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Abstract. The widely used mean-variance criteria is actually not the
optimal solution for asset allocation as the joint distribution of asset re-
turns are distributed in asymmetric ways rather than in the assumed
normal distribution. It is a computationally challenging task to model
the asymmetries and skewness of joint distributions of returns in high
dimensional space due to their own complicated structural complexities.
This paper proposes to use a new form of canonical vine to produce
the complex joint distribution of asset returns. Then, we use the utility
function of Constant Relative Risk Aversion to determine the optimal
allocation of the assets. The importance of using the asymmetries infor-
mation is assessed by comparing the performance of a portfolio based
on the mean-variance criteria and that of a portfolio based on the new
canonical vine. The results show that the investors using the forecasts of
these asymmetries can make better portfolio decisions than those who
ignore the asymmetries information.
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1 Introduction

Financial asset returns follow non-normal distributions—asymmetries and skew-
ness very often exist in the distribution of financial asset returns such as in stock
returns [2] and [3]. These asymmetries facts violate the traditional distribution
assumption on financial asset returns, making the traditional mean variance anal-
ysis [10] unreasonable. Some previous studies [12], [13] and [15] had attempted
to compare the expected utility obtained from the mean-variance criterion with
the approximated utility obtained from the benchmark portfolios (those equally
divided portfolios). It was found that the mean variance criterion had poor per-
formance on analyzing the skew and asymmetric portfolios. The mean variance
criterion was good only at the portfolio that consists of riskless assets as risk-
less assets are driven by an normal distribution in line with the mean variance
criterion assumption.

Arrow [4] laid down a theoretical foundation for the importance of using dis-
tributional asymmetries. He suggests that a desirable property of utility func-
tions (including the Constant Relative Risk Aversion utility function) is the
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non-increasing absolute risk aversion. It means that under the non-increasing
absolute risk aversion, investors may have a preference for positively skewed
portfolios. Asymmetries in the dependence structure have direct impact on the
skewness of the portfolio return. Therefore, while making the portfolio decision
favorable to risky assets, it is also essential to consider the existence of and the
impact between asymmetries and skewness. In the past, some studies, such as
[12] and [13], had proposed models to construct the dependence structure with
only two financial assets. That is far away from the need of investors. Investors
and trading agents generally purchase tens of risky assets, rather than two assets
in order to reduce aggressive risk. Therefore, it is demanded to develop a model
that can resolve difficulties in the high dimensional asset allocation.

There are three challenges in the high dimensional asset allocation. First, as
discussed above, the correlations between financial assets are asymmetric, rather
than normal. With high dimensional input, the dependence structure becomes
extremely complex, it is is difficult to capture and model all of these correlations
between assets. Second, it is important to obtain the joint probability density
function. However, the high dimensional joint distribution function has a big
number of parameters which are increased exponentially as the data dimensions
increase. Third, each individual asset has its own characteristics, such as volatili-
ty clustering and fat tail. It is a challenging task to combine these characteristics
into the dependence structure.

To fulfill this need, we propose to use a canonical vine based dependence
model for an optimization of the high dimensional asset allocation. The new
model can capture asymmetric and skew correlations in the dependence struc-
ture, and can optimize the dependent structure. To address the high dimensional
issue, we employ the idea of partial correlation to construct the canonical vine
in our dependence model. It can capture the most important correlations in the
dependence structure, and can reduce the complexity of the dependence struc-
ture remarkably to make invertors understand comprehensively. In addition, we
also employ the ARMA-Garch model for the estimate of marginal distribution
to capture volatility clustering and fat tail in financial assets.

