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Abstract— The state-of-the-art classification algorithms
rarely consider the relationship between the attributes in the
data sets and assume the attributes are independently to each
other (IID). However, in real-world data, these attributes are
more or less interacted via explicit or implicit relationships.
Although the classifiers for class-balanced data are relatively
well developed, the classification of class-imbalanced data is
not straightforward, especially for mixed type data which has
both categorical and numerical features. Limited research has
been conducted on the class-imbalanced data. Some algorithms
mainly synthesize or remove instances to force the sizes of
each class comparable, which may change the inherent data
structure or introduces noise to the source data. While for
the distance or similarity based algorithms, they ignored the
relationship between features when computing the similarity.
This paper proposes a hybrid coupled k-nearest neighbor
classification algorithm (HC-kNN) for mixed type data, by
doing discretization on numerical features to adapt the inter
coupling similarity as we do on categorical features, then
combing this coupled similarity to the original similarity
or distance, to overcome the shortcoming of the previous
algorithms. The experiment results demonstrate that our
proposed algorithm can get a higher average performance
than that of the relevant algorithms (e.g. the variants of kNN,
Decision Tree, SMOTE and NaiveBayes).

I. INTRODUCTION

CLassification analysis plays an important practical role
in several domains, such as machine learning and data

mining. Classification techniques have been widely used in
retail, finance, banking, security, astronomy, and behavioral
ecology, etc. [1].

In many research and application areas, data sets could be
a mixture of categorical and numerical attributes (mixed data
sets). If the objects are described by numerical attributes,
their similarity measures reflect the direct relationship be-
tween data values. For example, the values pair (100kg,
120kg) are more similar than (100kg, 20kg), in other words,
more close to each other. A variety of similarity metrics have
been developed for numerical data, such as Euclidean and
Minkowski distances. While with categorical data, although
several similarity measures, such as the Jaccard coeffcient
[2], overlap, and Goodall similarity [3] can be used, they are
usually not as straightforward and general as similarities for
continuous data.

The classification analysis on the class-imbalanced dataset-
s has received much less attention, especially for the mixed
type data described by numerical and categorical features. It

has been observed that the traditional algorithms do not per-
form as good on imbalanced datasets as on balanced datasets.
In the literature of solving class imbalance problems, various
solutions have been proposed. In general, all these methods
can be broadly divided into two different approaches: data
re-sampling and modifying existing methods.

Although sampling-based methods show to outperform the
original algorithms in most situation, they do not introduce
much improvement for kNN, especially on imbalanced cate-
gorical data. This may be partly explained by the maximum-
specificity induction bias of kNN in which the classification
decision is made by examining the local neighbourhood
of query instances, and therefore the global re-sampling
strategies may not have pronounced effect in the local
neighbourhood under examination. In addition, re-sampling
strategies inevitably change the inherent relationships of the
original data, or even worse, lose information or add noise.
In dealing with class-imbalanced classification tasks, some
distance or similarity-based classification algorithms are pro-
posed, such as kENN[4] and CCW-kNN[5]. However, they
do not consider the relationship between the features when
they compute the similarity/distance between instances. We
illustrate the problems with the existing work and highlight
the challenge of classifying class-imbalanced mixed type data
below.

Taking some of the UCI Nursery data (Table I) as an
example, eleven instances are divided into two classes with
four categorical features: parents, has-nurs, form and social.
The value in the brackets indicates the frequency of the cor-
responding feature value. It is a class-imbalanced categorical
data set. Here, we use the first instance {u0} as the testing
data set, and the rest {ui}10i=1 as the training data set. If we
use the traditional kNN algorithm to classify u0, it will be
labeled as B due to a relatively large number of the instances
in class B. As shown in Table I, the Overlap Similarity,
which is defined as

Sim Overlap =
|A

∩
B|

min{|A|, |B|}
, (1)

the maximum similarity is Sim Overlap(u0, u4), which is
0.75. If we adopt the Cosine Similarity, which is defined as

Sim Cosine =
A ·B

||A|| ||B||
, (2)



