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Abstract
Rule-based anomaly and fraud detection systems often suffer from
massive false alerts against a huge number of enterprise transac-
tions. A crucial and challenging problem is to effectively select
a globally optimal rule set which can capture very rare anomalies
dispersed in large-scale background transactions. The existing rule
selection methods which suffer significantly from complex rule in-
teractions and overlapping in large imbalanced data, often lead to
very high false positive rate. In this paper, we analyze the interac-
tions and relationships between rules and their coverage on trans-
actions, and propose a novel metric, Max Coverage Gain. Max
Coverage Gain selects the optimal rule set by evaluating the con-
tribution of each rule in terms of overall performance to cut out
those locally significant but globally redundant rules, without any
negative impact on the recall. An effective algorithm, MCGminer,
is then designed with a series of built-in mechanisms and pruning
strategies to handle complex rule interactions and reduce compu-
tational complexity towards identifying the globally optimal rule
set. Substantial experiments on 13 UCI data sets and a real time
online banking transactional database demonstrate that MCGminer
achieves significant improvement on both accuracy, scalability, sta-
bility and efficiency on large imbalanced data compared to several
state-of-the-art rule selection techniques.

1 Introduction
Rule-based methods are crucial in real-world risk manage-
ment, expert systems and decision support systems. General
rule-based systems consist of two key technical stages: rule
generation and rule selection. At stage one, a large num-
ber of candidate rules are generated. At stage two, the best
rule set is selected for decision-making such as prediction of
fraud. In practices, when engaging a large scale of business
data, the quality of a rule-based system highly relies on an
effective way to select the globally optimal rule set.

Let us firstly illustrate the problem of globally optimal
rule selection on a highly imbalanced data set. Table 1 dis-
plays a typical task for fraud detection in online banking.
The number of fraud transactions (Fraud) is far smaller than
that of genuine transactions (Genuine), which is imbalanced

∗Advanced Analytics Institute, University of Technology, Sydney.
{Jinjiu.Li, CanWang613, Longbing.cao}@gmail.com.

†Computer Science Department, University of Illinois at Chicago, USA.
psyug@uic.edu.

Table 1: An Example of the Task for Fraud Detection
Data Set Prediction Objectives

Fraud 500 Min Support in Fraud ≥ 0.02

Genuine 32,000,000 False Positive Rate ≤ 90%

Total 32,000,500 Detection Rate ≥ 70%

Features 220 Benefit On Investment > 1

with the ratio 1:64000. In addition, the number of transac-
tions is rather huge (i.e. 32,000,500), and the dimension is
also high (i.e. 220). We call this kind of data as a large im-
balanced data set. The desirable fraud prediction model is
expected to catch 70% of Fraud with the False Positive Rate
(FPR=|False Alerts|/|Alerts|) at no more than 90%, and the
minimum support of each rule in Fraud is no less than 0.02.
Accordingly, the confidence (=1-FPR) needs to be larger
than 0.1. It means that for every 10 detected Fraud, the num-
ber of alerts triggered by the prediction model should not
exceed 100. Thus, the minimum support in Genuine needs
to be set around 0.0000031. Further, for the real transaction
data set in our experiments, the total number of candidate
rules whose confidences are bigger than 0.1 is 8,500,000. A
huge number of rules brings another challenging issue, i.e.
rule overlapping. Lots of rules are built in a similar struc-
ture, which means that each transaction is matched by 2045
rules on average. Added to this, rule selection needs to also
cater for business impact. For instance, a constraint on se-
lecting rules is the Benefit On Investment (BOI), referring
to the ratio between the total amount of money recoverable
from the Fraud detected and the investigation fee caused by
all the alerts. The higher the BOI, the better the prediction.

The above examples expose the following challenges of
rule selection on the large class-imbalanced data sets:

– It is very time and memory intensive to handle a large
scale of transactions during the process of optimal rule
selection.

– A high dimensional rule space and a large number
of rules lead to the serious rules overlapping, which
requires the deep analysis of rule relationship, and

1The calculation details are in the Appendix “https://docs.google.com/
file/d/0B7-9myg-dRYALVRrenRIV1FiQzg/edit”. Note that all the followed
contents in the Appendix are linked to this online document.



effective selection methods to obtain the optimal rule
set that satisfies the desirable objectives.

– Rule selection on the imbalanced data is also cost sen-
sitive. Missing a fraud, which may cause a big amount
of credit loss, is more expensive than incorrectly label-
ing a Genuine as a Fraud. The selection method should
consider two factors together: the number of rules and
their significance.

– High FPR is potentially a serious problem on the large
business data. It results in a large volume of false alerts
that cause expensive investigation fees. Therefore, we
need to find the globally optimal rule set under specific
criteria, rather than the non-optimal rule set proposed
by approximate methods [2, 3].

In addition, the rules need to be considered from the
perspective of their global contribution rather than the in-
dividual prediction capability. In most class-imbalance sce-
narios, a rule with a high confidence often mistakenly alerts
a large number of negative instances as well. The follow-
ing example explains this issue: A rule r0 has caught three
Fraud {t1, t2, t3} but mistakenly alerted 297 Genuine. Rule
r1 has caught one Fraud {t1} but alerted 120 Genuine (de-
noted as T1). Rule r2 has caught one Fraud {t2} but alerted
120 Genuine (denoted as T2), and rule r3 has caught one
Fraud {t3} but alerted 120 Genuine (denoted as T3). Here,
we have |T1 ∩ T2| = 90, |T1 ∩ T3| = 80, |T2 ∩ T3| = 0.
Then, the rule set {r1, r2, r3} catches all the three Fraud with
only 190 Genuine alerted. Obviously, it outperforms {r0} in
terms of both BOI and FPR, although {r0} has the highest
confidence and detection rate.

