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Slides and info about non-IID learning

* http://noniid.datasciences.org/

e 2022 guest lecture on Shallow to deep non-1ID learning:
https://www.youtube.com/watch?v=ciBZFj1Jtn8

e KDD2017 tutorial on non-IID learning Youtube videos:
https://www.youtube.com/watch?v=3RwyGoiYclLg

* |JCAI2019 tutorial Non-IID Learning of Complex Data an E .
https://datasciences.org/publication/Non-11D%20Learni %

Full.pdf

Uiy



http://noniid.datasciences.org/

Agenda

lID Learning and issues

Non-1IDness

Non-11D similarity/metric learning

Non-IID representation learning

Coupling learning: complex interactions and relations
Heterogeneity learning

Non-IID learning tasks and applications:
* Non-IID pattern mining
* Non-IID statistical learning
* Non-lID recommender systems

* Non-IID behavior analytics * Non-lID document analysis
* Non-IID vision learning * Non-IID ensemble learning
* Non-IID outlier detection * Non-IID federated learning

* QOut-of-distribution detection * Domain adaptation



lID Learning and Issues

IID learning dominates classic analytics and learning in Al/KDD/ML/CVPR/Statistics
research



Mathematically/statistically defined 11D/i.i.d.

 Data set D={X, y} is composed of N input & response tuples (X,
y;) that are independently drawn from the same joint
distribution P(X, y):

(Xi, v;) ~ P(X, y)
* and a learning algorithm is built to learn

Py [X) = p(X, y)/p(X)
where (X, y;) are independent of (X, y))



Classic Assumption — [IDness & |ID Learning

IID learning:
Dominates classic analytics, o _
Al/KDD/ML/CVPR/Statistics research & development / 0, Solution
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Learning a Model of y Given X

* Discriminative learning

e Learn a model p(y|X)
* Model:

» Supervised: e.g., neural networks, decision trees, random forest, etc.
* Unsupervised: e.g., clustering, adversarial learning, autoencoder, contrastive learning

Assuming:
* Learn the model on each individual sample X; in the set {X:}: p(y.| X.)

* p(y;| X;): each target y, is conditionally independent given the independence of
X.

* No specific distributional assumption on each sample X, (i.e., i.d.)



Learning A Model of y Given X

* Generative learning

* Learn the joint probability p(X, y) of (X, y), i.e., by
* Learning conditional probability p(X|y) with marginal distribution p(y)
* Then learning p(y|X) (e.g., by Bayes’ theorem)

* Models:

* Unsupervised: e.g., regressors, variational autoencoder
e Pattern mining: e.g., associate rule mining, negative sequence analysis
e Estimation: like linear discriminant analysis, Bayesian networks

Assuming:

* y;andy;arellD

* X;and X are IID

* Learn p(X|y) from i lID samples: p(X|y) = [I.p(X|y:)
 [ID in transforming from p(X|y) to p(y|X)

P(X|y)P(y)
P(X)

P(ylX) =



Distance measures and functions

* Objects/variables are 11D

e VVariables are random

- Euclidean distance: d(x,,x,)
- Hamming distance: d(s,,s,)
- Mahalanobis distance d(7,7) = \/(55 — TS HE — ).

Questions & thinking:
- What if objects or variables
are dependent?

- What if they follow different
distributions?




Statistics of Data

* Variance of samples

g =— X. —
N -1 Z ( : ﬂ) Questions & thinking:

- What if objects x; and x; are

 Covariance of variables ——

- What if they follow different
cov(x,y) =—— Z (x, — )y, —at,)

distributions?

Questions & thinking:
- x and y are not with the same
distribution and have diff

° CFOSS entro py H(p,q) = — Zp(.’r:) log () = \r;\‘l:zrt‘?fx andy are
zeX dependent?
H(p,q) = — /X P(z) log Q() dr(x)
* KL-divergence/relative entropy LB

- What if distributions p and q
Dk, (vl |CI) = H(p, q) — H(p) are dependent?




1D K-means

Clustering Obijective functions: e
-K-means - x;Individual objects only!
- S, individually
argmmz >l =l
i=1 x;E85;

-Fuzzy C-Means

Questions:
Jren(p, A) = ZZ pig )" — al? - What if x;; and x;, are
. i=1J= dependent?
Zuij —1 forallje J What if clusters are not

im1 independent
(overlappted etc.)?




What Makes K-means |[ID?

Objective functions:
-K-means

k
argmin > 3 [x; — g1
s

i=1 xJ'-:‘—:S!'

- Object IIDness:
- Object independence: X; does not involve
interactions with other objects/variables {X,}
- Cluster lIDness:
- Assume all clusters are independent
- Global to local:
- Learning analytical goal: global task = local cluster
- Global partition = local distribution (mean p)



| | D DeC|S|O N Tree Questions & thinking:

-T: The data set

- A: An attribute
-a: Avalue of A

- X: samples
. . . - Y: The label set
Objective functions: - J: The number of classes

_Decision tree - p;: the probability of class |

- p,: the probability of value a
SCQIL (%, Y) = (21,29, 73, ..., 73, )

| | | Expected Information Gain Mutual Information between T and A Entropy (parent) Weighted Sum of Entropy (Children)
—— ——

Classification

) ’ e e,

Er'-'.'llr'll.ll'ar Eai':eswe Granular n-:lzhe-'.imlm E,(IG(T,a)) = I(T; A) = H(T) — H(T|A)
=15% Sik - 150 Sik =15% Sik J J

& Clay & Clay & Clay =~ pilogyp: — Y p(a) Y — Pr(ila) log, Pr(ila)

! ! | i=1 a i=1
Mo Plasticity Plasticity Mo Plasticity
E-llnul. HLH, Elh Questions & thinking:
Graral - What if objects x, and x; are

dependent?

. | - What if values a, and a, are
<05Q, 05150, =150,
| Man-frssured

dependent?
| - What if classes i, and i, have
TypeC  TypeT TypeB TypeA  TypeB different distributions?




Questions & thinking:

- The label of c is determined by its k
neighbors, which are IID

- What if objects x; and x; are

dependent?

- What if neighbors are dependent?

- If all red triangles are coupled with
each other, the same for the blue
squares, what would be the label of
green object?

- What if some of the red ones are
coupled with some blue ones?

- What if the distributions of triangles
and squares are different?




1D K-fold Cross Validation & Sampling,
Batching

 Randomly sample k-folds

Foro [T N A N N N IO N BN
ooz [ I I N N A N

Questions & thinking:

- What if the samples in the data are
| Training data subset || Testing data subset non-ID?

- What if the samples in the training set
are non-lID?

- What if the samples in training set and
the test set are non-1ID? ie OOD
problem




Potential Risk of IID Assumption

 Results delivered by IID analytical/learning methods/algorithms on
non-1ID data could be:

- |n.C0mpIEte Data Structure Index: DI
- biased, or even " a/'!f
- misleading | |

* Many ‘benchmarks” may be unfair and wrong _ §

Questions & thinking:
- Why learning bias exist?

- Beyond fitting issues, what other issues
may have caused learning bias?

Mo BS-szZ H V BeTic L Mu
Data Sets




Non-lIDness

Longbing Cao. Non-lIDness Learning in Behavioral and Social Data, The Computer Journal, 57(9): 1358-1370 (2014).
Cao, Longbing. Coupling Learning of Complex Interactions, IP&M, 51(2): 167-186 (2015)

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE Trans. on Knowledge and Data Engineering,
24(8): 1378-1392 (2012)

ggrlml\IVg%g,gL;)Sl'\gbing Cao, Minchun Wang, Jinjiu Li, Wei Wei, Yuming Ou. Coupled Nominal Similarity in Unsupervised Learning, CIKM



http://www-staff.it.uts.edu.au/%7Elbcao/publication/compj13.pdf
http://www-staff.it.uts.edu.au/%7Elbcao/publication/JIPM-online.pdf
https://datasciences.org/publication/TKDE-CBA.pdf
https://datasciences.org/publication/cikm11-wang.pdf

Mathematically/statistically defining 11D/i.i.d.

 Data set D={X, y} is composed of N input & response tuples (X,
y;) that are independently drawn from the same joint
distribution P(X, y):

(Xi) y/) ~ P(X) y)
* A learning algorithm is built to learn

Py X) = p(X, y)/p(X)
where (X y;) are independent of (X, y))

Question:
- Learning p(y|X) in terms of p(y;| X;) on each sample i

- Whatif (X, y;) and (X, y;) are coupled (1)?
- Whatiif (X, y;) ~ Pi(X, y) and (X, y;)) ~ P(X, y) are heterogeneous (1D)?




Mathematically/statistically defining 11D/i.i.d.

* X, is d-dimensional, i.e., d-variate vector/variable
X = (X, Xy, ooy Xig)
What if features X . and X are not independent?

* What if features X, and X, are not identically distributed?
p(X,,) and p(X, ) are different

* What if label classes y; and y; are dependent?

* What if label classes y; and y; follow different distributions P,(y) and
Pily)?
J



Non-1IDness in Big and Small Data

* Heterogeneity:
* Data types, attributes, sources, aspects, ...
* Formats, structures, distributions, relations, ...
 Learning objectives, learning results/targets = non-identically distributed. -

* Coupling and interaction:
* Within and between values, attributes, objects, sources, aspects, ... Non-

e Structures, distributions, relations, ... ~ lIDness

 Methods, models, ...

* Results, targets, impact, ...

Non-independent. -

L. Cao. Non-IIDness Learning in Behavioral and Social Data, The Computer Journal, 57(9): 1358-1370 (2014).
L. Cao. Coupling Learning of Complex Interactions, IP&M, 51(2): 167-186 (2015)



http://www-staff.it.uts.edu.au/%7Elbcao/publication/compj13.pdf
http://www-staff.it.uts.edu.au/%7Elbcao/publication/JIPM-online.pdf

Couplings/Interactions vs. Common Relations

: numerical, categorical, textual, mixed-
structure, syntactic, semantic, organizational, social, cultural,
economic, uncertain, unknown/latent relation etc.

* Mathematically, Association, Causality, Correlation, and Dependence
are specific, descriptive, explicit, etc.

* Couplings: explicit + implicit, qualitative + quantitative, descriptive +
deep, specific + comprehensive, local + global, etc.

Can Wang, Fosca Giannotti, Longbing Cao. Learning Complex Couplings and Interactions. IEEE Intell. Syst. 36(1): 3-5, 2021.
L. Cao. Beyond i.i.d.: Non-IID Thinking, Informatics, and Learning, IEEE Intelligent Systems, 37:4, 3-15, 2022



https://datasciences.org/publication/IS-cl21.pdf

Example: Behavior Couplings

e Instance Of — —>
Behavior . . .
Connecting instances (m

- ~.

- S Rectangle) to their
= interact —= corresponding classes
Behavior 1 (————L ——=3>{ Behavior 2 P )
’ " - e Subclass Of —
Actor 1 . . .
m m Linking a subclass (in
umduu/ \\ conduct .= -

impact_>~y, \e=——_impact Oval) to its parent class

[ Operation 1 ] [ ()pemtmn 2

* Object Property — — >
Denoting the
relationships between

-

—_ - \ Instances, between an
e SNooorT T \ object and its properties

[ Temporal J Inferential \ [ Party-based ] (in Rounded Rectangle),

or between properties.

Can Wang, Longbing Cao, Chi-Hung Chi. Formalization and Verification of Group Behavior
Interactions. IEEE T. Systems, Man, and Cybernetics: Systems 45(8): 1109-1124 (2015)



https://datasciences.org/publication/TSMC-CW.pdf

Example: Couplings in Behaviors

Robotic games

Customer interactions

\Party-based

- \_// Transport
— v . \/ B
Serial Coupling One-Party- Cyberattack
Parallel coupling - Causal Coupling Multiple-Operation

" Synchronous relationship  conjunction Coupling - ’(\J/’U’t’(I;’e'PC:':tV'
7 | Asynchronous coupling | p.cioo i Ii ne-Operation
[ Interleaving isjunction Coupling Multiple-Party-

Shared-variable - Exclusive Coupling ~ Multiple-Operation

Channel system

Can Wang, Longbing Cao, Chi-Hung Chi. Formalization and Verification of Group Behavior
Interactions. IEEE T. Systems, Man, and Cybernetics: Systems 45(8): 1109-1124 (2015)



https://datasciences.org/publication/TSMC-CW.pdf

Beyond IID: Non-IID Learning

Problem _--— —---

~

0,, O,, O; share different distributions
d;=|]05-Of|

| 03(r13;r23) - O(dpdz) | |

: |
\
\
\
' |

-




[ID to Non-IID Learning Systems

Non-lID Systems

IID Systems



Landscape on non-IID Learning

~ Coupling method
& Non-IID graphical models

£
£ / Non-IID relation learning

Non-lID similarity / Non-lID Markov models

Non-lID metrics Non-IID distributions

Non-IID value-based OD
Non-IID feature-based OD

Non-IID ranking

Non-IID queries

Transformation
Denoising
Cleaning
o Discretization
. . S . 4
> Coupling learning Ei Missing value processing
: ; @
9 Heterogeneity learning & Imbalance processing
<
Qq’ Non-IID learning Q
8 -~
< <
S S
< =
Non-IID
Learning \
A e\
5 \ 2
2\ )
3 %
%\ Non-lID representation S\
©V o } B\
¢ |\ Similarity/metric learning & Similarity-based
Statistical relation learning g" Metric leaming

\

Feature relation learning

Dependence learning
—

[
[} ing-
2 Embedding-based

Graphical model representation

Distributed representation

3
9 $
3 g F
§ & Non-IID value-feature-based OD & Non-IID search
oy ~ &\
%‘7 § Q@‘ Non-IID question/answering
9 9 Q
& /s <
S S o
e & <
\ \ \
\ o ) @\
€ %\ 21 2 %\
= %\ Z, = o\
) 5\ s % /%
\ \ [} \
% &\ pa ) L0\
% %\ 7% ) ) ‘% Non-lID feature learning % \
2 Value non-liDness % \ Mol RS f ) % ‘ Logical behavior couplings ) e @
{‘;, Value cluster non-llDness (o] "w o Statistical behavior couplings "c % \
() D\ Non-IID cross-domain RS = S Non-IID multimodal learning 2\
’\; Feature non-llDness % .\ %, \__Group behavior modeling z \ 5
€\ Non-lID group-based RS X . o Non-1ID multitask learning
2\ Feature subspace non-llDness ¢\c \ e = \__Cross-group behavior modeling
= ©, | Non-lID session-based RS
\ Value-feature non-liDness Z 5

\ Non-lID context-based RS

\ Non-lID matrix factorization

Combined pattern mining
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Beyond IID in Information Theory

Beyond IID in Information Theory 4

"Beyond IID in Information Theory" started as a workshop in Cambridge three years ago, organised by Nilanjana Datta and Renato Renner as a forum for the growing interest in
information theoretic problems and techniques beyond the strict asymptotic limit, and aimed at bringing together researchers from a range of different backgrounds, ranging from
coding theory, Shannon theory in the finite block length regime, one-shot information theory, cryptography, quantum information, all the way to quantum thermodynamics and other
resource theories.

Quantum Shannon theory is arguably the core of the new “physics of information,” which has revolutionised our understanding of information processing by demonstrating new
possibilities that cannot occur in a classical theory of information. It is also a very elegant generalisation, indeed extension, of Shannon's theory of classical communication. The origins
of quantum Shannon theory lie in the 1960s, with a slow development until the 1990s when the subject exploded; the last 10-15 years have seen a plethora of new results and
methods. Two of the most striking recent discoveries are that entanglement between inputs to successive channel uses can enhance the capacity of a quantum channel for transmitting
classical data, and that it is possible for two quantum communication channels to have a non-zero capacity for transmitting quantum data, even if each channel on its own has no such
quantum capacity.

