1
g(θ̂1), · · · , ∂µ∗

11
g(θ̂1), · · · )T

6: else
7: Construct features according to Equation 7 and 9 as:

fθ̂(x) = (∂a∗
11
g(θ̂1), · · · , ∂π∗

1
g(θ̂1), · · · , ∂c∗11

g(θ̂1), · · · ,
∂µ∗

11
g(θ̂1), · · · , ∂σ∗

11
g(θ̂1), · · · )T

8: end if
9: s → S

10: end for

B. Phase 2: Learning of the Optimal Linear Classifier
This phase tries to construct a linear classifier with the

optimal w, one-class SVM has become a natural choice,
since it is linear classifier and only the normal sequences
are provided for training. Suppose there is a training data
set Str consists of m training sequences x(1), · · · ,x(m), the
learning objective function based on the maximum margin
theory is [19]:

min
w,ρ,ξ

1

2
∥w∥2 + 1

νm

∑
i

ξi − ρ, (10)

subject to wΦ(x(i)) ≤ ρ− ξi, ξi ≥ 0, 1 ≤ i ≤ m. (11)



TABLE II: Parameters of the HMMs Generating the Normal
and Abnormal Sequences

A B π

θ1

(
0.6 0.4
0.4 0.6

) (
N (0, 1),N (3, 1)

) (
0.5, 0.5

)
θ−1

(
0.4 0.6
0.4 0.6

) (
N (0, 1),N (3, 1)

) (
0.5, 0.5

)
Then, the estimated optimal w∗ is obtained using α (which

maximize Equation 10) as below:

w∗ =
∑
i

αiΦ(x
(i)). (12)

where k(x(i),x(j)) = Φ(x(i))Φ(x(j)) is a kernel function
and the w∗ becomes the output classifier C.

C. Phase 3: Anomaly Detection

This phase is straightforward, for any sequence x ∈ Ste,
apply the learned classifier C (i.e., w∗Tfθ̂(x) + b) and Th2

to detect anomaly. That is, if w∗Tfθ̂(x) + b < Th2, x is
detected as anomaly and put into the anomaly set Sa, which
is the output.

V. EXPERIMENTAL SETTINGS

A. Data Sets

The details of both synthetic and real-world data sets
are reported in this section. The synthetic data is used to
illustrate the performance of the proposed algorithm without
considering the influence of the approximate modeling. This
is because all the synthetic data are sampled from generative
HMMs and thus can be reasonably modeled as HMMs. In
addition, we also use a variety of real-world data sets extract-
ed from different application domains when the behavioral
sequences can be approximately modeled as HMMs.

1) The Synthetic Data: Here we consider a toy example to
test the performance of our proposed algorithm. We assume
that normal and abnormal sequences are generated from
two 2-state Gaussian HMMs (θ1, θ−1) specified in Table II
respectively (‘1’ is the label for normal class and ‘-1’ is the
label for abnormal class).

Since the two models generating the sequences are very
similar (and only have a slight difference in A), the generated
sequences are very similar and quite difficult to differentiate
by their appearance. Fig. 1(b) shows two sample sequences
from the synthetic data. As can be seen from the chart, these
sequences are quite stochastic and how to distinguish them
directly is unclear. Thus, this synthetic data set provides
a very challenging scenario for one-class mode sequence
anomaly detection, because the abnormal sequences can only
be differentiated from the normal sequences by their dynam-
ical characteristics that are different in the model generating
them. In other words, the abnormal sequences are very sim-
ilar to the normal sequences. Thus, it is suitable for testing
the discriminative power of our proposed framework. The
length of each individual sequence is obtained by sampling
a uniform pdf in the range of [µL(1−V/100) µL(1+V/100)],
where µL is the sequence’s mean length and V is a parameter
that refers to as the percentage of variation in the length

(V = 40 in this paper). By doing so, we hope to examine
the influence of sequence length on the anomaly detection
performance. All the given results are averaged over 50
randomly generated data sets.

