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Abstract Outlier detection is an important problem that has been studied within diverse
research areas and application domains. Most existing methods are based on the assumption
that an example can be exactly categorized as either a normal class or an outlier. However,
in many real-life applications, data are uncertain in nature due to various errors or partial
completeness. These data uncertainty make the detection of outliers far more difficult than
it is from clearly separable data. The key challenge of handling uncertain data in outlier
detection is how to reduce the impact of uncertain data on the learned distinctive classi-
fier. This paper proposes a new SVDD-based approach to detect outliers on uncertain data.
The proposed approach operates in two steps. In the first step, a pseudo-training set is gen-
erated by assigning a confidence score to each input example, which indicates the likelihood
of an example tending normal class. In the second step, the generated confidence score is
incorporated into the support vector data description training phase to construct a global
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distinctive classifier for outlier detection. In this phase, the contribution of the examples with
the least confidence score on the construction of the decision boundary has been reduced.
The experiments show that the proposed approach outperforms state-of-art outlier detection
techniques.

Keywords Outlier detection · Data of uncertainty · Support vector data description

1 Introduction

Outlier detection refers to the problem of determining data objects that are markedly different
from, or inconsistent with, the remaining set of data [49]. Outlier detection has increasingly
attracted attention due to its wide variety of applications from fraud detection for credit cards,
insurance [45], or health care [53] to faulty detection in critical safety systems [47,37].

Traditional outlier detection algorithms typically assume that outliers are difficult or costly
to obtain due to their rare occurrence. Therefore, most of the previous approaches focus on
modeling a representation of the normal data so as to identify outliers that do not fit the
model. These previous outlier detection algorithms are broadly classified into four catego-
ries: (1) Statistics-based algorithms [20], where statistical techniques fit a statistical model
(usually for normal data) to the given data and then apply a statistical inference test to deter-
mine whether an incoming instance fits the model or not. (2) Density-based method [43],
in which local outliers are identified by examining the distances to their nearest neighbors.
(3) Clustering-based approaches [28], which groups similar data instances into clusters and
considers clusters of small size as outliers. (4) Model-based method [32,17], which is used
to learn a distinctive model from a set of training data instances and to detect outliers as devi-
ations from the model. In this category, SVDD [42,44,33], proposed to determine a sphere
around normal data, has been demonstrated to be capable of capturing outliers in various
applications [42,23,52].

Another important observation is that, data are uncertain in nature for many real-life
applications [8,5]. For example, the data points may correspond to objects, which are only
vaguely specified due to data incompleteness, and are therefore considered uncertain in their
representation [5]; moreover, some new hardware technologies such as sensors usually col-
lect large amounts of uncertain data due to sampling errors or instrument imperfections [8].
Consequently, a labeled normal example corrupted by various errors or limitations of the
underlying equipment always behaves like an outlier, even though the example itself may not
be an outlier. This always makes the problem of outlier detection far more difficult from the
perspective of data uncertainty. Therefore, it is worthwhile to develop techniques to refine
the decision boundary of the distinctive classifier so as to improve the performance of outlier
detection. The key challenge of handling uncertain data in outlier detection is how to reduce
the impact of the uncertain data on the learned distinctive classifier.

In order to handle the problem of outlier detection in the presence of uncertain data, this
paper proposes a model-based approach by introducing a confidence score for each input
data point into the SVDD training phase. Our proposed approach operates in two steps. In
the first step, we generate a pseudo-training dataset by assigning a confidence level to each
input data point, which indicates the likelihood of an input data point belonging to normal
class. We put forward a kernel-based class center method to generate the confidence level for
each input training sample. In the second step, we incorporate the generated confidence score
for each sample into the SVDD training process. By introducing a confidence score into the
training stage, each data sample contributes differently to the construction of the decision
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boundary, which is used for outlier detection. Substantial experiments have demonstrated
that our proposed approach offers higher performance for outlier detection in comparison
with SVDD and GMM in terms of RBF and polynomial kernel functions.

The rest of the paper is organized as follows. Section 2 presents the previous works related
to our study. Section 3 puts forward our proposed approach for outlier detection on uncertain
data. Substantial experiments are demonstrated in Sect. 4, and a conclusion is drawn in Sect. 5.

2 Related work

Since the focus of our study is SVDD-based outlier detection on uncertain data, we briefly
review traditional outlier detection technologies in Sect. 2.1, introduce the data uncertainty
problem in Sect. 2.2, and present a brief introduction to SVDD in Sect. 2.3.