The main contribution made by this paper is the partial correlation based
canonical vine. The canonical vine is optimized to be suitable to high dimensional
data input as it can remarkably reduce the number of nodes and parameters and
simplify the canonical vine structure. Suppose there are 50 variables, the normal
canonical vine will generate 1225 nodes. However, in our partial correlation based
canonical vine, the number of nodes is only one tenth of that (around 267 nodes).
In addition, our method can test hypotheses in parallel such as: (1) whether these
asymmetries are predictable out of sample; and (2) whether we can make better
portfolio decisions by using the forecasts of these asymmetries. If the answer
to any of these questions is ’yes’, then the asymmetries are very important for
the high dimensional asset allocation. Finding models to fit in-sample data very
well without considering the asymmetries and skewness does not imply that it
will result in a better out-of -sample portfolio decisions. In the paper, we first
build the model which can capture all important asymmetries and skewness
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in the dependence structure, then we compare it with those models that do
not consider the correlations and/or asymmetric dependence structure between
financial assets.

The rest of the paper is organized as follows. Section 2 presents a short
introduction to copula theories which is closely related to canonical vine. Sec-
tion 3 describes the problem of optimal assets allocation in portfolio, including
how to construct the optimal canonical vine and marginal distribution. Section
4 discusses how to evaluate the performance of our model with equally divided
allocation and mean-variance criterion. In Section 5, we apply the optimal canon-
ical vine to capture the dependence structures of two portfolios, and evaluate
the performance of our model in comparison to the performance by the mean
variance criterion and equally divided allocation method. Section 6 concludes
the paper with a summary.

2 Related Work

Copula is a useful tool to model the non-normal distribution. It can capture
the complicated correlation between variables, including linear or non-linear.
According to Sklar’s theorem [14], a copula function is defined to connect uni-
variate functions to form a multivariate distribution function. The definition of
a copula function is given by:

F (x1, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (1)

where, x = [x1, x2, ..., xn] is a random variable vector, F is a joint distribution
and F1, F2, ..., Fn are the marginal distributions of the corresponding variables
respectively. It shows that all multivariate distribution functions, and copula
function can be used in conjunction with univariate distributions to construct
multivariate distribution functions. The differential of Equation (1) is:

f(x1, ..., xn) =
n∏

i=1

fi(xi) · c(F1(x1), F2(x2), ..., Fn(xn)) (2)

where, c is the density copula function and fi(xi) is the density function of
marginal distributions. Equation (2) shows that the joint density function in-
cludes two parts. One is the description of the marginal behavior of individual
factor, which is marginal distributions. The other is the description of their de-
pendence structure, which is copula function. It implies an important property
that copula function can separate dependence structure from marginal distribu-
tion function. We can model the individual variables using whichever marginal
distributions provide the best fit and then model the dependence structure by
using the copula function. The useful property can help understand the complex
dependence structure, and describing the complex dependence structure on a
quantile scale. The deep instruction regarding with copula can be found in [11].

Patton [12] builds an asset allocation with copula. The portfolio is composed
by two assets, evaluating the asset allocation with the investor’s utility function.
Jondeau and Rockinger [7] use the Taylor series to calculate the expected utility.
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An obvious advantage of the method is that it remains operational even if a large
number of assets are involved. Sun et al. [15] proposed a copula arma-garch
model to predict the co-movements of six German equity market indices at high
frequency. It was found that the copula arma-garch model is able to capture
multi-dimensional co-movements among the indices.

3 The Portfolio Optimization Problem and Our New
Method

3.1 CRRA Optimization Function

Suppose that hypothetical investors follow the class of Constant Relative Risk
Aversion (CRRA) utility functions:

U(γ) =

{
(1− γ)−1 · (P0Rport)

1−γ , ifγ ̸= 1
log(P0Rport), ifγ = 1

(3)

where γ is the risk aversion parameter, P0 is the initial wealth and Rport is the
portfolio return. In this paper, the value of risk aversion parameter is considered
at four different levels, including γ = 2, 5, 7 and 10, as suggested by [5]. We use
CRRA utility function to calculate the expectation return of the hypothetical
investors as its prominence in the finance literature. If the results are obtained
by using the CRRA utility function, then the methods or algorithms are used
as a conservative estimate of the other possible results or gains by using other
more sensitive utility functions.