TABLE I
AN EXAMPLE FROM THE UCI DATASET: NURSERY DATA

ID parents has-nurs form social Class Overlap Similarity Cosine Similarity
u0 usual improper foster nonprob A
u1 usual (4) proper (4) incomplete (4) slightly-prob (5) A 0.25 0.8484
u2 pretentious (4) less-proper (3) completed (2) nonprob (2) A 0.25 0.9278
u3 usual (4) less-proper (3) incomplete (4) slightly-prob (5) B 0.25 0.8660
u4 usual (4) improper (1) incomplete (4) nonprob (2) B 0.75 0.8762
u5 usual (4) critical (1) completed (2) problematic (3) B 0.25 0.9731
u6 pretentious (4) proper (4) complete (3) problematic (3) B 0 0.8744
u7 pretentious (4) proper (4) incomplete (4) slightly-prob (5) B 0 0.8484
u8 pretentious (4) less-proper (3) foster (1) slightly-prob (5) B 0.25 0.8956
u9 great-pret (2) proper (4) complete (3) slightly-prob (5) B 0 0.7253
u10 great-pret (2) very-crit (1) complete (3) problematic (3) B 0 0.8002

then the instances u5, u2, u8 and u4 will be the top 4
instances which are close to u0. Under this scenario, u0 will
be assigned to class B rather than class A no matter what k
we choose in kNN, because there are always more nearest
neighbors labeled as class B than as class A.

The main problem of categorical data is that there are
no inherent order in the different values that a categorical
attribute takes. We can not tell whether the word “Cloudy”
is in the middle of the words “Sunny” and “Rainy” or not.
Thus, it is not possible to directly compare two different
categorical values. People using the simplest way, the overlap
measure, to find similarity between two categorical attributes.
It assigns a 1 if the values are identical and a 0 if the values
are not identical. Then for two multivariate categorical data
points, the similarity between them will be expressed by
the number of attributes in which they match, as shown
in Equation 1. The overlap measure does not distinguish
between the different values taken by an attribute, all matches
as well as mismatches, are treated as equal (and assign a
value 1). This will cause problems in some situations. For
example, considering a categorical data set D, which has
only two features: weather and time. Weather takes three
possible values: Sunny, Cloudy, Rainy, and time takes three
values: morning, afternoon and evening. Table II shows the
frequency of co-occurrence of the two features.

Based on data set D, the overlap similarity between the
two instances (Cloudy,morning) and (Cloudy,afternoon) is
1
2 , and the overlap similarity between (Rainy,morning) and
(Rainy,afternoon) is also 1

2 . But the frequency distribution in
Table II shows that the first pair are frequent combinations,
while the second pair are very rare combinations in the data
set. Hence, the overlap measure is too simplistic to give equal
importance to all matches and mismatches. This example
shows that there is some other information in categorical
data sets that can be used to define what makes two values
more or less similar.

In computing the cosine similarity of categorical data,
the vector comes from the frequency of a single value of
a feature, so it ignores the information hiding in the co-
occurrence of two features.

These examples show that traditional classification al-
gorithms are unable to capture the genuine relationships
between imbalanced classes and between features. Learning

from the class-imbalanced data has also been identified as
one of the top 10 challenging problems in data mining
research [6].

In this paper, we propose a novel hybrid coupled nearest
neighbor classification algorithm for class-imbalanced mixed
type data by addressing both the relationships between
classes and between features. The key contributions are as
follows:

- We assign the corresponding size memberships to dis-
tinct classes according to their sizes to handle the class-
imbalanced issue in a fuzzy way.

- We extend the coupled relationship to numerical fea-
tures by using discretization techniques.

- We explore the coupled interactions within each feature
and between different features to produce a relatively
more accurate similarity measurement between mixed-
type instances.

- We compare the performance of our proposed algorithm
with existing methods on the ROC curve, and the results
confirm the improvement.

The paper is organized as follows. Section II briefly re-
views the related work. Preliminary definitions are specified
in Section III. Section IV explains our classification algorith-
m on the class-imbalanced data sets. The experimental results
are discussed in Section V. The conclusion and future work
are summarized in Section VI.

II. RELATED WORK

In dealing with class imbalance classification problems,
many solutions have been proposed. In general, all these
methods can be broadly divided into three different approach-
es: data sampling, algorithmic modification and cost-sensitive
learning[7]. The data sampling methods focus on balancing
the data, and the common strategies are to reduce the major-
ity class examples (undersampling) or to add new minority
class examples to the data (oversampling)[8], [9]. One of
the most famous over-sampling methods is SMOTE[8]. It
over-samples the minority class by taking each minority
class sample and introducing synthetic examples along the
line segments joining all of the k minority class nearest
neighbors, so it is also based on the nearest neighbor analogy.
It beats the random over-sampling by adding new instances
to a minority class, without suffering from the over-fitting.