In recent years, both in classical and quantum Shannon theory, attention has shifted from the strictly asymptotic point of view towards questions of finite block length. For this reason,
and fundamentally, there is a strong drive to establish the basic protocols and performance limits in the one-shot setting. This one-shot information theory requires the development of
new tools, in particular non-standard entropies and relative entropies (min-, Rényi-, hypothesis testing), both in the classical and quantum setting. These tools have found numerous
applications, ranging from cryptography to strong converses, to second and third order asymptotics of various source and channel coding problems. A particularly exciting set of
applications links back to physics, with the development of a resource theory of thermodynamic work extraction and more generally of state transformations. Physicists have
furthermore found other resource theories, for instance that of coherence and that of asymmetry, which are both relevant to the thermodynamics of quantum systems and interesting in
their own right.

The whole area is extremely dynamic, as the success of three previous "Beyond IID" workshops has shown.
Dates: 18-22 July 2016 (following ISIT 2016)

Venue: Institut d'Estudis Catalans - C/ del Carme, 47, 08001 Barcelona

Description:

The present workshop, the fourth in a series that started in 2013 in Cambridge, will bring together specialists and students of classical and quantum Shannon theory, of cryptography,
mathematical physics, thermodynamics, etc, in the hope to foster collaboration in this exciting field of one-shot information theory and its applications. The plan is to have a modest
number of talks over the course of the week. Participation is open to all, but the organisers request that everyone interested in attending does register.

Topics:
The topics covered under "Beyond IID" include but are not limited to the following:

-Finite block length coding

-Second, third and fourth order analysis

-Strong converses

-Quantum Shannon theory

-Cryptography and quantum cryptography

-New information tasks

-One-shot information theory and unstructured channels
-Information spectrum method

-Entropy inequalities

-Non-standard entropies (e.g. Rényi entropies, min-entropy;, ...)
-Matrix analysis

-Thermodynamics

-Resource theories of asymmetry

-Generalised resource theories

-Physics of information



Non-IID Similarity/Metric Learnin

Chengzhang Zhu, Longbing Cao and Jianpin Yin. Unsupervised Heterogeneous Coupling Learning for Categorical Representation. IEEE Transaction on Pattern
Recognition'and Machine Intelligence, 44(1): 533-549, 2022

Songlei Jian, Guansong Pang, Longbing Cao, Kai Lu and Hang8Gao. CURE: Flexible Categorical Data Representation by Hierarchical Coupling Learning. IEEE
Transactions on Knowledge and Data Engineering, 31(5): 853-866, 2019

Songlei Jian, Lon bin8q Cao, Kai Lu, Hang Gao. Unsupervised Coupled Metric Similarity for Non-IID Categorical Data. IEEE Transactions on Knowledge and Data
Engineering, 30(9%: 1810 — 1823, 2018

Can Wang, Dong, Xiangjun; Zhou, Fei: Longbing Cao, Chi, Chi-Hung. Coupled Attribute Similarity Learning on Categorical Data, IEEE Transactions on Neural
Networks and Learning Systems, 26(4): 781-797 (2015)



https://arxiv.org/abs/2007.10720
https://datasciences.org/publication/TKDE_CURE_Jian.pdf
https://datasciences.org/publication/TKDE_CMS_Jian.pdf
https://datasciences.org/publication/TNNLS-Wang15.final.pdf

Similarity-based Representation

Can Wang, Longbing Cao, Minchun Wang, Jinjiu Li, Wei Wei, Yuming Ou. Coupled Nominal
Similarity in Unsupervised Learning, CIKM 2011, 973-978.

Can Wang, Dong, Xiangjun; Zhou, Fei; Longbing Cao, Chi, Chi-Hung. Coupled Attribute
Similarity Learning on Categorical Data (extension of the CIKM2011 paper), IEEE
Transactions on Neural Networks and Learning Systems.



Motivation

Why these two people
sit together at that
place at that
particular time?




Coupling Learning with feature interactions

TABLE 1. The Extended Information Table

. . .
-G\i 1. AL A, M. Mo Feature interactions
On Viin ~ Vio Vii  Cn Ciq * Feature-label couplings
O Vaq Vaa Va i C'a Ca0
* Object-feature-label couplings
Dn 1”1‘1 1 L’nz V'rl J Cﬂ'.l Gﬂ oy
On Vv Vo Vi C'iv1 C'vag
A
: A Ao . A M . M
) Vi 12 - Vi C11% .. Ciep
John M A H cl - If('(jj Va2 ;Vggff"'f.-'- - Vg C_':;]i_,.-"!.-" . T’f C2e
Mary F B H c1 i“'* - s s cee f\ - -'-’f f o . ' foaa] "__ -
Sarah F B | cl I". I'I:’:'Ili- -‘I”'ir1 |. ' l"rr'Elll = Uu..f C .1 I'Il . = I.. C fth
David b ¢ . cl TOn Vvi  Vnd ... Vs Cni ... Cno
Alice F C | c2
Edward M D L c2

FIGURE 3. Extended information table and non-II1Dness

learning.

Longbing Cao. Coupling Learning of Complex Interactions, Journal of Information Processing and Management, 51(2): 167-186 (2015).



http://www-staff.it.uts.edu.au/%7Elbcao/publication/JIPM-online.pdf

Pairwise Feature Couplings

* Intra-attribute couplings
* For example, attribute value occurrence frequency within one attribute
* how often the values co-occur or how do they depend on each other

* Inter-attribute couplings
* the interactions between an attribute and other attributes
* the extent of the value difference brought by other attributes



Hierarchical Coupling Relationships

e U/u: objects

e A/a:
attributes,
labels, models

T A al \ a2 /" €3
AL =B ——7 Ci
U Ao X B4 \’\\/ 'y
A, = By=) — Ca
U Aq W Ba g Ca
U A/a/ o Ba (g
ue A / Bba C's

intra-attribute coupling

inter-attribute coupling




Set Information Functions

Obtain value information: assigns a
particular value of attribute a;
to every object.

Obtain value sets:
assigns the associated

. o by . - - .
value set of attribute g; = U;r=1 Fir F7 U0 — V(1 < j << mn)

fo the object set i, .- sup, }) = {fj{“;'fm}w -, Filg, ) }s (3.1)
gi(vy) = {uwi|fi(uw:) =v5. 1 <53 =<n1<i<m}, (3.2)

Obtain object: relates g;{‘[w“';j = Jus| fi(us) = ‘[»r“'j.’. l<j=mn,1<:<<m}, (3.3
each value of attribute a; .— - .

to the corresponding where w;, ug,,--- ,ug, U, and V7 © V.

object set

Obtain object set: maps the
value set of attribute a;to the
dependent object set



Measuring Couplings

2022/8/29

[ 7 A @1 @2 “3
w1 Aq N\ —@Bo— [ C1
(15 Az N Bi1 ™,/ "
u3 Ao =By < C2
U A 2 W Bg g CZ
e, Ag am Bs C'3
Uug Ag Bo C'3

f?"_‘{:{“-!u.u-j. *-!L;;}-] —

ga(B1)

[, ua}

(B, Ba)

gj[{ﬂj ,.El'g}::l = {ul. T, L. “-!ij}

36



Coupled Attribute Value Similarity

DEFINITION 4.1. Given an information table S, the Cou-
pled Attribute Value Simailarity (CAVS) between attribute
values x and y of feature a; is:

55 (x,y) = 8;% (2, y) - ; (2, ) (4.1)
where 5;'1 and 5;‘9 are IaAVS and IeAVS, respectively.

Intra-attribute couplings: 55 (2, y)

Inter-attributed couplings y
er-attributed couplings: e
P st (x, v)




Intra-attribute (Value) Similarity

DEFINITION 4.2. Given an information table S, the Intra-
coupled Attribute Value Simailarity (IaAVS) between at-

tribute values x and y of feature a; is:

Ta . .\ _ 195 ()| - 19 (y)]
% (Y = ST F g, + o, @ T 42

J

& Rationale:

The Greater similarity is assigned to the pairwise attribute values which own
approximately equal frequency.

The higher these frequencies are, the closer such two values are.

IaAVS has been captured to characterize the
value similarity in terms of attribute value
occurrence times.




Measuring Intra-attribute Couplings

[ A a1l ao L as
1 A4 \ T— 18-144\(/ "
U Ao \ 1=31 \/ C1
Ay = Bpe) O
Uy As ¢ Bsg” Co
Us .fi'l.,_j: E\ Bg Cg
UG Aa Bao Ca
% %
S5 (B1,B2) = | 51171 B2 | 272 0.5

Bl |+ |B2|+|Bl|*|B2| 2+2+2%2



Inter-attribute Similarity

Modified Value Distance Matrix:
Djc(z.y) = > |P;({g}x) — Po;({g}v)]

ge L

Object Co-occurrence
Probability

Inter-attribute coupled Relative Similarity based on Power Set (IRSP), Universal
Set (IRSV), Join Set (IRSJ), and Intersection Set (IRSI).

Siik = Jain {2 — P (Vilog) — Pri3 (VE|vI) 1 (4.5)
d =
6 =2 — 3 max{ P, ({wx}lo3), Pupy({ox}lo?)}, (4.6)
v &V
6l =2 — > max{FPp;({ve}vF), Pei({ve}v¥)}, (4.7)
veel_)

e = > min{ P ({ve}oF), Pep({ve} o)}, (4.8)
vees(]



Inter-attribute Similarity

DEFINITION 4.5. Given an information table S, the Inter-
coupled Attribute Value Simailarity (IeAVS) between at-
tribute values x* and vy of feature a; is:

Tt

§§E(mjy} — E Cﬂkﬁj|k[ﬂ:‘-} y), (47}
o—1_ k=t
where o is the weight parameter for feature ar, > ;| Gt =

1, o, € [0,1], and 6;x(x,y) is one of the inter-coupled rela-
tive simzzlarity candidates.

4
(9
IeAVS focuses on the object co-occurrence comparisons with four
intfer-attribute coupled relative similarity options.




Coupled Attribute Similarity for Values

Definition 5.5 (CASV): The Coupled Attribute Simi-
larity for Values (CASV) between attribute values ©¥

)
and vY of attribute a; is:

J

53 (0 of AViIRZ1) = 657 (0F  0f) - 67 (0F o AV bs).
(5.10)



Coupled Object Similarity

Coupled Object Similarity (COS) between objects:

Definition 7.1 (CASO): Given an information table S,
the Coupled Attribute Similarity for Objects (CASO)
between objects u, and u, is CASO(u,., u, ):

Y
CASO(ug. uy) = > 65 (0, 0¥ {Vi}i_1). (7.1)
=1

Multi-kernel learning of hierarchical, heterogeneous multiple couplings:

Chengzhang Zhu, Longbing Cao, Qiang Liu, Jianpin Yin and Vipin Kumar. Heterogeneous Metric
Learning of Categorical Data with Hierarchical Couplings. IEEE Transactions on Knowledge and Data
Engineering, DOI: 10.1109/TKDE.2018.2791525, 2018



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/TKDE_HELIC_final.pdf

Examples: Measuring Hierarchical Couplings

TABLE 4 TABLE 5
Example of Computing Similarity Using IRSP Computing Similarity Using IRSU
vy vy Po(VilBy1) | Pys(VY|Ba) | 2 — Pya(V{|B1) — Py o(V{[B2) vk | Pra({ve}lB1) | Pra({ve}|B2) | max
2] T AL Az, Az, Aa} 1] 1 1 A 0.5 0 0.5
A1} {Az. Az, Aa} 0.5 1 0.5 Ao 0.5 0.5 0.5
Asz 0 0 0
TAL Az, Az, A1) = 1 0 1 A ] 0.5 0.5

A

L7 @1 _\
w1 Al \ —— (B1 [ C1
j 23 _

U Ao \

us Ao >§ Bo ﬁ Clo
A Aaq W Bq g C'o
us5 Ay am B3 C'g
Uug Ag Bo C'3
‘A ar : T TE) r ' 19E e _ "
TABLE 6 CASO(ug,ug) = 30, 44 (v2, v {I,L}f_l) =054+0.125+0125=0.75
Computing Similarity Using IRSJ =t 11 -
vk | Puos(iuetiB1) | Pra(ive}|Ba) | max TABLE 7
Aa D.-E- UF U--E- Computing Similarity Using /IRS/
jl D[_:;J E;E E;E e | PrpUvellBi) | Fya({vgd[Bz) | min

Ao 0.5 0.5 0.5




Algorithm 1: Coupled Attribute Similarity for Objects

Wk =

1]

L' =]

i

11
1z
13
14
15
16
7

18

19

Data: Data set S5, . » with m objects and n attributes,
object uy, uy(x,y € [1,m]), and weight &« = (k)1 n-
Result: Coupled Similarity for objects & ASO (1, 1y ).

begin

S Compute pairwise similarity for any
two wvalues of the same attribute.

for attribute a;, j = 1 : n do
for every value pair I:vf._t-';" = [1, |[V5;]]) do
U +— {ilv == v7} Uz +— {i|v; == vj};
S/ Compute intra—-coupled similarity

for two wvalues vy and t-‘_.ﬁ".

8% (v, v)) = (U] + U=/ (1U1||U2]) ;

S4 Compute coupled similarity for
two attribute wvalues vy and y?.

6_;4 {-1:';:., 7—'_?.* {1}.”:‘.'};:=] :I —

a5 vy, v¥) - TeASV (vi, v¥, {Vilex;):

S Compute coupled similarity between
two objects u, and uy.

CASO(ur, uy) +— sum(& (v7,v¥, {Vi}i_1))
end

Function e ASV(vy, vY, {Vi}res)
begin

4 Compute inter—coupled similarity for
two attribute wvalues vy and vj.
for attribute (k=1 :n) A (k # j) do
{ve}lzcvs +— {vi}zey ﬁ{t’ﬂ}yt‘i’ﬂ -,
for intersection =z = Ua(1) : Ua(|Uza|) do
Uy +— {i|lvp == v };
TC P, +— |[Ua UL /|UL:
ICF, «— |Ua M Uz2|/|Uzl;
Mintiy 4y «— Mmin(IC Py, ICF);
// Compute TRSI for wv; and 1-‘_%,".
5_{|h{1'_1:::: U_?-. Vi) = sum(Minz ) ;

8;°(z, y) = sum[e(k) x &5 (v, v}, Vi) ;
return 8;°(vy, v¥, {Vi}exs)




Experiment and Evaluation

* Several experiments are performed on extensive UC| data sets to
show the effectiveness and efficiency.

e Coupled Similarity Comparison

* The goal is to show the obvious superiority of IRSI, compared with the most time-
consuming one IRSP.

e COS Application (COD)

* Four groups of experiments are conducted on the same data sets by k-modes (KM) with
ADD (existing methods), KM with COD, spectral clustering (SC) with ADD, and SC with
COD.



Different Similarity Metrics

Data Structure Index: RD Data Structure Index: DI
F I . . . . . T . 10
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3.5 I '\ B | I
3F 1y
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Fig. 3. Data structure index comparison.

Clustering performance indicator:
*|ncreasing

* Relative Dissimilarity (RD)

* Dunn Index (DI) [21]
*Decreasing:

* Davies-Bouldin Index (DBI) [20],

* Sum-Dissimilarity (SD)



Applications — Clustering Performance

Clustering Cormparisons with AT and M

0.8F-
0&6-
i0.4f-
0.2|- * k-modes (KM) with ADD
(existing methods),

* KM with COS,

1 _ : » spectral clustering (SC) with
S - ADD
o.gl----- - e SC with COS
0

02
0

Shudtle Balloon  Soybean—s Fullual Soybean—| Breasicancer
Fig. 4. Clustering evaluation on six data sets.



Non-IID Metric Learning

Chengzhang Zhu, Longbing Cao, Qiang Liu, Jianpin Yin and Vipin
Kumar. Heterogeneous Metric Learning of Categorical Data with Hierarchical

Couplings. IEEE Transactions on Knowledge and Data Engineering, DOI:
10.1109/TKDE.2018.2791525, 2018



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/TKDE_HELIC_final.pdf

Motivation
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Hamming distance: Dis(H,I) = Dis(H,L) =1 High (H) level commitment is closer to intermediate

(1) instead of low (L) level.
Frequency-based distance:  Dijs(H, 1) =0 H commitment is different from I.



