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Abstract. ML-kNN is a well-known algorithm for multi-label classifica-
tion. Although effective in some cases, ML-kNN has some defect due to
the fact that it is a binary relevance classifier which only considers one
label every time. In this paper, we present a new method for multi-label
classification, which is based on lazy learning approaches to classify an
unseen instance on the basis of its k nearest neighbors. By introducing
the coupled similarity between class labels, the proposed method exploits
the correlations between class labels, which overcomes the shortcoming
of ML-kNN. Experiments on benchmark data sets show that our pro-
posed Coupled Multi-Label k Nearest Neighbor algorithm (CML-kNN)
achieves superior performance than some existing multi-label classifica-
tion algorithms.
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1 Introduction

Although traditional single-label classification approaches have been proved to
be successful in handling some real world problems, for the problems which
the objects not fit the single-label rule, they may not work well, for example,
in image classification, an image may contain several concepts simultaneously,
such as beach, sunset and kangaroo. Such tasks are usually denoted as multi-label
classification problems. In fact, a conventional single-label classification problem
can simply be taken as a special case of the multi-label classification problem
where there has only one label in the class label space. Multi-label classification
problems exist in many domains, for example, in automatic text categorization, a
document can associate with several topics, such as arts, history and Archeology;
and in gene functional analysis of bio-informatics, a gene can belong to both
metabolism and transcription classes; and in music categorization, a song may
labeled as Mozart and sad.

In the last decades, there have been a variety of methods developed for multi-
label classifications. These methods are generally grouped into two categories:
One is the problem transformation methods and another is the algorithm adap-
tation methods. Problem transformation methods first transform the multi-label
learning tasks into multiple single-label learning tasks, which are then handled
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by the standard single-label learning algorithms. Another approach is called al-
gorithm adaptation method, which modifies existing single-label learning algo-
rithms in order to extend its ability to handle multi-label data, such as ML-kNN
[17], IBLR [7], BSVM [2], and BP-MLL [16].

Researchers have tried to extend the kNN concept to handle the multi-label
classification problem, such as ML-kNN. ML-kNN applies maximum a posteriori
principle for classification and ranking, and the likelihood is estimated by using
the k nearest neighbors of an instance. Although simple and powerful, there are
some shortcomings in its processing strategy. ML-kNN uses the popular binary
relevance (BR) strategy [13], which may transfer the problem into many class-
imbalance tasks, and then tend to degrade the performance of the classifiers.
Another problem of it is the estimation of the posteriori may be affected by
the facts that the instances with and without a particular label are typically
highly imbalanced. Furthermore, its ignorance of the inter relationship between
labels is another issue which limits its usage. Such relationship is described as
a Coupled behavior in some previous research [6, 4]. In [14, 8], Can and Liu etc.
analysis the coupling relationship on categorical data. These works all proved
the effectiveness of considering the dependency between different attributes.

In this paper, we propose a novel kNN-based multi-label learning approach
(CML-kNN for short) based on non-iidness [5]. The major contribution of this
paper is summarized as follows:

- We propose a novel multi-label learning algorithm that based on lazy learning
and the inner relationship between labels.

- We introduce a new coupled label similarity for multi-label kNN algorithm.
Rather than only select the neighbors with a specific label, the coupled label
similarity will include more similar neighbors in the process to overcome the
problem of lacking neighbors with certain label.

- We extended the concept of the nearest neighbor in multi-label classification
with coupled label similarity. Based on this extended nearest neighbors, we
introduce a new frequency array strategy.

The structure of this paper is organized as follows. Section 2 briefly reviews
the ML-kNN algorithm. Preliminary definitions are specified in Section 3.1. And
section 3 gives a detailed description of the new algorithm we proposed. The ex-
perimental results are discussed in Section 4. Finally, the conclusion is discussed
in Section 5.

2 ML-kNN

A number of multi-label learning methods are adapted from kNN [3, 11, 15, 17].
ML-kNN, the first multi-label lazy learning approach, is based on the traditional
kNN algorithm and the maximum a posteriori (MAP) principle [17].