TABLE II
FREQUENCY OF FEATURE CO-OCCURRENCE

morning afternoon evening Total
Sunny 44 47 9 100
Cloudy 48 45 7 100
Rainy 8 8 84 100
Total 100 100 100

Unlike our focus here, the methods of these re-sampling
are designed more suitable for numerical data sets. SMOTE
would introduce noise points if it is used for categorical
data. Unlike re-sampling methods which change the original
data structure, the approaches modifying existing algorithms
alter the existing classification algorithms to make them more
effective in dealing with imbalanced data, while keeping the
data structure unchanged. For example, CCPDT[10], which
is designed for imbalanced situation, is a modification of the
decision tree algorithm. The cost-sensitive learning incorpo-
rate approaches at the data level, algorithmic level or at both
levels, considering higher costs for the misclassification of
examples of the positive class with respect to the negative
class, and trying to minimize higher cost errors[11].

Although kNN has been identified as one of the top ten
most influential data mining algorithms, the standard kNN
algorithm is not suitable for the presence of imbalanced
class distribution. To improve the performance of kNN for
imbalanced classification, kENN[4] and CCW-kNN[5] have
been proposed. kENN proposed a training stage where exem-
plar positive training instances are identified and generalized
into Gaussian balls as concepts for the minority class. When
classifying a query instance using its k nearest neighbors,
the positive concepts formulated at the training stage ensure
that classification is more sensitive to the minority class.
This approach is based on extending the decision boundary
for the minority class. CCW-kNN uses the probability of
attribute values given class labels to weight prototypes in
kNN. They used conditional probabilities of classes but not
the probabilities of class labels in the neighborhood of the
query instance. These methods perform more accurately than
the existing algorithms. However both kENN and CCW-
kNN require a training stage either to find exemplar training
samples to enlarge the decision boundaries for the positive
class, or to learn the class weight for each training sample
by mixture modelling and Bayesian network learning. The
computational cost can be substantial for both approaches,
which are more suitable for numerical data.

Yang Song et al. [12] propose two new kNN algorithms
based on informativeness, which is introduced as a query-
based distance metric. A point is treated informative if it
is close to the query point and far away from the points
with different class labels. Locally Informative kNN(LI-
kNN) applies this to select the most informative points and
predict the label of a query point based on the most numerous
class with the neighbors; Globally Informative kNN(GI-
kNN) finds the globally informative points by learning a
weight vector from the training points.

The above introduces new learning algorithms to deal with
the imbalanced class distribution problem, but they focus on

handling numerical data. The overlap similarity or cosine
similarity[13] for categorical data is too vague to clearly
describe how close two categorical instances are. Those
similarity measures assume that the categorical features are
independent to each other. However, more researchers argue
that the similarity between categorical feature values is also
dependent on the couplings of other features [3]. Wang et al.
[14] presents a coupled nominal similarity to examine both
the intra-coupling and inter-coupling of categorical features.
Their approaches focus on the clustering learning on the
class-balanced data; whereas our proposed method considers
the classification learning on the class-imbalanced categorical
data, which has not been systematically addressed so far.

III. PROBLEM STATEMENT

Classification learning on the class-imbalanced categor-
ical data can be formally described as follows: U =
{u1, · · · , um} is a set of m instances; A = {a1, · · · , an}
is a set of n categorical and numerical features; C =
{c1, · · · , cL} is a set of L classes, in which each class
has dramatically different numbers of instances. The goal
is to classify an unlabeled testing instance ut based on the
instances in the training set {ui} with known classes. For
example, Table I exhibits a class-imbalanced data set. The
training set consists of ten objects {u1, u2, · · · , u10}, four
features {parents, hasnurs, form, social}, and two classes
{A,B}. There are only two instances in class A, while
eight instances in class B. Our task is to find a suitable
classification model to categorize u0 into class A.

In the following sections, the size of a class refers to the
number of instances in this class. When we say a class cl is
smaller (or larger) than ck, it means that the size of class cl
is smaller (or larger) than that of ck. A minority class has a
relatively small size, while a majority class has a relatively
large size. In addition, |H| is the number of instances in set
H .

IV. HYBRID COUPLED CLASSIFICATION

In this section, a hybrid coupled kNN algorithm (i.e. HC-
kNN for short) is proposed to handle the classification prob-
lem on the class-imbalanced mixed type data sets. Algorithm
1 illustrates the main idea of our algorithm.