The next step is to built a portfolio of returns. Our work is focused on the
portfolio return with high dimensional assets, defined as

P0Rport = P0 · (1 +
n∑

i=1

ωiXt) (4)

where Xt = xi,t is the asset return at time t, and ω is the proportion of wealth
for each asset i. Generally, the initial wealth P0 is set to zero as it does not affect
the choice of weights. Suppose the joint distribution is Ft, with the associated
marginal distribution F1,t, ..., Fn,t, and copula Ct. We develop the density fore-
casts of the joint distribution F1,t+1, ..., Fn,t+1 and the copula function Ct+1.
Then, we use the forecast function to calculate the optimal weights ω∗

t+1 for
the portfolio. The optimal weights, ω∗

t+1, are found by maximizing the expected
CRRA utility function:

ω∗
t+1 =argmax

ω∈W
EFt+1 [U(1 +

n∑
i=1

ωi,t+1Xt+1)]

= argmax
ω∈W

∫
x1

∫
x2

...

∫
xn

U(1 +

n∑
i=1

ωixi) · ft+1(x1, x2, ..., xn) · dx1 · · · dxn

=argmax
ω∈W

∫
x1

∫
x2

...

∫
xn

U(1 +
n∑

i=1

ωi,t+1xi,t+1) · f1,t+1(x1) · · · fn,t+1(xn)

· ct+1(F1,t+1(x1), F2,t+1(x2), ..., Fn,t+1(xn)) · dx1 · · · dxn

(5)
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where Wt+1 = {(ω1,t+1, ..., ωn,t+1) ∈ [0, 1]n :
n∑

i=1

ωi ≤ 1} for the short sales con-

strained investors. The investors will estimate the model of conditional distribu-
tion of returns by using maximum likelihood estimation, and then optimize the
portfolio weights via the predicted distribution of return. For the integral func-
tion, we use Monte Carlo replications to estimate the value of integral. For the
optimal portfolio weights, we employ the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm to obtain the optimal weights.

3.2 Partial Correlation based Canonical Vine: Our New Ideas

The key step in Equation 5 is to form the joint density function ft+1(x1, ..., xn) at
time t+1. Equation (2) shows that the joint density function can be divided into
two parts: the copula function ct+1 and the marginal distributions f1,t+1(x1) · · ·
fn,t+1(xn). In this Section, we discuss how to produce a copula density function.
The construction of marginal distributions is explained in Section 3.3.

One way to build high-dimensional copula density function is to use canon-
ical vine to build dependence structure as proposed by [1]. The basic scheme
for modeling high-dimensional dependence structure with canonical vine is to
decompose multivariate density functions into many conditional pair copulas.
These pair copulas are bivariate copulas in one time. The model based on canon-
ical vine transforms one high dimensional dependence structure into multiple
two-dimensional structures. However, one important issue of canonical vine is
that if the variables are large in number, the canonical vine will become quit
complex. In addition, the nodes of canonical vine will increase exponentially as
the variables increase. Therefore, we propose a new partial correlation based
canonical vine to model high dimensional dependence structure.

The principle for the new canonical vine construction is to capture the most
important correlation in the dependence structure, meanwhile to decrease the
number of nodes, and to reduce the complexity of dependence structure. That is,
the new canonical vine can capture the most important correlation, and ignore
the weak correlations. Following this principle, we develop a new algorithm to
construct and optimize the canonical vine by using partial correlation. First, we
construct the canonical vine by using partial correlation rather than by using
bivariate conditional copula function. Then, we optimize the partial correlation
based canonical vine by setting the absolute small value of partial correlation to
zero to decrease number of nodes and reduce the complexity of canonical vine.
The optimal partial correlation based canonical vine can be mapped into the
canonical vine based on bivariate conditional copula, provided that pair copulas
are from the elliptical copula family [8]. The algorithm to construct the optimal
canonical vine is presented in Algorithm 1.