The main idea of the ML-kNN approach is that an instance’s labels depend
on the number of neighbors that possess identical labels. Given an instance x
with an unknown label set L(x) ⊆ L, ML-kNN first identifies the k nearest
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neighbors in the training data and counts the number of neighbors belonging
to each class (i.e. a variable z from 0 to k). Then the maximum a posteriori
principle is used to determine the label set for the test instance. The posterior
probability of li ∈ L is given by

P (li ∈ L(x)|z) = P (z|li ∈ L(x)) · P (li ∈ L(x))

P (z)
(1)

where z is the number of neighbors belonging to each class (0 ≤ z ≤ k). Then,
for each label li ∈ L, the algorithm builds a classifier hi using the rule

hi(x) =

1 P (li ∈ L(x)|z) > P (li /∈ L(x)|z)

0 otherwise
(2)

where 0 ≤ z ≤ k. If hi(x) = 1, it means label li is in x’s real label set, while 0
means it does not. The prior and likelihood probabilities in Eq. 1 are estimated
from the training data set in advance.

ML-kNN has two inheriting merits from both lazy learning and MAP princi-
ple: One is the decision boundary can be adaptively adjusted due to the varying
neighbors identified for each new instance, and another one is the class-imbalance
issue can be largely mitigated due to the prior probabilities estimated for each
class label. However, ML-kNN is actually a binary relevance classifier, because it
learns a single classifier hi for each label independently. In other words, it does
not consider the correlations between different labels. The algorithm is often
criticized because of this drawback.

3 Methodology

3.1 Problem Statement

We formally define the multi-label classification problem as this: Let X de-
notes the space of instances and Y = {l1, . . . , ln} denotes the whole label set
where |Y | = n. T = {(x1, L(x1)), . . . , (xm, L(xm))} (|T | = m) is the multi-label
training data set, whose instances are drawn identically and independently from
an unknown distribution D. Each instance x ∈ X is associated with a label
set L(x) ∈ Y . The goal of our multi-label classification is to get a classifier
h : X → Y that maps a feature vector to a set of labels, while optimizing some
specific evaluation metrics.

3.2 Coupled Label Similarity

It is much easier for numerical data to calculate the distance or similarity, s-
ince the existing metrics such as Manhattan distance and Euclidean distance
are mainly built for numeric variables, but the labels are categorical data. How
to denote the similarity between them is a big issue. As we all know, matching
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and frequency [1] are the most common ways to measure the similarity of cate-
gorical data. Accordingly, two popular similarity measures are defined: For two
categorical value vi and vj , the Overlap Similarity is defined as

Sim Overlap(vi, vj) =

{
1, if vi = vj

0, if vi ̸= vj ,
, (3)

and the Frequency Based Cosine Similarity between two vectors Vi and Vj is
defined as

Sim Cosine(Vi, Vj) =
Vi · Vj

||Vi|| ||Vj ||
. (4)

The overlap similarity between two categorical values is to assign 1 if they are
identical otherwise 0 if different. Further, for two multivariate categorical data
points, the similarity between them will be proportional to the number of features
in which they match. While for frequency based measures, they assume the
different categorical values but with the same occurrence times as the same.

Hence, the Overlap measure and Frequency Based measure are too simplis-
tic by just giving the equal importance to matches and mismatches. The co-
occurrence information in categorical data reflects the interaction between fea-
tures and can be used to define what makes two categorical values more or less
similar. However, such co-occurrence information hasn’t been incorporated into
the existing similarity metrics.

To capture the inner relationship between categorical labels, we introduce an
Intra-Coupling Label Similarity (IaCLS) and an Inter-Coupling Label Similarity
(IeCLS) below to capture the interaction of two label values from two different
labels.

Definition 1 Given a training multi-label data set D and two different labels
li and lj (i ̸= j), the label value is vxi , v

y
j respectively. The Intra-Coupling

Label Similarity (IaCLS) between label values vxi and vyj of label li and lj is
formalized as:

δIntra(vxi , v
y
j ) =

RF (vxi ) ·RF (vyj )

RF (vxi ) +RF (vyj ) +RF (vxi ) ·RF (vyj )
, (5)

where RF (vxi ) and RF (vyj ) are the occurrence frequency of label value vxi and vyj
in label li and lj, respectively.

The Intra-coupling Label Similarity reflects the interaction of two different
label values in the label space. The higher these similarities are, the closer such t-
wo values are. Thus, Equation (5) is designed to capture the label value similarity
in terms of occurrence times by taking into account the frequencies of categories.
Besides, since 1 ≤ RF (vxi ), RF (vyj ) ≤ m, then δIntra ∈ [1/3,m/(m+ 2)].

In contrast to the Intra-Coupling, we also define an Inter-Coupling Label
Similarity below to capture the interaction of two different label values according
to the co-occurrence of some value (or discretized value group) from feature
spaces.