2.1 Outlier detection

Outlier detection refers to the problem of finding patterns in data that do not conform to
expected behavior. Past works can be broadly classified into the following four categories.

1. Statistics-based techniques always fit a statistical model to the given data and then apply
a statistical inference test to determine whether an unseen instance satisfies this model
or not. Instances that have a low probability of being generated from the learned model,
based on the applied test statistic, are declared as outliers. For example, we can assume
the normal examples follow a certain data distribution (such as Gaussian distribution),
by estimating the parameter in the model, we can generate a Gaussian model to pre-
dict an unseen example into normal class or outliers. The statistics-based techniques
always assume knowledge of the underlying distribution and estimate the parameters
from the given data [20,24,19,48] such as Gaussian model based [6,39], in which the
pre-specified data distribution is assumed to fit a Gaussian distribution; regression model
based [16], where outlier detection using regression has been extensively investigated for
time-series data; mixture of parametric distributions based [2,25], in which techniques
use a mixture of parametric statistical distributions to model the data. For this category,
the main disadvantage is that these techniques rely on the assumption that the data is
generated from a particular distribution. However, this assumption often does not hold
true in many applications, especially for high dimensional real data sets.

2. Density-based approaches always assume that normal data instances occur in dense
neighborhoods, while outliers occur far from their closest neighbors [43,24,21]. One
representative method is called LOF (local outlier factor) [14], which assigns an out-
lier score to any given data point, depending on its distances in the local neighborhood.
Recently, the work proposed by [54] improves the accuracy of outlier detection by calcu-
lating an outlier score based on a Gaussian mixture model (GMM). However, if the data
has normal instances that do not have enough close neighbors or if the data has outliers
that have enough close neighbors, the technique fails to label them correctly, resulting
in missed outliers.

3. Clustering-based methods [27,28,34,41,22,40] mainly rely on applying clustering tech-
niques to characterize the local data behavior. As a by-product of clustering, small clusters
that contain significantly fewer data points than other clusters are considered as outliers.
The performance of clustering based techniques is highly dependent on the effectiveness
of the clustering algorithm in capturing the cluster structure of normal instances.
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4. Model-based methods are used to learn a model (classifier) from a set of labeled data
instances (training) and then to classify a test instance into one of the classes using
the learnt model (testing) [33,26,29,44,51,10,11]. Model-based outlier detection tech-
niques operate in a similar two-phase fashion. The training phase learns a classifier using
the available labeled training data. The testing phase classifies a test instance as normal
or anomalous using the classifier. In this category, SVDD proposed by [44], has been
demonstrated empirically to be capable of detecting outliers in various domains. Model-
based approaches can detect global outliers effectively for high-dimensional data without
need to assume the prior distribution of data. Density-induced SVDD (DI-SVDD) [33]
introduces new distance measurements based on the notion of a relative density (or, signif-
icance) degree of each data point to reflect the distribution of a given data set. Although
Density-induced SVDD can increase the accuracy of SVDD, it requires linearly con-
strained optimizations by solving a sequence of quadratic programming subproblems.
Consequently, it spends much more time to construct a classifier.

In addition, Bayesian-based approaches have been proposed for outlier detection. The
work in [1] and [2,3] uses Bayesian analysis for outlier detection in dynamic time series
environment; the methods [9–11] adopt generalized radial basis function networks for out-
lier detection. The work in [35] introduces D-Search concept to exploit similarity search for
large distribution sets

The limitation of the previous works is that they typically make the assumption that an
input data sample can be regarded as belonging completely to the class of normal data or
outliers. However, this is not appropriate for uncertain data. For example, a labeled nor-
mal example corrupted by various errors or limitations of the underlying equipment always
behaves like an outlier, even though the example itself may not be an outlier. Therefore, the
key challenge of handling uncertain data in outlier detection is how to reduce the impact of
the uncertain data on the learned distinctive classifier. When most of the previous works are
performed on the uncertain data, the decision boundary of these methods will be impacted
by the data containing uncertain information; consequently, performance will be reduced.

Our proposed approach falls into the model-based category, which is proposed to account
for the challenge of outlier detection on uncertain data. More specifically, our method only
determines the local uncertainty by generating a confidence score for each instance, which
indicates the likelihood of this sample belonging to normal class, but also constructs a global
outlier detection classifier. The experiments demonstrated in Sect. 4 have shown that our pro-
posed approach outperforms state-of-art outlier detection algorithms in terms of performance
and sensitivity to noise.