HC-kNN consists of five parts: membership assignment,
data discretization, feature weighting, similarity calculation,
and integration. At the phase of membership assignment, we
introduce a fuzzy membership to handle the class-imbalanced
issue: Sized Membership of Class. This membership provides
the quantification on how small a class is. At the step of
data discretization, we use CAIM discretization algorithm
[15] which can capture the class-attribute interdependency
information on numerical features. In the third part of feature
weighting calculation, we use feature-class coupled relation-
ship to assign every feature a proper weight. At the step
of similarity calculation, we present the Adapted Coupled
Nominal Similarity to describe the closeness of two different
instances. Finally, at the final stage of integration, we propose
the Integrated Similarity to measure the similarity between



Algorithm 1 : Hybrid Coupled kNN Algorithm
Input: An instance ut without label and a source labeled

dataset D{u1, u2, ..., un}
Output: The class label of ut

1: For each class, initiate the sized membership of class
using the fuzzy set theory

2: Do discretization on numerical features
3: Calculate the feature weight of every feature
4: Create the similarity matrix which contains both intra

and inter similarity for dataset D
5: Calculate the distance of ut to every instance in dataset

D using the adapted similarity
6: Select top k points which are close to the instance ut

7: Return the class label of those k neighbors which has
the maximum number of instances

the test instance and the training instance by merging the
adapted coupled nominal similarity and fuzzy membership
of a class. The classification result of a test instance is
determined according to the integrated pairwise similarity.
Below, we specify all the building blocks one by one.

A. Membership Assignment

In this part, we propose a membership: Sized Membership
of Class to characterize the structure of imbalanced classes
and to capture the prior knowledge integrated from the
instances.

In the class-imbalanced data set, there are usually several
small classes that contain much less instances (i.e. minority),
while a lot more instances are in some large classes (i.e.
majority). However, what exactly does a small class mean?
How do we quantify a small class? As it would be too
reductive to regard the smallest class as the minority, we use
a fuzzy way [16] to measure how small a class is according
to its size. Accordingly, we have:

Definition 1: The Sized Membership of Class θ(·) de-
notes the rate of a class cl that belongs to the minority.
Formally, θ(·) is defined as:

θ(cl) = 1− |cl|
m

, (3)

where |cl| is the number of instances in classes cl and m is
the total number of instances in the data set. Accordingly,
we have θ(cl) ∈ (0, 1).

The sized membership of class describes how small a
class is. In special cases, θ(cl) reaches the maximum if
cl has the smallest number of instances; θ(cl) is down to
the minimum if cl is the largest class. For other medium
classes, the corresponding sized membership of class falls
within (θ(cl)

min, θ(cl)
max). When a data set is balanced

with two classes, where we have θ(cl) = 0.5. In Table
I, for instance, we have θ(cA) = 1 − 2/10 = 4/5, and
θ(cB) = 1− 8/10 = 1/5.

Later in measuring the similarity of instances, we will
incorporate the sized membership of class θ(·) into the

integrated similarity measure to balance the impact of class
size in measuring instance similarity.

B. Data Discretization

In order to apply our strategy which compute the similarity
between numerical features and categorical features, we
do discretization on numerical attributes to transfer such
continues values into separate groups. As we are conducting
the supervised classification tasks, we choose CAIM (class-
attribute interdependence maximization) discretization algo-
rithm [15] which can capture the class-attribute interdepen-
dency information as our discretization method.

The algorithm uses class-attribute interdependency infor-
mation as the criterion for the optimal discretization. For a
given quanta matrix, the CAIM criterion measures the de-
pendency between the class variable C and the discretization
variable D for attribute F. It is defined as:

CAIM(C,D|F ) =

∑n
r=1(max2

r/M+r)

n
, (4)

where n is the number of intervals, r iterates through all
intervals, and maxr is the maximum value within the rth

column of the quanta matrix, M+r is the total number of
continuous values of attribute F that are within the interval
(dr−1, dr].

The algorithm starts with a single interval that covers
all possible values of a continuous attribute, and divides it
iteratively. From all possible division points that are tried it
chooses the division boundary that gives the highest value of
the CAIM criterion.

The result we got from this discretization on numerical
attributes is only used in the following Feature Weighting
stage and Inter-similarity calculation stage. The reason is
that we cannot compute the similarity between a numerical
value and a categorical value directly for the numerical value
is continues. So we use the discretization intervals as the
categories of the continues values, then we can evaluate the
similarity between numerical data and categorical data.