Coupled kNN for Multi-label 5

Definition 2 Given a training multi-label data set D and two different labels
li and lj (i ̸= j), the label value is vxi , v

y
j respectively. vxi and vyj are defined

to be Inter-Coupling related if there exists at least one pair value (vzxp ) or (vzyp )
that occurs in feature az and labels of instance Up. The Inter-Coupling Label
Similarity (IeCLS) between label values vxi and vyi according to feature value
vzp of feature az is formalized as:

δInter(vxi , v
y
j |v

z
p) =

min (F (vzxp ), F (vzyp ))

max(RF (vxi ), RF (vyj ))
, (6)

where F (vzxp ) and F (vzyp ) are the co-occurrence frequency count function for
value pair vzxp or vzyp , and RF (vxi ) and RF (vyj ) is the occurrence frequency of
related class label. vzp is the value in categorical feature az or the discretized value
group in numerical feature az.

Accordingly, we have δIe ∈ [0, 1]. The Inter-Coupling Label Similarity reflects
the interaction or relationship of two label values from label space but based on
the connection to some other features.

Definition 3 By taking into account both the Intra-Coupling and the Inter-
Coupling, the Coupled Label Similarity (CLS) between two label values vxi
and vyj is formalized as:

CLS(vxi , v
y
j ) = δIntra(vxi , v

y
j ) ·

n∑
k=1

δInter(vxi , v
y
j |vk), (7)

where vxi and vyj are the label values of label li and lj, respectively. δ
Intra and

δInter are the intra-coupling label similarity (Eq. 5) and inter-coupling label sim-
ilarity (Eq. 6), respectively. The n is the number of attributes and vk denotes
the values in the kth feature ak.

Table 1. An Example of Multi-label Data

Instances Label1 Label2 Label3 Label4

u1 l1 l4
u2 l3 l4
u3 l1 l3
u4 l2 l3
u5 l2 l3 l4

The Coupled Label Similarity defined in Eq. 7 reflects the interaction or
similarity of two different labels. The higher the CLS, the more similar two
labels be. In Table 1, for example, CLS(l1, l4) = 0.33, CLS(l1, l3) = 0.25, so in
the data set, an instance with label l4 is more similar or close to instances with
label l1 than those instances with label l3 do. That is to say, label pair (l1,l4) is
closer to each other than the label pair (l1, l3). For Table 1, we got the coupled
label similarity array which showed in Table 2.
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Table 2. CLS Array

Label1 Label2 Label3 Label4

Label1 1.0 0 0.25 0.33

Label2 0 1.0 0.50 0.33

Label3 0.25 0.50 1.0 0.50

Label4 0.33 0.33 0.50 1.0

3.3 Extended Nearest Neighbors

Based on the Coupled Label Similarity, we introduce our extended nearest neigh-
bors. Based on the similarity between labels, we can transfer a label set into a set
with only a certain label, it also means a multi-label instance can be extended
to a set of single-label. If we specify a basic label lb, then any instance can be
transformed into a set with only one label lb. For example, in Table 1, instance
u5 has a label set of {l2, l3, l4}, then according to the label similarity array Table
2, it can be transformed into {1 · l2, 0.5 · l2, 0.33 · l2} if we choose label l2 as
the basic label. We can then call the original multi-label instance u5 equals a
single-label instance with a label of {1.83 · l2|l2}. If u5 is the neighbor of some

Table 3. Extended Nearest Neighbors

instance Extended Neighbors To Label

u5 0 · l1 + 0.25 · l1 + 0.33 · l1 l1
u5 1 · l2 + 0.5 · l2 + 0.33 · l2 l2
u5 0.5 · l3 + 1 · l3 + 0.5 · l3 l3
u5 0.33 · l4 + 0.5 · l4 + 1 · l4 l4

instance, when we consider the label l2, the instance u5 can be presented as an
instance which contains 1 + 0.5 + 0.33 = 1.83 label l2, and vice versa, instance
u5 also presents there are (1− 1) + (1− 0.5) + (1− 0.33) = 1.17 instances which
not contain the label l2, and there will have (1.83 + 1.17 = 3 = |L(u5)|). This is
the basic idea when we finding our extended nearest neighbors.

3.4 Coupled ML-kNN

For the unseen instance x, lets N(x) represents the set of its k nearest neighbors
identified in data set D. For the j-th class label, CML-kNN chooses to calculate
the following statistics:

Cj = Round(
k∑

i=1

δL∗
i |j) (8)

Where Li is the label set of the i-th neighbor and Li ∈ N(x), and δL∗
i |j denotes

the sum of the CLS values of the i-th neighbor’s label set to the j-th label lj ,
and Round() is the rounding function.