The existing rule selection methods cannot be applied
on a large class-imbalance data set and are not able to
capture the globally optimal rule set effectively. Therefore,
this paper focuses on extracting the most effective rule
combinations on the large and highly imbalanced data by
analyzing the intrinsic rule relationships [7] between rules
and transactions. The key contributions are as follows:

– We formalize the interactions and relationships between
rules and their coverage on transactions, by defining a
series of effective mechanisms to identify the optimal
rule combinations effectively.

– We propose a novel metric, Maximal Coverage Gain
(MCG), to evaluate the quality of the extracted rule
set. MCG has the following advantages against the
existing methods: 1) Minimize the rules overlapping;
2) Target on the globally optimal performance rather
than the local optimization; 3) Minimize the FPR; 4)
Maximize the business utility; and 5) Solve the cost-
sensitive problem by attaching gain factors to instances.

– We develop an effective algorithm MCGminer to
quickly find the optimal rule set by a divide-and-
conquer process. Furthermore, a series of heuristic
methods and pruning strategies are introduced to cut the
computational and memory costs sharply.

– We evaluate our proposed method with the state-of-the-
art techniques on a variety of large transactional data
in terms of prediction accuracy and stability against the
increase of imbalance rate, effectiveness of our pruning
strategies, and scalability2.

The paper is organized as follows. In Section 2, we
review the related work. Preliminary definitions are specified
in Section 3. Section 4 describes the defined problem and
pruning strategies, and presents algorithms to efficiently
search an optimal coverage rule set. Section 4 shows the
experimental evaluations. We conclude in Section 6.

2 Related Work
While extensive research efforts have mainly focused on
generating rules, the existing methods for selecting rules are
generally categorized as below: coverage based methods
[4, 5], which tend to search the optimal rule set by a
greedy algorithm; and multi-criterion based methods, which
target the non-dominated rule set [9] or apply the integrated
ranking over multiple measures to choose a final rule set
[6]. The existing methods cannot be applied to the large
imbalanced data directly due to the following disadvantages:
Implementing a sequential covering test [5] generates too
many redundancies, which negatively impact the prediction
accuracy; Severe rules overlapping inevitably leads to a high
FPR; Multi-criterion based methods tend to judge a rule
from a local perspective. Further, the disjoint rules are
incomparable, they cannot prune each other by any mutually
exclusive criteria. Thus, even after pruning, the number
of survival rules is still very large since a huge number of
candidate rules have been mined. The concrete examples for
such limitations are detailed in the attached Appendix (a).
Alternatively, some researchers use the Genetic Algorithm
to find the non-dominant rule set [9]. Those methods output
approximate results, which potentially cause a high FPR, as
illustrated in Section 1. Different from their approaches, our
method provides an accurate globally optimal rule set.

In summary, the existing rule selection methods cannot
deliver the best outcomes without compromise of prediction
quality on the large imbalanced data. To the best of our
knowledge, no existing research work has been reported on
finding the globally optimal rule set from the perspective

2The mechanisms have been tested and deployed into an online banking
risk management system i-Alertor [1] installed in a major Australian bank.
The system is much more effective and efficient than the current expert
system used by major Australian banks.



Table 2: Transactions of Online Banking
TID Credit Newpayee Channel Benefit Class

t1 $1000 0 Bpay $-100 Genuine

t2 $800 0 PayAnyone $-100 Genuine

t3 $5000 1 PayAnyone $+5000 Fraud

t4 $500 0 Bpay $+500 Fraud

t5 $30 1 PayAnyone $+30 Fraud

t6 $800 1 PayAnyone $-100 Genuine

t7 $3000 1 Bpay $+3000 Fraud

of maximal coverage gain on the large imbalanced data set.
This paper is motivated by this challenging problem.

3 Problem Statement
A transaction is formalized as a vector t = {v1, · · · , vn, w},
where vi is the corresponding value of attribute aj (1 ≤ j ≤
n) and w is a gain factor of t. As a signed real number, gain
factor w represents the business benefit of classifying t as
targeting class. w can be positive or negative. The length of
transaction t is defined as the number of involved attributes,
i.e., |t| = n. A set of transactions consist of the transaction
base T . Table 2 presents an example of fraud detection
in online banking, where TID is the serial number of a
transaction and Benefit is the profit recovered from alerting
the current transaction as a Fraud. Then, the transaction base
is T = {t1, · · · .t7}, each transaction ti (1 ≤ i ≤ 7) is
described by attributes {TID, Credit, Newpayee, Channel},
gain factor {Benefit}, and label {Class}. The length of each
transaction is 4.

Based on the tuple representation of a transaction, a
literal is defined as an attribute-value pair, i.e., l = (ak, v

l
k),

in which ak is an attribute and vlk is a value of ak. A
transaction t is regarded to satisfy a literal l = (ak,vlk) if
and only if vk = vlk, where vk is the value of attribute
ak in transaction t. For example, we have (Newpayee, 1)
to be a valid literal in Table 2, and transaction set T ′ =
{t3, t5, t6, t7} satisfies this literal. Accordingly, we define
a rule in the following.