2.2 Data of uncertainty

In recent years, many advanced technologies have been developed to store and record large
quantities of data continuously. This has created a need for uncertain data algorithms and
applications [8]. Various algorithms have been proposed to handle the uncertain data in query
processing of uncertain data [18], indexing uncertain data [15], clustering uncertain data [31],
classification of uncertain data [12], frequent pattern mining of uncertain data [55]. Mean-
while, [7] considers uncertain data in the outlier detection problem where a probabilistic
definition of outliers in conjunction with density estimation and sampling are used. Different
from this work, our method is a model-based method, which does not need to pre-specify
the density function of the dataset; therefore, our method can learn a distinctive classifier
from the training set without assuming the distribution of the data. At the same time, our
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method models the uncertainty by assigning a confidence score to each sample and reduces
the impact of the uncertain data on the construction of the classifier.

2.3 Support vector data description

Assume the training normal data are denoted as x1, x2, . . . , xl , where xi ∈ Rn , i =
1, 2, . . . , l. In SVDD, the normal class is mapped from the input space into a feature space
via a mapping function φ(.). In this feature space, the normal class is denoted as

φ(x1), φ(x2), . . . , φ(xl), (1)

where φ(xi ) is the image of sample xi . The purpose of mapping function φ(.) is to render the
patterns much more compact in the feature space than in the input space so as to improve the
performance. Further, the inner products of two vectors in the feature space can be computed
via a kernel function.

K (x, xi ) = φ(x) · φ(xi ), (2)

where K satisfies the Mercer theorem [38], φ(x) and φ(xi ) denote two vectors in the feature
space.

In the feature space, support vector data description is used to determine the smallest
sphere of radius R > 0 that encloses all the normal class approximatively as follows.

min R2 + γ

l∑

i=1

ξi (3)

s.t. ‖ φ(xi ) − o ‖2 ≤ R2 + ξi , i = 1, 2, . . . , l, (4)

ξi ≥ 0, i = 1, 2, . . . , l. (5)

where ‖ · ‖ means the Euclidean norm and o denotes the center of the sphere, ξi are slack
variables to relax the constraints, γ is a parameter that specifies the trade-off between the
sphere volume and the errors.

∑l
i=1 ξi means the penalty term accounting for the presence

of outliers. By introducing Lagrangian function [46], problem (3) is changed into

max
l∑

i=1

αi K (xi , xi ) −
l∑

i=1

l∑

j=1

αiα j K (xi , x j ) (6)

s.t. 0 ≤ αi ≤ γ i = 1, 2, . . . , l (7)
l∑

i=1

αi = 1, (8)

where αi for i = 1, 2, . . . , l is the Lagrange multipliers and problem (3) is a standard qua-
dratic optimization problem. On the other hand, the samples xi for which αi �= 0 are called
support vectors (SVs). Assume xk is one of the SVs, and 0 < αk < γ holds true, R can be
calculated as follows:

‖ xk − o ‖2 = K (xk, xk) − 2
l∑

i=1

αi K (xk, xi ) + αiα j

l∑

i=1

l∑

j=1

(xi · x j ) = R2. (9)

For a test pattern x , it is assigned into the normal class if the distance between it and the
sphere center is smaller than or equal to the radius R; on the contrary, pattern x is then
classified as outliers as illustrated in Fig. 1.
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Decision Boundary
Normal Patterns

Outliers

Fig. 1 Support vector data description for outlier detection

3 SVDD-based outlier detection on uncertain data

In this section, we will put forward our proposed approach for SVDD-based outlier detection
on uncertain data.

Given l normal training samples, support vector data description constructs a hyper-sphere
by enclosing the data appropriately to categorize a test instance into normal class or outliers.
However, data are uncertain in nature in real-life applications due to various errors or limita-
tions of the underlying equipment. Consequently, a labeled normal data may behaves like an
outlier, although the example itself might not be an outlier; this always makes the problem
of outlier detection far more difficult from the perspective of data uncertainty.

In order to address this issue, we introduce a confidence score to each normal sample,
which indicates the likelihood of a sample belonging to normal class. Such information are
thereafter incorporated into learning a global classifier for outlier detection. Based on this,
our approach operates in two steps.

1. In the first step, we produce a pseudo training set by generating a confidence score for
each input sample.

2. In the second step, this pseudo training set is used to train a global SVDD classifier by
incorporating the generated confidence score together with input data into the learning
process.

We introduce the two steps as follows.

3.1 Confidence score generation

We put forward a kernel-based class center method to generate a confidence score for each
input sample as follows.