C. Feature Weighting

Definition 2: The feature weight describes the impor-
tance degree of each categorical feature / discretized numer-
ical feature fj according to its value distribution consistency
with the distribution of classes. Formally, we have:

αj =


m∑
i=1

Fre(xij , R
C(ui))

m · |RC(ui)|
if |Unique(fj)| > 1

0 if |Unique(fj)| = 1
(5)

where m is the total number of instances in the data set,
xij is the j feature value for instance ui, RC(ui) consists
of all the instances which share the same class as instance
ui, and the according instance number is |RC(ui)|, while
Fre(xij , R

C(ui)) defines as a frequency count function that
count the occurrences of xij in feature j of set RC(ui), and
|Unique(fj)| returns the category number or discretization
interval number in feature j.



The weight αj indicates the distribution matching degree
of the values of a feature to the class labels. For example,
if a training data set has 6 instances with class labels of
{C1, C1, C2, C2, C2, C1} respectively, and feature f1 has
values of {A,A,B,B,B,A} while feature f2 has values of
{M,M,M,N,N,N}, then the value distribution of feature
f1 is more consistent with the distribution of classes than
f2 does. The more consistent in distribution for the feature
values to the class labels, the more important the feature
is. If all the values in a feature are the same, that is,
|Unique(fj)| = 1, then this feature cannot be used in the
classification task so we set the weight to be zero. We
also regard this feature weight as the coupling relationship
between features and labels. For example, in Table I, we will
have the normalized feature weights: α1 = 0.2586, α2 =
0.2069, α3 = 0.2414, and α4 = 0.2931.

D. Similarity Calculation

In this part, the similarity between instances is defined for
the class-imbalanced data. The usual way to deal with the
similarity between two categorical instances is the cosine
similarity on frequency and overlap similarity on feature
category. However, they are too rough to measure the sim-
ilarity and they do not consider the coupling relationships
among features. Wang et al. [14] introduce a coupled nominal
similarity (COS) for categorical data, which addresses both
the intra-coupling similarity within a feature and the inter-
coupling similarity among different features. The proposed
similarity measure has been shown to outperform the SMS
and the ADD[17] in the clustering learning. Here, we adapt
the COS in our classification algorithm and extend it to
mixed type data which contains both categorical features
and numerical features. We use the Euclidean distance in
our intra-similarity calculation on numerical features, and if
the inter-similarity calculation relats to numerical features,
we apply a same strategy on its discretization result as we
do on categorical features.

Definition 3: Given a training data set D, a pair of values
vxj , v

y
j (v

x
j ̸= vyj ) of feature aj . vxj and vyj are defined to be

intra-related in feature aj . The Intra Coupled Similarity
(IaCS) between categorical feature values vxj and vyj of
feature aj is formalized as:

δIa(vxj , v
y
j ) =

RF (vxj ) ·RF (vyj )

RF (vxj ) +RF (vyj ) +RF (vxj ) ·RF (vyj )
,

(6)
where RF (vxj ) and RF (vyj ) are the relative occurrence
frequency of values vxj and vyj in feature aj , respectively.
The Intra Coupled Similarity just reflects the interaction of
two values in the same feature. The higher these frequencies
are, the closer such two values are. Thus, Equation (6)
is designed to capture the value similarity in terms of
occurrence times by taking into account the frequencies of
categories. Besides, since 1 ≤ RF (vxj ), RF (vyj ) ≤ m, then
δIa ∈ [1/3,m/(m + 2)]. For example, in Table I, values
“usual” and “great-pret” of feature parents are observed

four and two times, so δIa((usual), (great − pret)) =
(4 ∗ 2)/(4 + 2 + 4 ∗ 2) = 4/7.

For numerical features, we use 1/Euclidean as the feature
values’ Intra-similarity δIa.

In contrast, the Inter Coupled Similarity below is defined
to capture the interaction of two values (or the group in the
discretization result) from two different features.

Definition 4: Given a training data set D and two different
features ai and aj (i ̸= j), two feature values vxi , v

y
j (i ̸= j)

from features ai and aj , respectively. vxi and vyj are defined
to be inter-related if there exists at least one pair value (vxyp )
that co-occurs in features ai and aj of instance Up. The Inter
Coupled Similarity (IeCS) between feature values vxi and
vyj of feature ai and aj is formalized as:

δIei|j(v
x
i , v

y
j ) =

F (vxyp )

max(RF (vxi ), RF (vyj ))
, (7)

where F (vxyp ) is the co-occurrence frequency count function
with value pair vxyp , and RF (vxi ) and RF (vyj ) is the relative
occurrence frequency in their features respectively.