2) The Real-world Data: To evaluate the performance of
the proposed algorithm in real world, 5 publicly available
data sets are used. From the perspective of data types,
these data sets can be grouped into two categories: dis-
crete sequences and multi-(uni-)variate time series. From the
perspective of data characteristics, the data sets are from
different domains of intrusion detection (ID), fault detection
(FD), electrocardiogram (ECG) signals, character trajectory
(CT) records and Japanese Vowels (JV) speech. The details
of the real-world data sets used are given in the following:

a) ID Data: This data set1 were collected by the
University of New Mexico to evaluate the performance of
intrusion detection for system calls. The normal sequences
consist of sequence of system calls generated in an operating
system during the normal operation of a computer program,
such as sendmail, ftp, lpr etc. The anomalous sequences
consist of sequence of system calls generated when the
program was run in an abnormal mode, corresponding to
the operation of a hacked computer. A subset of data sets
available in the repository is used here, which was processed
by the same process mentioned in [20].

b) Fault Detection Data: This repository2 is the basic
security module (BSM) audit data, collected from a victim
Solaris machine, in the DARPA Lincoln Labs 1998 network
simulation data sets. The data is similar to the intrusion
detection data described above.

c) Electrocardiogram (ECG) Data: This data set3 cor-
responds to an ECG recording for one subject suffering
with a particular heart condition. The ECG recording was
segmented into short sequences of equal lengths. Sequences
that contain any annotation of a heart condition are added
to the anomalous set and the remaining sequences form the
normal set.

d) Character Trajectory: This data set4 consists of
trajectories captured by a digitizing tablet when writing 20
different characters and each sample is a 3-dimensional time
series differentiated and smoothed using a Gaussian kernel.
In experiments, we use the sequences of one character as
the normal set and use the samples of another character
as the abnormal set, giving a total of 19 experiments (each
experiment was repeated 10 times).

e) Japanese Vowels: The data set5 collects several
utterances of nine male speakers producing two Japanese
vowels /ae/ successively. 12 dimension linear predictive
coding (LPC) cepstrum coefficients have been extracted from
each utterance, which forms a 12-dimension time series.
In experiments, we use the sequences of one speaker as
the normal set and use the samples of another speaker as

1Available at http://www.cs.unm.edu/∼immsec/systemcalls.htm.
2Available at http://www.ll.mit.edu/mission/communications/ist/.
3Available at http://www.physionet.org/physiobank/database/edb/.
4Available at http://archive.ics.uci.edu/ml/datasets/Character+Trajectories.
5Available at http://archive.ics.uci.edu/ml/datasets/Japanese+Vowels.



TABLE III: The Details of the Real Data Sets
Dataset ID FD ECG CT JV

D discrete discrete 1 3 12

µL 839 143 250 166 16

|XN | 2030 2000 500 186 30

|XA| 130 67 50 119-171 30

|Xtr| 1030 1000 500 136 10

|Xte| 1050 1050 550 60 30

the abnormal set, giving a total of 8 experiments (each
experiment was repeated 10 times).

Table III summarizes the data sets for experimental eval-
uation, where D is the dimension of each observation in
the sequences, µL is the averaged length of the sequences
and |Xi| (i ∈ N,A, tr, te) is the number of sequences.
For each data set, we have done repetitive experiments and
report the averaged results of 10 times at least. The general
methodology to create the data sets is as the following [20]:
For each data set, a normal data set, XN , and an anomalous
data set XA are created. A training data set X tr is created by
randomly sampling a fixed number of sequences from XN .
A test data set X te is created by randomly sampling a fixed
number of normal sequences from XN − Xtr and a fixed
number of anomalous sequences from XA.

B. Comparative Algorithms

We compare two variants of our proposed MDF framework
(using linear and Gaussian radial basis SVM as the classifiers
in phase 2) with the model-based algorithm, and four baseline
methods without learning as following:

• MDF with linear SVM (MDF-SVM), which means a
linear SVM is applied as the classifier in phase 2 of the
MDF framework.

• MDF with Gaussian radial basis SVM (MDF-SVMrb),
which means a non-linear SVM is applied as the clas-
sifier in phase 2 of the MDF framework.

• The Model-based Algorithm (use HMM as the model,
as described in Section II-A).

• MDF with k-nearest neighbor classifier (MDF-kNN),
which means a lazy classifier kNN is applied directly
after phase 1 of the MDF framework without phase 2.
In particular, we set k = 4, which is suggested by [20].