Namely, Cj is a rounding number which records all the CLS value of all x’s
neighbors to label lj .
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LetHj be the event that x has label lj , and P (Hj |Cj) represents the posterior
probability that Hj holds under the condition that x has exactly Cj neighbors
with label lj . Correspondingly, P (¬Hj |Cj) represents the posterior probability
that Hj doesn’t hold under the same condition. According to the MAP rule, the
predicted label set is determined by deciding whether P (Hj |Cj) is greater than
P (¬Hj |Cj) or not:

Y = {lj |
P (Hj |Cj)

P (¬Hj |Cj)
> 1, 1 ≤ j ≤ q} (9)

According to the Bayes Theory, we have:

P (Hj |Cj)

P (¬Hj |Cj)
=

P (Hj) · P (Cj |Hj)

P (¬Hj) · P (Cj |¬Hj)
(10)

Here, P (Hj) and P (¬Hj) represents the prior probability that Hj holds
and doesn’t hold. Furthermore, P (Cj |Hj) represents the likelihood that x has
exactly Cj neighbors with label lj when Hj holds, and (P (Cj|¬Hj)) represents
the likelihood that x has exactly Cj neighbors with label lj when Hj doesn’t
hold.

When we count the prior probabilities, we integrated our coupled label sim-
ilarity into the process:

P (Hj) =
s+

∑m
i=1 δL∗

i |j

s× 2 +m× n
;

P (¬Hj) = 1− P (Hj);

(11)

where (1 ≤ j ≤ n) and m is the records number in training set, and s is a
smoothing parameter controlling the effect of uniform prior on the estimation
which generally takes the value of 1 (resulting in Laplace smoothing).

Same as ML-kNN, for the j-th class label lj , our CML-kNN maintains two
frequency arrays αj and βj . As our method considers the other labels which
have a similarity to a specific label, the frequency arrays will contain k × n+ 1
elements:

αj [r] =
m∑
i=1

δL∗
i |j |Cj(xi) = r (δL∗

i |j ≥ 0.5)

βj [r] =
m∑
i=1

(n− δL∗
i |j)|Cj(xi) = r (δL∗

i |j < 0.5)

(12)

Where (0 ≤ r ≤ k × n). We take an instance with δL∗
i |j ≥ 0.5 as an instance

which does have label j and we take an instance with δL∗
i |j < 0.5 as an instance

which doesn’t have label j. Therefore, αj [r] counts the sum of CLS values to
label j of training examples which have label lj and have exactly r neighbors
with label lj , while βj [r] counts the CLS to label j of training examples which
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don’t have label lj and have exactly r neighbors with label lj . Afterwards, the
likelihood can be estimated based on elements in αj and βj :

P (Cj |Hj) =
s+ αj [Cj ]

s× (k × n+ 1) +
∑k×n

r=0 αj [r]

P (Cj |¬Hj) =
s+ βj [Cj ]

s× (k × n+ 1) +
∑k×n

r=0 βj [r]

(1 ≤ j ≤ n, 0 ≤ Cj ≤ k × n)

(13)

Thereafter, by combing the prior probabilities (Eq.11) and the likelihoods (Eq.13)
into Eq.(10), we will get the predicted label set in Eq.(9).

3.5 Algorithm

Given an unknown test instance xt, the algorithm determines the final label set of
the instance. Algorithm 1 illustrates the main idea of our process. Our proposed
CML-kNN contains of six main parts. a)Maintain the label similarity array;
b)Finding the nearest neighbors for every instance in training set; c)Getting the
prior probabilities and frequency arrays; d)Finding the nearest neighbors for the
target instance; e)Calculate the statistics value; f)Calculate the result.

Firstly, we calculate the label similarity according to their inter-relationships
and maintain the Coupled Label Similarity Array A(L) from the training data
set. Secondly, for every training instance, we identify its traditional k nearest
neighbors. After that, for every different label, we calculate its prior probability
which combined with CLS. Simultaneously, we expand the neighbors set for
every instance to a new label-coupled neighbors set using the CLS, and calculate
the frequency array for every label. After these works done, we identify the k
neighbors of the test instance xt. After applying CLS on this neighbor set and
calculate the label statistics, we can finally get the predicted label set.

It is worth noting that our key idea is the label similarity, which tries to learn
the label distance and then transfer any label into a specific label.