Accordingly, we have δIei|j ∈ [0, 1]. The Inter-
Coupled Similarity reflects the interaction or
relationship of two categorical values from two
different features. In Table I, for example, as
δIe1|4((usual), (problematic)) = 1/max(4, 3) = 0.25 <

δIe1|4((great-pret), (problematic)) = 1/max(2, 3) = 0.667,
so between feature 1 (parents) and feature 4 (social), the
value pair [(great-pret),(problematic)] is more close to each
other than the value pair [(usual),(problematic)].

Though the superiority of COS has been verified for clus-
tering, there is no evidence showing that it still works well
in classification, due to its lack of class information. Hence,
we need to work out an adapted strategy to incorporate
the classes into COS via the following feature weighting.
First, the correspondence problem in relation to mapping
between the feature values and the classes needs to be solved.
The optimal correspondence can be obtained by using the
Hungarian method with O((nj)

3) complexity for nj feature
values. Below, the correspondence mapping is built for each
feature aj (1 ≤ j ≤ n) and a set of classes C.

By taking into account the feature importance, the Adapted
Coupled Object Similarity between instances ui1 and ui2 is
formalized as:
AS(ui1 , ui2)

=

n∑
j=1

[β · αjδ
Ia
j + (1− β) ·

n∑
k=1,k ̸=j

δIej|k]

=
n∑

j=1

[β · αjδ
Ia
j (vi1j , vi2j ) + (1− β) ·

n∑
k=1,k ̸=j

δIej|k(v
i1
j , vi2k )],

(8)

where β ∈ [0, 1] is the parameter that decides the weight of
intra-coupled similarity, vi1j and vi2j are the values of feature
j for instances ui1 and ui2 , respectively. δIaj and δIej|k are
the intra-coupled feature value similarity and inter-coupled
feature value similarity, respectively. It is remarkable to note



that αj is the feature weight defined in Equation (5), rather
than αj = 1/n assumed in [13].

E. Integration

Finally, we aggregate the membership assignment, feature
weighting and similarity calculation, and propose an Inte-
grated Similarity for classifying class-imbalanced mixed type
data sets.

The Integrated Similarity represents the adapted coupled
similarity measure by taking into account the feature weight,
feature values’ intra and features inter coupled relationship
as well as the class size information. Formally,

IS(ue, ui) = θ(C(ui)) ·AS(ue, ui), (9)

where ue and ui are the instances, respectively; C(ui)
denotes the class of ui; θ(·) is the sized membership of class
defined in Equation (3); and AS(·) is the adapted coupled
object similarity defined in Equation (8).

As indicated by Equation (9), on one hand, although we
only choose two classes in our experiments, the θ(·) can
capture the class size information, which is the key clue
to the class imbalance, so it can extends to the classifi-
cation tasks with multiple classes. On the other hand, the
adapted similarity AS(·) includes not only the feature-class
coupling information (feature weight), but it also capture
the feature values’ intra-coupling relationship and values
from different features’ inter-coupling relationship. By doing
data discretization, we break out the limit which coupled
relationship can only be applied in categorical data set,
and extend such strategy to mixed data type. Therefore, the
similarity in our algorithm is more reasonable than that in
the existing similarity calculation related algorithms for the
imbalanced real world mixed type data.

In this work, we illustrate our method by kNN. After
obtaining the similarity between the instances ue and {ui},
we choose the k nearest neighbors that correspond to the
k highest similarity values. The most frequently occurred
class cf in the k neighbors is the desired class for ue.
For example, in Table I, we have IS(u0, u1) = 3.9785,
IS(u0, u2) = 3.8054 and IS(u0, u5) = 3.8332 to be the
top three nearest neighbors to u0, so u0 should be labeled
as its real class, class A (with k = 3).