DEFINITION 1. A rule is a conjunction of multiple literals
with an associated class label, formalized as r : l1 ∧ · · · ∧
lm → c, where c is a class label, m is the number of literals.
The length of rule r is the number of literals, i.e., |r| = m.

EXAMPLE 1. There are four rules r1 to r4,
r1 : (Credit, Large) ∧ (Newpayee, 1) → Fraud
r2 : (Credit, Median) ∧ (Newpayee, 0) → Fraud
r3 : (Newpayee, 0) → Fraud
r4 : (Credit, Median) → Fraud
So, |r1| = 2, |r2| = 2, |r3| = 1, |r4| = 1. Here, attribute
Credit is converted into nominal attribute from numeric
one by the discretization principle, Small: Credit < 500,
Median: Credit ∈ [500, 2000), Large: Credit ≥ 2000.

For simplicity, we take one class label as our target to

select the optimal rule set, so all the rules are involved to
predict the specific class label. If there are multiple classes
to be predicted, we can simply process them separately. In
Example 1, we target the fraud class, so the resultant rule set
is used to predict fraud.

DEFINITION 2. A rule r can cover transaction t if and
only if every attribute value vi of transaction t satisfies its
corresponding literal in rule r, denoted as t |= r.

According to Table 2, in Example 1, we have t3 |=
r1, t7 |= r1, t1 |= r2, t2 |= r2, t4 |= r2. Moreover, if we
consider a rule set R = {r1, · · · , rp} in transaction base
T , then the transactions covered by R form a transaction
set C[R,T ], formalized as C[R,T ] = {t|t |= r,∃r ∈ R, t ∈
T}. In Example 1, C[R,T ] = {t1, t2, t3, t4, t7} if we take
R = {r1, r2} for Table 2. Further, we obtain the transaction
set covered by a union of two rule sets by the formula
C[R1∪R2,T ] = C[R1,T ] ∪ C[R2,T ].

Based on the covered transaction set C[R,T ], accord-
ingly, we propose the following coupled relationships over
transaction set T between two rules ri and rj :

– Overlapped Rules: C[{ri},T ] ∩ C[{rj},T ] ̸= ∅
– Independent Rules: C[{ri},T ] ∩ C[{rj},T ] = ∅
– Coincident Rules: C[{ri},T ] = C[{rj},T ]

where coincident rules are special cases of overlapped ones.
In Example 1, r4 is overlapped with r2, r1 is independent
with r2. Since C[{r2},T ] = C[{r3},T ], r2 and r3 are called
coincident rules according to the above conditions. More-
over, the coupled relationships can be extended to the rule
set simply. R1 ⊆ R and R2 ⊆ R, the coupled relationships
of R1 and R2 over transaction set T are defined:

– Overlapped Rule sets: C[R1,T ] ∩ C[R2,T ] ̸= ∅
– Independent Rule sets: C[R1,T ] ∩ C[R2,T ] = ∅
– Coincident Rule sets: C[R1,T ] = C[R2,T ]

Note that, a rule can also be independent of the rest of
rules in R. Thus, we define the independence of R′ as:

– Island: R′(⊆ R) is an island if C[R′,T ]∩C[R\R′,T ] = ∅.

Besides, we extend the overlapping concept to define the
dependent overlapping between a single rule r0 ∈ R and R
as O{r0} = {r|r ∈ R \ {r0}, C[{r},T ] ∩ C[{r0},T ] ̸= ∅}.
Here O{r0} stands for the rule set that overlapped with r0. In
Example 1, assume R = {r1, r2, r3, r4}, we have O{r2} =
{r3, r4}. Besides, the transactions in subset T ′(⊆ T ) can be
merged as a virtual transaction tT ′ , and T ′ is called:

– Transaction Block: If either C[{r},T ] ∩ T ′ = ∅ or
C[{r},T ] ∩ T ′ = T ′ holds for any rule r ∈ R.

Accordingly, the gain factor of tT ′ is wtT ′ =
∑

t∈T ′ wt. We
also have that tT ′ |= r if T ′ |= r holds for any r ∈ R.

Based on the above concepts, we are ready to propose
a metric, i.e., coverage gain, to evaluate the effectiveness of
rule r in transaction data T in terms of classification power.



DEFINITION 3. Coverage Gain is defined to sum the gain
factors of transactions covered by rule r in T :

(3.1) g({r}, T ) =
∑

t∈C[{r},T ]

wt,

where wt is the gain factor of transaction t.

As we know, BOI is a key factor of the most business
concern. Thus, the optimal rule set is expected to be able to
save the maximal loss. Certainly, if the detection number is
the most interesting metric, we can simply set the gain factor
of fraud and genuine to be +1 and -1 respectively.

Multiple rules {r1, · · · , rp} can be merged together to
form a super rule R̃ = r1 ∪ r2 ∪ · · · ∪ rp. Then, the
corresponding coverage gain of R̃ is:

(3.2) g(R̃, T ) =
∑

t∈C[{r1},T ]∪···∪C[{rn},T ]

wt.

Further, for the rule set R, we define the rule set with the
maximal coverage as follows.