4 Experiments and Evaluation

4.1 Experiment Data

A total of eight commonly used multi-label data sets are tested for experiments
in this study, and the statistics of the data sets are shown in Table 4. Given a
multi-label data set M = {(xi, Li)|1 ≤ i ≤ q}, we use |M |, f(M), La(M), F (M)
to represent the number of instances, number of features, number of total labels,
and feature type respectively. In addition, several multi-label statistics [9] are
also shown in the Table. The Label cardinality (LC(M)) measures the average
number of labels per example; the Label density (LD(M)) normalizes LC(M)
by the number of possible labels; the Distinct label sets (DL(M)) counts the
number of distinct label combinations appeared in the data set; the Proportion
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Algorithm 1: : Coupled ML-kNN Algorithm

Input: An unlabeled instance xt and a labeled dataset
T{(x1, L(x1)), . . . , (xm, L(xm))}, where |T | = m and |L| = n

Output: The label set L(xt) of instance xt

1: Calculate the CLS array A(L) according to Eq.(7);
2: for i = 1 to m do;
3: Identify the k nearest neighbors N(xi) for xi

4: end for
5: for j = 1 to n do
6: Calculate P (Hj) and P (¬Hj) according to Eq.(11)
7: Maintain the label-coupled frequency arrays αj , βj using Eq.(12)
8: end for
9: Identify the k nearest neighbors N(xt) for xt

10: for j = 1 to n do
11: Calculate the statistic Cj according to Eq.(8)
12: end for
13: Return the label set L(xt) of instance xt according to Eq.(9)

Table 4. Experiment Data Sets

Data Set |M| f(M) La(M) LC(M) LD(M) DL(M) PDL(M) F(M)

emotions 593 72 6 1.869 0.311 27 0.046 n
yeast 2417 103 14 4.237 0.303 198 0.082 n
image 2000 294 5 1.236 0.247 20 0.010 n
scene 2407 294 6 1.074 0.179 15 0.006 n
enron 1702 1001 53 3.378 0.064 753 0.442 c
genbase 662 1185 27 1.252 0.046 32 0.048 c
medical 978 1449 45 1.245 0.028 94 0.096 c
bibtex 7395 1836 159 2.402 0.015 2856 0.386 c

of distinct label sets (PDL(M)) which normalizes DL(M) by the number of
instances. As shown in Table 4, eight data sets are included and are ordered by
Label density LD(M).

4.2 Experiment Setup

In our experiments, we compare the performance of our proposed CML-kNN with
that some state-of-the-art multi-label classification algorithms: ML-kNN, IBLR
and BSVM. All nearest neighbor based algorithms are parameterized by the size
of the neighborhood k. We repeat the experiments with k = 5, 7, 9 respectively
(odd number for voting), and use the Euclidean metric as the distance function
when computing the nearest neighbors. For BSVM, models are learned via the
cross-training strategy[2]. We also choose the BR-kNN as the basic algorithm to
compare with. We perform 10-fold cross-validation three times on all the above
data sets.



10 Chunming Liu and Longbing Cao

4.3 Evaluation Criteria

Multi-label classification requires different metrics than those used in traditional
single-label classification. A lot of criteria have been proposed for evaluating the
performance of multi-label classification algorithms [12]. In this paper, we use
three popular evaluation criteria for multi-label classification: the Hamming
Loss, the One Error and the Average Precision. The definitions of them
can be found in [10].

4.4 Experiment Results

The experiment results are shown in Table 5 - Table 7. For each evaluation cri-
terion, “↓” indicates “the smaller the better”, while “↑” indicates “the bigger
the better”. And the numbers in parentheses denote the rank of the algorithms
among the five compared algorithms. The result tables indicate that CML-

Table 5. Experiment Result1 - Hamming Loss↓
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.189(1) 0.219(5) 0.194(2) 0.201(4) 0.199(3)

yeast 0.194(1) 0.205(5) 0.195(2) 0.198(3) 0.199(4)

image 0.157(1) 0.189(5) 0.172(2) 0.182(4) 0.176(3)

scene 0.078(1) 0.152(5) 0.084(2) 0.089(3) 0.104(4)

enron 0.061(4) 0.052(2) 0.052(2) 0.064(5) 0.047(1)

genbase 0.003(2) 0.004(3) 0.005(4) 0.005(4) 0.001(1)

medical 0.013(1) 0.019(4) 0.016(3) 0.026(5) 0.013(1)

bibtex 0.013(1) 0.016(4) 0.014(2) 0.016(4) 0.015(3)