We take an example to explain how to construct and optimize the canonical
vine. Suppose there are one comprehensive index and 6 stocks which denoted
by M , A, B, C, D, E and F . The canonical vine will consist of 6 trees and
21 nodes in both the canonical vine structure based on partial correlation and
conditional copula. All the trees and nodes are shown in Figure 1. Each node
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Algorithm 1 Canonical Vine Construction and Optimization

Require: observations of n input variables
1: Calculate all values of partial correlation, and then allocate the smallest absolute

value of partial correlation to the node in Tn−1 (Tn−1 is the bottom tree).
2: for k = 1, ..., n− 2 do
3: If Ti > Tk, find an appropriate root variables in Ti which can minimize the

function
∑

|ρc:d|, where Ti indicates the ith tree and Tk is broken level tree;
4: If Ti ≤ Tk , find an appropriate root variables in Ti which can minimize the

function of
∑

log(1− ρ2c;d);
5: end for
6: There will be (n− 2)− 1 canonical vines as k = 1, ..., n− 2. Calculate the function

−log(D) of all of the canonical vines based on partial correlation, and choose the
maximum value of the function as the ’best’ canonical vine. (D is calculated in
Equation 7);

7: For the ’best’ canonical vine, the small absolute values of partial correlation, which
are less than significance value τ , are set to zero;

8: The optimal canonical vine based on conditional copula is corresponding to the
canonical vine based on partial correlation;

9: return The optimal canonical vine dependence structure.

can be allocated to one bivariate copula or one partial correlation. The first step
is to build the partial correlation based canonical vine. The partial correlation
of all variables can be obtained by using the following Equation:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ21n;3,...,n−1 ·
√

1− ρ22n;3,...,n−1

(6)

For these 7 variables, there are totally 21 partial correlations and 6 trees. Ti is
defined as the ith tree in the paper. The smallest absolute value of these partial
correlations is allocated to the root node in T6 (the sixth tree shown in Figure
1) as the T6 only has one node. Suppose the selected partial correlation in the
T6 is ρE,F ;M,A,B,C,D. The variables in T6 are variables E and F . The sets c6 =
{E,F} and d6 = {M,A,B,E, F} are called conditioned set and conditioning set
respectively. The next step is to chose the root variable in T5. In T5, there are two
nodes which can be allocated as two partial correlations. The root variable of T5

should be from d6. If the selected root variable of T5 is D, then it can generate
two new conditioned sets: c5 = {D,E} and c′5 = {D,F}. The corresponding
conditioning set for c5 and c′5 is d5 = {M,A,B,C}. The partial correlations
allocated to the two nodes are ρD,E;M,A,B,C and ρD,F ;M,A,B,C . If we choose C
as the root variable of T5, the two new conditioned sets are: c5 = {C,E} and c′5 =
{C,F}. The corresponding conditioning set for c5 and c′5 is d5 = {M,A,B,D}.
The partial correlation allocated to the two nodes will be ρC,E;M,A,B,D and
ρC,F ;M,A,B,D. If the selected root variable of T5 is M , A or B , the processes
of generating conditioned and conditioning set are similar to those root variable
as C or D. However, we need to identify which variable is the most appropriate
root variable in T5.
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We proposed a method to identify the appropriate root variable, which is
called tree broken method. In the paper, we define that k is a tree-broken level.
For trees beyond the kth tree (Ti > Tk), the appropriate root variable must min-
imize the value of function

∑
|ρc:d|. For trees within the kth tree (Ti ≤ Tk), the

appropriate root variables must minimize the value of function
∑

log(1− ρ2c;d).
For example, if k = 3 , for T1, T2 and T3 (the first, second and third trees), the
appropriate root variables for these trees must minimize the value of function∑

|ρc:d|. For T4, T5 and T6 (the fourth, fifth and sixth trees), the appropriate
root variables for these trees must minimize the value of function

∑
log(1− ρ2c;d).

