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ABSTRACT
Sequential pattern mining plays an important role in many
applications, such as bioinformatics and consumer behavior
analysis. However, the classic frequency-based framework
often leads to many patterns being identified, most of which
are not informative enough for business decision-making. In
frequent pattern mining, a recent effort has been to incorpo-
rate utility into the pattern selection framework, so that high
utility (frequent or infrequent) patterns are mined which ad-
dress typical business concerns such as dollar value associ-
ated with each pattern. In this paper, we incorporate utility
into sequential pattern mining, and a generic framework for
high utility sequence mining is defined. An efficient algo-
rithm, USpan, is presented to mine for high utility sequential
patterns. In USpan, we introduce the lexicographic quan-
titative sequence tree to extract the complete set of high
utility sequences and design concatenation mechanisms for
calculating the utility of a node and its children with two ef-
fective pruning strategies. Substantial experiments on both
synthetic and real datasets show that USpan efficiently iden-
tifies high utility sequences from large scale data with very
low minimum utility.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms

Keywords
High utility sequential pattern mining, Sequential pattern
mining

∗Author for correspondence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

1. INTRODUCTION
Sequential pattern mining has emerged as an important

topic in data mining. It has proven to be very essential
for handling order-based critical business problems, such as
behavior analysis, gene analysis in bioinformatics and we-
blog mining. For example, sequence analysis is widely em-
ployed in DNA and protein to discover interesting struc-
tures and functions of molecular or DNA sequences. The
selection of interesting sequences is generally based on the
frequency/support framework: sequences of high frequency
are treated as significant. Under this framework, the down-
ward closure property (also known as Apriori property) [1]
plays a fundamental role for varieties of algorithms designed
to search for frequent sequential patterns [10, 14, 5].

In practice, many patterns are identified by frequent se-
quential pattern mining algorithms. Most of them may not
be informative to business decision-making, since they do
not show the business value and impact. In some cases,
such as fraud detection, some truly interesting sequences
may be filtered because of their low frequencies. For exam-
ple, in retail business, selling a car generally leads to much
higher profit than selling a bottle of milk, while the fre-
quency of cars sold is much lower than that of milk. In on-
line banking fraud detection, the transfer of a large amount
of money to an unauthorized overseas account may appear
once in over one million transactions, yet it has a substantial
business impact. Such problems cannot be tackled by the
frequency/support framework.

This brings about an interesting question: how to mine
sequential patterns of business interest? In the related area,
utility is introduced into frequent pattern mining to mine for
patterns of high utility by considering the quality (such as
profit) of itemsets. This has led to high utility pattern min-
ing [13], which selects interesting patterns based on mini-
mum utility rather than minimum support. Let us use a
toy example to illustrate. Table 1 shows the items and their
respective weights or profit (quality) appearing in an on-
line retail store. Table 2 collects several shopping sequences
with quantities; each transaction in the sequence consists
of one to multiple items, and each item is associated with
a quantity showing how many of this item were purchased.
For instance, the first sequence (e, 5)[(c, 2)(f, 1)](b, 2) shows
three itemsets (e, 5), [(c, 2) (f, 1)] and (b, 2), and the quan-
tity purchased of item, e.g. the quantity of e is 5. Following
the high utility pattern mining concept, a possible calcula-
tion of utility of an itemset is to consider its total profit.
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Table 1: Quality Table
item a b c d e f

weight/quality 2 5 4 3 1 1

Table 2: Quantitative Sequence Database
sid q-sequence
1 〈(e, 5)[(c, 2)(f, 1)](b, 2)〉
2 〈[(a, 2)(e, 6)][(a, 1)(b, 1)(c, 2)][(a, 2)(d, 3)(e, 3)]〉
3 〈(c, 1)[(a, 6)(d, 3)(e, 2)]〉
4 〈[(b, 2)(e, 2)][(a, 7)(d, 3)][(a, 4)(b, 1)(e, 2)]〉
5 〈[(b, 2)(e, 3)][(a, 6)(e, 3)][(a, 2)(b, 1)]〉

Accordingly, the utility of a single item can be defined as
its purchased quantity times its profit. The utility of an
itemset is the sum of the utilities of all its items. Since
each item in a sequence may have multiple utility values,
the utility of a sequence may have multiple values. For in-
stance, the utility of 〈ea〉 in sequence 2 is {(6 × 1 + 1 × 2)
, (6×1+2×2)} = {8, 10}. The utility of 〈ea〉 in the database
is {{}, {8, 10}, {}, {16, 10}, {15, 7}}. We select the highest
utility in each sequence and add them together to represent
the maximum utility of the sequence in a given sequence
database. The maximum utility of 〈ea〉 is 10+16+15 = 41.
A sequence is of high utility only if its utility is no less than
a user-specified minimum utility. Following the high util-
ity pattern mining approach, our goal is to mine for highly
profitable sequential purchasing; the identified shopping pat-
terns are more informative for retailers in determining their
marketing strategy.

High utility sequential pattern mining is substantially dif-
ferent and much more challenging than high utility itemset
mining. If the order between itemsets is considered, e.g.
(e, 5), [(c, 2)(f, 1)] and (b, 2) in record sid = 1 occurring
sequentially, it becomes the problem of mining high utility
sequential patterns. This is substantially different and much
more challenging than mining frequent sequences and high
utility itemsets. First, as with high utility itemset mining,
the downward closure property does not hold in utility-based
sequence mining. This means that most of the existing al-
gorithms cannot be directly transferred, e.g. from frequent
sequential pattern mining to high utility sequential pattern
mining. Second, compared to high utility itemset mining,
utility-based sequence analysis faces the critical combina-
tional explosion and computational complexity caused by
sequencing between sequential elements (itemsets).