Problem Statement

Categorical

Embedding
Space

Distance
Space

minimize Div(O||X)

X

subjectto o ~ O
x ~ X
d(Oi, Oj) = X; O X;.

Distance metric d(., .) satisfies:

1) d(o;,04) +d(oj,0r) > d(0;,0p).
2) d(o;,05) >0,

3) d(Og,Oj) = d(Oj,,O?_;).



Prior/

Implicit

HELIC Framework

Side

Information

Heterogeneous
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Intra-attribute
Coupling Spaces
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Mia(.)

Heterogeneous
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Categorical Data
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HELIC: Heterogeneous Metric Learning with hlerarchical Couplings

Metric
Learning
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Couplings
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Learning Value-to-Class Couplings

Learning Intra-attribute Coupllri/<
Capture value fr@
J
() () — g9 (

Mg \V

Learning Inter-attribute Couplmgs/@alue co- oc@
(4) (J) (3)

mye (Vi) = V1), |V*|v |)

Learning Attribute-class Couplings Capture value distribution meac)

-
m) = pv@ler) - pvPlen,) |




Heterogeneity Learning

Construct Kernel Space:

- k(mq, myq) k(mp,my) --- k(mhmng;:-) |
k(mgy, my) k(mz,my) -  k(m2,m @)
K = :
_k(mn&“) ’ ml) k(mngf)’ m2) o k(mﬂgf)’ mﬂg;ﬂ )_

Using various kernel functions for the value-to-class coupling spaces, a set of kernel
matrices {K4, -*-, Knk} can be obtained. Further, a set of transformation matrices

{T1, -, Ty, } can be learned to guarantee that the space of the p-th transformed kernel
K, only contains the p-th kernel sensitive information, where K;, is defined as:

K, =T, K,



Metric Learning

With a positive semi-definite matrix w, = aprTTp, the metric d;; is calculated as :

N

s = 2 Ky 0rknis

where Kk, ;i = K, ;. — K, ;.
- diag 0 0 .
The distance can be represented as ! diag
0 w, 0
w = ,
nk 0 0 - wilig ]
dij = ka ijWrKp,ij

[ 1T T
L kij = | kyi; kQ?{} ' Kn.ij



Metric Learning

Objective function:

minimize

w.b

1
2 2 Gt Al

9 4,jJEN,

subjectto  w = 0,
wr =0 for k#I,
1+ rij(kjjwki; — b) < &;

/7§z'j > 0,V1,5 € No.

‘Force the distance between |
objects from different classes
larger than a margin

Selecting the kernels for thei
sensitive data distribution

?

& J

c(0;) = c(o;)

c(0i) 7 ¢(0;)



Representation Performance of HELIC

KNN Classification F-score (%) with Different Distance Measures

Data HELIC COS MTDLE Ahmad DILCA Rough Hamming A%
700 100" 100* 100" 100" 100* 97.75+11.11 100" 0.00%
DNAPromoter 92.90£5.85" 75.89413.35 81.67£10.19 79.9849.14 90.33£10.31 81.16+£10.30 78.05+£12.00 2.85%
Hayesroth 90.85-4-5.07" 79.644+9.71 68.544+10.55 52.26410.20 54.60412.58 81.5048.59 61.734+12.40 11.47%
Audiology 75.4447.60" 41.51+7.20 36.70£7.50 54.291-8.96 64.831+8.04 36.3747.60 58.55+10.30 16.36%
Housevotes 96.65 + 3.40 94.28 + 4.95 91.09 £ 5.55 95.81 £ 4.15 94.90 £ 4.14 91.59 £5.14 9377 £530 0.88%
Spect 53.09 £10.35* 51.314+9.16" 52.941+9.48" 52.70+9.69* 51.11+8.97* 51.18+£7.90* 51.984+8.85" 0.28%
Mofn3710 94.39 15.86 79.3549.07 68.744+10.58 79.3549.07 71.2148.42 777041144 74.8248.08 18.95%
Monks3 100* 34.85+0.00 99.881+£0.52* 34.854:0.00 34.8540.00 100* 92.06£5.24 0.00%
ThreeOf9 91.01 +2.93* 32.00+0.00 75.88£8.41 32.004:0.00 32.0040.00 78.84£5.09 78.84£5.09 15.44%
Balance 58.91 +1.31" 21.2540.00 41.8045.82 21.2540.00 21.254£0.00 39.3244.25 39.324+4.25 40.93%
Crx 83.26£5.68" 78.581+4.74 77.5445.68 82.79 +£3.86" 81.02+4.08 77.6315.12 78.281+4.87 0.57%
Mammographic 79.61 1+4.59* 70.2247.127 70.144+£7.10% 70.20-4£7.027 70.2247.817 69.79+£7.11 %  69.954+7.29% 13.37%
Flare 59.88 + 3.36" 57.01 + 4.38" 57.11 £ 3.09 54.41 & 3.39 55.61 &£ 3.13 55.88 - 438  54.98 4 4.00 4.85%
Titanic 23.33 4+ 248" 10.54 = 1.76 10.06 + 0.62 10.06 £ 0.99 10.54 £ 1.76 10.54 £ 1.76 10.54 £+ 1.76 32.48 %
DNAnominal 93.12 £ 1.05" 77.52 £ 1.21 52.22 £ 0.00 80.33 £ 1.48 91.65 £ 1.39 81.46 £ 1.75  69.11 £ 1.45 1.60 %
Splice 93.69 + 1.11° 77.25 + 2,19 24.45 + 0.00 79.85 &+ 2.07 84.96 + 2.21 81.05 &+ 1.81 69.29 -+ 2.24 10.28 %
Krvskp 96.98 + 1.06" 91.77 = 1.66 90.04 £ 1.65 92.46 £ 1.74 91.39 4+ 2.05 89.00 &= 143  91.48 1 1.68 4.89%
Led24 63.37 1+ 1.94" 62.11 £+ 1.85" 41.35 4274 61.81 £ 1.98% 6258 + 1.85" 4789 + 237 4157 £ 2.19 1.26 %
Mushroom 100 £ 0.00" 99.98 + 0.06" 100 + 0.00" 100 £ 0.00 * 100 £ 0.00* 100 + 0.00 * 100 + 0.00* 0.00%
Krkopt 53.62 £ 1.71° 52.66 £ 0.78" NA 52.50 £ 0,96  52.57 + 1.027 39.05 £ 0.70 10.42 £+ 0.10 1.82%
Adult 84.91 1+ 0.86" 68.13 + 1.12 NA 68.20 -+ 1.07 68.16 + 1.14 67.76 £ 1.04  68.01 4+ 1.04 24.50%
Connect4 56.33 1+ 0.78" 48.23 + 0.73 NA 46.95 1 0.49 46.65 4 0.55 5322 £ 073 4581 £ 0.72 5.84%
Census 68.93 £+ 0.55" 66.88 = 0.40 NA 67.47 £ 0.43 66.66 1= 0.42 6696 £ 055  67.16 £0.37 2.64%
Mean 78.71° 63.95 65.27 63.89 65.09 68.51 65.47 14.89%




Representation Quality of HELIC

(e, v)-good of Different Similarity Measures in DNAPromoter

—&— HMLHC
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Classification Performance

KNN Classification F-score (%) with Couplings

Dataset HELIC-KNN HC-KNN A%
Z00 100 100 0%
DNAPromoter 92.90-+5.85 94.93-1-7.00 0%
Hayesroth 90.85+5.07 85.89+6.39 5.77%
Audiology 75.44+7.60  5494+11.85 || 37.31%
Housevotes 96.65 £ 3.40 9543 1+ 4.46 1.28%
Spect 53.094£10.35 51.40-£9.51 3.28%
Mofn3710 94.39+5.86 94.924-3.36 0%
Monks3 100 100 0%
ThreeOfY9 91.01+£2.93 89.9612.92 1.17%
Balance 58.91+1.31 59.64-11.46 0%
Crx 83.2615.68 82.43-+4.39 1.01%
Mammographic 79.61+4.59 70.314+7.00 13.23%
Flare 59.88 4336  55.40 4 3.93 8.09%
Titanic 2333 +£248 1215+ 1.65 || 92.02%
DNAnominal 93.12 + 1.05 91.83 + 1.64 1.40%
Splice 93.69 + 1.11  75.88 +2.03 || 23.47%
Krvskp 9698 + 1.06  92.49 4 0.92 4.85%
Led24 6337+ 194 5771 4+ 2.46 9.81%
Mushroom 100 £ 0.00 100 == 0.00 0.00%
Krkopt 5362+ 1.71 5244 1 1.58 2.25%
Adult 8491 + 0.86 84.32 4+ 0.80 || 0.70%
Connect4 5633 +£0.78  43.07£ 0.50 || 30.79%
Census 68.93 £ 055 64.23 4+ 0.49 7.32%
Mean 78.71 74.32 5.91%

» HC: only learn the hierarchical

couplings.

» HELIC: learn both hierarchical couplings

and heterogeneity.



Flexibility of HELIC

LR, RF and SVM Classification F-score (%) with HELIC and MTDLE

Data HELIC-LR MTDLE-LR A% HELIC-RF MTDLE-RF A% HELIC-SVM  MTDLE-SVM A%

Zoo 100 92.50 4+ 11.75 8.11% 100 99.64 + 1.63 0.36% 100 100 0%
DNAPromoter 98.48 £ 3.70  89.84 £ 10.89 9.62% 93.88 £ 902 7487 L 11.89 | 2539% 97.98 + 4.15 89.88410.35 9.01%
Hayesroth 83.56 £ 6.53 83.23 £ 8.16 0.40% 82.51L£7.85 79.80% 10.66 3.40% 84.44 £ 8.62 81.64 = 8.76 3.43%
Audiology 73.63 £ 633 4988 4 1026 | 47.61% 73.04 =730  39.23 £ 13.19 | 86.18% 73.47 £ 6.07 62.154£10.70 18.21%
Spect 69.10-4+12.68 51.31 4+ 8.79 34.67% 69.384+11.94 69.17 +£15.11 3.04% 69.65-£12.22  69.33 £ 12.33 0.46%

Mofn3710 100 83.13 4+ 1647 | 20.29% 81.6249.03 67.97L 9.94 20.08% 100 100 0%

Monks3 97.21 &£ 1.79 100 0% 100 99.88 £+ 0.52 0.12% 100 100 0%

ThreeOf9 80.54 £ 5.05 79.52 £ 5.20 1.29% 99.7140.96 97.14 £+ 2.60 2.65% 79.37+£5.61 79.46 £ 5.48 0%

Balance 91.24 £ 7.00 63.94 £ 0.06 42.70% 58.52-+1.86 58.17 + 2.24 0.60% 97.454+2.49 98.09 + 2.44 0%
Crx 85.76 -+ 4.86 83.96 & 4.82 2.14% 85.154£3.72 84.21 -+ 4.00 1.12% 84984479 76.10 £ 5.99 11.67%
Mammographic 82.62 £ 5.13 82.36 4+ 4.53 0.32% 82.7545.36 80.61 + 4.78 2.65% 82.591:4.32 80.91 £ 5.45 2.08%
Mean 87.96 78.51 12.04% 84.99 77.84 9.19% 88.61 85.91 3.14%

The HELIC framework can be incorporated into different classifiers



Scalability of HELIC

Time Cost of HMLHC

a5 Time Cost of HMLHC

- a Time Cost of HMLHC
== HMLHC Time Cost ~— HMLHC Time Cost —— HMLHC Time Cost
30p -« HCL Time Cost ol " HCL Time Cost 35 - HCL Time Cost
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(a) Time Cost v.s. Number of Objects. (b) Time Cost v.s. Number of Attributes. (¢) Time Cost v.s. Number of Attribute Values.

The Time Cost of HELIC w.r.t. Data Factors: Object Number n,,, Attribute Number n,, and Maximum Number of Attribute Values n,,.. The

solid line refers to the total time cost of HELIC. The dotted line refers to the time cost of the hierarchical coupling learning parts. The star line refers
to the time cost of the heterogeneous metric learning parts.



Conclusions

* This work reports an effective heterogeneous metric for learning
hierarchical couplings within and between attributes and between
attributes and classes in categorical data.

* |t analyzes the heterogeneity in the hierarchical interaction spaces and
integrating heterogeneous couplings in complex categorical data.

* The proposed method can be applied to a variety of areas with categorical
data. One thing in applications is to select appropriate kernels by
considering specific data characteristics and domain knowledge of the
problems.



Non-lID Representation Learning

Songlei Jian, Liang Hu, Longbing Cao and Kai Lu. Representation Learning with Multiple Lipschitz-
constrained Alignments on Partially-labeled Cross-domain Data, AAATZ020

Songlei Jian Lon%bilrl? Cao, Guansong Pang, Kai Lu, Hang Gao. Embedding-based Representation of
Categorical Data by Hierarchical Value Coupling Learning. 1JJCAI2017

Songlei Jian, Liang Hu, Longbing Cao, and Kai Lu. Metric-based Auto-Instructor for Learning Mixed Data
Representation. 12018



https://datasciences.org/publication/jian-aaai20.pdf
https://datasciences.org/publication/Jian-ijcai17.pdf
https://datasciences.org/publication/AAAI18-jian.pdf

Metric-based Auto-Instructor for
Learning Mixed Data Representation

Songlei Jian, Liang Hu, Longbing Cao and Kai Lu. Metric-based Auto-Instructor for
Learning Mixed Data Representation, AAAI2018

Source code is available at: https://github.com/jiansonglei/MAI



Background

e Categorical features
e e.g., gender, education, brand

* Numerical features
* e.g., age, length, price

* Mixed data contains both categorical features and numerical features
e e.g., census data, product information



Representation of Categorical Features

* One-hot encoding:

e Distributional representation
e Latent semantic analysis
 Random projection

* Distributed representation

* Embedding for categorical data
* Word embedding
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Representation of Numerical Features

* Raw representation
* Normalized representation

 Distributed representation

* Dimension reduction
* Principal component analysis (PCA)
* Non-negative Matrix Factorization (NMF)

e Autoencoder

Name

Standard
score

Student's t-
statistic

Studentized
residual

Standardized
moment

Coefficient of
variation

Feature
scaling

Formula
X —p
o
X—-X
S
éz o Xt — ﬁa
5'1: - &z
Mk
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E
L
X,' _ X - Xmin
Xmax - Xmin



Representation of Mixed Data

* Transform numerical data to categorical one

* Transform categorical data to numerical data

* Discretization

 Statistics: e.g., TF-IDF

Trees
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Tree Heights

100 150 200 250 300 350
Height (cm)

* Concatenated representation: treat categorical and numerical

weighting scheme document term weight query term weight
N It,
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What Is A Good Representation for Mixed Data?

* At the feature level: capture the heterogeneous couplings (e.g.,
complex interactions, dependencies) between features
* Couplings between categorical features
* Couplings between numerical features
* Couplings between categorical and numerical features

* At the object level: a good representation should express the
discrimination and margins between objects to fertilize learning tasks.



MAI Architecture

e Consists of two
instructors in two
encoding spaces

e P-Instructor in plain
encoding space

e C-Instructor in coupled
encoding space

Infinite-margin Representation

N
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Coupled Metric Learning Process

e Plain features: Concatenation of

P-Instructor C-Instructor

I_;;H:M;r&ﬁe;c_h‘h;el___l Infinite-Margin Metric Model One-hOt representation Of
() (o) @] categorical data and numerical
- S ""!::: I I....
N data
| .. - * Coupled features: product kernel
L ot of numerical variable and
) I B categorical value
000 900 000 ) o -
g T ) = — k(&%
L__ﬂaﬂﬁcidi%/ p(az :"Uj) N ;{L}«(Ujﬂvj)w( hz )}
woowwy () & &) (Ler =— Y logPer(D? > D?|55.)
h® = o(f° - W)) Object triplet < (z,xi,75)
DP (b7, h) = (b — hi)Wy(h? — b7 ! 1,if d(h, h;) > d(h, h;) Loe =~ ) logPec(Di > D5ldp,)
D¢(h,h¢) = (h® — h$)W,(h® — h¢)T on(hi, hj) = {0, otherwise. \ (z,25,25)



Experiments

° Application: clustering Table 1: Statistics of UCI datasets

* Partition-based: k-means Datasets  |X| |F<| |F'| |Class|

* Density-based: DBSCAN

Echo 132 2 8 3

* Evaluation metrics: Hepatitis 155 13 6 2
MPG 308 2 5 6

* AMI Heart 270 8 5 2

e Calinski-Harabasz index ACA 690 8 6 2
CRX 690 9 6 2

CMC 1473 7 2 3

Income 32561 8 6 2




Table 2: K-means clustering performance w.r.t. AMI + standard deviation. The top two performers for each are boldfaced.