In the kernel space related to a mapping function φ(.), the experiential center of the normal
class is denoted as

Cφ = 1

l

l∑

i=1

φ(xi ). (10)
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The kernel-based distance between sample x j and the center in the kernel space is calculated

Dis(φ(x j ), Cφ) =‖ φ(x j ) − Cφ ‖=
√

K (x j , x j ) − 2K (x j , Cφ) + K (Cφ, Cφ). (11)

By substituting (10) into (11), we have

Dis(φ(x j ), Cφ) =
√√√√K (x j , x j ) − 1

l

l∑

i=1

K (x j , xi ) + 1

l2

l∑

i=1

l∑

k=1

K (xi , xk). (12)

It can be seen that the kernel-based distance from each sample and its class center can be
explicitly calculated via kernel function.

In addition, we determine the maximum kernel-based distance among each sample and
the class center. This distance can be denoted as

rφ = max(Dis(φ(x j ), Cφ), j = 1, 2, . . . , l. (13)

It is noted that the sample residing around the normal data has a larger kernel-based distance
among all the samples. The confidence score of each sample x j is defined as follows:

C(x j ) = 1 − ‖ φ(x j ) − Cφ ‖
rφ

. (14)

We can observe that, if xi is the sample, which has the maximum kernel-based distance among
all the samples, its confidence score will equal 0. To avoid this case, we let the confidence
score of this sample be equal to the smallest confidence score among other examples. Our
definition of confidence score contains the following observations.

1. This kernel-based confidence score is defined in the kernel space and this confidence
score can be directly and efficiently calculated via kernel function.

2. By this definition, the samples at the edge of the normal class have small confidence
scores. If a corrupted labeled normal instance behaves like a outlier, it always resides
on or out of the boundary of the normal class; according to the definition of (13), the
confidence score of this sample towards the normal class is smaller in comparison with
that of other examples.

Based on this, the confidence score generation algorithm is put forward in Algorithm 3.1.

Algorithm 3.1
Input: Training normal data xi , 1 ≤ i ≤ l, kernel function K (.).
Output: Pseudo-training set (xi , C(xi ))

Procedure
Define an array D to store l kernel-based distances for each sample.
Define confidence score array C to put the confidence scores of each sample.
for (k = 1; k ≤ l; k + +) do

calculate Hk = Dis(φ(xk), Cφ) according to Eq. (12)
End
calculate rφ according to Eq. (13)
for (k = 1; k ≤ l; k + +) do

calculate Dk = C(xk) according to Eq. (14)
End
Return Score array C together with training samples: (xi , C(xi ))
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After obtaining the generated pseudo-training set, it is thereafter incorporated into the
learning of SVDD. In the following, we give an extension of the SVDD to incorporate the
pseudo-dataset into the training stage.

3.2 Classifier construction

It is seen that confidence score C(xi ) indicates the likelihood of sample xi tending toward
the normal class, and the parameter ξi in problem (3) is a measure of error for misclassified
samples. Therefore, C(xi )ξi can be considered as a measure of error with different weighting.
The new version of SVDD is to solve the following problem

min R2 + γ

l∑

i=1

C(xi )ξi

s.t.

‖ φ(xi ) − o ‖2 ≤ R2 + ξi , i = 1, 2, . . . , l,

ξi ≥ 0, i = 1, 2, . . . , l, (15)

where γ is a parameter specifying the trade-off between the sphere volume and the errors.
We can see that a smaller confidence score C(xi ) can reduce the effect of parameter ξi , so
that xi is treated as less important. We allow each sample to contribute differently on the
construction of the SVDD classifier according to the confidence score, which is generated
in the step one. In general, if an example falls beyond the normal class, its confidence score
will be small using the Eq. (14), by contraries, its score will be large. By this, we potentially
reduce the influence of the sample with lowest confidence score on the construction of the
hyper-sphere.

In order to solve the optimization problem (15), Lagrangian function [46] can be con-
structed as follows:

L(R, o, ξ) = R2 + γ

l∑

i=1

C(xi )ξi −
l∑

i=1

αi (R2+ξi − ‖ φ(xi ) − o ‖2) −
l∑

i=1

βiξi , (16)

where αi ≥ 0 and βi ≥ 0 for i = 1, 2, . . . , l are the Lagrange multipliers. These parameters
satisfy the following conditions:

∂L

∂ R
= 0 −→ 2R − R

l∑

i=1

αi = 0 −→
l∑

i=1

αi = 1, (17)

∂L

∂o
= 0 −→ 2o − 2

l∑

i=1

αiφ(xi )o −→ o =
l∑

i=1

αiφ(xi ), (18)

∂L

∂ξi
= 0 −→ αi + βi = C(xi )γ, i = 1, 2, . . . , l. (19)

According to (17–19), we have Theorem 1 as follows.