• Oracle Model (ORACLE). This baseline method uses
the true model information of both the normal and the
abnormal sequences. The classifier is constructed using
the Bayes Rule. In particular, for a given sequence
Xi, P (y = 1|Xi; θ1, θ−1) is calculated. If it is lower
than a predefined threshold Th0 then Xi is detected as
anomaly.

• Semi-Oracle Model (Semi-ORACLE). This baseline
method uses the true model information of only the
normal sequences. The other setting is similar to the
ORACLE model.

• Random Model (RANDOM). As indicated by the name,
this model predicts the class label for each sequence
randomly.

C. Performance Measures

To evaluate the performance of the above anomaly detec-
tion algorithms, we choose the area under receiver operating
characteristic curve (AUC) [21] and a higher AUC usually
means a better classification performance. The reason for
this choice is the anomaly detection problem in this paper
can be treated as a special case of a binary classification
problem, and the AUC is widely accepted for evaluating the
classification results summarizing the performance at various
threshold settings.

VI. EXPERIMENTAL RESULTS

A. Synthetic Data

Fig. 3(a) shows the results of the performance comparison
of different anomaly detection techniques against different
numbers of training sequences. It can be seen that, the
number of training sequences does not have significant
impact on the performance of the algorithms. This may be
because of the sequences are generated by simple synthetic
models and can be modeled by the HMMs using relatively
small samples. Fig. 3(b) shows the results of the performance
comparison of different anomaly detection techniques against
different mean sequence lengths. As shown in the picture,
the algorithms tend to have better performance when the
length of sequences increases. This conforms to our intuition
that longer sequences have clearer dynamic characteristics to
capture, which is very helpful to further anomaly detection.
Fig. 3(c) shows the results of the performance comparison
of different anomaly detection techniques against different
number hidden states Q of the HMMs. As can be seen from
the chart, the performance of MDF-SVM, MDF-SVMrb and
MDF-kNN decreases when the model structure varies. A
possible explanation is that improper model structures may
generate redundant dimensions in the extracted feature space
and degrade the anomaly detection result. Fig. 3(d) shows the
results of the performance comparison of different anomaly
detection techniques against different ratios of the normal
and abnormal sequences in a testing data set. It can be
clearly seen from the picture that the ratio of the normal
and abnormal sequences has little impact on the anomaly
detection performance.

To sum up, the proposed MDF-SVM and MDF-SVMrb
have the best result (close to ORACLE) consistently in
most of different settings, which proves the stability of our
proposed framework. This is because the proposed feature
extractor could capture enough discriminative information
to classify the normal and abnormal data and thus differ-
ent settings have little impact on the anomaly detection
performance. It is also noted that MDF-SVM and MDF-
SVMrb generally outperforms MDF-kNN in most cases,
which may benefit from their learning process in phase 2
of the framework compared to MDF-kNN. Thus, they are
expected to have better performance in the real-world data
sets, whose results will be reported in the following.
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Fig. 3: The Experimental Results from the Synthetic Data
Sets.

TABLE IV: The Experimental Results of the Real Data Sets
Dataset Q HMM MDF-SVM MDF-SVMrb MDF-kNN RANDOM

ID
2 0.94 ± 0.00 0.18 ± 0.18 0.99 ± 0.00 0.99 ± 0.00 0.51 ± 0.04

3 0.94 ± 0.00 0.15 ± 0.09 0.99 ± 0.01 0.99 ± 0.00 0.48 ± 0.02

4 0.94 ± 0.00 0.18 ± 0.18 0.99 ± 0.00 0.99 ± 0.00 0.51 ± 0.04

FD
2 0.39 ± 0.00 0.53 ± 0.2 0.91 ± 0.01 0.91 ± 0.00 0.50 ± 0.06

3 0.39 ± 0.00 0.4 ± 0.12 0.92 ± 0.01 0.92 ± 0.00 0.51 ± 0.05

4 0.39 ± 0.00 0.58 ± 0.13 0.93 ± 0.01 0.91 ± 0.00 0.50 ± 0.05

ECG
2 0.27 ± 0.00 0.67 ± 0.00 0.67 ± 0.00 0.61 ± 0.00 0.49 ± 0.04

3 0.28 ± 0.00 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.01 0.50 ± 0.04