The parameter k can be chosen from 1, 2, 3, 4, 5. Therefore, there should total-
ly have 5 canonical vines. Then, the ’Best’ canonical vine should maximize the
value of function −log(D), where D is the determinant of canonical vine which
is calculated by using:

D =
∏
{i,j}

(1− ρ2i,j;d(i,j)) (7)

where d(i, j) is the conditioning set excluding variable i, j. The corresponding
conditioned set is i, j. The small absolute values of partial correlation in the
’Best’ canonical vine, which is less than the significance value τ , is set to zero.
Finally, the optimal canonical vine structure based on partial correlation is built.
Since the canonical vine based on conditional vine has a similar structure, we
can construct the optimal canonical vine based conditional copula by using the
structure based on partial correlation.
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E
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M,C M,D
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1
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6
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Fig. 1. Canonical Vine Trees

3.3 Marginal Models Specification

The second step of constructing joint probability density function is to build the
marginal distribution for each asset return. In the paper, we choose the AR(1)-
Garch(1,1) as the marginal distribution. Hansen and Lunde [6] provided evidence
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that it is difficult to find a volatility model which outperforms the Garch(1,1)
model. We estimate the AR(1)-Garch(1,1) with skewed student t innovations.
The reason is that the skewed student t innovations can capture and model the
characteristics of financial asset return, such as volatility clustering and fat tail.

3.4 Parameter Estimation

We use a two-step procedure to estimate the canonical vine copula and marginal
distributions. Taking a log of both sides in Equation 2, we can obtain:

log f(x1, ..., xn) =

n∑
i=1

log fi + log c[F1(x1), ..., Fn(xn)] (8)

The joint log-likelihood is equal to the sum of the marginal log-likelihoods and
the canonical vine copula log-likelihood. Parameters can be estimated sepa-
rately by optimizing the marginal log-likelihood and canonical vine copula log-
likelihood in two steps.

3.5 Evaluation

In the paper, we use the final amount of the portfolio, the utility obtained by
daily returns, to compare the assets allocation with different portfolio decisions.
The final amount is the amount dollars obtained at the end of entire out of sample
period (testing period). To compare the utility, we use opportunity cost, also
called management fee or forecast premium, which is the amount that investor
would pay to switch from the the equally divided portfolio to analyzed allocation.
The benchmark of assets allocation is by equally divided portfolio, which means
the weights of all assets are equal. We compare the performance of canonical vine
with mean-variance criterion. Suppose that rport is the optimal portfolio return
obtained by canonical vine or mean-variance, and r∗port is the return obtained
from the equally divided portfolio. In other word, the opportunity cost is actually
return which is added to the return obtained from equally divided portfolio, to
make sure the investor be indifferent to the returns obtained from the analyzed
model. Then, the opportunity cost ∆ can be defined as:

U(1 + rport +∆) = U(1 + r∗port) (9)

Equation (9) can be resolved via the Taylor approximation with CRRA utility
function in [7].

4 Asymmetry Analysis with Case Study

4.1 Data and Model Specification

We used two financial asset portfolios in the evaluation of the performance of the
newly proposed model. One portfolio composes a comprehensive index S&P 500,
and 50 stocks from 10 industries. The other portfolio consists of a comprehensive
index Stoxx50 Euro, five national leading stock indices, and 44 stocks. All the
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data are downloaded from Yahoo Finance (http://finance.yahoo.com). The data
in the both portfolios span 1200 trading days from 01/10/2004 to 31/07/2009. In
the data pre-processing step, these returns and indices are calculated by taking
the log difference of the prices on every two consecutive trading prices.

As described in Section 3.3, AR(1)-Garch(1,1) is considered as the marginal
distribution to capture the skewness. The Ljung Box Q test was used for checking
the existence of residual autocorrelation for all of the stocks and indices. If the
marginal distribution of any stock or index fails the Q test, we increased the
value of p in the AR(p)-Garch(1,1) model until all pass the Q test. The results
of the Ljung Box Q test are not listed in the paper due to page limit.