Theorem 1 The solution of problem (15) can be resolved by problem (20) subject to (21),
(22) (refer to “Appendix” for derivation)
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max
l∑

i=1

αi K (xi , xi ) −
l∑

i=1

l∑

j=1

αiα j K (xi , x j ) (20)

s.t.

0 ≤ αi ≤ m(xi )γ i = 1, 2, . . . , l, (21)
l∑

i=1

αi = 1. (22)

Problem (20) is a standard quadratic programming (QP) problem. After solving problem
(20), we have each αi , i = 1, 2, . . . , l, and the centroid of hyper-sphere is obtained by (18).
From Eq. (18), we can see only sample xi with αi > 0 contributes the centroid of hyper-
sphere, and these samples are called support vectors (SVs). In addition, the KKT theory [46]
satisfies

ξiβi = 0, i = 1, 2, . . . , l, (23)

(R2 + ξi − ‖ φ(xi ) − o ‖2)αi = 0, i = 1, 2, . . . , l. (24)

If 0 < αi < C(xi )γ , βi �= 0 comes true from (19) and then ξi = 0 holds from (23); therefore,
from (24), these SVs satisfy

(R2 − ‖ φ(xi ) − o ‖2) = 0, i = 1, 2, . . . , l. (25)

These samples lie on the surface of the hyper-sphere.
Assume xk is one of the SVs lying on the surface of the sphere. R can be computed by

‖ φ(xk) − o ‖2 = K (xk, xk) − 2
l∑

i=1

αi K (xk, xi ) + αiα j

l∑

i=1

l∑

j=1

K (xi , x j ) = R2. (26)

In summary, the outlier detection classifier determination procedure is presented in
Algorithm 3.2.

Algorithm 3.2
Input: pseudo-training data (xi , C(xi )) 1 ≤ i ≤ l; kernel function K (.).
Output: αi , 1 ≤ i ≤ l and R.
Procedure

–Resolve standard QP problem of (20)
–Obtain αi for each sample.
–Determine a sample whose αi is between 0 and C(xi )γ , that is the sample resides on the

surface of the hyper-sphere.
–Calculate the radius of hyper-sphere according to Eq. (26).
Return αi , 1 ≤ i ≤ ł and R.

Remark:

1. Because the optimization problem (20) is a standard QP problem, the solving of problem
(6) and (20) have the same computational complexity.

2. For a test sample x, it is classified into the normal class if it resides inside the sphere,
that is (27) comes true, if not, it is classified to outliers.

‖ φ(x) − o ‖2 = K (x, x) − 2
l∑

i=1

αi K (x, xi ) + αiα j

l∑

i=1

l∑

j=1

K (xi , x j ) ≤ R2. (27)
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4 Experiment

In order to evaluate the performance of our proposed approach, we implement our approach
with a kernel-based class center method to generate a confidence score for each input normal
sample. For comparison, another three algorithms are utilized here as baselines. The first
method is standard support vector data description, which has been introduced in Sect. 2.3.
The second one is density-induced SVDD (DI-SVDD) [33], which introduces new distance
measurements based on the notion of a relative density degree for each data point to increase
the accuracy of SVDD. The first two baselines are used to show the accuracy improvement of
our method over the previous SVDD methods. The third method is Gaussian mixture model
(GMM) [54], a well-known clustering technique for outlier detection, which decides whether
a data point is an outlier based on the outlier factor computed according to a Gaussian Mix-
ture Model fit to the given dataset. For SVDD, DI-SVDD, and our approach, since they are
model-based outlier detection techniques, they construct a classifier from the training normal
class and predict for the testing dataset. Because GMM is a clustering method, we directly
perform it on the testing dataset to report its performance.

In the experiments, RBF kernel function (28) has been utilized due to its comparable
performance over other kernel functions.

K (x, xi ) = exp(‖x−xi ‖2
2/σ 2) (28)

For comparison, all the methods are implemented in a Matlab environment.