DEFINITION 4. Given a rule set R, if there exists a rule
subset R̂ ⊆ R, and for any R′ ⊆ R, such that g(R′, T ) ≤
g(R̂, T ), then R̂ is called the Maximal Coverage Set of R.

In other words, R̂ is the minimal rule subset that obtains
the maximal coverage gain. Note that R̂ = R does not
necessarily hold.

Finally, rule selection can be formalized as the problem
of Maximal Coverage Gain Mining.

DEFINITION 5. The goal of rule selection is to find the
smallest rule subset R̂ that has the Maximal Coverage Gain
(MCG), denoted as G(R, T ) = g(R̂, T ).

Suppose |R| = p, then the total number of subsets in rule set
R is 2p, so the computational complexity for a brutal-force
method to discover R̂ is O(2p). Since the MCG mining
with the brutal-force means is time-consuming and possibly
cannot achieve the result in an acceptable time period, we
develop a set of pruning strategies and index structure to
speed up the whole process in the following sections.

4 Maximal Coverage Gain Mining
In this section, the algorithm for the MCG mining is pro-
posed with pruning strategies, hinge set discovery and gain
bounding. Pruning strategies aim at cutting the searching
cost based on analyzing coupled relationships among indi-
vidual rules and rule sets over data set T . Hinge set is the
key part for applying the divide-and-conquer framework to
cut the searching computational cost during the iteration pro-
cess. Gain bounding studies the minimal (fmin) and max-
imal (fmax) contribution of a single rule to MCG(R, T )
from the global perspective. fmin and fmax can be effec-
tively used to judge the qualification of rules.

Figure 1: Transaction merging, each dot represents a trans-
action, and the value in every dot is the gain factor.

4.1 Pruning Strategies To mine MCG efficiently, we
develop a series of pruning strategies from three levels:
transaction reduction, rule deduction, and group interaction.
In the following, we explicate these three levels separately.
All the proofs supporting the theorems below are provided
in the attached Appendix (b).

4.1.1 Transaction Reduction Transaction reduction tar-
gets saving memory and reducing the computational cost in
data set scanning by merging and eliminating transactions.
1) Transaction Merging: The transaction subset T ′ can
be merged as a virtual transaction tT ′ if T ′ is a transaction
block, since the merging brings about no cost on MCG, i.e.,
G(R, T ). This property is formalized in Theorem 4.1 below.

THEOREM 4.1. Given a transaction set T ′ ⊆ T , tT ′ is the
virtual transaction merged for T ′. Let T ′′ = (T \T ′)∪{tT ′},
then we have G(R, T ) = G(R, T ′′). If wtT ′ = 0, then we
have G(R, T ) = G(R, T \ T ′).

For example, in Figure 1, the number of transactions de-
creases dramatically from 17 to 6 after transaction merging.
The merge operation helps to reduce the scan cost over trans-
actions and save the memory.
2) Transaction Evacuation: Once a rule r is selected as an
element of R̂, r and the transactions covered by r can be
removed immediately, since it has no impact on G(R, T ) fi-
nally. Formally, for a set of such rules, we have:

THEOREM 4.2. For ∀R′ ⊆ R̂, we have G(R, T ) =
g(R′, T ) +G(R \R′, T \ C[R′,T ]).

As evidenced by our experiments on different data sets
(see Section 5.5), by removing the transactions covered by
R′ ⊆ R̂, the candidate rule number also shrinks dramatically
due to the elimination of many plain rules which no longer
cover transactions. More importantly, after taking away one
or two rules around R′, a big island can be split into multiple
smaller ones (defined in Section 3) easily. For example,
Figure 2 shows such an island. Suppose r′ is confirmed to be
put into R̂, after collecting r′ and removing the transactions
it covered, a ring-like new island appears. This new island is
easier to be divided into smaller islands (i.e., Ra, Rb and Rc)



Figure 2: Islands after removing r′.

by taking r′′ away. Here, {r′′} becomes a key connection
of the new island, we define it as Hinge Set (described in
Section 4.2) of the new island. However, compensation
needs to be given for taking r′′ away in splitting the new
island. In Section 4.1.3, we introduce the enumeration
process to compensate the impact of removing r′′.

4.1.2 Rule Deduction Rule deduction focuses on elimina-
tion of redundant rules and the qualification for becoming an
element of R̂ as early as possible based on relationship be-
tween a single rule and the rule set. The theorem and remark
below formalize how to perform the rule deduction.
1) Coincident Rules: As we know, often too many rules are
produced in the rule generation phase, so the rule overlap-
ping over T is serious. As a result, many transactions are
matched by multiple rules.

THEOREM 4.3. If r1 ∈ R and r2 ∈ R are coincident rules
over T , then G(R, T ) = G(R \ {r1}, T ) = G(R \ {r2}, T ).

So, for the coincident rules, we only keep the distinct one
and remove the rest.
2) Maximal/Minimal Contribution of Rules: Apart from
the above coincident rules, rules can be selected according
to their contribution to MCG (i.e., G(R, T )). Formally:

THEOREM 4.4. Given a rule r ∈ R, let

fmax(r) = max
R′⊆O{r}

g({r}, T \ C[R′,T ]),(4.3)

fmin(r) = min
R′⊆O{r}

g({r}, T \ C[R′,T ]),(4.4)

where O{r} is the overlapping rule set of rule r. If
fmax(r) < 0, then r ̸∈ R̂; If fmin(r) > 0, then r ∈ R̂.
Here, R̂ is the maximal coverage set of R.