So far, only very preliminary work has been proposed to
mine for high utility sequential patterns [2, 4, 11]. It is in a
very early stage since there is no systematic problem state-
ment available. The proposed algorithms are rather specific
and focus on simple situations, and still need substantial
effective scanning and pruning strategies to improve perfor-
mance. Basically, we can see that this is a new and promising
area expecting much substantial exploration from problem
definition to algorithm development and applications.

In this paper, we formalize the problem of high utility
sequential pattern mining, and propose a generic framework
and an efficient algorithm, USpan, to identify high utility
sequences.

• We build the concept of sequence utility by considering
the quality and quantity associated with each item in a

sequence, and define the problem of mining high utility
sequential patterns;

• A complete lexicographic quantitative sequence tree
(LQS-tree) is used to construct utility-based sequences;
two concatenation mechanisms I-Concatenation and S-
Concatenation generate newly concatenated sequences;

• Two pruning methods, width and depth pruning, sub-
stantially reduce the search space in the LQS-tree;

• USpan traverses LQS-tree and outputs all the high
utility sequential patterns.

Substantial experiments on both synthetic and real datasets
show that the proposed framework and the USpan algorithm
can efficiently identify high utility sequences from large scale
data with very low minimum utility.

The paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 proposes a sequence utility framework
and defines the problem of mining high utility sequential
patterns. Section 4 details the USpan algorithm. Exper-
imental results and evaluation are presented in Section 5.
Section 6 concludes the work.

2. RELATED WORK

2.1 Utility Itemset/Pattern Mining
Utility itemset mining, also generally called utility pat-

tern mining, was first introduced in [13]. Every item in the
itemsets is associated with an additional value, called inter-
nal utility which is the quantity (i.e. count) of the item. An
external utility is attached to an item, showing its quality
(e.g. price). With such a utility-based database, high utility
itemsets (patterns) are mined, including those satisfying the
minimum utility. Mining high utility itemsets is much more
challenging than discovering frequent itemsets, because the
fundamental downward closure property in frequent itemset
mining does not hold in utility itemsets.

Several algorithms are available. UMining was proposed
in 2004 for mining high utility patterns, but it cannot ex-
tract the complete set of them. A transaction-weighted
downward closure property was introduced in [8], in which
a two-phase algorithm was proposed with a pruning strat-
egy, which makes it faster and more efficient than UMining.
IHUP [3] maintains the high utility patterns in an incre-
mental environment; since it avoids multiple scans of the
database, its efficiency is far better than [8]. UP-Growth
[12] also uses a tree structure, UP-Tree, to mine high utility
patterns. Compared to IHUP, UP-Growth is more efficient,
since it further reduces the number of promising patterns
which cannot be pruned in IHUP.

The above algorithms can only handle utility itemsets,
and do not involve the ordering relationships between items.
The addition of ordering information in sequences makes
it fundamentally different and much more challenging than
mining utility itemsets.

2.2 Utility-based Sequential Pattern Mining
Frequent sequential pattern mining is a very popular topic

[1, 9], with quite a few algorithms, such as SPADE [14], Pre-
fixspan [10] and SPAM [5], proposed on the support/frequency
framework. Algorithms for mining frequent sequences often
result in many patterns being mined; most of them may not
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make sense to business, and those with frequencies lower
than the given minimum support are filtered. This limits
the actionability [6] of discovered frequent patterns.

The integration of utility into sequential pattern mining
aims to solve the above problem and has only taken place
very recently. In total, we found only three papers in the
literature. UMSP [11] was designed for mining high util-
ity mobile sequential patterns. Each itemset in a sequence
is associated with a location identifier. With this feature,
the utility of a mobile sequential pattern is also a single
value. UMSP searches for patterns within a structure called
MTS-Tree, which is efficient. However, due to the specific
constraint on the sequences, this algorithm can only handle
specific sequences with simple structures (single item in each
sequence element, and a single utility per item).

In [2], an algorithm is specifically designed for utility web
log sequences. The utility of a pattern can have multiple val-
ues, and the authors choose the utility with maximal values
to represent a pattern’s utility with two tree structures, i.e.
UWAS-tree and IUWAS-tree. However, sequence elements
with multiple items such as [(c, 2)(b, 1)] cannot be supported,
and the scenarios considered are rather simple, which limit
the algorithm’s applicability for complex sequences.

UI and US [4] extends traditional sequential pattern min-
ing. A pattern utility is calculated in two ways. The utili-
ties of sequences having only distinct occurrences are added
together, while the highest occurrences are selected from se-
quences with multiple occurrences and used to calculate the
utilities. However, the problem defintion in [4] is rather spe-
cific. No generic framework is proposed which has a clear
process to transfer from sequential pattern mining to high
utility sequence analysis.

It is obvious that mining high utility sequences is a very
open and challenging area. Substantial research topics rang-
ing from problem definition to algorithm development and
applications are worthwhile to explore.

3. PROBLEM STATEMENT

3.1 Sequence Utility Framework
Let I = {i1, i2, ..., in} be a set of distinct items. Each item

ik ∈ I(1 � k � n) is associated with a quality (or external
utility), denoted as p(ik), which may be the unit profit or
price of ik. A quantitative item, or q-item, is an ordered pair
(i, q), where i ∈ I represents an item and q is a positive num-
ber representing the quantity or internal utility of i, e.g. the
purchased number of i. A quantitative itemset, or q-itemset,
consists of more than one q-item, which is denoted and de-
fined as l = [(ij1 , q1)(ij2 , q2)...(ijn′ , qn′)], where (ijk , qk) is a
q-item for 1 � k � n′. For brevity, the brackets are omit-
ted if a q-itemset has only one q-item. Since the items in
a set can be listed in any order, without loss of generality,
we assume that q-items are listed in alphabetical order. A
quantitative sequence, or q-sequence, is an ordered list of q-
itemsets, which is denoted and defined as s = 〈l1l2 ... lm〉,
where lk(1 � k � m) is a q-itemset. A q-sequence database
S consists of sets of tuples 〈sid, s〉, where sid is a unique
identifier of s, which is a q-sequence.