Datasets  Plain encoding  Coupled encoding CoupledMC Autoencoder MAI-F MAI-D

Echo 0.17894+0.1033  0.1749+0.0444  0.1237£0.1147  0.249340.0207 | 0.3246+0.0000 0.3304+0.0000
Hepatitis 0.145340.0703  0.1761+£0.0292  0.1532+0.0342 0.168940.0163 | 0.1848-+0.0000 0.1905+0.0000
MPG 0.1490+0.0106  0.1477£0.0184  0.1373+£0.0347 0.15361+0.0086 | 0.1831+0.0232 0.1770+0.0000
Heart 0.3130£0.0688  0.143940.0642  0.1037+£0.1215  0.3302+0.0042 | 0.2632+0.0000 0.277440.0000
ACA 0.32044+0.1518  0.3433+£0.1726  0.3182+0.0627 0.347740.0844 | 0.4258+0.0000 0.4258+0.0000
CRX 0.2322+0.1191 0.0836+0.1109  0.271440.1361  0.1445+0.1477 | 0.4267+0.0000 0.4267-+0.0000
CMC 0.02934+0.0052  0.0269+0.0013  0.0333+0.0070 0.02924+0.0037 | 0.0327+£0.0077 0.0303+0.0081
Income 0.1139+0.0361 0.1414+0.0291 0.1258+0.0658  0.1314+0.0000 | 0.13254+0.0000 0.1325+0.0000
Average  0.18534+0.0707  0.1547+£0.0588  0.1583+0.0722 0.194440.0353 | 0.2467+0.0064 0.2488+0.0010

Table 3: DBSCAN clustering performance w.r.t. AMI/Clusters.

Table 4: Calinski-Harabasz index on representation w.r.t. the
Euclidean distance for ground-truth labels

Datasets PF(|C|) CF(C|) CMC(C|) AE(C|) MAI-E(C|) Datasets PF CF CMC AE MAI-F
Echo  0.123(5) 0.011(3) 0.067(2) 0.188(7) 0.392(3) Echo 1460 7.4 512 2199 5681
Hepatitis 0.019(4) 0.044(2) 0.037(5) 0.016(2) 0.075(3) Hepatitis  11.76 %65 15.91 16.05 44.15
MPG  0.031(20) 0.037(16) 0.049(13) 0.149(2)  0.237(3) MPG 10.18 734 753 4188 4591
Heart  0.024(4) 0.001(2) 0.003(2) 0.003(2) 0.130(3) Hoart 3235 1683 564 5649 9185
ACA  0.003(4) 0.021(7) 0.031(2) 0.087(20) 0.227(6) ' -0 : ' '

CRX  0.003(4) 0.018(6) 0.061(2) 0.102(16) 0.242(5) ACA 7290 31.69 1692 124.37 288.31
CMC  0.00221) 0.009(2) 0.115(5) 0.003(13) 0.043(2) CRX 67.78 6594  20.77 10697 226.55
Income 0.157(493) 0.052(6) 0.052(6) 0.108(291) 0.1304(15) CMC 16.82 1246 17.21 2244  35.35
Average 0.0451 0.0242 0.0519 0.0818  0.1845 Income 1419.90 2029.04 1729.04 3009.80 5045.45




Visualization
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Conclusion

* A comprehensive representation for mixed data simultaneously learns the
couplings at feature level and the discrimination between objects at the
object level.

* A metric-based auto-instructor (MAI) model with two collaborative
instructors learns more discriminative representation between objects by
learning the margin enhanced distance metric.

 MAI is a general representation learning framework not limited to mixed
data, which has the potential to be applied to multimodal learning and
domain adaption.



Coupling Learning of complex
interactions and relations

Songlei Jian, Liang Hu, Longbing Cao, Kai Lu, Hang Gao. Evolutionarily Learning Multi-
aspect Interactions and Influences from Network Structure and Node Content, AAAI2019

Liang Hu, Songlei Jian, Longbing Cao, Zhiping Gu, Qingkui Chen, Artak
Amirbekyan. HERS: Modeling Influential Contexts with Heterogeneous Relations for Sparse
and Cold-start Recommendation, AAAI2019.



https://datasciences.org/publications/
https://datasciences.org/publication/AAAI_19_networkRS.pdf

Learning Heterogeneous Couplings
— Multi-relation Learning

Hu, L., Jian, S., Cao, L, Gu, Z,, Chen, Q, Amirbekyan, A. HERS: Modeling
Influential Contexts with Heterogeneous Relations for Sparse and Cold-start
Recommendation. In AAAI-19



Heterogeneous couplings

User-item Relation

* The basic problem in RS is to study
the user-item relation.

* Besides user-item relation, user-
user relation (e.g. social network)
and item-item relation (e.g.
compatibility)

* In fact, user-user relation and item-
item relation have direct influence
on user selection, so they should
be considered when modeling RS.




Influence contexts for making decision

* Auser uis influenced by friends
and friends' friends. C,, signifies

i i User-item Relation
t h € user | nﬂ uentia I context. User-user Relation Item-item Relation

e User selection on anitem i is also
influenced by relevant items
which form item influential
context (;.

* Influential contexts of users and
items indicate how a user's
choice on items is made, thus
making recommendation more
accurate and interpretable.




Influential context interaction decomposition

+ Coupling Modeling * Stcuco = S + A2Spe +
* Heterogeneous couplings /135(U5,i) + /145(115,11?)
* Influential-context couplings * S(c,.c;): overall interaction score

. scores u’s preference on
pre{‘erence on item i

® S(y€): scores u’s preference on
. 1 . .
influential items I}

* Suc,iy: scores relevant users’
prelference on item{

. : scores the subsidiary

greiference between mfluentlal users
and influential |temsI




Architecture of modeling HERS

User ICE e Item ICE
: ser-item Interaction
QO@QQ_—V.E Scorer: SUI '(_OQ@QQ
______________________ G reeeeeereennensd

...............................

( Nen - [ Jem( )

Target User Influential Users’
Embedding Embeddings

- I

User Representer: Ey

Influential Items’ Target Item
Embeddings Embedding

I — -

Item Representer: E,

R T

000N e

Item Influential Context

User Representer Fy;: it maps target user u,; and its influ-
ential users in UIC to the corresponding user embeddings,
ie., Ey(Uy, ) — &, where £, = {es,e1,---en}.

[tem Representer E;: it maps target item i; and its influ-
ential items in IIC to the corresponding item embeddings,
1.e., EI(Iit) — gz'f, where gﬁjt — {V,:, Vi, -VN}.

UIC Aggregator Ay : it learns a representation rY for the
influential context C,,,, namely influential context qmbed-
ding (ICE). Formally, we have Ay (Cy,, &y, ) — 1Y,

IIC Aggregator Aj: it learns i;’s ICE by aggregating the
influential context C;,, that is, A;(C;,, &;,) > r}.
User-item Interaction Scorer Spy;: it learns to score the
interaction strength between the target user-item pair
(ug,iy) in terms of the user ICE r; and the item ICE r},
namely Sy7(ry . r), Yu, i) — See,.c.y (cf. Eq..



Influential-Context Aggregation Unit (ICAU)

Target User
Embedding| :

OO

MO

e S1: This stage outputs the subsidiary influence
embedding ¢, through an aggregation

(JE)()

(eI ()

- OegO)

Influential Users” Embeddings

function h(:) over the influential users'
embeddings ey:
100 e {ay, -, ag} = aley, -, ek)
Context c; = h(eqy, -, eglay, -, ag)
Embedding

e S2: This stage generates the ICE by aggregating
the subsidiary influence context embedding c;
and the target embedding e; through a gate
function f(-):

g =f(cer)
r.=gc.+(1—-ge;



ICE is a representation for influential coupling




Statistics of datasets: Delicious and Lastfm

* Two datasets, Delicious and Lastfm provided by RecSys Challenge
2011

Property User-user Item-item  User-Item
= | #Entity 1,892 17,632 1,892+17,632
S | #Link 25,434 199,827 104,799
s | #Link/#Entity 13.44 22.66 5.37
2 | Sparsity 0.0071 0.0006 0.0031
- #Entity 1,867 69,226 1,867+69,226
S | #Link 15,328 682,314 92,834
j #Link/#Entity  8.24 15.75 3.03
Sparsity 0.0044 0.0001 0.0007




Recommendation accuracy

Delicious Lastfm
MAP@5 MAP@20 nDCG@5 nDCG@20 | MAP@5 MAP@20 nDCG@5 nDCG@20
BPR-MF 0.4157 0.3225 0.4318 0.3744 0.5154 0.4586 0.6252 0.6334
SoRec 0.4174 0.3390 0.4476 0.3965 0.5350 0.4775 0.6412 0.6457
Social MF 0.4181 0.3409 0.4520 0.4017 0.5489 0.4907 0.6544 0.6575
SoReg 0.4239 0.3444 0.4577 0.4056 0.5495 0.4878 0.6548 0.6541
CMF 0.4375 0.3507 0.4739 0.4158 0.5530 0.4928 0.6549 0.6749
M 0.4246 0.3363 0.4522 0.3896 0.5366 0.4837 0.6453 0.6723
NFM 0.4565 0.3754 0.4924 0.4347 0.5462 0.4885 0.6516 0.6702
ICAU-HERS  0.5477 0.4200 0.60064 0.5273 0.5865 0.5302 0.6913 0.7021




ltem recommendation for cold-start users
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User recommendation for cold-start items
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Visualization and Interpretation
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* The artists in the item
network are labeled by their
names.

* The anonymous users in the
user network are labeled
with their IDs.

* The thickness of edges
specifies the significance of
influence.



Pattern Relation Analysis/
Combined Pattern Mining

Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations for Discovering and Constructing
Complex but Actionable Patterns, WIREs Data Mining and Knowledge Discovery, 3(2): 140-155, 2013

Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chenggqi Zhang. Combined Mining: Discovering
Informative Knowledge in Complex Data, IEEE Trans. SMC Part B, 41(3): 699 — 712, 2011

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced Data, IEEE Trans. on
Knowledge and Data Engineering, 20(8): 1053-1066, 2008



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/DMKD-combinedmining.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/05621927.pdf
https://datasciences.org/publication/TKDE08.Final.pdf

Combined Pattern Pairs

* Pair patterns

Pu=G(F.P)
D. { 4-\:1 — 1

X =T
& { Xp A Xe = T3

Longbing Cao. Zhao Y., Zhang, C. Mining Impact-Targeted
Activity Patterns in Imbalanced Data, IEEE Trans. on
Knowledge and Data Engineering, 20(8): 1053-1066,
2008.

(|Conf(P1) — Conf ()], if T1 = T;

Ioair(P) = § /Conf(P) Conf(FP,). if T and T are contrary;

L 0, otherwise;

Tpair(P) = Lifty (Ry) Lifty (R2) dist(Ty, Ts)

Lift(Xp AN Xo — T)
Lift(X, — T)

_ Conf(Xy NX.—T)

 Conf(X, —T)

Cont.(P) =

Conto(Xp A X, — T)

fueldp A e =) = —a . = 1)

Cps(Xe = T|Xp) = Prob(Xe — T|Xp) — Prob(Xe| Xp) x Prob(T|X,)

Prob(X, A X, —=T) Prob(X, ANX,.) Prob(X,—=T)
— — X
Prob(X,) Prob(X,) Prob(X,)



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/TKDE08.Final.pdf

Combined Pattern Clusters

* Cluster patterns

P :=G(P,....P,)(n > 2)

X =T,
C: N
X — Ty

( X, =T
.\'11 N .\-,_1._ 1 — T-z

S X ANX g NN — T3
I

I{:luatcr (C) —

max  Ioacl P P
Py P gy toir U 1)



Combined Pattern Clusters

An Example of Combined Pattern Clusters

Clusters | Rules Xp X T'|Cnt| Conf| I.| Ic|Lift| Conty|Contg Lift of Lift of
demographics | arrangements | repayments (%a) Np —=T|X. —=T
Pq Fs marital:sin trregular |cashorpost| A | 400 830(1.12|067| 1.80 1.01 2.00 0.90 1.79
Fg &gender:F withhold |cashorpost|A| 20| 784|1.00 1.70 (.89 1.89 0.90 1.90
= &benefit:IN | withhold & |cashorpost|B| 119 8041121 228 1.33 206 1.10 1.71
irregular & withhold
Fg withhold |cashorpost|B| 643 61.2|1.07 1.73 1.19 1.57 1.10 1.46
& withhold
Py withhold & [withheld & [B| 237 606|097 1.72 1.07 1.35 1.10 1.60
vol. deduct | direct debat
Pio cash agent C| 33| 600(1.12 323 1.18 3.07 1.05 2.74
o P11 age:60+ withhold |cashorpost|A|1980| 933|0.86(039] 2.02 1.06 1.63 1.24 1.90
Fqa irregular [cashorpost| A | 462| 887|087 1.92 1.08 1.33 1.24 1./9
Pia withhold & |cashorpost|A| 132 837|096 1.86 1.1%8 1.50 1.24 1.57
irregular
P4 withhold & | wathheld [C| 30 633[2.91 3.40 247 401 0.83 1.38

irregular




Pattern Relation Analysis

* Shoujin Wang, Longbing Cao. Inferring Implicit Rules by Learning Explicit and Hidden ltem
Dependency. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(3): 935-946, 2020.

. Jin?yu Shao, Junfu Yin, Wei Liu,, Longbing Cao. Mining actionable combined patterns of high
utility and frequency. DSAA 2015: 1-10

* Longbing Cao. Combined Mining: Analyzing Object and Pattern Relations for Discovering and
Constructing Complex but Actionable Patterns, WIREs Data Mining and Knowledge Discovery,
3(2): 140-155, 2013

* Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, Chengqi Zhang. Combined Mining:
g(i)slcfvering Informative Knowledge in Complex Data, IEEE Trans. SMC Part B, 41(3): 699 — 712,

* Yanchang Zhao, Huaifeng Zhang, Longbing CaoChengqi Zhang. Combined Pattern Mining: from
Learned Rules to Actionable Knowledge, LNCS 5360/2008, 393-403, 2008

* Huaifeng Zhang, Yanchang Zhao, Longbing Cao and Chengqi Zhang. Combined Association Rule
Mining, PAKDD2008

. Longbin%Cao. ZhaoY. Zhang, C. Mining Impact-Targeted Activity Patterns in Imbalanced
Data, IEEE Trans. on Knowle ge and Da%a E'nglneerlng, 20(8): 1853-1066, 2008



https://datasciences.org/publication/TSMC-Wang17.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/DSAA15-Shao.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/DMKD-combinedmining.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/05621927.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/A-AI08.pdf
http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/pakdd08-zhang.pdf
https://datasciences.org/publication/TKDE08.Final.pdf

Non-IID Statistical Learning

PAKDD2019 Tutorial on Large-scale statistical learning

https://datasciences.org/large-scale-statistical-learning/



arge-scale, Sparse, Multi-source Data: Non-
IDness
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Bayesian Probabilistic Models

In Equation:

pox) — PXIOPO) __ P(X|6)P(©)

P(X) - | P(X|6)P(6)d6

In Plain English:

Likelihood *Prior

Evidence

Posterior =



Bayesian Probabilistic Models

* X=1{Xy, X,, ..., X} represents the data and O represents the model
parameters.