4.1 Dataset description

In our experiments, both UCI and KDD-cup-1999 intrusion detection1 datasets are used.
The Balance, Ionosphere, Liver disorders, Wine and Image datasets from UCI [36] have
been used. Most of these datasets have been utilized to evaluate the performance of SVDD-
based outlier detection [44,50]. KDD-cup-1999 is intrusion detection dataset, which involves
three common classes of traffic (normal, neptune, and smurf) and seventh rare classes (back,
ipsweep, satan, portsweep, nmap, teardrop, guess passwd, pod, warezmaster, land, imap,
ftp-write, multihop, buffer overflow, phf, loadmodule, perl). In the experiment, the file
kddcup.data-10-percent is used, one type common traffic (normal class) and seventh rare
classes are used as target class and outliers, respectively. General information about these
datasets are briefly introduced in Table 1.2

For each UCI dataset, we follow the operations used in [44] to achieve our datasets for
outlier detection. Specifically, for each dataset, we choose one of the classes as the target
class and treat all other classes as outliers at each round. By doing this, we obtain twelve
datasets, that is, Balance (1), Balance (2), Balance (3), Ionosphere (1), Ionosphere (2), Liver
disorders (1), Liver disorders (2), Wine (1), Wine (2), Wine (3), Image (1), and Image (2)
where each number in the bracket represents the class from the source data, which is chosen
as the normal class.

1 S. Stolfo, KDD-cup 1999 dataset, UCI KDD repository, Tech. Rep., 1999, http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.
2 Dataset is reorganized that classes 1, 2, 3, 4 are considered as classes 1, and class 5, 6, 7 are regarded as
class 2.
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Table 1 General information of
datasets

Datasets Class # of examples # of features

Class 1 288

Balbace Class 2 49 4

Class 3 288

Ionosphere Class 1 225 34

Class 2 126

Liver-disorders Class 1 145 7

Class 2 200

Class 1 59

Wine Class 2 72 4

Class 3 48

Image Class 1 1,320 19

Class 2 900

KDDCUP1999 Normal 56,237 41

Rare classes 4,177

4.2 Evaluation criterion

The performance of outlier detection is typically evaluated in terms of two rates: true-positive
(TP) rate and false-positive (FP) rate. The TP defined in (29) is computed as the ratio of the
number of correctly detected normal samples to the total number of normal data. The FP
defined in (30) is computed as the ratio of the number of outlier examples that are incorrectly
detected as normal data to the total number of outliers.

TP = Normal samples correctlyclassified

Total normal samples
(29)

FP = Outliers incorrectly classified

Total outliers samples
(30)

As a result, a receiver-operating characteristic (ROC) curve [13] can be obtained by plot-
ting the true-positive (TP) rate on the y axis and false-positive (FP) rate on the x axis. For
comparison, the area under the ROC curve, which is called AUC, is commonly used to
evaluate the performance of an outlier detection method. As discussed in [13], the AUC
value is always between 0 and 1, and the larger AUC indicates the better performance of a
method.3

4.3 Performance evaluation

4.3.1 Average AUC accuracy comparison

We first perform experiments to compare the average AUC accuracy and standard deviation
of SVDD, DI-SVDD, GMM, and our proposed method. Specifically, we randomly select
60 % of the normal data to generate the training set and treat the rest of the normal data
and outliers as a testing set for ten times. For each generated training and testing set, we

3 Except for the typical evaluation criterion introduced above, another set of evaluation criterion is F value,
precision and recall [30].
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Table 2 Average AUC performance and standard deviation comparison of SVDD, DI-SVDD, GMM, and
our approach