AvgRank (1.50) 4.13 2.38 4.00 2.50

Table 6. Experiment Result2 - One Error↓
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.244(1) 0.318(5) 0.263(3) 0.279(4) 0.253(2)

yeast 0.222(1) 0.235(4) 0.228(2) 0.237(5) 0.232(3)

image 0.267(1) 0.601(5) 0.319(3) 0.432(4) 0.314(2)

scene 0.197(1) 0.821(5) 0.219(2) 0.235(3) 0.251(4)

enron 0.308(3) 0.237(1) 0.313(4) 0.469(5) 0.245(2)

genbase 0.008(2) 0.012(5) 0.009(3) 0.011(4) 0.002(1)

medical 0.158(2) 0.327(4) 0.252(3) 0.414(5) 0.151(1)

bibtex 0.376(1) 0.631(5) 0.589(3) 0.576(2) 0.599(4)

AvgRank (1.50) 4.25 2.88 4.00 2.38

kNN and BSVM outperforms other algorithms significantly, which implies that
exploiting the frequency of neighbors’ label is effective, and especially for our
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Table 7. Experiment Result3 - Average Precision↑
CML-kNN BR-kNN ML-kNN IBLR BSVM

emotions 0.819(1) 0.595(5) 0.799(3) 0.798(4) 0.807(2)

yeast 0.769(1) 0.596(5) 0.765(2) 0.759(3) 0.749(4)

image 0.824(1) 0.601(5) 0.792(3) 0.761(4) 0.796(2)

scene 0.885(1) 0.651(5) 0.869(2) 0.862(3) 0.849(4)

enron 0.591(3) 0.435(5) 0.626(2) 0.564(4) 0.702(1)

genbase 0.994(3) 0.992(4) 0.989(5) 0.994(2) 0.998(1)

medical 0.876(1) 0.782(4) 0.806(3) 0.686(5) 0.871(2)

bibtex 0.567(1) 0.329(5) 0.351(4) 0.476(3) 0.531(2)

AvgRank (1.50) 4.75 3.00 3.50 2.25

CML-kNN, the improvement is significant compared to BR-kNN, that means
incorporating the label relationship will greatly improve the BR strategy. Mean-
while, ML-kNN, IBLR and BR-kNN do not perform as well compared to the
other algorithms. This implies that only exploiting the exact neighbor infor-
mation is not sufficient, and the similar neighbor (correlations between labels)
should also be considered.

Overall, our proposed CML-kNN outperforms all the compared methods on
all three measures. The average ranking of our method on these data sets using
three different metrics is the first one, with (1.50, 1.50, 1.50) respectively, while
the second best algorithm, BSVM, only achieves (2.50, 2.38, 2.25). The BR-kNN
performs the worst, which only achieves (4.13,4.25,4.75).

It is worth noting that although our proposed method runs the best on av-
erage, it does not mean that it is suitable for all kinds of data. For example,
when used on data set “enron” and “genbase”, the result is not as good as on
other data sets. Sometimes it even got a worse result than BR-kNN. For exam-
ple, when used on “enron” and evaluated by the Hamming Loss, our supposed
CML-kNN only achieved a 4th rank(0.061), while BR-kNN can get a second well
result(0.052). The reason is because of the weak or loose connection between dif-
ferent labels in those data sets, and our extended neighbors may introduce more
noisy information than useful information. But in terms of average performance,
our method performs the best (the first rank).

5 Conclusions and Future Work

ML-kNN learns a single classifier hi for each label li independently, so it is
actually a binary relevance classifier. In other words, it does not consider the
correlations between different labels. The algorithm is often criticized for this
drawback. In this paper, we introduced a coupled label similarity, which ex-
plores the inner-relationship between different labels in multi-label classification
according to their natural co-occupance. This similarity reflects the distance of
the different labels. Furthermore, by integrating this similarity into the multi-
label kNN algorithm, we overcome the ML-kNN’s shortcoming and improved
the performance. Evaluated over three commonly-used multi-label data sets and
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in terms of Hamming Loss, One Error and Average Precision, the proposed
method outperforms ML-KNN, BR-kNN, IBLR and even BSVM. This result
shows that our supposed coupled label similarity is appropriate for multi-label
learning problems and can work more effectively than other methods.

Our future work will focus on expanding our coupled similarity to categor-
ical multi-label data, and even mixed type multi-label data for which current
numerical distance metrics is not suitable.
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