We use the examples in Table 1 and Table 2 to illustrate
the concepts, to show items and corresponding qualities and
q-sequences respectively. In sid = 1 q-sequence, (e, 5), (c, 2),
(f, 1) and (b, 2) are q-items; [(c, 2) (f, 1)] is a q-itemset with
two q-items. For convenience, in this paper, “sequence”

refers to ordered itemsets without quantities, i.e. the same
meaning in sequence analysis; similarly, “item” and “item-
set” do not involve quantity either. We use “q-” to name the
object associated with quantity. We denote the sid = 1 q-
sequence in Table 2 as s1; other q-sequences are numbered
accordingly. We use the following definitions to construct
the sequence utility framework.

Definition 1. (Q-itemset Containing) Given two q-itemse-
ts la = [(ia1 , qa1)(ia2 , qa2)...(ian , qan)] and lb = [(ib1 , qb1)(ib2 ,
qb2)...(ibm , qbm)], lb contains la iff there exist integers 1 ≤
j1 ≤ j2 ≤ ... ≤ jn ≤ m such that iak = ibjk ∧ qak = qbjk for
1 ≤ k ≤ n, denoted as la ⊆ lb.

For example, q-itemset [(a, 4)(b, 1)(e, 2)] contains q-itemse-
ts (a, 4), [(a, 4)(e, 2)] and [(a, 4)(b, 1)(e, 2)], but does not con-
tain [(a, 2)(e, 2)] or [(a, 4)(c, 1)].

Definition 2. (Q-sequence Containing) Given two q-sequ-
ences s = 〈l1, l2, ..., ln〉 and s′ = 〈l′1, l′2, ..., l′n′〉, we say s′

contains s or s is a q-subsequence of s′ iff there exist integers
1 ≤ j1 ≤ j2 ≤ ... ≤ jn ≤ n′ such that lk ⊆ l′jk for 1 ≤ k ≤ n,
denoted as s ⊆ s′.

For example, 〈(b, 2)〉, 〈[(b, 2)(e, 3)]〉, 〈[(b, 2)][(e, 3)](a, 2)〉
are the q-subsequences of q-sequence s5 (sid = 5), while
〈[(b, 4)(e, 3)]〉 and 〈(b, 2)(b, 6)〉 are not.

Definition 3. (Length and Size) A (q-)sequence is called
k-(q)sequence i.e. its length is k iff there are k (q-)items in
the (q-)sequence; the size of a (q-)sequence is the number of
(q-)itemsets in the (q-)sequence.

For example, 〈(e, 5)[(c, 2)(f, 1)](b, 2)〉 is a 4-q-sequence with
size 3. 〈ea〉 is a 2-sequence with size 2.

Definition 4. (Matching) Given a q-sequence s = 〈(s1, q1)
(s2, q2)...(sn, qn)〉 and a sequence t = 〈t1t2...tm〉. s matches
t iff n = m and sk = tk for 1 ≤ k ≤ n, denoted as t ∼ s.

Due to the variety of quantities, two q-items can be dif-
ferent even though their items are the same. That is, there
could be multiple q-subsequences of a q-sequence matching
a given sequence. For example, if we want to find the q-
subsequences in q-sequence s4 (sid = 4) in Table 2 which
matches the sequence 〈b〉, we obtain 〈(b, 2)〉 in the first q-
itemset and 〈(b, 1)〉 in the third q-itemset. Sometimes, two
q-items can be exactly the same and appear in one q-seque-
nce. For example, q-item (e, 2) appears in both the first and
third q-itemsets in q-sequence s4.

Definition 5. (Q-item Utility) The q-item utility is the
utility of a single q-item (i, q), denoted and defined as u(i, q):

u(i, q) = fui(p(i), q) (1)

where fui is the function for calculating q-item utility.

Definition 6. (Q-itemset Utility) Q-itemset utility is the
utility of an q-itemset l = [(i1, q1) (i2, q2) ... (in, qn)], de-
noted and defined as u(l):

u(l) = fuis(
n⋃

j=1

u(ij , qj)) (2)

fuis is the function for calculating q-itemset utility.
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Definition 7. (Q-sequence Utility) For a q-sequence s =
〈l1l2...lm〉, the q-sequence utility is u(s):

u(s) = fus(
m⋃

j=1

u(lj)) (3)

where fus is the utility function for q-sequences.

Definition 8. (Q-sequence Database Utility) For a utility-
oriented sequence database S = {〈sid1, s1〉, 〈sid2, s2〉, ..., 〈sidr
, sr〉}, the q-sequence database utility is u(S):

u(S) = fudb(
r⋃

j=1

u(sj)) (4)

fudb is the function for aggregating utilities in the database.

In the above, utility functions fui , fuis , fus and fudb are all
application-dependent, which may be determined through
collaboration with domain experts.

Definition 9. (Sequence Utility) Given a utility-oriented
database S and a sequence t = 〈t1t2...tn〉, t’s utility in q-
sequence s = 〈l1l2...lm〉 from S is denoted and defined as
v(t, s), which is a utility set:

v(t, s) =
⋃

s′∼t∧s′⊆s

u(s′) (5)

The utility of t in S is denoted and defined as v(t), which is
also a utility set:

v(t) =
⋃

s∈S
u(t, s) (6)

For example, let sequence t = 〈ea〉, t’s utility in the s4
sequence in Table 2 is v(t, s4) = {u(〈(e, 2)(a, 7)〉), u(〈(e, 2)
(a, 4)〉)}= {16, 10}. t’s utility in S is v(t) = {u(t, s2), u(t, s4),
u(t, s5)} = {{8, 10}, {16, 10}, {15, 7}}. This shows that
there may be multiple utility values for a sequence within
the utility sequence framework. For instance, t = 〈ea〉 has
2 utility values 16 and 10 for s4. This is very different from
frequent sequential pattern mining, in which there is only
one support associated with a sequence.