* It is assumed that {x.} are independent and identically distributed
(i.i.d) conditioning on the prior 0.

P(X[0) = [Ti=1 P(xil6).

* The data in X is exchangeable.



Hierarchical Priors

* One may construct a complex prior distribution using a hierarchy
of simple distributions as

P(6) :f..ifP(9|cxt)P(cxt|cxr_1]“.P[ctl)dﬂil...dﬂit

* For example: One can construct a hierarchy of Gamma
distribution.

E.g., Gamma-Gamma-Gamma-Poisson distribution Compound models



Large-scale Bayesian Inference

 Sampling methods:

* Markov Chain Monte Carlo (MCMC):
* Metropolis-Hastings Sampling.
* Gibbs Sampling

* Optimization methods
 Variational Inference (VI)
e Stochastic Variational Inference (SVI)



Stochastic Variational Inference (SVI)

* Model oa@— p
Zn O/—\:. X
N

in — <n.1:J

N
p(x.z,Bla) = p(B|a) [ | p(xn.zn[B)

n—=1

* Our goal: approximate the posterior

p(B.z|x)

* Locally independence

P(-\}hf.n |-T—n-_ Z—n- B-_ (1) = ,U(.l'n.:n | B._ 0’.).

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Stochastic Variational Inference (SVI)

* Conjugacy relation between the global variable and local variable

P(Xn,2a|B) = h(-"'n-CJI)CXP{BTI(-‘}PQH) —ay(P)}-

* Prior of global variable is also exnonential
p(B) = h(B)exp{a.'t(B) — ag(a)}
* Posterior

p(x,z,B)

p(z,B|x) = [ p(x.z,B)dzdB’

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Stochastic Variational Inference (SVI)

* ELBO

(x,z,B)dzdB

.1:[3{]

oz [
/ Q(«u 3)
= (= )

log p(x,z,B)] — Eg[logg(z, B)]

10

0%

| I

U =

IFD I\/

q
L(q).

https://www.cs.ubc.ca/labs/Ici/mlrg/slides/SVI.pdf



Statistical Learning of Large-scale,
Sparse and Multi-source Data

Trong Dinh Thac Do and Longbing Cao. Metadata-dependent Infinite Poisson
Factorization for Efficiently Modelling Sparse and Large Matrices in
Recommendation, IJCAI2018



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/IJCAI2018_CRC.pdf

Motivations

* User/item Sparsity:

* PFis inefficient when working with a column or row with very few
observations (corresponding to a sparse item or user) due to poor priors in
the Gamma distribution.

* Dynamics/infinity:
* Solve the challenge in automatically choosing the number of latent
components.



Metadata-integrated Poisson Factorization
(MPF)

. . . X 71
Enrich prior using I
user and item » r/,—"
metadata @y Qﬂ@ hi, < Yo
m=1.. .
L | ¥
| @




Metadata-integrated Poisson Factorization

(MPF)

(1) For the m'™ user attribute in the metadata, sample the
welght:
hiy, ~ Gammal(ag, aq) (1)

(2) For the n'" item attribute, sample the weight:
hi,, ~ Gamma(~y, 1) (2)

(3) For each user u, sample latent behavior:

M
&u ~ Gammal(d', H huf v (3)
m=1
(4) For each item 7, sample latent attractiveness:
N
ni ~ Gammal(c, ]___[ hiltin) (4)

n=1

(5) For each component £ in the PF factorization:
(a) Sample user’s latent preference:

Our ~ Gammal(a, &) (5)

(b) Sample 1tem’s latent feature:

Bik ~ Gammal(c,n;) (6)
(6) Sample rating:

Yui ~ Poisson ( Z Ouk .a"l‘?uc) (7)
k



Metadata-integrated Infinite Poisson
Factorization (MIPF)

Using Bayesian Nonparametric
techniques to automatically
determines the number
of latent components

(b) MIPF



Metadata-integrated Infinite Poisson

Factorization (MIPF)

(1) For the m!" user attribute, sample the weight:
p g
hiuy, ~ Gamma(ag, aq) (8)
(2) For the nt" item attribute, sample the weight:
p g
hi,, ~ Gamma(~vy,71) (9)

(3) Foreach user u(=1, ..., M):
(a) Draw the user’s latent behavior:

M
£u ~ Gammal(ad', H had v (10)
m=1
(b) For k(= 1..00), draw stick-breaking proportion:

vur ~ Beta(l,a’) (1D)

(c) For k(= 1..0c), set the user’s latent preference:

kE—1
guk — ‘fu-'”uk: ]___[[:1 — T-"ui) {12)
=1

(4) For each item i(= 1...N):
(a) Draw the item’s latent attractiveness:

N
n; ~ Gammal(c, H hiltin) (13)

n=1

(b) For & = (1...00), set the item’s latent feature:

Bik ~ Gammal(c,n;) (14)
(5) Foru(=1...M) and i(= 1...N), draw

Yui ~ Poisson ( Z Qukﬁik) (15)

k=1



Inference

e Variational Inference for MPF:

* The mean-field family assumes each distribution is independent of the
others.

q[hu, h'i'!ﬂ! 18: ‘f: 1, E] - H '?“]'fumh:m} H qthinLﬂn}

] a@urlva) ] [ aBinlpsae) | [ alCulmn) 15, 10 assumption:
%,k ik " Non-IID reality:
- What if variabl
HE?(??'E|T'I-} H Q(zﬂ1~k|¢ut,k] nona.::|:)';’arla =
i w,i,k

We use the class of conditionally conjugate priors for hu,,.
Wiv, Ouks Big. &4, i and z,; . to update the variational pa-
rameters {(, p, v, ji, K, T, ¢ }. For the Gamma distribution, we
update both hyper-parameters: shape and rate.



Inference

* Variational Inference for MiPF:
* The mean-field family assumes each distribution is independent of the others.

g(hu, hiw, 3,€,n, 2) = H q( Mt |G H q(hin|pn)

IID assumption:

H I a(vurlou) H 1T a(Bar e Hq(gﬂmu} - Independent

k=1 u k=1 1

H Q(”ihi:} H H q{:zm ﬁ:|¢}ﬂ1 k:}

k=1 u,t

Non-IID reality:
What if variables are
non-lID?




How Do MPF/MIPF Significantly Outperform
Other PF Models?

Normalized Mean Precision Normalized Mean Recall
Movielens100K Movielens100K
Movielens1M Movielens1M
HPF HPF
Movielens10M @ BNPPF Movielens10M @ BNPPF
HCPF HCPF
_ MPFE MPE
Book-Crossing @ MIPF Book-Crossing ® MIPE
0 5 10 15 20 25 0 5 10 15 20 25

Top-20 Recommendation Compared with baselines



How Does MIPF Effectively Estimate the
Number of Unbounded Latent Components?

Movielens100K Movielens1M
§ 30 MPF  — - MIPF 30 MPF  — - MIPF
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No. of latent components (K) No. of latent components (K)
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Performance of top-30 recommendations made by finite model MPF and infinite model MIPF.



How Do MPF/MIPF Deal with Sparse
tems/users?

109 178
223 218
901 412
812 534
111 245
421 312
112 121
198 157
349 335
12 765
HCPF -e MIPF

Example of MIPF in handling sparse items in comparison with HCPF.



Contributions

 MPF/MIPF improve precision when working with large and sparse
data by integrating user/item metadata.

* MIPF efficiently estimates the number of latent components.

* The variational inference for MPF and MIPF applies to massive data.



Non-lID Recommender Systems

Longbing Cao. Non-IID Recommender Systems: A Review and Framework of
Recommendation Paradigm Shifting. Engineering, 2: 212-224, 2016.

https://datasciences.org/recommender-systems/


http://www-staff.it.uts.edu.au/%7Elbcao/publication/eng16-Cao.pdf

Framework of Non-IID
Recommender Systems

Longbing Cao. Non-IID Recommender Systems: A Review and Framework of Recommendation
Paradigm Shifting. Engineering, 2: 212-224, 2016.

Longbing Cao, Philip Yu. Non-lID Recommendation Theories and Systems. IEEE Intelligent Systems,
31(2), 81-84, 2016.



http://www-staff.it.uts.edu.au/%7Elbcao/publication/eng16-Cao.pdf
http://www-staff.it.uts.edu.au/%7Elbcao/publication/IEEEIS16-Cao.pdf
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Big Data Challenges Existing Theories and
Systems
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Why the Prediction Doesn’t Work?

* There may be many reasons,
* Content understanding
* Understand the semantic hidden in contents
* Analyze the relevance between news and ads from every possible aspect
* Treat each piece of news differently

* A fundamental assumption - [IDness

* Weaken or overlook the data complexities
* Relationships between objects, syntactically, semantically,
* Heterogeneity between objects, sources, ...



A Systematic View of Recommendation
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Longbing Cao. Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm

Shifting. Engineering, 2: 212-224, 2016.
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Non-lIDness in Recommendation
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Non-lIDness in Recommendation
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Four-stage Recommendation Research

¢ Objectivefsubjective user-item interaction information
0 Explidtfimplicit user-item non-1Dness
fl - Knowledge-based

- User comments/opinion-based

- User-item relations-based

- Hybrid methods

Objective item information ¢
Explicitfimplicit item non-lIDness %)
Content-based recommendation - 0
Cross-domain recommendation -
Group recommendation -
Knowledge-based -
Item profiling -

(€). Item properties
Subjective rating information -
Explicit user-item non-lIDness 0

8

(D). Implicit user-item interactions

¢ Objective/subjective user information
@ Explidt/implicit user non-liDness
tl - Collaborative filtering
- Group recommendation
- Social recommendation
- Human-computer interaction
- User profiling/modeling/human intelligence modeling

(B). User demographics (A). Ratings

Cold-start -

Sparsity -

Memory-based models -
Cross-domain recommendation -
Single /multi-criteria rating estimation -

¥ Explicitfimplicit emvironment non-lIDness
@ Objective environment information
0 - Environment factors-based - Dynamicf evolvingfonline
- Constraint-based - Cross-domain/organization

(E). Environment




Non-lIDness in Modern Recommendation

* Heterogeneity (Non-identical distribution)

* Due to the heterogeneity of users, items and domains, it is improper to model the
features of all users or items using identical distributions

* Heteroskedastic modeling for recommendation in long tail

 Modeling non-identical user feature distribution, non-identical item feature
distribution and non-identical choice distribution

* Cross-domain data (non-identical domain distribution due to heterogeneity)

Liang Hu, Wei Cao, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Bayesian Heteroskedastic Choice Modeling on Non-
identically Distributed Linkages, ICDM 2014

Hu, L., Cao, L., Cao, J., Gu, Z., Xu, G., and Wang, J. Improving the Quality of Recommendations for Users and Items in the Tail
of Distribution. ACM Trans. Inf. Syst., 2017

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Can Zhu: Personalized recommendation via cross-domain
triadic factorization. WWW 2013

Liang Hu, Longbing, Jian Cao, Zhiping Gu, Guandong Xu, & Dingyu Yang: Learning Informative Priors from Heterogeneous
Domains to Improve Recommendation in Cold-Start User Domains. ACM Trans. Inf. Syst., (2016)

Liang Hu, Jian Cao, Guandong Xu, Jie Wang, Zhiping Gu, Longbing Cao, Cross-Domain Collaborative Filtering via Bilinear
Multilevel Analysis, IJCAI 2013



Modeling Non-IID Recommender Systems

e Couplings (Non-independency)

« Recommender systems were born with non-independency, they always try to
find the coupling relationships among users, items, domains and other
information

* Social Influence (coupling related users’ feedback)

Hu, L., Cao, L., Cao, J.,, Gu, Z., Xu, G., and Wang, J. Improving the Quality of Recommendations for Users and Items in the Tail of
Distribution. ACM Trans. Inf. Syst., 2017

e Group-based Recommendation (joint decision)

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Wei Cao, Deep Modeling of Group Preferences for Group-based
Recommendation, AAAI 2014

e Session-based Recommendation (context dependent)

Hu, L., Cao, L., Wang, S., Xu, G., Cao, J. and Gu, Z. 2017. Diversifying personalized recommendation with user-session context. (IJCAI'17)
e Cross-domain recommendation (multi-domain dependency)

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, Can Zhu: Personalized recommendation via cross-domain triadic factorization.
WWW 2013

Liang Hu, Longbing, Jian Cao, Zhiping Gu, Guandong Xu, & Dingyu Yang: Learning Informative Priors from Heterogeneous Domains to
Improve Recommendation in Cold-Start User Domains. ACM Trans. Inf. Syst., (2016



Coupled Matrix Factorization within Non-IID
Context

Fangfang Li, Guandong Xu, Longbing Cao. Coupled Matrix Factorization within Non-
lID Context, PAKDD2015, 707-719.



http://www-staff.it.uts.edu.au/%7Elbcao/publication/li-pakdd15.pdf

One Basic Approach: MF (Matrix Factorization)

* |dea: project users and items into a joint k-dimensional space.

* Represent user u;, and item v; using P; and Q, as their latent profile
respectively

* Rating Ry is predicted as: R ~R =P'Q
Rij = P" - Q;
Vi Vm
w | 1| 2] 23
Vv 1%
U, ) 9 9 4 1 2 k 1 m
23] 1
w, | 4| 1| 2| 2 Ui X 2
R u, k




Matrix Factorization
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Problems and Solution

* MF problemes:
* MF solve the rating estimation as a mathematical problem

» Same rating table for different businesses would lead to same rating
estimation

* User/item non-lIDness are not involved
e Solution:



User/ltem Coupling Analysis

* Deep couplings within users and items contribute to the rating
behavior.
e Attribute values are coupled and not independent,
e Attributes are also coupled and influence each other.

Attributes Attributes




Non-lI1D Users

* For two users described by the attribute space, the
(CUS) is defined to measure the similarity between users.

Definition 1. Formally, given user attribute space Sy =< U, A, V, f >, the Coupled
User Similarity (CUS) between two users u,; and u; is defined as follows.

CU S (u;, uj) Z{sfﬂv Vi) * 62¢(Vig, Vi) (1)

where V. and V, are the values of attribute k for users u; and u;, respectively; and
i) i”’ is the intra-coupling within attribute Ay, 9§ ;: “ Is the inter-coupling between different
attributes.



Non-IID Items

* For two items described by the attribute space, the
(CIS) is defined to measure the similarity between items.

Definition 2. Formally, given item attribute space So =< O, A", V', " >, the Cou-
pled Item Similarity (CIS) between two items o0; and o; is defined as follows.

CIS(0;.04) Zé A ) % 0L (Vih, Vi) (2)

where V). and ’Ef}-’k are the values of attribute j for items o; and o;, respectively; and

i) 3{,‘1 is the intra-coupling within attribute Ay, § i‘: is the inter-coupling between different
attributes.

Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Chi-Hung Chi: Coupled Attribute Similarity
Learning on Categorical Data. IEEE Trans. Neural Netw. Learning Syst. 26(4): 781-797 (2015)



Matrix Factorization

* Traditionally, the rating matrix can be modeled by MF as:

* The prediction task of matrix is transformed to compute user’s factor matrix P
and item’s factor matrix Q.