Note that fmax(r) is the contribution upper bound of
r to G(R, T ). If fmax(r) ≤ 0, the contribution of r is
negative, so r can be removed directly. fmin(r) is the
contribution lower bound of r to G(R, T ). When fmin(r) >

0, the contribution of r is positive, so r can be put into R̂
immediately. Furthermore, we can estimate the contribution
of a rule subset R′′ ⊆ R as well. Specifically,

fmax(R
′′) = max

R′⊆OR′′
g(R′′, T \ C[R′,T ]),(4.5)

fmin(R
′′) = min

R′⊆OR′′
g(R′′, T \ C[R′,T ]).(4.6)

4.1.3 Group Interaction Group interaction studies the
necessary and sufficient conditions for rule pruning based
on the coupled relationships among groups. We adopt the
Divide-and-Conquer concept to split a big rule group into
several smaller islands, which are easily to be processed. The
theorems below lay a solid foundation for group interaction.
1) Island Combination: MCG is a quality measurement of
the optimal rule set from the global perspective. It is built
by the contribution from all islands. We have the following
method to combine the coverage gain of all islands.

THEOREM 4.5. Given islands R′, R′′ ⊆ R, if R′ ∩R′′ = ∅,
then G(R′ ∪R′′, T ) = G(R′, T ) +G(R′′, T ).

According to Theorem 4.5, if the rule set R consists of
multiple islands, namely, R = R1 ∪ · · · ∪ Rq , then the
MCG problem can be divided into multiple independent
sub-problems that are easier to solve. Formally, we have
G(R, T ) = G(R1, T ) + · · ·+G(Rq, T ).
2) Group Mutex: We can use the coupled relationship to
judge the qualification of a rule group. A concrete example is
explained in the attached Appendix(b). We call this property
group mutex, having the following theorem:

THEOREM 4.6. Given a rule r ∈ R, if g({r}, C[{r},T ] \
C[O{r},T ]) < 0 holds, then (O{r} ∪ {r}) ̸⊆ R̂.

Theorem 4.6 judges the qualification of rules under consider-
ation based on the confirmed rule group in R̂. According to
our experiments, the group mutex increasingly prunes rules
as more rules are added into R̂, especially when the rules
overlap in R̂ frequently.
3) Rule Association: The following theorem judges the
qualification of r when the rules overlapped with it are all
determined.

THEOREM 4.7. Given a rule r ∈ R, let R′ = O{r} ∩ R̂, if
g({r}, T \ C[R′,T ]) > 0 holds, then r ∈ R̂.

4) Island Splitting: According to the complexity analysis
in Section 3, enumerating all the subgroups of a big island
is costly. So we adopt the Divide-and-Conquer method to
resolve the problem. Here, we introduce the method for
splitting big islands. The enumeration tree is used to describe
how the compensation is given after splitting a big island.

THEOREM 4.8. Given a rule r ∈ R, then G(R, T ) =
max(G(R \ {r}, T ), G(R \ {r}, T \C[{r},T ])+ g({r}, T )).

The theorem above tries to evaluate the impact of eliminating
r from R recklessly. Intuitively, in order to counterbalance
the impact, we calculate MCG with two solutions, removing
r and adding r into R̂, respectively. The higher one is the
optimal solution. The above theorem can also be extended to
handle the case when multiple rules are under consideration
of elimination. We have the following remark.



Figure 3: Enumeration process.

REMARK 1. Given an island R′ ⊆ R, if there exists RH =
{r1, · · · , rp} ⊆ R′, and R′′ = R′\R′H consists of k (k ≥ 2)
islands, then we have:

G(R′, T ) = max
R′H ′⊆R′H

(G(R′′, T \C[R′H ′,T ])+g(R′H ′
, T )).

R′H is called the Hinge Set of R′. The hinge set is the key
set to unite the whole islands.

For example, in Figure 2, the hinge set is R′H = {r′, r′′}.
It connects three sub-islands Ra, Rb and Rc, the lengths of
these sub-islands are |Ra| = 3, |Rb| = 1 and |Rc| = 2.

A big island can be split into multiple smaller sub-
islands for efficient processing. After taking away the hinge
set, a compensation needs to be given in order to cancel
out its impact on MCG. Here, an enumeration process is
executed based on Remark 1.

According to Remark 1, in order to compensate the
impact caused by removing the hinge set, an enumeration
process is executed, as shown in Figure 3. Hinge set R′H =
{r1, r2, r3} contains 3 rules, they are enumerated orderly,
r+1 means that rule r1 is supposed to be selected into R̂,
while r−1 indicates that rule r1 is removed from R̂. So there
are eight round tests during the enumeration process, i.e.,
{r+1 , r

+
2 , r

−
3 +}, {r+1 , r

+
2 , r

−
3 }, {r

+
1 , r

−
2 , r

+
3 }, {r

+
1 , r

−
2 , r

−
3 },

{r−1 , r
+
2 , r

+
3 }, {r

−
1 , r

+
2 , r

−
3 }, {r

−
1 , r

−
2 , r

+
3 }, {r

−
1 , r

−
2 , r

−
3 }.