3.2 High Utility Sequential Pattern Mining
In the utility Definitions 5-8, we did not provide the utility

functions fui , fuis , fus and fudb . Here, we first specify them,
and then state the problem of high utility sequential pattern
mining. Although there may be various ways, we here define
the above functions as

fui(p(i), q) = p(i)× q, (7)

fuis(
n⋃

j=1

u(ij)) =
n∑

j=1

u(ij), (8)

fus(
m⋃

j=1

u(tj)) =
m∑

j=1

u(lj), (9)

fudb(

r⋃

j=1

u(si)) =

r∑

j=1

u(sj) (10)

Definition 10. (High Utility Sequential Pattern) Because
a sequence may have multiple utility values in the q-sequence
context, we choose the maximum utility as the sequence’s

utility. The maximum utility of a sequence t is denoted and
defined as umax(t):

umax(t) =
∑

max{u(s′)|s′ ∼ t ∧ s′ ⊆ s ∧ s ∈ S} (11)

Sequence t is a high utility sequential pattern if and only if

umax(t) ≥ ξ (12)

where ξ is a user-specifiedminimum utility. Therefore, given
a utility sequence database S and the minimum utility ξ,
the problem of mining high utility sequential patterns is to
extract all high utility sequences in S satisfying ξ.

Here we illustrate the utility definitions in Section 3.1 and
the above utility functions through their use in the retail
business. In Tables 1 and 2, the utility of a shopped item (q-
item) is its profit, equal to the unit profit (weight or quality)
of the item times the quantity of the item shopped. The
profit (q-itemset utility) of a series of purchased items (q-
itemset) is the sum of the profits of all items. Similarly, we
can calculate the profit (utility) for a shopping sequence and
for a shopping database. For example, for s1, the utility
of q-item (e, 5) is u(e, 5) = 5 × 1 = 5, which is also the
utility of the first itemset’s utility. Similarly, the utility of
s1 and S are u(s1) = u(e, 5) + u(c, 2) + u(f, 1) + u(b, 2) =
5 × 1 + 2 × 4 + 1 × 1 + 2 × 5 = 24 and u(S) = u(s1) +
u(s2)+u(s3)+u(s4)+u(s5) = 24+41+27+50+37 = 179
respectively. The utility of sequence ea is umax(〈ea〉) =
10 + 16 + 15 = 41. If the minimum utility is ξ = 40, then
the shopping sequence s = 〈ea〉 is a high utility sequential
pattern since umax(s) = 41 ≥ ξ.

The utility Definitions 5-9 and the utility functions defined
in Equations (7)-(10) define the problem of utility sequence
mining. The high utility sequential pattern mining specifi-
cation defined in Equations (11) and (12) is a special case
of utility sequence mining. Based on different definitions
of sequence utility calculation, other metrics can be defined
for selecting high utility sequences. In fact, the traditional
frequent sequence mining problem can also be viewed as a
special case of the above utility-based framework. Suppose
we set the quantity of all items as 1, and define the utility
functions in Equations (7)-(10) as

fui(i, q) = p(i)× q, (13)

fuis(
n⋃

j=1

u(ij)) =
n∏

j=1

u(ij), (14)

fus(
m⋃

j=1

u(tj)) =
m∏

j=1

u(lj), (15)

fudb(

r⋃

j=1

u(si)) =

r∑

j=1

u(sj) (16)

then the sequence utility is equal to its support. We can
also prove that the specific algorithms proposed in the re-
lated work [4, 11, 2] are special cases of our proposed utility
sequence mining framework.

4. USPAN ALGORITHM
Here we specify and present an efficient algorithm, USpan,

for mining high utility sequential patterns. USpan is com-
posed of a lexicographic q-sequence tree, two concatenation
mechanisms, and two pruning strategies.

663



4.1 Lexicographic Q-sequence Tree
For utility-based sequences, we adapt the concept of the

Lexicographic Sequence Tree in [5] to the characteristics
of q-sequences, and come up with the Lexicographic Q-
sequence Tree (LQS-Tree) to construct and organize utility-
based q-sequences.

Suppose we have a k-sequence t, we call the operation of
appending a new item to the end of t to form (k+1)-sequence
concatenation. If the size of t does not change, we call the
operation I-Concatenation. Otherwise, if the size increases
by one, we call it S-Concatenation. For example, 〈ea〉’s I-
Concatenate and S-Concatenate with b result in 〈e(ab)〉 and
〈eab〉, respectively. Assume two k-sequences ta and tb are
concatenated from sequence t, then ta < tb if

i) ta is I-Concatenated from t, and tb is S-Concatenated
from t, or

ii) both ta and tb are I-Concatenated or S-Concatenated
from t, but the concatenated item in ta is alphabeti-
cally smaller than that of tb.

For example, 〈(ab)〉 < 〈(ab)b〉, 〈(abc)〉 < 〈(ab)b〉, 〈(ab)c〉 <
〈(ab)d〉 and 〈(ab)(de)〉 < 〈(ab)(df)〉.