Datasets GMM SVDD DI-SVDD Ours

Bal (1) 93.29 ± 3.54 95.94 ± 2.13 96.35 ± 2.53 98.96 ± 0.897

Bal (2) 71.51 ± 8.78 76.57 ± 8.16 78.89 ± 7.54 82.54 ± 6.23

Bal (3) 91.15 ± 3.89 97.45 ± 0.31 97.68 ± 0.35 99.27 ± 0.78

Ion (1) 90.54 ± 4.14 94.97 ± 3.57 95.76 ±2.78 99.23 ± 1.21

Ion (2) 60.87 ± 6.36 70.23 ± 6.23 73.87 ± 6.12 79.13 ± 5.9

Liv (1) 56.23 ±4.13 59.14 ± 3.52 61.73 ± 3.89 64.47 ± 3.25

Liv (2) 46.89 ±6.89 50.98 ±7.67 52.67 ± 7.12 55.98 ± 6.32

Wine (1) 69.45 ± 7.13 75.89 ± 6.34 77.23 ± 6.12 81.58 ± 5.72

Wine (2) 73.23 ± 6.78 77.42 ± 6.45 79.67 ± 6.98 85.82 ± 6.13

Wine (3) 58.12 ± 10.29 66.89 ± 9.29 69.67 ± 9.07 74.73 ± 8.63

Ima (1) 87.98 ± 5.12 95.89 ± 3.34 96.52 ± 2.67 99.12 ± 0.13

Ima (2) 88.76 ± 4.24 96.34± 1.27 97.75± 1.02 98.82 ± 1.18

KDD-Cup 73.45 ± 8.63 78.63 ± 6.34 80.13 ± 5.32 83.56 ± 5.22

We use the top three characters to represent the name of source data

vary the value of the parameter σ in the RBF kernel from 2−8 to 28, and the parameter γ

in the formulation of SVDD and our method from 2−8 to 28 for each method to construct a
predictive outlier detection classifier.

The average testing accuracy and standard deviation of ten times of generations in terms
of RBF kernel functions have been illustrated in Table 2. From the table, we can clearly
observe that, by introducing a confidence score to each normal data, our approach with the
kernel-based class center method consistently yields a better performance in comparison
with the SVDD, DI-SVDD, and GMM methods. This is because by defining the confidence
score for each normal sample, we can reduce the uncertainty information in samples on the
construction of the global outlier detection classifier.

For the standard deviation comparison, it is clear that our approach always obtains less
standard deviation than SVDD, DI-SVDD, and GMM for most datasets. This indicates that
our proposed approach has a superior capability form outlier detection when compared with
SVDD, DI-SVDD, and GMM.

4.3.2 SVDD-based methods comparison under different parameter

Above, we reported the average AUC accuracy of ten times for each method. In order to fur-
ther compare the performance of SVDD-based methods (i.e., SVDD, DI-SVDD, and ours),
we report the AUC accuracy variance of SVDD-based methods under different parameter σ

from 2−8 to 28. For a fixed value of σ , we adjust parameter γ from 2−4 to 24 to calculate
AUC value. Here, we report the results on Bal (1), Ion (1), Liv (1), Wine (1), Ima (1), and
KDD-CUP datasets; for other datasets, they show similar results.

Figure 2 illustrates the AUC accuracy of SVDD, DI-SVDD, and our method under param-
eter γ from 2−8 to 28. It can be seen that, our method can yield better performance than
DI-SVDD and SVDD under each value of parameter σ .
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Fig. 2 AUC accuracy under different parameter σ

4.4 Running time analysis

We further report the average running time of GMM, SVDD, DI-SVDD, and our proposed
approach in terms of ten times generations in Fig. 3. We first focus on the running time of
SVDD and our approach. As we can see although our proposed approach has to calculate the
confidence score for each input normal data, the time cost by our approach is still comparable
with that of SVDD. For this fact, we have the following theoretical analysis.
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Fig. 3 Average running time of GMM, SVDD, DI-SVDD, and our approach

For optimization problem (6) for SVDD and problem (20) for our method, they are both
standard QP problems; therefore, the solving of the two problems has the same computa-
tional complexity, that is O(l2). For our approach, in addition to resolving problem (20), we
have to determine the confidence score for each input sample. For the kernel-based class
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Fig. 4 Illustration of the method
used to add the noise to a data
example: x is an original data
example, v is a noise vector, and
xv is the new data example with
added noise. Here, we have
xv = x + v

x

y

z

Pattern x

vector

uncertain pattern
v

x

v

center method, because the complexity of (13), (14) is linear, i.e., O(l), the calculation of the
kernel-based distance (12) dominates the time cost of the confidence score generation. We
rewrite (12) as follows.

Dis(φ(x j ), Cφ) =
√√√√Hj j − 1

l

l∑

i=1

Hi j + 1

l2

l∑

i=1

l∑

k=1

Hik . (31)

where H is a kernel matrix Hi j = K (xi , x j ) and 1
l2

∑l
i=1

∑l
k=1 Hik is a fixed value, which

just needs to be computed once. In the process of solving the standard QP problems (6) and
(20), the calculation of H matrix is the core, which has to be calculated first. Therefore, we
calculate H only once to satisfy the kernel-based class center method as well as the problem
(20). In this way, our proposed approach displays a comparable running time cost compared
with standard support vector data description for outlier detection.

For the GMM clustering method, since it adopts the EM interative strategy to make it
converge, it always takes longer time than SVDD and our method. We further discover that
DI-SVDD takes more time than SVDD and ours since DI-SVDD requires linearly constrained
optimizations by solving a sequence of quadratic programming subproblems.