V. EXPERIMENTS AND EVALUATION

A. Experiments Setting

As the publicly available data sets were often not designed
for the non-IIDness test as in this work, we choose the
commonly used UCI and KEEL data and some real world
data, which are all contain both numerical and categorical
features. Our motivation is that if an algorithm can show
improvement on such data compared to the baselines, it has
potential to differentiate itself from others in more complex
data with strong couplings. In total, 10 data sets are taken
from the UCI Data Repository [18], KEEL data set repository
[19], and the real Student learning data taken from the
records of an Australian university’s students performance

database (If a student failed both in course L and course S,
he or she will be labeled as “Failure”, or else be labeled as
“Success”). A short description of all the datasets is provided
in Table III and the imbalanced rate of the class is shown
as Minority(%). These data sets have been selected as they
typically have an imbalance class distribution (the lowest
one is 0.98%) and all contain both categorical and numerical
features(as shown in III, the “#(N+C) Features” denotes the
feature type and numbers). The data sets such as D9 and D10
which has a more balance class distribution are selected to
evaluate our algorithm’s expansion capability.

We conducted 10-fold cross validation experiments to
evaluate the performance of all the algorithms. In the ex-
periments, we not only select several variants of kNN, such
as the classic K Nearest Neighbors(kNN)[20], kENN[4],
CCW-kNN[5] and SMOTE based kNN to compare with, but
also the very popular classifiers C4.5 and NaiveBayes. To
make algorithms more comparable, we further incorporate
our coupled fuzzy method into some kNN algorithms (the
new ones are with a prefix of HC+) to compare their results.
In all our experiments, we set k = 5 to all those kNN-based
classifiers, and the confidence levels for kENN is set to 0.1.

Due to the dominative effect of the majority class, the
overall accuracy is not an appropriate evaluation measure
for the performance of classifiers on imbalanced datasets,
we use Receiver Operating Characteristic (ROC) curve and
the Area Under the ROC Curve (AUC)[21] to evaluate the
performance results. AUC indicates the overall classification
performance, and the AUC of a perfect classifier equals to
1, a bad one less than 0.5, so a good classification algorithm
will has a higher AUC.

B. Results and Analysis

Table IV shows the AUC results for our CF-kNN com-
pared with the state of the art algorithms. The top two results
are highlighted in bold. Compared with other approaches,
our CF-kNN has the highest AUC result and outperforms
others in most of the datasets, especially in datasets with
high imbalance rate. Also, our proposed CF-kNN always
outperforms classic kNN on all the datasets. This evidences
that considering the coupling relationships between objects,
features and feature values by treating the data as non-IID in
computing similarity or distance captures the intrinsic data
characteristics. Note that the SMOTE-based kNN does not
always demonstrate significant improvement compared with
kNN, sometimes even worse, such as in data set D2 and
D10. It means that only using SMOTE on imbalanced data
may not bring much improvement, but even some noise.

From the results we can see that when the imbalance
rates are less than 6.2%, our method achieves a much better
improvement (the least one is 3.36% and the highest one
is 12.09%) on these very simple UCI data which does not
incorporate much non-IIDness characteristics. That confirms
again that our coupled fuzzy strategy is very effective for
imbalanced non-IID classification tasks.

Experiment 2 aims to test the effect of incorporating
fuzzy membership of class and the coupled similarity into



TABLE III
DATA SETS, ORDERED IN THE DECREASING LEVEL OF IMBALANCE

Index Dataset Source #Instances #(N+C) Features #Class Minority Name Minority(%)
D1 Student REAL 50000 (24+8) 2 Failure 0.98%
D2 Abalone UCI 4177 (7+1) 29 Class15 2.47%
D3 Annealing UCI 798 (6+32) 5 U 4.26%
D4 Dermatology UCI 366 (1+33) 6 P.R.P. 5.46%
D5 Census-Income UCI 299285 (12+28) 2 5000+ 6.20%
D6 Zoo UCI 101 (1+16) 7 Set6 7.92%
D7 Contraceptive UCI 1473 (2+7) 3 Long-term 22.61%
D8 Adult UCI 45222 (6+8) 2 >50K 23.93%
D9 German Credit KEEL 1000 (7+13) 2 bad 30.00%