Definition 11. (Lexicographic Q-sequence Tree) An lexi-
cographic q-sequence tree (LQS-Tree) T is a tree structure
satisfying the following rules:

• Each node in T is a sequence along with the utility of
the sequence, while the root is empty

• Any node’s child is either an I-Concatenated or S-
Concatenated sequence node of the node itself

• All the children of any node in T are listed in an in-
cremental and alphabetical order

Additionally, if we set ξ = 0, then the complete set of the
identified high utility sequential patterns forms a complete-
LQS-Tree, which covers the complete search space.

S-Concatenate

I-Concatenate

.......

.......

<>

<(abc)a>

{{}{19}{}{}{}}

<(abc)d>

{{}{24}{}{}{}}

<(abc)e>

{{}{18}{}{}{}}

<(ab)(ad)>

{{}{20}{}{}{}}

<(ab)(ae)>

{{}{14}{}{}{}}

<(abc)>

{{}{15}{}{}{}}

<(abe)>

{{}{}{}{15}{}}

<(ab)a>

{{}{11}{}{}{}}

<(ab)d>

{{}{16}{}{}{}}

<(ab)e>

{{}{10}{}{}{}}
.......

<(ab)>
{{}{7}{}
{13}{9}}

<(ac)>

{{}{10}{}{}{}}

<(ad)>
{{}{13}{21}

{23}{}}

<(ae)>
{{}{10,7}{14}

{10}{15}}
.......

<a> <b>
{{10}{5}{}

{10,5}{10,5}}

<c>

{{8}{8}{4}{}{}}
{{}{4,2}{12}

{14,8}{12,4}}

Figure 1: The Complete-LQS-Tree for the Example
in Table 2

Figure 1 is an example of LQS-Tree. The root is an
empty q-sequence, while the nodes in the black boxes such
as 〈(abe)〉 are leaves in the LQS-Tree. The bold lines and the
light lines represent I-Concatenation and S-Concatenation,

respectively. Nodes within the same parent are arranged in
increasing order. The utilities of the sequences are in the
bottom of the respective boxes.

Given a sequence t and a sequence database S, calculating
v(t) in S is easy without any prior knowledge. For example,
if we want to calculate v(〈ea〉), we simply find all the q-
subsequences in each q-sequence that match 〈ea〉, and calcu-
late and aggregate the utilities of those q-subsequences. We
obtain v(〈ea〉) = {{8, 10}, {16, 10}, {15, 7}} and umax(〈ea〉)
= 41. Once we have umax(〈ea〉), a very natural question
is, “Can any 〈ea〉’s child’s maximum utility be calculated by
simply adding the highest utility of the q-items after 〈ea〉 to
umax(〈ea〉)?”. Unfortunately, the answer is no.

In frequent sequential pattern mining, the downward clo-
sure property serves as the foundation of pattern mining al-
gorithms. However, this property does not hold in the high
utility pattern mining problem. In Table 2, umax(〈ea〉) =
41, but umax(〈e〉) = 5 + 6 + 2 + 2 + 3 = 18, which is lower
than its super-pattern. Thus, any frequent sequential pat-
tern mining algorithms built on this property, such as pre-
fixspan [10] and SPADE [14], cannot mine for high utility
sequences. What is more, if we check the maximum utilities
of a path in the complete-LQS-Tree, we find that the util-
ities of the sequential patterns 〈(ae)〉, 〈(ae)a〉, 〈(ae)(ab)〉,
〈(ae)(abc)〉 and 〈(ae)(abc)a〉 are 49, 33, 41, 25 and 29 re-
spectively. There is no such property as anti-monotonicity
in the maximum utilities. Therefore, it is not surprising that
given ξ > 0, the high utility sequences may not form an
complete-LQS-Tree. For example, for ξ = 60, the high util-
ity sequential patterns are {(be)a(ab)}, {ba(ab)}, {(be)aa}
and {(be)ab}. Obviously, these four patterns cannot form
an complete-LQS-Tree.

USpan consequently uses a depth-first search strategy to
traverse the LQS-Tree to search for high utility patterns. As
shown in Figure 1, USpan first generates the children of the
root. It then takes 〈a〉 as the current node, checks whether
〈a〉 is a high utility pattern, and scans for 〈a〉’s possible
children. If 〈a〉’s first children, i.e. 〈(ab)〉, are not taken as
the current node, the same operations will apply to 〈(ab)〉.
This procedure will be recursively invoked until there is no
other node in the LQS-Tree to visit.

Three important things about USpan need to be addressed.
First, knowing the utility of a node, how can we generate the
node’s children’s utilities by concatenating the correspond-
ing items? The answer is provided in Section 4.2. Second,
how can we avoid checking unpromising children? We dis-
cuss this in Section 4.3. Finally, when should USpan stop
the search of deeper nodes? This is discussed in Section 4.4.

4.2 Concatenations
At this point, we discuss how to generate the children’s

utility based on the utility of its parent, in other words,
through I-Concatenation and S-Concatenation. We intro-
duce a utility matrix to represent the utility of a q-sequence.
Table 3 is the utility matrix of q-sequence s4 in Table 2.
Each element in the matrix is a tuple; the first value shows
the utility of the q-item, and the second is the utility of
the remaining items in the q-sequence; we call it remaining
utility, which will be discussed in Section 4.4. The items
that do not appear in the q-sequence are given zero util-
ity value. We illustrate the concatenations with q-sequence
s4; other sequences can be conducted in the same way. Let
us look at the record for item b in Table 3. Clearly, q-
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Table 3: Utility Matrix of Q-sequence s4 in Table 2
items q-itemset 1 q-itemset 2 q-itemset 3
a (0,50) (14,24) (8,7)
b (10,40) (0,24) (5,2)
d (0,40) (9,15) (0,2)
e (2,38) (0,15) (2,0)

subsequences 〈(b, 2)〉 and 〈(b, 1)〉 match the sequence 〈b〉, so
v(〈b〉, s4) = {10, 5}. Items can either I-Concatenate or S-
Concatenate to an existing pattern.