* Once P and Q are calculated, R can be easily reconstructed to predict the
rating given by one user to an item.

f"}- = 'm +PQT



Coupled MF (CMF)

e CMF considers three sorts
of information J  Matrix

"l Factorization |

* Traditional rating matrix

A

* Non-IID User coupling based lem User
on users’ attributes fff§°”p'1“&-—1f>_ Rating Matrix ffﬁmp'm&“lﬁ;g_
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CMF Model

. . . . 1 R 2 A .
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Compared to MF and CF

Data Set | Dim |[Metrics| PMF (Improve) [ ISMF (Improve) |RSVD (Improve)|| CMF
100D MAE |[1.1787(28.09%) |1.1125 (21.47%)| 1.1076 (20.98%) ||0.8978

RMSE |1.7111 (71.07%)|1.5918 (59.14%)| 1.5834 (58.30%) || 1.0004

Movielens | 50D MAE [1.1852 (18.43%)|1.1188 (11.79%)| 1.1088 (10.79%) || 1.0009
) RMSE |1.8051 (58.98%)|1.6103 (39.50%)| 1.5835 (36.82%) || 1.2153

10D MAE [1.2129 (17.19%)|1.1651 (12.41%)| 1.1098 (6.88%) || 1.0410

RMSE |1.8022 (46.25%)(1.7294 (38.97%)| 1.5863 (24.66%) || 1.3397

100D MAE | 1.5127 (3.65%) | 1.5102 (3.40%) | 1.5131 (3.69%) ||1.4762

RMSE | 3.7455 (0.76%) | 3.7397 (0.18%) | 3.7646 (2.67%) ||3.7379

Bookerossine| 50D MAE | 1.5128 (3.67%) | 1.5100 (3.39%) | 1.5131 (3.70%) ||1.4761
=T RMSE | 3.7452 (0.74%) | 3.7415 (0.37%) | 3.7648 (2.70%) ||3.7378

10D MAE | 1.5135(3.73%) | 1.5107 (3.45%) | 1.5134 (3.72%) ||1.4762

RMSE | 3.7483 (1.20%) | 3.7440 (0.77%) | 3.7639 (2.96%) ||3.7363

Data Set Metrics | UBCF (Improve)| IBCF (Improve) CMhME
Movielens MAE | 0.9027 (0499 ) | 0.9220 (2.42%9) [|0.8978
RMSE | 1.0022 (0.18%) |[1.1958 (19.54%:) | 1.0004

Bookerossine MAE |[1.8064 (33.029%)(1.7865 (31 .DS‘{’{;} 1.4762
Sl RMSE |3.9847 (24.68%:) |3.9283 (19.04%:)||3. 7379




Compared to Hybrid Methods
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Summary of CMF

e Contributions

* Applied a NonlID-based method to capture the couplings between users and
items, based on their objective attribute information;

* Integrated user coupling, item coupling and users’ subjective rating
preferences into matrix factorization learning model;

e Evaluated the effectiveness of Coupled MF model.



More Recent Work on non-IID
recommender systems

e Trong Dinh Thac Do and Longbing Cao. Gamma-Poisson Dynamic Matrix Factorization
Embedded with Metadata Influence, NIPS2018

* CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep
Collaborative Filtering, 1JCAI2018

* Interpretable Recommendation via Attraction Modeling: Learning Multilevel Attractiveness
over Multimodal Movie Contents, I/JCAI2018

* Attention-based Transactional Context Embedding for Next-Item Recommendation. AAAI2018



Dynamic, Continuous (Next-item), Personalized
Recommendations within Session & Context

Personalized recommendations
With user/product sessions as context
Behavior-based recommendations

Continuous (next-product/moment/
interest/etc.) recommendations

; " 'Y
Target item output
£ P ) AN,
A
we
Context embedding ‘ e |

Artention
Layer

= b 7
Contextual I I
item embedding 1 - g
4
w
Contextual ‘ - \/ '"\l‘ ‘ ‘ i
item input A A A

Figure 1: The ATEM architecture, which first learns item
embeddings and then integrates them into the context em-
bedding for target item prediction, where *A’ represents the
attention model.

Table 3: Accuracy comparisons on Tafang
Model REC@10 REC@50 MRR

PBRS 0.0307 0.0307 0.0133
FPMC 0.0191 0.0263 0.0190
PRME 0.0212 0.0305 0.0102
GRU4Rec 0.0628 0.0907 0.0271
ATEM 0.1089 0.2016 0.0347
TEM 0.0789 0.1716 0.0231

MCAN on |JCA-15

0a 0.3
Z 06 Zz 06
= =

[ 04

0z o2

a — a —
FBRS FPMC PRME GRU4Rec TEM  ATEM FERS FPMC PRME GRU4Rec TEM ATEM
Methods Methads

Figure 3: ATEM achieves higher novelty than the other ap-
proaches.



Deep Representation with
Explicit and Implicit Feature Couplings

* Learn explicit user-product couplings | User-item coupling _|
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Attraction Modeling:
Learning Multilevel Attractiveness over Multimodal Content

* One multilevel neural model on the movie /@\

Cast Attraction Module User Module [~ Story Attraction Module\
story to capture o] Story Level
*  Word-level attraction: e.g., some characters, some Cast Level S = Sentence (IBNENNNNE . | I Story|
| ace Attractiveness Encoder}
P cobrener L (ofman) ‘
»  Sentence-level attraction: e.g., some interesting :
I
p l ot } SR Sentence Level
|
*  Story-level attraction: e.g., like the movie to what i ot e pinoad
extent 1 e e e [ Al el Attractiveness &) |
|
Member Level A’:Z";z:’;‘,’z, olloner Ph)g — !
«  Anoth ltilevel | model on th wotiws | L DT DETTR T T J
nother multilevel neural moadel on the t o level

Word Level

cast to capture

*  Member-level attraction: e.g., a fan of some actor y ( (e )) . " ( . .
. . a, = softmax (isr(uc; Cy = 2a,¢; a,' = softmax (isr(u" 'w; Sy =Xa,'w;
*  Cast-level attraction: e.g., attracted by the movie “ ' u ut u ( ‘)) u u Wi

S . Sips
to what extent a,’ = softmax (isr uSThS t, =Ya h;
u L u "
Released Movies New Movies — ( ) _ )
08 _ Ly, ;=m,; = max(0,margin + Sy, ; — Sm..,
e e
Election is a 1999 American comedy-drama film directed and written by Alexander Payne and adapted by him and Jim
Sentence | Taylor from Tom Perrotta's 1998 novel of the same title. The plot revolves around a high school election and satirizes both suburban high school
level ife and politics.
attractiveness ! e
User The film received an Academy Award nomination for Best
156 Adapted Screenplay, a Golden Globe nomination for Witherspoon in the Best Actress category, and the Independent Spirit Award for Best Film in 1999.
Word level
atractiveness | Election American comedy-drama
jg?gTROlD ¢ | ;;::;;fz;’:;’c Alexander Payne, Reese Witherspoon, Matthew Broderick,
-+-CWER 0.2 * Election is a 1999 American comedy-drama film dirccted and written by Alexander Payne and adapted by him and Jim Taylor from Tom Perrotta's 1998
MLMA-C ¥ Sentenc novel of the same title
0.1 —— - 0.1 enience When Tracy qualifies
+mllj\:la s level to run for class president, McAllister believes she does not deserve the title and tries his best to stop her from winning
0 0 User auractvencss The film received an Academy Award nomination for Best Adapted Screenplay, a Golden Globe
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 2163 nomination for Witherspoon in the Best Actress category, and the Independent Spirit Award for Best Film in 1999.
@K @ Word level Award nomination for Best nomination Best
attractiveness Award i Best

Cast member

attractiveness | Alexander Payne, Reese Witherspoon, Matthew Broderick,

Statistical attractiveness on movie Election (1999) w.r.t. sentences, words in the
most attractive sentences and cast members. The larger size and deeper color of
font denote the larger attractiveness weight is assigned.



Non-IID Behavior Analytics

More at KDD2018 Tutorial on Behavior Analytics

https://datasciences.org/behavior-informatics/



Behavior Model

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior
Informatics Approach, Information Science, 180(17); 3067-3085, 2010.



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/INS_8623-online_version.pdf

ts and Behaviors

Examples of Coupled Objec




An Abstract Behavior Model: behavior computing

. | A
. — Subje u
* An abstract behavior model semoganie]] |l | @ehaviers) [ S0
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1 . | Object |« ell i
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into certain behavior sequences or Time Time Action
ace
netwo rkl —»{Behavior 2 J€— Status
. . . Context
* Social behavioral network consists | | Place — Consirain Plan
. im
of sequences of behaviors that are | | -
organized in terms of certain social (Benavor e~ ——— |y I
relationships or norms.
* Impact, costs, risk and trust of
behavior/behavior network R L
k\‘_ _relatiua:g'lrip _re?atilc:nsﬁip_.. _/,

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach,
Information Science, 180(17); 3067-3085, 2010.



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/INS_8623-online_version.pdf

Behavior Vector & Couplings

* Behavior instance: behavior vector
TY=ds0,e.q.bal fie tow um)
* basic properties
 social and organizational factors

* Behavior Coupling Relationships
v’ Logic/semantic behavior couplings

* VVector-based behavior sequences
v’ Statistical/Probabilistic behavior

couplings
* Vector-oriented behavior representation

—F

= {71.7%. .7}

Longbing Cao, In-depth Behavior Understanding and Use: the Behavior Informatics Approach,
Information Science, 180(17); 3067-3085, 2010.



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/INS_8623-online_version.pdf

Group/Coupled Behavior Analysis

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling
Relationships in Group-based Market Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on
Detecting Collaborative Manipulations in Stock Markets, JCNN 2012, 1-8.

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with Applications, IEEE
Trans. on Knowledge and Data Engineering, 24(8): 1378-1392 (2012).



http://www-staff.it.uts.edu.au/%7Elbcao/publication/idg275-song.pdf
http://www-staff.it.uts.edu.au/%7Elbcao/publication/ijcnn12-song.pdf
http://www-staff.it.uts.edu.au/%7Elbcao/publication/TKDE-CBA.pdf

Pool Manipulation

TABLE 1

An example of buy and sell orders

| Investor | Time | Direction | Price | Volume |
(1) 09:59:52 Sell 12.0 155
(2) 10:00:35 Buy 11.8 2000
(3) 10:00:56 Buy 11.8 150
(2) 10:01:23 Sell 11.9 200
(1) 10:01:38 Buy 11.8 200
(4) 10:01:47 Buy 11.9 200
(5) 10:02:02 Buy 11.9 250
(2) 10:02:04 Sell 11.9 500

. *
Price (1 Legend:
1zo| ¥ () (2) ¥ sl
1.9 v 0 T' A buy

1 = wadc
11.% ‘ .i. .i. (4 (5) ragle

{23 (3 (1)
:549:52 1O 35 100023 10200 40 10:02:02 Time
L0056 L0 -38 10:02:05

Fig. 1. Coupled Trading Behaviors



Behavior Formal Descriptor

We tackle the coupled behaviors from either one or different
actors, denoted as intra-coupling and inter-coupling, respectively.

Behavior Feature Matrix

Oy | O ... Oy intra-coupling

FM(B) =

\@}1 .‘ﬁfg R i{jlfj?nai‘/

inter-coupling

An actor «Z; undertakes .J;, operations {€;1.0;s..... 0.}
| actors: {1, %..... a1 }



Intra-Coupling

* The intra-coupling reveals the complex couplings within an actor’s
distinct behaviors.

Definition 2 (Intra-Coupled Behaviors): Actor .o7;’s behav-
iors B;; (1 < j < Jpee) are intra-coupled in terms of
coupling function 6;(I8),

For instance, in
the stock market, the
investor will place a

sell order at some
time after buying his

Jma.;z:

B} :=B.(«/,0.0)| ) _ 0;(B) 0By, (IV.2) ~ or her desired
=1 instrument due to a
great rise in the
where Zj:*f‘ ® means the subsequent behavior of B, is B, trading price. This is,

to some extent, one
way to express how
: : _ , these two behaviors
B, Bw .. B are intra-coupled
H 12 M with each other.

intra-coupled with ¢;(IB). and s Bii B ... By

FM(B) =



Inter-Coupling

* The inter-coupling embodies the way multiple behaviors of different
actors interact.

Definition 3 (Inter-Coupled Behaviors): Actor <7;’s behav- For instance, a trading
iors B;; (1 < ¢ < [) are inter-coupled with each other in happens SUCC?SSfUHY
terms of coupling function 7;(B). only when an investor

sells the instrument at
! the same price as the
B’ =:=B.;(«,0,n) Z n:(B) © By, (1V.3) other investor buys this
i=1 instrument. This is

another example of how
to trigger the
interactions between

“r* A inter-coupled behaviors.
Bo1f] Boa ... DBay

where Zf © means the subsequent behavior of B; is B;; inter-
coupled with 7;(B). and so on.

]B']_]_ B]_Q . B]_J’
FM(B) —

Bl B2 ... Brg



Coupling

* In practice, behaviors may interact with one another in both ways of intra-
coupling and inter-coupling.

Definition 4 (Coupled Behaviors): Coupled behaviors B, For.mstance, WAS

‘ i : consider both the
refer to behaviors B; ;, and B;,;, that are coupled in terms ol tradi

of relationships h(6(B),n(B)), where (i1 # i2) V (j1 # successful trading

between investor

J)N 1 <, io < DAL < J1,J2 < Jnaz)

A, (buy) and
9 ; Imaz investor A, (sell),
B, = (B; ;)" * (B,;,)" :=Bi;(A,0,€) Z > and then the selling
i1,i2=1j1,j2=1 behavior

h(0;,,(B), 1,4, (B)) ®© (B;, ;,B4,5,)- (IV.4) conducted by A,

where (6, ;,(B).7:,4,(B)) is the coupling function de- aftell;he Oﬁ‘ Slllle has
noting the CDI’I’ESPDHdlng relationships between Bﬁljl and ought the

Bisja Zzl iz=1 Z mer_| © means the subsequent behaviors 1lnst’fru1?ent ata
of B are By, cnupled with h(0;, (B),n;, (B)), B;,;, with relative 1ow price.
h(f;,(B).n;,(B)). and so on.




Coupled Behavior Analysis (CBA)

Theorem 1. (Coupled Behavior Analysis (CBA)) The analysis
of coupled behaviors (CBA Problem for short) is to build the
objective function g(-) under the condition that behaviors are
coupled with each other by coupling function f(-), and satisfy

the following conditions. TABLE 1
] - An example of buy and sell orders

;‘() — f{(—)() ”()) (9) | Investor | Time | Direction | Price | Volume |

: - g 1 09:59:52 Sell 12.0 155

‘?()Hf() = fﬂ) = Jo (10) Ezg 10:00:35 Buy \\ 11.8 2000

(3) 10:00:56 Buy 11.8 150

(2) 10:01:23 Sell 11.9 200

(1) 10:01:38 Buy 11.8 200

(4) 10:01:47 Buy 11.9 200

(5) 10:02:02 Buy / | 11.9 250

(2) 10:02:04 Sell 11.9 500

\ /




CHMM-based Coupled Sequence Modeling

* Coupling relationship

* Behavior properties

* Coupled behavior sequences

$y = {_rﬂnﬁ CJ1T}
Py = {_@21,- ., O2F }
b = {deon, doa }
Rij(dy, dy)
Ri; C R, Rij(y, d;) =&
.
Price (1 Legend:
1z0| ¥ ) (2) ¥ sl
Y Y A ;
11.9 ' ALY
o (p . | » T - i
':-.'- ?-Fi:' ‘p-z_k-‘l:, PR .,p-z_k1L__ 11.8 ‘ A & (4) (%) I3 ade
(21 (3] (1)
Q54:52 100035 100023 10000 40 10:02:02 Time
[0S 6 100138 0205

Fig. 1. Coupled Trading Behaviors



CBA — CHMM

R g

h{r;il mh
F 1

I

o | 4 t+1 Tamie

(b) The Structure of the CHMM

C'BA problem — CHM M model (15)
®(B.)|category — X (16)
M(®(Be))|dir([pis]i, - - - [Pij]k) = ¥ (17)
fOC)n(-) — 2 (18)

Initial distribution of ®(B.)|category — w (19)

Wei Cao, Liang Hu, Longbing Cao. Deep Modeling Complex Couplings
within Financial Markets, AAAI2015, 2518-2524.

Wei Cao, Longbing Cao, Yin Song. Coupled Market Behavior Based
Financial Crisis Detection, IJCNN2013

Longbing Cao, Yuming Ou, Philip S Yu. Coupled Behavior Analysis with
Applications, IEEE Trans. on Knowledge and Data Engineering, 24(8):
1378-1392 (2012).