For the canonical vine, we choose the ’best’ canonical vine that maximizes the
value of function −log(D). The root variables in T1 are the comprehensive indices
S&P500 and Stoxx50E. This is reasonable as the comprehensive index has much
stronger correlation than other stock prices very often. In the optimization of the
canonical vine, we considered to use different values of τ (significance values), and
compared with the ’unprune’ canonical vine. The comparison between canonical
vines are based on function −log(D), where D is the determinant as mentioned
in Section 3.2. The function is used to calculate the determinant of the partial
correlation based canonical vine, and it can be then used for comparing the
similarity of vine structures [9]. In the paper, all the nodes in the canonical vine
are assigned to bivariate t copulas.

Table 2 shows all of the partial correlations in the ’unprune’ canonical vine.
All of these partial correlations are used with absolute value as our study is
focused on the extent of correlations rather than positive/negative correlations.
It can be seen that Stoxx50E has a value larger than S&P500 at all levels.
It indicates that the stocks in the portfolio of Stoxx50E has much stronger
correlations than those in the portfolio of S&P500. This is understandable as the
portfolio of S&P500 is built by using 500 stocks from 10 industries. The stocks
in the portfolio S&P500 is strictly selected from the least correlations the each
other. The result shown in Table 1 implies a similar conclusion. Table 1 shows the
determinant and number of nodes under various values of τ . The value of function
−log(D) means the strength of canonical vine. It is observed that the portfolio
of S&P500 has more number of nodes in ’unprune’ canonical vine than the
portfolio of Stoxx50E as S&P500 has 51 variables, compared with 50 variables
in Stoxx50E. However, the portfolio of Stoxx50E has more nodes than the
portfolio of S&P500 in each corresponding level of τ . It suggests that Stoxx50E
has stronger correlations. Under the case of the optimal canonical vine (τ = 0.1),
for the both portfolios, the optimal canonical vine has less number of nodes and
parameters, namely only one tenth of those of the ’unprune’ canonical vine. It
means that the one tenth nodes can contribute the majority of the dependence
structure. Other nodes contribute a little in the dependence structure.

4.2 Experiment Results and Analysis

The performance of our model was evaluated by measuring the opportunity
cost. A moving window of 1200 observations, approximately 5 years of daily
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returns from 01/10/2004 to 31/07/2009, was used to construct the model. The
test period was from 01/08/2010 to 01/03/2012 with 730 observations of daily
returns. We evaluated the performance of our model with the two portfolios: the
European stock markets Stoxx50E and United Stated stock markets S$P500.
All the portfolio decisions are re-balanced at the end of every month, and no
cost is assumed for the re-balancing. We considered to compare the performance
of our model with the mean variance criterion and the equally divided allocation
to understand whether our model is useful.

Table 3 shows the results related to the opportunity costs and the final
amounts for the two portfolios S$P500 and Stoxx50E. Table 3 provides strong
evidence that our canonical vine based model is the best at all levels γ for both
portfolios. In detail, for the portfolio S&P500, we compare the two canonical
vines with τ = 0.1 and 0.05. There is no obvious difference between these t-
wo canonical vines, indicating that the two canonical vines implement a similar
forecasting of the samples. However, the number of parameters in the canonical
vine (τ=0.1) is only half of those in the canonical vine (τ = 0.05). The canonical
vine(τ = 0.1) is sufficient to model the dependence structure.

The mean variance criterion has a poor performance as the opportunity cost
is negative at all of the levels γ. It indicates that if investors conduct assets
allocation on a basis of mean variance analysis, the final profit would be less
than those on the basis of equally divided allocation. Therefore, the mean vari-
ance criterion is not useful. Considering the good performances of canonical vine
model, the mean variance criterion, which is caused by the normal distributions,
cannot catch the features of asymmetry and skewness of these stocks and indices.
For the portfolio Stoxx50E, the mean variance criterion is not useful either. The
performance by the mean variance criterion in Stoxx50E is worse than those in
S&P500. The final amount is even less than one, suggesting that investors will
obtain loss if they allocate the assets under the mean variance criterion. The
trouble to the mean variance criterion is that Stoxx50E has stronger asymme-
try and skewness than those in S&P500. However, the two canonical vines in
Stoxx50E perform better than those in S&P500 as the opportunity cost is large
at all level γ.