We start from the I-Concatenation. In the example, only
items larger than b can be I-Concatenated, i.e. entries in the
rectangle from d1 (meaning d in itemset 1) to e3 are possible
items. More precisely, only itemsets 1 and 3 have b, so items
corresponding to e1 = (2, 38) to e3 = (2, 0) can be used
to form the q-subsequences that match the sequence 〈(be)〉.
The utilities of 〈(be)〉 are the utilities of u(〈b〉, s4) plus the
newly added q-items’ utilities e1 = (2, 38), e3 = (2, 0), i.e.
v(〈(be)〉, s4) = {10 + 2, 5 + 2} = {12, 7}. Similarly, we have
v(〈a〉, s4) = {14, 8}, and utilities for its I-Concatenated se-
quences v(〈(ab)〉, s4) = {13}, v(〈(ad)〉, s4) = {23}, v(〈(ae)〉,
s4) = {10}, etc.

S-Concatenation is a little more complicated. We con-
tinue with 〈(be)〉. As we can see from the utility matrix,
there is no other literal that can be I-Concatenated to 〈(be)〉.
Q-items that can be S-Concatenated to the q-subsequences
are located in the rectangle region from a1 to e3. Thus,
sequences such as 〈(be)a〉, 〈(be)b〉, 〈(be)d〉 and 〈(be)e〉 are
the candidates. 〈[(b, 2)(e, 2)](a, 7)〉 and 〈[(b, 2)(e, 2)](a, 4)〉
match sequence 〈(be)a〉, whose utilities are v(〈(be)a〉, s4) =
{12 + 14, 12 + 8} = {26, 20}. We also have v(〈(be)b〉, s4) =
{17}, v(〈(be)d〉, s4) = {21}, v(〈(be)e〉, s4) = {14}.

From the above two examples, we conclude that a se-
quence’s children’s utilities can be calculated in terms of the
utility of a sequence and the positions of the last q-items
of q-subsequences that match the sequence. For example,
to generate the utility of 〈(be)a〉 based on 〈(be)〉 in s4, we
only need to know the following information from 〈(be)〉: i)
e1 and e3 are the two last q-items of q-subsequences which
match the sequence 〈(be)〉, and ii) the utilities are 12 and
7 respectively. As for which q-items matches b, this is not
important. Additionally, we call e1 pivot, because it is the
first place where the q-subsequences that match 〈(be)〉 end.
Items that are similar to e3 are called ending q-items.

Figure 2 presents the data representation in USpan. Every
sequence is stored in the memory in the form of a utility
matrix. We omit the entries in the figure for simplicity. The
pivot in q-sequence 1 is the black dot; other ending q-items
are the black solid boxes on the right side of the dot.

4.3 Width Pruning
The above section discusses how to concatenate items to

a sequence, a remaining issue is what kind of items are qual-
ified to be concatenated. This section presents the scanning
function of USpan, and proposes a width pruning strategy
to further select the promising items.

As shown in Figure 2, those located at the left side of the
pivot (inclusive) are called projected q-items. Clearly, it is
not possible to concatenate these projected q items. The
qualified items are at the right side of the pivot. They are
I-Concatenation items right under the pivot and the end-
ing q-items, and S-Concatenation q-items are on the right

Sequence 2
Sequence 2

Sequence 2
Sequence 2

Sequence 2

1 2 3 4 5 6 7 8
a
d
e
f
g
h
i

Q-sequence 3

1 2 3 4 5 6 7
a
c
d
f
g
h

Q-sequence 2

1 2 3 4 5 6 7 8 9
a
b
c
d
e
f
g
h
i

Q-sequence 1

pivot

S-Concatenation
q-items

I-Concatenation
q-items

Projected
q-items

Ending
q-items

Sequence: (ad)fd

Figure 2: Data Representation in USpan

side of the pivot. For each sequence in S, those items
should be scanned and inserted into the corresponding I-
Concatenation and/or S-Concatenation lists.

Not every qualified item is a promising item. For example,
f is qualified to concatenate to several sequences, but it
appears once only in the whole database, i.e. (f, 1) in q-
sequence 1. The maximum utility of any sequence containing
f will be no more than the utility of q-sequence 1, so any
sequence concatenating with f will, if it can, make itself a
low utility pattern.

To avoid selecting the unpromising items, we propose a
width pruning strategy for the scanning subroutine. This is
based on the sequence-weighted downward closure property
(SDCP), which is similar to the transaction-weighted down-
ward closure property (TDCP) in [8]. Before introducing
SDCP, we give a definition to the sequence-weighted utiliza-
tion (SWU) of a sequence.

Definition 12. (SWU) SWU of a sequence t in S is de-
noted and defined as SWU(t)

SWU(t) =
∑

s′∼t∧s′⊆s∧s⊆S
u(s) (17)

For example, SWU(〈f〉) = u(s1) = 24 and SWU(〈ea〉) =
u(s2) + u(s4) + u(s5) = 41 + 50 + 37 = 128.