In Figure 2, na = |Ra|, nb = |Rb| and nc =
|Rc|, the computational cost of a brutal-force method
is O(2(3+na+nb+nc)). After splitting the big island
into three smaller islands, the complexity reduces to
O(2(3+max(na,nb,nc))). If max(na, nb, nc) is still large, the
islands whose lengths exceed K (i.e., a pre-defined thresh-
old of the maximal rule number in an island when calculat-
ing MCG of this island immediately, in our experiment, we
choose K = 3) can be divided iteratively, until the size of
island is less than K.

An island may have multiple hinge sets, finding a small
one that connects multiple similar-size islands is very impor-
tant to reduce the computational cost. There are two key fac-
tors to determine the computational cost for the enumeration
process: the balance in size among all sub-islands generated
(we call it splitting gap for short) and the size of hinge set
(we call it hinge scale for short). In Figure 2, the splitting
gap is max(na, nb, nc)−min(na, nb, nc) = 3−1 = 2, and
the hinge scale is 2 (the hinge set contains 2 rules r′ and r′′).

Table 3: Diagonal Matrix of R on T ′

r2 r3 r1 r4 r5 r6 r7

T13 0 0 0 0 0 0 1
T14 0 0 0 0 0 1 0
T15 0 0 0 0 0 1 1
T9 0 0 0 0 1 0 0
T10 0 0 0 0 1 0 1
T11 0 0 0 0 1 1 0
T12 0 0 0 0 1 1 1
T7 0 0 0 1 0 0 0
T8 0 0 0 1 1 0 0
T1 0 0 1 0 0 0 0
T3 0 1 0 0 0 0 0
T6 0 1 0 1 0 0 0
T2 0 1 1 0 0 0 0
T5 1 0 0 0 0 0 0
T4 1 1 0 0 0 0 0

The computational complexity of a straightforward way
to discover an optimal hinge set is O(n! × m!), where n is
the number of transaction blocks covered by R′, and m is
the number of rules in R′. An effective method to find an
optimal hinge set is discussed in the next section.

4.2 Hinge Set Discovery In this part, we specify in detail
how to discover the hinge set of an island. Firstly, we build
an adjacent matrix for R over T . Each column in Table 3
stands for a rule, each row stands for a transaction block, the
value in the matrix can be either 0 or 1. Let mij stand for
a joint cell of row i and column j in the matrix, mij = 1
means Ti |= rj , otherwise mij = 0 means Ti ̸|= rj . Next,
the algorithm for the hinge set discovery is introduced by the
observations step by step.

Figure 4: Coverage of R on T ′.

In Figure 4, R = {r1, · · · , r7} on the transaction
block set T ′ = {T1, · · · , T15}. After carefully arrang-
ing the order of elements in R and T ′, the adjacency ma-
trix can be transformed into an approximate diagonal ma-
trix, as shown in Table 3. If rule r4 and the transaction
blocks (i.e., T7, T8, T6) covered by this rule are removed,
then the diagonal matrix in Table 3 can be divided into two
isolated diagonal blocks: ({r1, r2, r3}, {T1, T3, T2, T5, T4})
and ({r5, r6, r7}, {T13, T14, T15, T9, T10, T11, T12}). There-
fore, rule r4 is the optimal hinge set of R on T ′.

When given a rule set R and a transaction block set T ′,
we have the following observations in terms of identifying
the optimal hinge set.

– An adjacent matrix can be converted into a diagonal
matrix by adjusting the order of columns. (detailed in
Observation 1 in the Appendix (c))



– In a group of rules, it is most likely to obtain an approx-
imate diagonal matrix by putting the rules that contain
fewer transaction blocks at the first few columns. (de-
tailed in Observation 2 in the Appendix (c))

– Choosing the rules that contain more transaction blocks
as a part of the hinge set can generate more islands.
(detailed in Observation 3 in the Appendix (c))

– The hinge set is identified by recursively checking the
columns of the diagonal matrix from the right side to
the left side. (detailed in Observation 4 in the Appendix
(c))

Accordingly, Algorithm 1 attached in the Appendix (d) is
designed to find the optimal hinge set in an efficient way.

4.3 Gain Bounding In this part, we study the maximal
and minimal gain of a single rule from the perspective of
global contribution. Intuitively, if a rule r’s contribution for
MCG(R, T ) is positive, then r should be added into R̂;
otherwise, r should be removed.

Before applying hinge set to split big islands, the con-
tribution bound of rule set, i.e., fmax(R) (4.5) and fmin(R)
(4.6), can be used to perform bound checking to determine
the qualification of rules at the beginning. We call this
operation Gain Bounding. There are three types of rules
that can be detached to shrink the size of islands: coinci-
dent rules, core rules whose fmin > 0, redundant rules
whose fmax < 0. Algorithm 2 attached in the Appendix
(d) tends to find these rules. The calculation of fmin(r) can
be converted to the problem of calculating G(Or, C[{r},T ]),
so fmin(r,R, T ) = g(r, T ) − G(Or, C[r,T ]). Algorithm
3 attached in the Appendix (d) performs the calculation of
fmin(r,R, T ) based on this transition. The computation on
the upper bound of r can be transformed to the problem of
computing G(r, T ) as well. According to the definition of
fmax(r) in (4.3), we have fmax(r) = g(r,B) + G(r, T−),
whereT− = Inverse(T ) = {t|t ∈ T, t.w− = −1 ∗ |t.w|}.
We use t.w− to replace t.w when calculating fmax(r). Al-
gorithm 4 attached in the Appendix (d) implements the cal-
culation of fmax(r,R, T ).