4 0.28 ± 0.00 0.65 ± 0.00 0.65 ± 0.00 0.61 ± 0.00 0.50 ± 0.05

CT
2 0.82 ± 0.2 0.71 ± 0.33 0.96 ± 0.04 0.96 ± 0.04 0.50 ± 0.10

3 0.91 ± 0.1 0.75 ± 0.30 0.97 ± 0.03 0.97 ± 0.03 0.52 ± 0.10

4 0.94 ± 0.07 0.77 ± 0.28 0.98 ± 0.06 0.98 ± 0.03 0.51 ± 0.10

JV
2 0.94 ± 0.07 0.95 ± 0.05 0.96 ± 0.06 0.94 ± 0.06 0.52 ± 0.13

3 0.92 ± 0.07 0.95 ± 0.06 0.95 ± 0.06 0.95 ± 0.06 0.50 ± 0.15

4 0.94 ± 0.06 0.95 ± 0.05 0.96 ± 0.05 0.95 ± 0.04 0.50 ± 0.14

B. Real-world Data

Table IV shows experimental results (averaged AUC value
of at least 10 repetitive experiments) on the five real-world
data sets, with the comparison of five algorithms. In the table,
Q denotes the number of hidden states of the HMMs and
the ORACLE and Semi-ORACLE algorithms are excluded
since we do not know the true parameters of the model in
real-world data sets. All in all, the MDF-SVMrb noticeably
outperforms the rest of the alternatives. This is because the
MDF-SVMrb not only extracts discriminative features but
also learns a non-linear decision boundary in the extracted
feature space to detect the anomalies, while others may
fail to do so. MDF-SVM works very well on some data
sets because the normal and abnormal sequences may be
linearly seperatable in the MDF space under these cases.
A remarkable fact is that the proposed algorithms do not
suffer a severe performance loss as the number of hidden
states increases. This is because the true models of the data
are more complex and our models are relatively simple,
which give proper approximations to the true models with
no significant difference. This indicates the robustness of the
algorithms when the true model is much more complicated. It
is also worth to note that the proposed MDF-SVM and MDF-

SVMrb generally perform better when the averaged length
of the sequences increase, which agrees with the observation
from the results obtained with synthetic data.

In addition, the computational cost of the proposed frame-
work mainly spends on the feature extractor stage and it
scales to O(Q2TN), where Q is the number of hidden
states, T is the averaged length of the sequences and N is
the number of sequences. Thus, the computational time of
the MDF-SVM, MDF-SVMrb and MDF-kNN is very similar
but a little higher than the HMM and RANDOM algorithms
(the proposed framework, however, has much better anomaly
detection performance). This is proved empirically in the
experiments and we do not report the details here due to
the space limit.

VII. CONCLUSIONS

This paper examines a challenging issue of detecting
abnormal sequences in an one-class setting and presents a
reasonable MDF framework by theoretically analyzing the
nature of the problem. To be more specific, the proposed
framework is composed of three phases: the generative
model-based feature extractor phase, the optimal classifier
training phase and the anomaly detection phase. Theoret-
ical analysis has demonstrated that the proposed method
leads to a better approximation to the oracle Bayes error
(i.e., the anomaly detection performance in this paper). To
evaluate the superiority of our proposed framework, several
experiments have been conducted on synthetic data sets.
The empirical results show that the proposed framework
generally outperforms the other comparative schemes. We
also explore a wide range of real-world problems, such as
speaker verification and ECG signal detection (i.e., detecting
hearts with problematic conditions) and the corresponding
experimental results show the effectiveness of our proposed
framework.

The problem of sequence anomaly detection considered
in this paper is inherently in one-class mode (i.e., only the
normal data is available for training). However, in many
real-world scenarios, it is unrealistic to obtain data that
ideally contains only normal instances. In these situations,
the anomaly detection techniques need to be operated in a
mixed setting (i.e., the training data contains both normal and
anomalous sequences without labels, under the assumption
that anomalous sequences are very rare). The extension to a
mixed mode is a possible future research direction.

APPENDICES

A. Appendix A
Lemma 1: P (y = 1|x; θ∗) < 1

2 is equivalent to Pθ∗
1
(x) <

Th1 · Pθ∗
−1
(x).