Theorem 1. (Sequence-weighted Downward Closure Prop-
erty) Given a utility-based sequence database S, and two se-
quences t1 and t2, where t2 contains t1, then

SWU(t2) � SWU(t1) (18)

Proof. Let s2 ⊆ sj ∈ S be a subsequence matching the
sequence t2. Since t2 contains t1, we know that there must
be a subsequence s1 ⊆ s2 matching t1. Therefore, a se-
quence containing subsequences such as s2 is a subset of
that containing s1, i.e

⋃

s2∼t2∧s2⊆sj∧sj⊆S
sj ⊆

⋃

s1∼t1∧s1⊆si∧si⊆S
si (19)

We derive,
∑

s2∼t2∧s2⊆sj∧sj⊆S
u(s) �

∑

s1∼t1∧s1⊆si∧si⊆S
u(si) (20)

and obtain SWU(t2) � SWU(t1).
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Based on Theorem 1, we define whether an item is“promis-
ing”. Imagine we have a k-sequence t, a new item i concate-
nates to t and results in a (k+1)-sequence t′. If SWU(t′) �
ξ, we say item i is a promising item to t. Otherwise, i is
called an unpromising item. In the implementation, to test
whether an item is promising, we do not have to generate
the new sequence to test whether an item is promising. We
simply add the utilities of all the sequences; this is equal to
the SWU of the new sequence.

4.4 Depth Pruning
The width pruning strategy avoids constructing unpromis-

ing patterns into the LP-Tree; a depth pruning strategy
stops USpan from going deeper by identifying the leaf nodes
in the tree. Imagine the following scenario: the pivots are
approaching the end of q-sequences; meanwhile, the maxi-
mum utility of the sequence is much less than ξ. The gap is
so large that even if all the utilities of the remaining q-items
are counted into the utility of the sequence, the cumulative
utility still cannot satisfy ξ. In this situation, we use the
depth pruning strategy to backtrack USpan instead of wait-
ing to go deeper and returning with nothing.

We use the notation urest(i, s) to refer to the remaining
utility at q-item i (exclusive) in q-sequence s. In the utility
matrix, the remaining utility appears in the second element
in each entry, as shown in Table 3, e.g. urest(b1, s4) = 40,
urest(d2, s4) = 15.

Theorem 2. Given a sequence t and S, the maximum
utilities of t and t’s offsprings are no more than

∑

i∈s′∧s′∼t∧s′⊆s∧s∈S
(urest(i, s) + u(s′)), (21)

where i is the pivot in s of t , i ∈ s′ and s′ ⊆ s.

Proof. Suppose we have the utility of sequence t in S, we
can divide each sequence s ∈ S into two parts from the piv-
ots, where the pivots are in the left part. Assume s′ ⊆ s and
pivot i ∈ s′, in other word, s′ is the far left subsequence in s
that matches t. t’s offsprings can be only concatenated from
the right side of the pivot. Correspondingly, it is easy to
understand that the maximum utilities of the concatenated
items are no more than urest(i, s). Hence, the utility of any
item concatenated from s is no more than urest(i, s)+u(s′).
Similarly, the highest utility of other sequences in S can be
calculated in the same way. Thus, the theorem holds.

Based on Theorem 2, if the utility upper bound, i.e. the
sum of remaining utilities and utilities of far left subse-
quences, is less than ξ, we can simply stop USpan from going
deeper and backtrack the search procedure.

4.5 USpan Algorithm
The USpan algorithm is illustrated in Algorithm 1. The

input for USpan is a database S and a minimum utility
threshold ξ; the output includes all the high utility patterns.

Lines 1 describes the depth pruning strategy. A node is
judged as a leaf or not based on the comparison between
the value of Equation (21) and ξ; if it is lower than ξ then
it returns to its parent nodes. Lines 2 to 4 are the scanning
subroutine with the width pruning in Line 5. Once the con-
catenation items are collected, the unpromising items are
omitted from the respective lists. Lines 7 and 12 construct
the I-Concatenation and S-Concatenation children respec-
tively. It invokes the concatenation to generate the utilities

of sequences; the positions are also maintained. USpan then
outputs the high utility sequences if qualified, and recur-
sively invokes itself to go deeper in the LQS-Tree.

Algorithm 1 USpan(t, v(t))

Input: A sequence t, t’s utility v(t), a utility-based se-
quence database S, the minimum utility threshold ξ.

Output: All high utility sequential patterns
1: if p is a leaf node then return

2: scan the projected database S(v(t)) once to:
3: a).put I-Concatenation items into ilist, or
4: b).put S-Concatenation items into slist
5: remove unpromising items in ilist and slist
6: for each item i in ilist do
7: (t′, v(t′))← I-Concatenate(p,i)
8: if umax(t

′) � ξ then
9: output t′

10: USpan(t′, v(t′))
11: for each item i in slist do
12: (t′, v(t′))← S-Concatenate(p,i)
13: if umax(t

′) � ξ then
14: output t′

15: USpan(t′, v(t′))
return

5. EXPERIMENTS
The USpan algorithm was implemented in C++ of Visual

Studio 2010. All experiments were conducted on a desktop
computer with Intel Core 2 CPU of 2.80GHz, 4GB memory
and Windows XP Professional SP3. Both real and synthetic
datasets are used to evaluate the efficiency of USpan.

5.1 Data Sets
Four source datasets are used for the experiments. They

include two synthetic datasets DS1, DS2 generated by the
IBM data generator [1].

DS1 is C10T2.5S4I2.5DB10kN1k.
DS2 is C8T2.5S6I2.5DB10kN10k.
The parameters in DS1(DS2) mean that the average num-

ber of elements in a sequence is 10(8), the average number
of items in an element is 2.5(2.5), the average length of a
maximal pattern consists of 4(6) elements and each element
is composed of 2.5(2.5) items average. The data set contains
10k(10k) sequences, the number of items is 1000(10k).

We also test two real datasets DS3, DS4.
DS3 is a real dataset consisting of online shopping trans-

actions. Each customer has a sequence of records containing
the information about product ID, the amount of the prod-
ucts and its unit price. There are 811 distinct products,
350,241 transactions and 59,477 customers in the dataset.
The average number of elements in a sequence is 5. The
max length of a customer’s sequence is 82. The most popu-
lar product has been ordered 2176 times. We test USpan by
selecting online shopping sequences with high sale turnover.