4.4 Max Coverage Gain Mining: MCGminer In this
part, we propose the main algorithm for MCG mining.
Algorithm 5 attached in the Appendix (d) describes the
implementation of the mining procedure. The mining of
MCG follows three phases as below:

– Phase 1: Data Preparation. This task includes the
building of transaction blocks and the generation of
adjacent matrix.

– Phase 2: Pre-pruning. In this phase, plenty of redun-
dant rules are eliminated. Meanwhile, some core rules

are discovered and pushed into R̂. By detaching these
rules from the whole rule set R, the adjacent matrix M
is simplified. As a result, the searching space is consid-
erably reduced, which is also verified in experiments.

– Phase 3: Iteration and Island Splitting. For each big
island, the corresponding hinge set is identified and
used to build an iteration tree, which decomposes the
big island into multiple smaller islands that are easy to
be processed.

5 Experimental Evaluation
In this section, several experiments are performed on ex-
tensive UCI data sets and an online banking transaction
database to show the effectiveness, efficiency and scalability
of our proposed measure MCG and its corresponding algo-
rithm MCGminer. The algorithm and mechanisms have been
deployed into an online banking risk management system i-
Alertor [1] installed in a major Australian bank.

5.1 Baseline Settings The baselines we choose are four
typical rule-based methods: C4.5 [8], CBA [4], CMAR [5]
and CAEP [6]. Before implementing the task of predic-
tion, all the methods are adjusted to follow a two-stage pro-
cedure, i.e., rule generation and rule selection. To test the
rule selection difference made by following MCGminer, we
keep the first step of these four methods unchanged and re-
place their original rule selection modules with our proposed
MCGminer, and denote them as C4.5*, CBA*, CMAR*
and CAEP*, respectively. We then compare the accuracy of
the adapted methods with their respective original ones. Fur-
thermore, we also test the effectiveness of pruning strategies
proposed in Section 4. According to the process of island
splitting in Section 4, there are two key factors to determine
the enumeration cost: splitting gap and hinge scale. Thus
the cost of enumeration process will be measured by split-
ting gap and hinge scale. Finally, computational cost eval-
uation is conducted, in which we propose a benchmark al-
gorithm GA*MCG that applies the genetic algorithm to cal-
culate MCG with convergence to the globally optimal result,
which obtains the accurate rule set by keeping the local opti-
mal of current generation to the next one [10].

5.2 Data Sets Two categories of data, including 13 UCI
data sets and an Online Banking (OB) transaction database,
are used in our experiments. OB is provided by a major bank
in Australia, it has two class labels: fraud and genuine. There
are 1,251 Fraud out of 3,200,000 Genuine; 150 features are
involved, 102 of them are numerical and the rest 48 features
are nominal. For UCI data sets, we simply assign 1 to be
the gain value for targeted class, and -1 for the rest. As for
the online banking transactions, the gain values for all false
positive alerts are $-100 (as mentioned in the task description



Table 4: The Improvement on Accuracy Evaluation

Data Set
Original Improved by MCG Average

C4.5 CBA CMAR CAEP C4.5∗ CBA∗ CMAR∗ CEAP ∗ Improvement
Australian 86.1% 85.4% 85.9% 86.2% 87.1% 86.5% 87.1% 89.4% 1.89%

Cleve 78.2% 82.8% 82.2% 83.2% 79.5% 87.1% 86.2% 88.7% 4.58%
German 72.4% 73.8% 74.9% 72.5% 75.7% 74.4% 76.3% 75.1% 2.70%

Heart 80.1% 81.9% 82.1% 83.8% 82.2% 82.8% 83.7% 85.1% 1.81%
Hepatitis 80% 80.2% 80.2% 83.1% 83.3% 82.5% 82.2% 84.3% 2.73%

Iono 90% 92.1% 91.5% 91% 91.4% 93.5% 92.5% 93% 1.59%
Iris 95.3% 94.6% 94% 94.6% 95.5% 94.1% 95.2% 94.8% 0.29%

Labor 79.2% 86.3% 89.7% 88.6% 80.2% 87.3% 91.9% 90.6% 1.78%
Pima 75.5% 72.9% 75.1% 75% 75.7% 73.2% 77.1% 79% 2.2%
Sonar 70.2% 77.5% 79.4% 79.9% 71.2% 78.6% 79.8% 79.7% 0.77%

Vehicle 72.6% 68.7% 68.8% 66.3% 73.7% 69.7% 69.9% 67.9% 1.75%
Waveform 78.1% 80.1% 83.2% 84.6% 79.4% 83.3% 84.2% 86.1% 2.16%

Wine 92.7% 95% 95% 96.1% 92.8% 96.4% 95.2% 96.7% 0.6%
OB1 (µ = 1, 000) 45.2% 47.6% 53.5% 63.7% 51% 54.3% 58.4% 68.9% 11.06%

OB2 (µ = 10, 000) 40.7% 41.1% 46.2% 46.1% 49.0% 51.3% 53.3% 63.0% 24.3%
OB3 (µ = 100, 000) 35.6% 35.6% 36.1% 37.8% 46.7% 47.3% 49.4% 57.0% 37.92%

of Figure 1), while the true positive alerts take the dollar
value loss for individual transaction.