Longbing Cao, Yuming Ou, Philip S YU, Gang Wei. Detecting Abnormal
Coupled Sequences and Sequence Changes in Group-based
Manipulative Trading Behaviors, KDD2010, 85-94



https://datasciences.org/publication/wei-aaai15.pdf
https://datasciences.org/publication/ijcnn13-cao.pdf
https://datasciences.org/publication/TKDE-CBA.pdf
https://datasciences.org/publication/p85.pdf

Graph-based Coupled Behavior Presentation

* Coupled hidden Markov Model .
(CHMM) I o B e B e B
 Relational probability tree (RPT)
el | N s seil, H s,
* Relational Bayesian Classifier (RBC) ,ﬁ

r—1 f i+ T

(¢) The Structure of Graph-based Cou-
pled Behavior Model

Yin Song, Longbing Cao, et al. Coupled Behavior Analysis for Capturing Coupling Relationships in Group-based Market
Manipulation, KDD 2012, 976-984.

Yin Song and Longbing Cao. Graph-based Coupled Behavior Analysis: A Case Study on Detecting Collaborative
Manipulations in Stock Markets, IJCNN 2012, 1-8



https://datasciences.org/publication/idg275-song.pdf
https://datasciences.org/publication/ijcnn12-song.pdf

CBA - Conditional Probability Distribution

buyr

buyy [~

(a) An Example of the Sub-
graphs for Each Target Behav-

zelly

— trade

/

trade;

zelly

10T
XY RFy | RFy RE,
tradeq T rfi1 | Tfor T fni
trades Ta Tfm ngg T‘an

(b) An Example of the Relational Features
for Each Target Behavior

C'BA problem — SRL M odeling (5)
f(6(-),n(-)) — the CPD p(X'|RFy,--- ,RF,)  (6)

p(X"|RFi,RFs, -+, RF;)

GL{ka = Hbgtlehk P(X{t:' = -1"-55:1 I fri,mf2i, o7 fnas M)

* Yin Song, Longbing Cao, et al. Coupled Behavior
Analysis for Capturing Coupling Relationships in

Group-based Market Manipulation, KDD 2012, 976-
984.



https://datasciences.org/publication/idg275-song.pdf

Empirical Results
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Figure 4: Accuracy of Six Models
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Next-best Action Recommendation
with multi-party interactions

Longbing Cao, Chengzhang Zhu. Personalized next-best action recommendation with multi-
party interaction learning for automated decision-making, PLoS ONE, 17(1): e0263010,
2022



https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263010

The NBA problem

* NBA-based personalized decision-making process

~ Constrained

o policies
Decision
maker J Decision Fig 1. Next-best action-
actions based personalized
decision-making in
. constrained, tailored,
= e sequential and
interactive
Client dynamic processes with
_ 3 response :
client _ state-action-response-
behaviors
coupled sequences.
| el —» d —» d > - —» d,
demographics

ngle)
o
o
v

.
ha
Lap o
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The NBA problem

* NBA objective function

;\.

minimize Div(R||R) — Zre(Cr, a,)

{rl‘}r[f—l,---,k} =1

subject to a, € A",

where Div(-||-) is the divergence between the estimated reward space R and the actual reward

space R, and 6 refers to the parameters in the action-value function rg(-, -).

action-value function r,(-,-) : C x A — R

k next-best action set



The NBA problem

* Learn multi-party past-to-present interactions and decision-making

NBA action-value function RL action-value function
rg(-,-):CxA—f}:“, rg(,) :OXx A—=TR

client descriptions C,
decision-making actions A, |
and estimated rewards client responses Oy;

decision actions d;

Cr =< Dr, Ar_l, Or>



The NBA problem

 Personalized NBA set

n, U

miniﬁmizeZZl (r,(CY . al), r <C§j)_d£j}>)

=1 i=1

I(-.-) aloss function that measures the difference between the real and estimated rewards

cY description of the j-th client at time step i

aﬁ} historical decision action on the j-th client at time step i
() maximal length of historical sequence of the j-th client



The NBA problem

* Personalized Next-k Best Action/NBA

k

maximize E ro(C,,a;)
{al|j=1,k} =

subject to a, € A7

A;‘ candidate action set



PNBA learning framework

---------------------------------------------------------------------------------------------------------------

i Action-value C Reward } ______ ——
rﬂ('a ') H

function

Reward Prediction
Module

T

Personalized
i Representation
; Module

Candidate
Actions Set
Al

Ne—

top-k
reward

Fig 2. The framework for modeling the next-best action-oriented personalized decision-making.



Learn personalized client representation

©® o -

Action Embedding Layer

Stable Information I =
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Fig 3. A reinforced
coupled recurrent
network to learn
personalized client
representation.



Learn state-action-response couplings

| O/O_
v ro
: A Historical
Client - o, - @
response Z responses
ri 5
Decision " Historical
. > 31_|_>_0/0—> - )
action actions
Za
T—O/O—
Fa

r./.- historical responses and actions on their current states
z: current response and action states on history
r;: interaction between decision action and client response

z,=c(W,a_ +U, a )
ra - O-(Wra ar—l + Urd af72)
{lr71 - tanh(waatfl + U:z (ra © a?:Z))

* _ * ~
atfl - (la o Zu) © at72 + Zu © atfl
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1

Fig 4. A coupled recurrent unit (CRU) for modeling state-action-response-coupled long-term dependencies.



Learn client representations
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Fig 5. An example of representing clients by the reinforced

a1

coupled recurrent network.
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NBA reward prediction

Dense Layer
*
Dense Layer
{ client state vector Ci>S;
Dense Layer ) .
! each decision action a, > a, € A’
Dense Layer
! action rating r,(C,,a)
Dense Layer
! next-best actions Ar C A
’—' Concatenated Layer o—‘
Dense Layer Dense Layer . . .
¥ 5 Fig 6. Reward prediction for the next-
Dense Layer Action Embedding Layer best action on a Client’s state.

©



Case studies

* Non-Markovian NBA recommendation

Table 2. Average reward lift for 10 actions recommended by 11 deep models over the review measured by domain-driven debt collection rules.

Model Al A2 A3 A4 A5 A6 A7 A8 A9 Al0 Total Avg |Action_ Avg
CRN_IMB 5 1 3.0534 2.8752 6.8 2.1415 2.6984 3.3567 1.6772 2.9969 2.5569 3.4599
CRN 2.1957 3.5383 2.2068 2.6616 3.216 2.074 2.326 2.6277 1.7654 2.3425 2.1942 2.4954
WD 2.604 1.5992 2.0979 2.2798 3.2239 | 1.9824 2.2629 2.6967 0.9899 2312 2.1089 2.2049
LSTM 0.9722 1.0987 0.9391 0.974 1.1272 | 1.0159 0.897 1.1097 1.1024 1.0847 1.0013 1.0321
WD_LSTM 2.0471 1.2731 1.9709 2.4755 2.2217 | 1.8129 2.0816 2.1909 1.1405 2.105 1.9198 1.9319
WD_Res_LSTM 1.7247 0.8219 1.7007 1.9816 2.4985 | 1.8164 1.9851 2.0921 0.8285 1.967 1.8488 1.7416
WD_Multi_LSTM | 1.684 1.0468 1.6591 1.774 1.6924 | 1.7083 1.671 2.1678 1.2222 1.8098 1.7161 1.6435
GRU 0.5783 0.0865 0.9852 1.1201 1.5022 | 09154 0.861 0.9463 1.0347 1.0416 0.9345 0.9071
WD_GRU 1.0049 0.6397 1.3454 1.7369 2.1271 | 1.6489 1.6049 2.1562 0.665 1.6602 1.611 1.4589
WD_Res GRU 1.4488 1.1333 1.7364 1.3479 2.2259 | 1.6932 1.7091 1.9582 1.2507 1.8869 1.7248 1.6391
WD_Multi_GRU 1.6329 1.8399 1.9114 1.7949 1.8781 | 1.8206 2.0276 1.7613 1.0508 2.2347 1.8959 1.7952
A_IMB 92.01% 117.40% | 45.55% | 16.15% | 110.92% | 8.03% | 19.25% | 24.47% | 34.10% | 29.62% 21.24% 56.92%
A -15.68% | 92.31% 5.19% 7.52% -0.25% | 4.62% 279% | -2.56% | 41.15% 1.32% 4.04% 13.18%




Case studies

* Non-Markovian NBA recommendation

Table 4. The reward mean squared error (MSE) per action between the reward made by the domain-driven debt collection rules and that recommended by 10 deep

models.

Model Al A2 A3 A4 A5 A6 A7 A8 A9 Al0 Total_Avg |Action_Avg
CRN 0.0266 0.055 0.0462 | 0.094 0.0222 | 0.0937 | 0.0733 | 0.0384 0.1077 | 0.056 0.0777 0.0613
WD 0.0271 0.0631 | 0.0491 | 0.1038 0.0263 | 0.0963 | 0.076 0.0384 0.1245 | 0.0565 0.0803 0.0661
LSTM 0.1219 0.1315 | 0.1129 | 0.1411 0.1286 | 0.131 0.1201 | 0.1216 0.1256 | 0.1166 0.1253 0.1251
WD_LSTM 0.2361 0.2395 | 0.2167 | 0.2188 0.2539 | 0.2163 | 02146 | 0.2352 0.1757 | 0.2108 0.2165 0.2218
WD_Res LSTM 0.2188 0.2333 | 0.2187 | 0.2128 0.2363 | 0.2091 0.2078 | 0.2192 0.1776 | 0.2099 0.2108 0.2143
WD_Multi_LSTM 0.2429 0.2485 | 0.2203 | 0.2215 0.2616 | 02177 | 02161 | 0.2417 0.177 0.212 0.2185 0.2259
GRU 0.1011 0.1139 | 0.0957 | 0.1324 0.1035 | 0.1215 | 0.1076 | 0.103 0.1243 | 0.1021 0.1134 0.1105
WD_GRU 0.2299 0.2368 | 0.2211 | 0.2174 0.2417 | 0.213 0.2106 | 0.2261 0.1798 | 02174 0.2149 0.2194
WD_Res_GRU 0.2301 0.2384 | 0.2245 | 0.2168 0.2493 | 02142 | 02119 | 0.2304 0.1777 | 0.2156 0.2162 0.2209
WD_Multi_GRU 0.228 0.2354 | 0.2196 | 0.2195 0.2443 | 0.2157 | 02131 | 0.2279 0.1795 | 0.2136 0.2162 0.2197
A 1.85% 12.84% 5.91% 9.44% 15.59% 2.70% 3.55% 0.00% 13.35% 0.88% 3.24% 7.26%




Non-|ID Vision Learning

Yinghuan Shi, Wenbin Li, Yang Gao, Longbing Cao, Dinggang Shen. Beyond IID:
Learning to Combine Non-IID Metrics for Vision Tasks. AAAI2017.



Non-lID Metric Learning
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Various Non-|ID Representations

» Coreldea:

Intra-node relation
(within node) + Inter-node
relations (between
neighbored nodes)

6 Capturing various dath
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_earning/combining Multiple Non-IID
Representations

Objective function for combined non-IID metrics

arg min & (£2; prKp s.t.pr =1,w" >0

Q. wp
P

arg min Z V; i HQ ( Z w ka Z u_?’kp) H?.
wP Pair-wise Constraint
AZ Vij (1 — ya)h [HQ(Z wPkl — Z wﬂk‘u) |%

5.7.1

— HQ(ZU*"]{’J Zu'”kp) |° + 1]
s. . ZUL‘U = 1,w" > 0.
p

Triplet Constraint



Evaluation

AOC curves (HC) ROC curves (DL)

e

Our methods outperform othersin | - 1
£osfif - - -kpoA go_é.J:,...f... il = - o KPCA
ok : tGPLVM aallls :gF’L\"‘M
terms of AUC, Accuracy, N off |
. == =LMCA i = = =LMCA
oFn o nro o ozl NIME-DP ) R NIME-DP
Specificity, Sensitivity, F1 score of o —hmewe ([ el — e
: | ——NIME-CK : ;| —— NIME-CK
‘ Method ‘ (Lee2010) CKNN PCA4RF KPCA GPLVM mSRC LMNN LMCA ‘ ME-DP NIME-HD NIME-MP NIME-M ‘
AChc 82.0 85.0 790 750 810 870 800 77.0 86.0 83.0 84.0 89.0
SPuc 80.8 83.0 764 766 782 878 789 765 84.6 85.1 88.6 91.5
SEuc 83.3 87.2 822 736 844 863 813 716 87.5 81.1 80.4 86.8
Fluc 81.6 84.5 779 757 800 871 79.6  76.8 85.7 83.5 84.9 89.3
AUCyc 87.9 91.6 84.2 79.1 868 938 853 816 92.7 89.1 90.6 96.0
ACpL 86.0 84.0 82.0 79.0 81.0 86.0 81.0 79.0 88.0 85.0 84.0 90.0
SPpL 89.1 84.0 83.3 76.4 81.6 89.1 81.6 80.9 89.6 85.7 79.3 88.5
SEpL 83.3 84.0 80.8 82.2 80.4 833 804 77.4 86.6 84.3 90.5 91.7
FlpL 86.5 84.0 82.4 71.9 81.2 86.5 81.2 79.6 88.2 85.2 82.6 89.8
AUCpL 92.8 90.3 87.9 84.2 86.6 928  86.6 84.1 \95.0 91.5 90.8 96.9 /




Image Segmentation

R ARRRNRRNAARN

Figure 4: Typical results. First to last columns: Graph Cut,
Grab Cut, LMNN, LMCA, NIME-DP, NIME-HD, NIME-MP,
NIME-CK.




Non-IID Outlier Detection

Guansong Pang, Longbing Cao and Ling Chen. Homophily outlier detection in non-1ID categorical data,
Data Min. Knowl. Discov. 35(4): 1163-1224, 2021

Guanson Par|1:g, Longbing Cao, LingNChen and Huan Liu. Learning Homophily Couplings from Non-IID
Data for Joint Feature Selection and Noise-Resilient Outlier Detection. IJCAHZO%?

Guansong Pang, I-_Iorll_?zuo Xu, Longbing Cao and Wentao Zhao. Selective Value Coupling Learning for
Detecting Outliers in High-Dimensional Categorical Data. CIKM2017



https://arxiv.org/abs/2103.11516
https://datasciences.org/publication/Pang-ijcai17.pdf
https://datasciences.org/publication/Pang-CIKM17.pdf

Multidimensional Data

e Multidimensional data

» Data objects are characterized by two or more features

e Information table

* Rows -- data objects
* Columns -- features

agegrp
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0
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0
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0.000517
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Traditional Outlier Detection

* Statistical/probabilistic-based approach

e Statistical test-based —> deviation from distribution
e Depth-based —> data depth
* Deviation-based —> sensitivity or uncertainty

* Proximity-based approach
» Distance-based —> nearest neighbor distances
* Density-based —> local density
* Clustering-based —> distance to cluster centers

Kriegel, H. P., Kroger, P., & Zimek, A. (2010). Outlier detection techniques. Tutorial at KDD10.
Aggarwal, C. C. (2017). Outlier analysis. Springer.



The IID Assumption

e Common assumptions

, densit bmi
* Values/features/objects from 0 :;:;;3 . 33';;33
homogeneous distributions, 0.888889\ 0.33333 0 o
mechanisms 0.333333 | 0.33333 0 1
0.777778 |0.333333 0 0
* They are independent to each other| 93583821 O ° :
- N 0.111111 |0.333333 0 0
* E.g., implicit IID assumption in 0.222222 | 0.666667 1 0/333333
Euclidean distance 0.333333 1 0 0
0.66666 0  [.333333
1 1 0

count
0.000517
0.000259
0.000517
0

o o o o o o

cancer
0

0
0
0
0
0
0
0
0
0



Non-lID Real-life Data

Couplings Heterogeneity

KNOW THE DIABETES WARNING SIGNS!