DS4 is a real dataset that includes mobile communica-
tion transactions. The dataset is a 100,000 mobile-call his-
tory from a specific day. There are 67,420 customers in the
dataset. The maximum length of a sequence is 152.

5.2 Performance Evaluation
We conduct intensive experiments to evaluate the perfor-

mance of USpan in terms of computational cost, memory
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Figure 3: Evaluation of Execution Time and Number of Patterns on the Four Datasets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

400

Length of Patterns

N
um

be
r 

of
 P

at
te

rn
s

0.0006
0.0008
0.001
0.0012

(a) DS1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

50

100

150

200

250

300

Length of Patterns

N
um

be
r 

of
 P

at
te

rn
s

0.0012
0.0014
0.0016
0.0018

(b) DS2

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Length of Patterns

N
um

be
r 

of
 P

at
te

rn
s

0.00034
0.00036
0.00038
0.0004

(c) DS3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

450

500

Length of Patterns

N
um

be
r 

of
 P

at
te

rn
s

0.00022
0.00024
0.00026
0.00028

(d) DS4

Figure 4: Distribution of Discovered High Utility Sequential Patterns

usage, number of high utility patterns, and length of pat-
terns on different datasets.

The execution times of mining high utility sequential pat-
terns by USpan on DS1 to DS4 are shown in Figure 3;
the figure also includes the number of patterns. When the
minimum utility threshold decreases, more execution time is
required since we can obtain many more high utility sequen-
tial patterns. The results also show that USpan can extract
high utility sequences under very low minimum utility (for
instance, 0.0006 for DS1 and 0.0002 for DS2).

Figure 4 shows the distribution of the high utility sequen-
tial patterns discovered in terms of pattern length. It shows
that the maximum length of identified high utility sequences
increases dramatically with the decrease of minimum utility.
It is also clear that high utility sequential pattern mining
shows a very different trend of pattern distribution against
minimum utility from that of frequent sequential pattern
mining against minimum support, e.g. when the pattern
length is 11, we find the largest number of identified utility
sequences in DS2. This shows that the Apriori property
does not hold in utility sequence mining.

5.3 Evaluation of Pruning Strategies
We test the computational costs of the two proposed prun-

ing methods onDS1 andDS2. Three type of pruning strate-
gies are evaluated. The first only uses depth-pruning, the
second only uses width-pruning, and the third uses both
depth and width pruning. The results of these three strate-
gies are shown in Figure 5.

On both datasets, the depth-pruning method is very sen-
sitive to the minimum utility. When the threshold is high,
the pruning is very effective, because it only goes deeper
when there is a higher remaining utility value. It can greatly
ignore invalid searches by pruning patterns whose pivots ap-
pear at the end of sequences. However, when the threshold
decreases, the search space in LQS-Tree grows exponentially.
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Figure 5: Comparison of Pruning Methods

In contrast, width pruning is more stable with the decrease
of the threshold. The reason is that width pruning always
prevents unpromising items from getting into the concate-
nation lists. It can control the width of the trees very well,
however it cannot control whether the current sequence is
promising until it reaches the very end of the LQS-Tree.
The combination of both width and depth pruning strategies
leads to extremely improved efficiency compared to either of
them, and result in up to eight times the difference in exe-
cution time, because the two kinds of pruning strategies can
compensate for the shortcomings of each other. In addition,
since the high utility sequential pattern mining algorithm in
[4] is essentially based on width-pruning, the experimental
results indirectly show that USpan is much more efficient.

5.4 Scalability Test
The scalability test is conducted to test USpan’s perfor-

mance on large-scale datasets. Figure 6 shows the results
on datasets DS1 and DS2 in terms of different data sizes:
50K to 200K sequences are extracted from DS1 and DS2,
by setting ξ = 0.006 on DS1 and ξ = 0.003 on DS2.

On both datasets, the execution time and memory usage
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Figure 6: Results of Scalability Test

are exactly linear with the number of transactions, as shown
in Figure 6. USpan stores the whole dataset, and the run-
ning time is directly related to the size of the LQS-Tree.

5.5 Utility Comparison with Frequent Pattern
Mining

This experiment tests the utility difference between the
patterns identified by USpan and that the patterns identified
purely by frequent sequential pattern mining.
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Figure 7: High Utility vs. Frequent Sequential Pat-
terns

Figure 7(a) shows the utilities of two groups of identified
patterns, one by prefixspan and the other by USpan. The x
axis refers to the top n number of frequent vs. high-utility
patterns selected from the two groups, while the y axis shows
the sum of the utilities of the top n patterns. Figure 7(b)
shows the average utilities of patterns with different lengths
from prefixspan and USpan. The x axis refers to the lengths
of patterns; while the y axis shows the average utilities per
pattern. The results show that USpan can identify higher
utility patterns more efficiently, and it can extract top pat-
terns with higher average utility per pattern.

6. DISCUSSION AND CONCLUSIONS
Frequent sequential pattern mining leads to patterns which

do not show business value and impact, and thus are not
actionable for business decision-making. In this paper, we
have provided a systematic statement of a generic frame-
work, and an efficient algorithm, USpan, for mining high
utility sequential patterns. Substantial experiments on both
synthetic and real datasets have shown that USpan can ef-
ficiently identify high utility sequences in large-scale data
with low minimum utility. For USpan, the metrics in Equa-
tion (11) can be changed to some other proper metrics such
as minimum or average utility. The corresponding functions

in lines 8 and 13 will be modified as well to fit the new frame-
works, and the complexities are in the same level. In fact,
USpan stores the positions and utilities of the candidates,
a range of different functions can be applied on them with
different purposes in such a framework. Our future work is
on designing algorithms for even bigger datasets and better
pruning strategies.
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