5.3 Accuracy Evaluation The accuracy evaluation is per-
formed on 13 UCI data sets and an online banking trans-
action database. Three transaction subsets (i.e., OB1, OB2

and OB3) are generated by random sampling with class-
imbalanced rates µ = 1000, 10000, 100000, respectively.
The class-imbalanced rate is defined as the ratio between the
number of Genuine and the number of Fraud.

As shown in Table 4, MCGminer enhances the accuracy
among all the data sets, and the last column presents the aver-
age improvement for each data set. For online banking trans-
actions, we can observe a drastic improvement on accuracy,
ranging from 5.65% to 26 %. As µ increases, the improve-
ment by MCG on accuracy becomes larger and larger. More
importantly, the prediction accuracy on OB1, OB2 and OB3

with all the methods incorporating MCG is far less sensitive
to the imbalance rate µ than that with their original counter-
parts. The averaged accuracy decrease ratio of the original
methods on data OB in terms of lower to higher imbalance
rate is 16.33%, while the corresponding decrease ratio of the
methods incorporating MCG is only 7.00%.

5.4 Stability of Detection Rate Against Imbalance Rate
In this part, we study the stability of MCG against the imbal-
ance rate µ in real-time prediction on OB. We use Detection
Rate (DR) (i.e. DR is the percentage of the Fraud caught
among the total Fraud) to evaluate the prediction capabil-
ity of each method under different values of µ. As shown
in Figure 5, with the increase of the imbalance rate µ, DR
decreases in all original methods (i.e., C4.5, CBA, CMAR
and CAPE) with different trends. However, the correspond-
ing MCG-driven classifiers all exhibit a rather stable curve in
terms of DR, compared to the original classifiers.

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Imbalance Rate

D
e
te

c
ti

o
n

 R
a
te

 

 
C4.5
C4.5*

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Imbalance Rate

D
e
te

c
ti

o
n

 R
a
te

 

 
CBA
CBA*

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Imbalance Rate

D
e
te

c
ti

o
n

 R
a
te

 

 
CAEP
CAEP*

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Imbalance Rate

D
e
te

c
ti

o
n

 R
a
te

 

 
CMAR
CMAR*

Figure 5: Hinge scale test.

5.5 Effectiveness of Pruning Strategies Below, we test
the scalability of MCG on large data set OB by checking
the distribution of the splitting gap and hinge scale. The
more balance of the sub-islands the less computational cost
by the enumeration process. Thus, we calculate the statistics
in terms of the frequency of different gap values and hinge
scale among all rounds of the splitting operation. In order to
get stable results, we assemble six groups of rule sets (i.e.,
R1, R2, R3, R4, R5 and R6) by random sampling with re-
placement. As a result, Figure 6(a) shows that the frequency
distribution of different hinge scale for six groups. The fre-
quency reaches the highest value at around gap = 3, and
then drops rapidly for gap > 3.

5.6 Scalability on Number of Rules Another important
factor that determines the computational cost for MCG
mining is the rule number in R. Since Genetic Algorithm
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Figure 6: Hinge scale test, splitting balance test and the computational cost comparison.

(GA) is frequently used for solving high complexity mining
problems, we build a GA-based algorithm that converges
to global optimal result [10] and a brutal-force program to
compare with MCGminer in terms of computational cost
against various data scales. As shown in Figure 6(c), to
achieve the same detection rate, the computational cost
of MCGminer is slightly better than that of GA when
the number of rules is smaller than 100,000. When the
number of rules further increases, MCGminer gains even
better advantage of computational cost (i.e., MCGminer
only costs less than 60% of the running time of GA when
the number of rules approaches 150,000). Besides, the
brutal-force program costs much more time than GA and
MCGminer with any number of rules.

According to Section 4.4, the splitting gap is the size
difference between the maximal island and the minimal
one, which is decisive to the depth of enumeration process.
Therefore, a small gap costs less time. Figure 6(b) presents
the distribution of splitting gap for all the splitting opera-
tions. We can see that the frequency drops quickly on all six
sample groups and it keeps as a small value when gap > 15.

6 Conclusions
The effective selection of optimal rules for detecting anoma-
lies in a large scale (say >1,000,000) of highly imbalanced
data (say >60000:1) is a crucial and challenging issue in
developing rule-based systems for the real-life big data
analytics. The existing approaches cannot be deployed to
address this issue effectively and cannot deliver the global
optimization results. In this paper, we have proposed a
novel metric, Maximal Coverage Gain (MCG), to select
the globally optimal rule set from a large number of
generated rules. MCG guarantees the optimal prediction
capability, especially in a cost-sensitive way. A collection
of built-in mechanisms including rule interaction, hinge set,
gain bounding and pruning strategies are developed and
incorporated into an efficient algorithm i.e., MCGminer,
to effectively mine MCG. Substantial experiments show
that MCGminer and the classifiers built with our proposed
metric and mechanisms dramatically outperform the typical
existing baseline methods in tackling large imbalanced data

in terms of accuracy, scalability, stability and efficiency. The
algorithm and mechanisms have been successfully deployed
into an online banking risk management system i-Alertor for
a major Australian bank. We project that the computational
cost and system performance can be highly updated further.
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