Proof: According to Bayes’ theorem:

P (y = 1|x, θ∗) =
Pθ∗

1
(x)P (y = 1)∑

y Pθ∗
y
(x)P (y)

<
1

2
(13)

After proper transformation, the above formulation becomes:
Pθ∗

1
(x)

Pθ∗
−1
(x)

<
P (y = −1)

P (y = 1)
= Th1 (14)



Pθ∗
1
(x) < Th1 · Pθ∗

−1
(x) (15)

B. Appendix B

Lemma 2: The approximate optimal feature extractor
fθ̂(x) with approximate oracle Bayes error L∗ is given by:

fθ̂(x) := (∂θ∗
11
g(θ̂1), · · · , ∂θ∗

1p
g(θ̂1))

T (16)
Proof: Let us define v(θ∗) = F−1(P (y = 1|x; θ∗)) =
log(Pθ∗

1
(x)) − log(Pθ∗

−1
(x)) = g(θ∗1) − g(θ∗−1), then By

Taylor expansion around the estimated θ̂ up to the first order,
we can approximate v(θ∗) as

v(θ∗) ≈ v(θ̂) +

p∑
i=1

∂θ∗
1i
v(θ̂1)(θ

∗
1i − θ̂1i)

+

p∑
j=1

∂θ∗
−1j

v(θ̂−1)(θ
∗
−1j − θ̂−1j) (17)

where ∂θ∗
ki
v = ∂v

∂θ∗
ki

and ∂θ∗
ki
v(θ̂k) denotes v’s derivative at

the point θ̂k (k ∈ {1,−1} and 1 ≤ i ≤ p).
We use θ̂1 to approximate θ̂−1. This is reasonable because

the abnormal sequences are highly similar to the normal ones
(i.e., θ∗1 ≈ θ∗−1). Then Equation 17 becomes:

v(θ∗) ≈
p∑

i=1

∂θ∗
1i
g(θ̂1)(θ

∗
1i − θ∗−1i) (18)

Consequently, by setting

fθ̂(x) := (∂θ∗
11
g(θ̂1), · · · , ∂θ∗

1p
g(θ̂1))

T (19)

and

w := w∗ = (θ∗11 − θ∗−11, · · · , θ∗1p − θ∗−1p)
T , b = 0. (20)

the proposed feature extractor with the optimal classifer
achieves a reasonable small D(fθ̂) ≈ 0 for the upper bound
of classification error difference.

C. Appendix C

In this section, we theoretically compare the proposed
feature extractor with the model-based anomaly detection in
terms of approximation to the oracle Bayes error. P (y =
1|x; θ) is assumed to ∈ (0, 1)6 and ∇θP (y = 1|x; θ))
and ∇2

θP (y = 1|x; θ)) are assumed to be bounded, where
∇θf = (∂θ1f, · · · , ∂θpf)T and the (i, j)th element of ∇2

θ is
∂2f

∂θi∂θj
. Then we have the upper bound of classification error

difference between the model-based algorithm and the oracle
classifier7 is:

D(θ̂) = Ex|P (y = 1|x; θ̂)− P (y = 1|x; θ∗)|. (21)

Define ∆θ = θ∗ − θ̂. By Taylor expansion around θ̂, we have

D(θ̂) ≈ Ex|(∆θ)T∇θP (y = 1|x, θ∗)

+
1

2
(∆θ)T∇2

θP (y = 1|x, θ0)(∆θ)|

= O(∥∆θ∥). (22)

6To prevent |v(θ)| from going to infinity.
7Here for simplicity, we use P (y = 1|x; θ̂) to replace P (x|y = 1; θ̂),

where P (x|y = 1; θ̂−1) is estimated as a constant.

By contrast, when the proposed feature extractor is used,

D(fθ̂) = Ex|F ((w∗)T fθ̂(x))− Pθ∗(y = 1|x)|, (23)

where w∗ is defined as in Equation 20. Since F is Lipschitz
continuous, there is a finite positive constant M such that
|F (a)− F (b)| ≤ M |a− b| [11]. Thus,

D(fθ̂) ≤ MEx|(w∗)T fθ̂(x)− F−1(Pθ∗(y = 1|x))|
= O(∥∆θ∥2). (24)
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