D10 Credit Approval UCI 690 (6+9) 2 positive 44.50%

TABLE IV
THE AUC RESULTS FOR CF-kNN IN COMPARISON WITH OTHER ALGORITHMS

Dataset Minority(%) CF-kNN kNN kENN CCWkNN SMOTE C4.5 Naive improvement
D1 0.98% 0.909 0.845 0.849 0.854 0.866 0.857 0.857 4.97%-7.59%
D2 2.47% 0.718 0.672 0.680 0.692 0.688 0.683 0.682 3.75%-6.89%
D3 4.26% 0.768 0.714 0.735 0.743 0.732 0.737 0.729 3.36%-7.49%
D4 5.46% 0.76 0.715 0.720 0.729 0.678 0.716 0.724 4.28%-12.09%
D5 6.20% 0.815 0.782 0.803 0.798 0.788 0.803 0.791 1.49%-4.28%
D6 7.92% 0.887 0.842 0.869 0.869 0.854 0.857 0.859 2.08%-5.30%
D7 22.61% 0.755 0.718 0.729 0.725 0.743 0.726 0.736 1.64%-5.12%
D8 23.93% 0.938 0.904 0.915 0.910 0.910 0.920 0.919 1.95%-3.79%
D9 29.72% 0.769 0.738 0.757 0.744 0.755 0.752 0.756 1.53%-4.24%
D10 44.50% 0.916 0.893 0.913 0.910 0.887 0.907 0.912 0.33%-3.27%

other classification algorithms. For doing this, we create
three comparison sets by integrating the proposed coupled
fuzzy mechanism into kENN to form CF+kENN, CCWkNN
to form CF+CCWkNN, and SMOTE based kNN to form
CF+SMOTE based kNN, and compare their performance.
All comparable algorithms are with the same parameter
settings.

Table V shows the performance results of these compara-
ble algorithms with vs. without the coupled fuzzy mechanis-
m. It shows that incorporating our new similarity metrics will
bring more or less improvement for the classic algorithms,
especially for those distance or similarity-based algorithms.
This further shows that our proposed idea of incorporating
the fuzzy membership of classes size and measuring the cou-
plings between objects, features and feature values capture
the intrinsic characteristics better than existing methods, and
it especially suitable for class-imbalanced data.

To evaluate our coupled similarity on different imbalance
rate, we do SMOTE on student data and create 50 new data
sets, in which the minority class varies from 1% to 50%
of the total instances. Fig. 1 shows the improvement of the
basic algorithms which combined with our Coupled Fuzzy
Similarity on different imbalance rate. As it shows in the
figure, when minority class only takes up < 10% of the total
instances, both kNN and kENN (combined with CF) can

have an improvement of over 5.821%. Even for CCWkNN,
the improvement can over 5.372%. But with the imbalance
rate declining, this improvement falls simultaneously. When
minority class comes to 35% of the total records (which can
be defined as “balanced” data) or over, the improvement will
not be so outstanding and stay stable at about 2.2%. This
experiment demonstrates that our strategy is sensitive to the
imbalance rate, and it is more suitable for being used in the
scenario with high imbalance rate, that is, imbalanced mixed
type Non-IID data.

VI. CONCLUSION AND FUTURE WORK

Traditional classifiers mainly focus on dealing with bal-
anced data set and overlook the couplings between data at-
tributes, objects and classes. Classifying coupled and imbal-
anced data is very challenging. We propose a hybrid coupled
kNN to partition imbalanced mixed type data with strong
relationships between objects, attributes and classes. It incor-
porates the sized membership of a class with feature weight
into a coupled similarity measure, which effectively extracts
the inter and intra coupling relationships between feature
values. The experiment results show that our HC-kNN has a
more stable and higher average performance than the regular
kNN, kENN, CCWkNN, SMOTE-based kNN, Decision Tree
and NaiveBayes when applied for class-imbalanced mixed



TABLE V
THE AUC RESULT COMPARISON FOR ALGORITHMS WITH AND WITHOUT COUPLED FUZZY METHOD

Dataset Minority(%) kENN CF+kENN CCWkNN CF+CCWkNN SMOTE CF+SMOTE
D1 0.98% 0.849 0.905 0.854 0.906 0.866 0.922
D2 2.47% 0.680 0.724 0.692 0.733 0.688 0.735
D3 4.26% 0.735 0.783 0.743 0.788 0.732 0.778
D4 5.46% 0.720 0.766 0.729 0.771 0.678 0.718
D5 6.20% 0.803 0.912 0.798 0.873 0.788 0.836
D6 7.92% 0.869 0.922 0.869 0.918 0.854 0.908
D7 22.61% 0.729 0.764 0.725 0.725 0.743 0.776
D8 23.93% 0.915 0.957 0.910 0.946 0.910 0.951
D9 30.00% 0.757 0.780 0.744 0.785 0.755 0.800
D10 44.50% 0.913 0.936 0.910 0.932 0.887 0.907
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Fig. 1. The sensitivity to imbalance rate.

type data. Future work will include increasing the algorithm
efficiency and lowering the time complexity, and applying
this idea to other basic classification algorithms based on
similarity or distance.
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