4.5 Sensitivity to different levels of noise

This set of experiments is conducted to investigate the sensitivity of GMM, SVDD,
DI-SVDD, and our approach to different levels of noise added into the input data. Fol-
lowing the method used in [4], we generate the input noise using a Gaussian distribution
with zero mean and standard deviation. For each dataset, noise is added to the input data as
a vector that has the same dimension as the source data. Figure 4 illustrates the basic idea of
the method used to add the noise to a data example.

Specifically, the standard deviation σ 0
i of the entire data along the i th dimension is first

obtained. In order to model the difference in noise on different dimensions, we define the
standard deviation σi along the i th dimension, whose value is randomly drawn from the
range [0, 2 · σ 0

i ]. Then, for the i th dimension, we add noise from a random distribution with
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Fig. 5 Comparison of AUC accuracy sensitivity to the noise added into the input data

standard deviation σi . In this way, a data example x j in the target class is added with the
noise, which can be presented as a vector

σ x j = [σ x j
1 , σ

x j
2 , . . . , σ

x j
n−1, σ

x j
n ]. (32)

Here, n denotes the number of dimensions for a data example x j , and σ
x j
i i = 1, . . . n,

represents the noise added into the i th dimension of the data example.
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Fig. 6 Comparison of AUC accuracy sensitivity to the noise added into the input data
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In our experiments, we generate the percentage of data corrupted by noise, which varies
from 0 to 30 %, and perform the three methods on these twelve subdatasets. Figures 5 and
6 show the AUC values achieved by the three methods in terms of different percentages of
data corrupted by noise. It is clear that, as the percentage of noise increases, the overall per-
formance of the three methods degrades. This occurs because when more noise is involved
in the target data, the normal class will become less distinguishable from the outliers. This
less distinguishable case indeed reduces the performance of the methods. Nevertheless, we
can clearly see that our approach can still consistently yield higher performance than GMM,
SVDD, and DI-SVDD. This indicates that, our proposed approach can effectively reduce the
effect of noise involved in the input data and significantly improve the learning ability of
support vector data description for outlier detection.

5 Conclusion and future work

Outlier detection on uncertain data is challenging and demanding, due to the increase in
applications such as fraud detection. This paper has proposed an SVDD-based approach for
outlier detection on uncertain data. We first put forward a kernel-based center class method
to generate a confidence score to each input sample, which indicates the likelihood of an
example tending toward to normal class. This information is thereafter incorporated into the
learning procedure of support vector data description to refine the decision boundary of the
distinctive classifier. Substantial experiments have demonstrated that our proposed approach
performs better than the GMM, SVDD, and DI-SVDD models in terms of performance and
sensitivity to noise contained in the input data.

In the future, we would like to address the problem of outlier detection using normal
examples and outliers on uncertain data. We also plan to investigate the detection ability of
our proposed approach for large stream data.
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Appendix

Derivation of Theorem 1:

The inner product of the centroid of hyper-sphere can be rewritten as follows.

(o, o) =
l∑

i=1

l∑

j=1

αiα j (xi , x j ) (33)

(16) is rewritten as

L(R, o, ξ) = R2 + C
l∑

i=1

m(xi )ξi −
l∑

i=1

αi R2 −
l∑

i=1

αiξi +
l∑

i=1

αi (xi , xi )

+
l∑

i=1

αi (o, o) − 2
l∑

i=1

αi (xi , o) −
l∑

i=1

βiξi . (34)
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According to (17), (18), and (19), we have

R2 −
l∑

i=1

αi R2 = 0 (35)

C
l∑

i=1

m(xi )ξi −
l∑

i=1

αiξi −
l∑

i=1

βiξi = 0. (36)

Substituting (35) and (36) into (34) and considering (17), we have

L(R, o, ξ) =
l∑

i=1

αi (xi , xi ) +
l∑

i=1

αi (o, o) − 2
l∑

i=1

αi (xi , o)

=
l∑

i=1

αi (xi , xi ) + (o, o) − 2
l∑

i=1

αi (xi , o) =
l∑

i=1

αi (xi , xi ) − (o, o). (37)

Substituting (33) into (37), we have

L(R, o, ξ) =
l∑

i=1

αi (xi , xi ) −
l∑

i=1

l∑

j=1

αiα j (xi , x j ). (38)

Therefore, the solution of problem (15) can be resolved by problem (20) subject to (21), (22).
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