Figure 2 shows the portfolio values obtained from our canonical vine, the
mean variance criterion and equally divided allocations at the end of each month.
The trend obtained from our canonical vine in Stoxx50E shows stronger in-
creasing trends and less volatility than those in S&P500. It indicates that the
canonical vine has a better performance in Stoxx50E. For the trend obtained
from the mean variance criterion, there is no obviously different from the trend-
s from the equally divided allocation in S&P500. However, the trend of mean
variance is worse than those of the equally divided allocation. We can find that
the mean variance criterion performs a bit better in S&P500 than inStoxx50E.

Overall, we can see that: (i) The new canonical vine has a better performance
in high dimensional assets portfolios of strong asymmetry and skewness; (ii) The
mean variance criterion does not have a good performance in high dimensional
assets portfolio that has asymmetry and skewness; and (iii) Compared with the
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equally divided allocation, our new canonical vine has a better performance.
However, the performance by the mean variance criterion has no obvious differ-
ence, or even worse if the high dimensional assets portfolio has strong asymmetry
and skewness.

5 Conclusion

The paper proposed a canonical vine based model to optimize the asset allo-
cations of high dimensional assets. To address the touch computational issues
caused by high dimensional assets, we employed the partial correlation tech-
nique to reduce the complexity of the dependence structure to make invertors
understand the model easily. Our experimental results and analysis have shown
that the canonical vine model has a better performance for portfolios of strong
asymmetry and skewness in comparison to the mean variance criterion, a current
widely used method. As a future work, we will extend partial correlation based
canonical vine to work with more copula families.

Acknowledgments. This work is sponsored in part by Australian Research
Council Discovery Grant (DP1096218, DP130102691) and ARC Linkage Grant
(LP100200774).
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Fig. 2. Portfolio values over 35 months for the canonical vine (τ = 0.1), mean variance,
and equally divided allocation, γ = 2. The left one is for S&P500, and the right one is
for Stoxx50E

Table 1. Determinants and Numbers of Nodes for Portfolio S&P500 and Stoxx50E

τ unprune 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20

Stoxx50E
−log(D) 28.36 28.35 28.31 28.24 28.09 27.87 27.66 27.39 27.15 26.92 26.46 22.74
No. nodes 1225 1059 875 758 638 526 456 392 349 317 267 85
S&P500
−log(D) 13.22 13.21 13.16 13.05 12.91 12.70 12.41 12.09 11.81 11.45 11.16 9.44
No. nodes 1275 1044 847 678 560 457 362 285 235 186 153 62
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Table 2. Partial Correlations in Canonical Vine for Portfolios S&P500 and Stoxx50E

Min Max Mean 25%Quantile 50%Quantile 75%Quantile

S&P500 0.0002 0.5281 0.0572 0.0144 0.0340 0.0641
Stoxx50E 0.0004 0.8702 0.0787 0.0171 0.0422 0.0929

Table 3. Opportunity Costs and Final Amounts for S&P500 and Stoxx50E

S&P500 Stoxx50E

Relative Risk Aversion (γ) 2 5 7 10 2 5 7 10

Opportunity Cost
Canonical Vine (τ = 0.1) 1.33% 3.21% 5.64% 7.32% 1.91% 4.19% 6.14% 10.01%
Canonical Vine (τ = 0.05) 1.31% 3.18% 5.56% 7.21 1.89% 4.17% 6.12% 9.95%
Mean Variance Criterion -2.36% -3.62% -1.24% -1.19% -2.55% -6.52% -3.20% -1.40%
Final Amount
Canonical Vine (τ = 0.1) 1.39 1.41 1.46 1.50 1.53 1.58 1.62 1.64
Canonical Vine (τ = 0.05) 1.40 1.42 1.47 1.50 1.54 1.60 1.62 1.65
Mean Variance Criterion 1.02 1.00 1.04 1.04 0.93 0.80 0.91 0.99
Equally Divided Allocation 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.06
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