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ABSTRACT

Non-IID (i.i.d.) data holds complex non-IIDness, e.g., couplings and
interactions (non-independent) and heterogeneities (not IID drawn
from a given distribution). Non-IID learning emerges as a major
challenge to shallow and deep learning, including classic statistical
learning, mathematical modeling, shallow machine learning, and
deep neural learning. Here, we outline the problem, research map,
main challenges and topics of shallow and deep non-IID learning.
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1 PROBLEM AND RESEARCH MAP

Real-life systems, behaviors and data go beyond the classic i.i.d.
(or IID and IIDness, independent and identically distributed) as-
sumption, where data or variables are i.i.d. drawn from a given
distribution!, by following the classic statistical and mathematical
terminology. Non-IIDness and non-IID learning [1, 2] surpass the
classic non-i.i.d. settings in the statistical and mathematical sense,
where correlation and dependency are typically involved. Non-IID
learning is not opposite to the classic i.i.d. analysis following their
ii.d. assumption. Non-IID refers to any settings and complexities
beyond IIDnesses, where non-independent refers to settings such
as dependent, correlated, coupled, entangled, and interactive; non-
identically distributed refers to settings with heterogeneous types,
distributions, and relations over variables, sources, samplings, time,
space, or heterogeneous results from distinct processes and meth-
ods, etc. Together, non-IIDness refer to complexities beyond IID,

!https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_
variables.
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including interaction, coupling relationship, heterogeneity, or non-
stationarity over time, space, sampling, source, domain, modality,
modelling process, or methods, etc. Non-IID learning refers to learn-
ing from data with non-IIDnesses. In contrast, I[Dness refer to data
with independence and identical distributions, and IID learning
refers to learn from data with IIDnesses.

Although shallow and deep Learning have made great success,
most methods assume the underlying objects, features, and values
are IID and do not involve non-IIDness over sampling, learning
processes and methods. In practice, an incorrect understanding and
representation of intrinsic non-IlDnesses may result in misleading
or incorrect learning and results by IID or near-IID shallow and
deep models. Increasing research involves heterogeneity over data
sources, modalities, timing, domains and tasks, addressing (1) multi-
source, multi-modal, cross-domain, and nonstationary settings, out-
of-distribution data, and heterogeneous information networks; and
(2) learning methods for nonstationary analysis, domain adaptation,
transfer learning, multitask learning, federated learning, and out-
of-distribution detection.

Addressing the non-IID nature of complex data, behaviors and
systems makes it essential to explore the explicit/implicit interac-
tions and couplings embedded in heterogeneous, dependent, cou-
pled, entangled, interactive or nonstationary data over time, space,
sampling, source, domain, modality or by different learning pro-
cesses, tasks or methods for shallow or deep learning. This results in
a comprehensive spectrum of non-IIDnesses in data characteristics,
processing, sampling, and learning processes, tasks and methods
and from aspects of data types (formats, semantics, etc.) and sources
(domains, modalities, networks, views, etc.), etc. Accordingly, Fig-
ure 1 illustrates a research map of non-IID learning, which covers
a broad-reaching spectrum from data processing to learning. The
KDD’22 tutorial? presents a comprehensive overview and typical
examples of shallow and deep non-IID learning to learn the non-
IIDness in complex data. It discussed the limitations of IID learning
from complex data, the definitions and frameworks of non-IID shal-
low and deep learning, and recent learning systems and algorithms.

2 CHALLENGES AND PROSPECTS

The research on non-IID learning covers a wide spectrum of sta-
tistical, shallow to deep learning methods and their applications.
Figure 1 summarizes some challenges and prospects of non-IID data
processing, non-IID feature engineering, non-IID representation,
non-IID pattern mining, non-IID statistical learning, non-IID rein-
forcement learning, non-IID deep learning, non-IID transfer learn-
ing, non-IID federated learning, non-IID multi-modal/source/task
learning, non-IID vision learning, non-IID natural language pro-
cessing/document/text analysis, and non-IID behavior modeling,
and non-IID applications including non-IID outlier detection, and
non-IID recommendation.

Zhttps://datasciences.org/coupling-learning.
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Non-IID learning reveals many open challenges and prospects to o Non-IID network modeling and graph learning with attribute-

almost every aspect of data understanding to learning. It covers non-
IID design, non-IID algorithms, and non-IID system development in
different learning paradigms, mathematical and statistical methods,

to-node-to-path couplings and heterogeneities in static/dynamic,

undirected/directed, hierarchical/flat, low/high order graph-
based and networking settings;

and specific learning theories and methods. Examples are: o Non-IID deep neural learning with input non-IIDnesses, en-

o Quantifying non-IIDnesses of complex systems, networks, be-
haviors and their data, such as local/global, static/dynamic,
explicit/implicit, flat/hierarchical, vertical/horizontal cou-
plings, interactions, connections, heterogeneities, and non-
stationarities between entities, properties, contexts, sources,
networks, domains, and modalities;

o Non-IID learning architectures and frameworks for non-IID
representation, unsupervised, semi-supervised, supervised,
and reinforced learning tasks, etc.;

o Non-IID feature engineering with value-feature-object-subspace-
source couplings, heterogeneities;

e Non-IID representation learning with distributed, coupled,
entangled, heterogeneous embeddings and transformations;

o Coupling learning and interaction learning [2] with static/dynamic,
explicit/implicit, local/global, structural/semantic etc. cou-
plings and interactions;

o Heterogeneity learning [3] with hierarchical and heteroge-

tangled features, relations and representations, heteroge-
neous representations and transformations, non-IID convo-
lution, dropout, pooling, recurrency and integration, and
in/out-of-distribution settings;

o Non-IID transfer learning with heterogeneous and coupled,

interactive source/target domains or multiple heterogeneous
but coupled tasks;

o Non-IID federated learning with non-IID local/global data,

source, learning tasks, objectives, and models etc.;

o Non-IID behavior modeling with coupled group behaviors,

multiparty interactions, heterogeneous multiple time series,
sequential behavior matrix, and heterogeneous behavior im-
pact, risk and utility;

o Non-IID recommendation with coupled, heterogeneous and

evolving users, items, user-item interactions, and rating;

o Non-IID outlier detection with asymmetry, heterogeneity, cou-

pling, interactions between majority and minority classes,
and between outlying/normal features or samples, etc.
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