© o 8
Frequent Weight

urination loss
i

Dim_1 Dim_2
1 1 -/ 0/
0 05 1 ] 05 1
Dim_3 Dim_4

E.‘."
.E ' | ;.
Lack of Excessive
energy ‘ I st
- i,

Source: http://www.diabeticrockstar.com Four features from the CoverType data set

-
0 08



True positive rate

IID vs. Non-IID Outlier Detection — example

—KkNN with Euclidean

—kNN with Standardized Euclidean

03 04 0.5 0.6 07
False positive rate

* Data: Mammography
e Euclidean - AUC: 0.81
e Standardized Euclidean - AUC: 0.86

6.17%
improvement




The Mammography Data Set




Non-IID Value-based Approach

Guansong Pang, Longbing Cao, Ling Chen. Outlier Detection in Complex Categorical
Data by Modelling the Feature Value Couplings. IJCAI2016



Motivation

* Value heterogeneity

e Semantic differs in different
contexts

Values of the same frequency
may indicate different
outlierness

The outlierness of a value is

dependent on its accompany
values

 Value coupling — Guilt-by-
association
* “Aman is known by the company
he keeps”

* Homophily couplings in outlying
behaviors (values)

* Concurrent outlying behaviors

e E.g., thirsty, weight loss, dryness,
urination in diabetes

* E.g., Feel alienated, violence against
the society is not immoral, etc. in
terrorist characteristics



Our Framework

* Learning value outlierness from data with non-IID values

Data-driven CUOT Framework

Intra-feature
Outlier Factor

Applications

Data

Objects Inter-feature
Outlier Factor

Model for

Estimating Value
Outlier Score

Feature Weighting
and Selection

v

Outlying Object
Detection




CBRW: Intra-feature Outlier Factor

* Intra-feature outlier factor for addressing heterogeneity
* A value of the same frequency in different features can have very different semantic

* Given avalue v € dom(f)

o(v) = %[base(‘m) + dev(v)]

where m is the mode in the feature f, base(m) = 1 — freq(m),
dev(v) = freq(m)—freq(v)

freq(m)




CBRW: Inter-feature QOutlier Factor

* Inter-feature outlier factor capturing the homophily value couplings

* Concurrent rare values have high mutual conditional probabilities

frequ,v)  freq(w,v)
freq) ~ " freq(v)

q, = [n(w,v),...,n(w,v)]'=[ 1, Vu,w € V\v

where Vis the set of all values.



CBRW: Integrating the Two QOutlier Factors

* Learning value outlierness from
data with non-IID values

* Map two outlier factors into a value- \Jﬁ
value graph S
, 5(v22)
N (v32, W2
 Stationary probabilities of random - / \
walks at value nodes as value Q
outlierness \

S(v22)M(v32,v22)
S (22N (v32, v22) + §(v11)N(V32, v11)

Wy (v32,v22) =

d(v11)N(v32, v11)
6 (22N (32, v22) + 6(v11)N(v32, v11)

Wy (vs2,v11) =



Direct Outlier Detection Performance

Data CBRW CBRWie CBRWia | MarP™ MarP FPOF COMP FORE
BM 0.6287 0.6566 0.5999 0.5778 0.5584 0.5466 0.6267 0.5762
Census 0.6678 0.6579 0.6832 0.6033 0.5899 0.6148 0.6352 0.5378
AlD362 0.6640 0.6324 0.6034 0.6152  0.6270 0 0.6480  0.6485
w7a 0.6484 0.7338 0.4453 0.4565  0.4723 0 0.5683  0.4053
CMC 0.6339 0.6323 0.6179 0.5623 0.5417 0.5614 0.5669 0.5746
APAS 0.8190 0.8624 0.8739 0.6208 0.6193 0 0.6554  0.4792
CelebA 0.8462 0.9108 0.7135 0.7352 0.7358 0.7380 0.7572 0.6797
Chess 0.7897 0.4058 0.7766 0.6854 0.6447 0.6160 0.6367 0.6124
AD 0.7348 0.8270 0.7250 0.7033  0.7033 o . 0.7084
SF 0.8812 0.8833 0.8867 0.8469 0.8446 0.8556 0.8526  0.7865
Probe 0.9906 0.9907 0.9434 0.9795 0.9800 0.9867 0.9790 0.9762
U2R 0.9651 0.9640 0.8817 0.8848 0.8848 0.9156 0.9893 0.9781
LINK 0.9976 0.9976 0.9976 0.9977 0.9977 0.9978 0.9973 0.9917
R10 0.9905 0.9903 0.9823 0.9866  0.9866 0 0.9866  0.9796
cT 0.9703 0.9703 0.9388 0.9770 0.9773 0.9772 0.9772 0.9364
Avg.(Top-10) 0.7314 0.7202 0.6925 0.6407 0.6337 0.6554 0.6610  0.6009
Avg.(All) 0.8152 0.8077 0.7779 0.7488 0.7442 0.7810 0.7770  0.7247
CBRW vs.  0.7959 0.0392 0.0012 0.0008 0.0115 0.0147 0.0040

p-value CBRWie vs.  0.4225 0.0969 0.0592 0.4316 0.3167 0.0446
CBRWia vs. | 0.1460 0.1223 0.2886 0.8490 0.0979




Outlying Feature Selection Performance
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Conclusions

* Learning value outlierness from data with non-IID values
* |ntra-feature and inter-feature outlier factors

e Different applications
* Direct outlier detection: Significantly outperform other detectors in complex data

* Feature selection: Substantially improve AUC and efficiency performance of
existing OD methods



Non-IID Value-to-Feature-based
Approach I

Guansong Pang, Longbing Cao, Ling Chen, Huan Liu. Learning Homophily Couplings
from Non-IID Data for Joint Feature Selection and Noise-Resilient Outlier Detection.

lJCAI 2017.



Motivation (1/2)

* Qutliers are masked by noisy features

“—mm

1 master
2 master medium no
3 master high no
4 master medium no
5 master high no
6 PhD high no
7 bachelor high no
NoiIsy ReIe!ant
features features



Motivation (2/2)
* Existing solutions: subspace/feature selection + OD

* Subspace/feature selection is independent from OD
* Noisy features bias the subspace/feature search
* Not optimal w.r.t. subsequent OD method

\

e Qur solution: Simultaneous feature selection and outlier detection
for this joint optimization



WrapperOD Framework

Wrapper approach for joint optimization of feature selection and OD

Searching the Best S Based on Ry,

_——————_Candidate

Optimal

Subsets i
Data Set X g

e [

\.—./

Subset S Ranking Ry | Ranking Ry,

N~

; /

Feature [ Outlier iSubsetS Optimal Outlier

Challenge 1: how to ensure the outlier scoring efficacy
Challenge 2: how to evaluate the outlier ranking without class labels



The WrapperOD |nstance: HOUR Scoring
Function (1/3)

* The scoring function should at least be
 Sufficiently resilient to noisy features
* Very efficient

* Homophily couplings between outlying values

Concurrent Randomly co-

Outlying occurring noisy
behaviors behaviors




The WrapperOD |nstance: HOUR Scoring
Function (2/3)

Simplified CBRW:
6(V22)Nn(V32,V22) — 6(v32)6(v33)

Leading to random walks on
undirected value graph
e Efficient closed-form solution

S 5(1)3(u)
T(V) = s S e (Vo)




The WrapperOD Instance: HOUR Scoring
Function (3/3)
* Homophily coupling learning — stage |

_ o EHEN’V o(v)d(u)
/ (V) EVEV XUEN} o(v)o(u)

* Homophily coupling learning — stage Il

U(v) = Cyen, p(u. V)7 (1)



The WrapperOD Instance: HOUR Outlier
Ranking Quality Evaluation

* Average outlierness margin between top-k objects and the rest of
objects

As 1

J(Rfi}s‘-k): |S| — k|S|XEO[(§3(X)OS(x!)]

where x” is the data object ranked in the median position in the rest of
(N - k) objects

Recursive backward feature elimination is used for generating the
feature subset S



Comparing to State-of-the-art Detectors

AUC

P®On

Data

N |7

S[(V) fnl

HOUR CBRW COMP FPOF

HOUR CBRW

COMP FPOF

SylvaA
BM
AlD362
APAS
SylvaP
Census
CelebA
CUP14
Alcohol
CMC
CT
Chess
Turkiye
Credit
Probe

14,395 172
41,188 10
4,279 114
12,695 64
14,395 87
299,285 33
202,599 39
619,326 7
1,044 32
1,473 8
561,01244
26,056 6
5,820 32
30,000 9
64,759 6

16(91%) 91%
5(50%) 90%
8(93%) 86%
13(80%) 81%
15(83%) 78%
3(91%) 58%
12(69%) 49%
3(57%) 43%
38%
38%
34%
33%
(34%) 25%
33%) 11%
67%) 0%

0.9829 0.9353
0.6939 0.6287

0.5147 0.6640 0.6480

0.9065 0.8190
0.97250.9715

0.4867 0.6678 0.6352

0.8879 0.8462
0.9833 0.9420
0.9365 0.9254
0.6647 0.6339
0.9688 0.9703
0.8507 0.7897
0.5256 0.5116
0.7204 0.5804

0.9661 0.9906 0.9790

NA
0.5466
NA
NA
NA
0.6148
0.7380
0.6041

0.8855
0.6267

0.6554
0.9537

0.7572
0.9398
0.8919 0.5468
0.5669 0.5614
0.9772 0.9770
0.6387 0.6160
0.5101 0.4746
0.6543 0.6428
0.9867

0.7483 0.5914
0.3265 0.2474
0.0833 0.0500
0.0000 0.0000
0.6907 0.6151

0.0616 0.0677 0.0675

0.2085 0.1748
0.6730 0.2671
0.3889 0.3333
0.0345 0.0345
0.0499 0.0386
0.0000 0.0000
0.0776 0.0746
0.4875 0.2215

0.8440 0.8579 0.7928

0.3770 NA

0.2565 0.1369
0.0167 NA

0.0000 NA

0.5700 NA

0.0637
0.1533 0.1256
0.2671 0.0000
0.3889 0.0556
0.0345 0.1034
0.0688 0.0644
0.0000 0.0000
0.0687 0.0597
0.3502 0.3333
0.8548

Average 128,022 44

—_—

8(69%) 50%

p-value

0.8041 0.7918
0.1876

0.6644
0.0322

0.7546
0.0730

0.3116 0.2383
0.0068

0.2275
0.0068

0.1634
0.1055




Comparing to State-of-the-art FS + Detectors

AUC
Data HOUR CBRWT CBRW* COMP' COMP*
SylvaA | 0.9829 0.8793 0.9381 0.8726 0.8858
BM 0.6939 0.6104 0.6114 0.6239 0.6239
AID362 | 0.5147 0.4659 0.6518 0.4982 0.6342
APAS 0.9065 0.6621 0.8807 0.6532 0.8771
SylvaP | 0.9725 0.9582 0.9707 0.9307 0.9628
Census | 0.4867 0.4844 0.6999 0.4841 0.7135
CelebA | 0.8879 0.8865 0.8502 0.8855 0.7594
CUPI14 | 0.9833 0.9821 0.9358 0.9821 0.9618
Alcohol | 0.9365 0.9264 0.9294 0.8919 0.8595
CMC 0.6647 0.6366 0.6444 0.6475 0.6586
CT 0.9688 0.9192 0.9673 0.9187 0.9670
Chess 0.8507 0.7268 0.7649 0.7529 0.6305
Turkiye | 0.5256 0.5161 0.5108 0.5145 0.5119
Credit 0.7204 0.5712 0.5712 0.6566 0.6566
Probe 0.9661 0.9591 0.9591 0.9794 0.9794
Average | 0.8041 0.7456 0.7924 0.7528 0.7788
p-value - 0.0001 0.0730 0.0006 0.1070




Sensitivity Test

0 Censu; {OUT!iEF':'fo:IE.EUofo) 0 Celeb.{t {0u1||ier°fo=.2.24°fn)
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Scalability Test
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Conclusions

* This the first wrapper approach for outlier detection

* The simultaneous optimization scheme enables HOUR to work well in
very noisy scenarios
 Significantly better top-k outlier detection

* Good stability and scalability

* Source code will be available at
https://sites.google.com/site/gspangsite/sourcecode



Out-of-Distribution Detection



Conclusions & Prospects



Non-1ID Learning: A Challenging Problem

* Data non-lIDness
e Data sampling

* Non-IID similarity/dissimilarity
metrics/measures

* Non-IlID representations

* Model structure 0,, 0,, O, share different distributions
d

3= |105-Of|
=1

* Objective functions 0,(ry5.ry5) — O(dy,d,) ||

e Result interpretation

* New perspectives

L. Cao. Beyond i.i.d.: Non-IID Thinking, Informatics, and
Learning, IEEE Intelligent Systems, 37:4, 3-15, 2022

c

=110;-0l| -

e i X1
c - T—— 11D transformation '
- ~ \ ) o \d;
Ve ~ \ 2
2 Xz ~ \
/ “ X
4 - hY (
/ a_ - ) X3
/ 2~
’
4 \

01: o 2 03 are iid (b) ljferth_fnrlfi-ng
d3

(a) Learning problem Non-1ID transformation

(c) Non-IID thinking

FIGURE 1. IID thinking versus non-lID thinking. For example,
from the machine learning perspective, a given learning prob-
lem (a) is either (b) IID transformed per the 11D assumption
(i.e., independent and identically distributed) and then solved
by an IID learning system, or (c) non-IID transformed by char-
acterizing its non-11Dness (i.e., heterogeneity and interaction)

and then solved by a non-1ID system.



[ID to non-IID space

Identically Distributed

Non-independence | i.i.d./lID — non-IID i Independence
UL R b P T o ncoupling/non-interaction |

L. Cao. Beyond i.i.d.: Non-IID FIGURE 2. IID to non-lID space. Two sets of axes: classic inde-
Thinking, Informatics, and pendence/nonindependence-identical distribution/nonidentical
Learning, IEEE Intelligent distribution versus heterogeneity/homogeneity-coupling/interac-
Systems, 37:4, 3-15, 2022 tion//noncoupling/noninteraction; generating four quadrants:

1D, non-| + ID, non-IID, and | + non-ID.



Aspects of

Non-lIDness

L. Cao. Beyond i.i.d.: Non-
lID Thinking, Informatics,
and Learning, IEEE
Intelligent Systems, 37:4,
3-15, 2022

Longbing Cao. Coupling
Learning of Complex

Interactions, Journal of
Information Processing
and Management, 51(2):
167-186 (2015)

% Non-1IDness
Non-ID: Heterogeneity +

\ 2 L 4 Y L 4
+ | Behavior | > [ Frequency | @ [ Association | 5 | Intent |
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Computational units
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FIGURE 3. Terminology and conceptual map of non-1IDness: non-ID—heterogeneities, and non-l—interactions.



http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/JIPM-online.pdf

Hierarchical Non-lIDness
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http://203.170.84.89/%7Eidawis33/DataScienceLab/publication/JIPM-online.pdf

Some Fundamental Issues

* How can we determine whether a dataset is IID or non-IlID?

* Whether association, correlation, causality, dependency,
uncertainty/randomness cover all relationships?

* Real-life problems often involve multiple sources (views, modals,
tasks, etc.) of data, are they ID?

 What do we mean by ‘heterogeneity’? Does ‘identically distributed’
mean homogeneity’?

* What do we mean by ‘independence’ in a broad sense?



Some Fundamental Issues

 Are KNN, SVM, decision tree, classic ensemble methods IID?

* Does classic transfer learning capture non-lIDness?

* In probabilistic graphical modeling, how non-lIDness is modelled?
* Do deep neural networks capture non-1IDness? To what extent?



[ID to Non-IID Learning Systems

Non-lID Systems

IID Systems



In/out-of-distribution
non-liDness

Non-1ID convolution, recurrency,
dropout, pooling

Entangledicoupled
representation

Input non-liDness

Non-11D Deep Learning

Heterogeneous activation and

Input-neural transformation coupling

Non-1ID transformation fusion

transformation

Non-1ID agent-environment

interactions Environment non-l1iDness

Reward non-liDness

Action non-lIDness

Non-1ID Reinforcement
Learning

Policy non-liDness

Non-1ID Markov models

Non-lID graphical models

Non-1ID prior

Coupling method

Learning

Non-11D Bayesian networks

Non-1ID relation learning

Non-1ID inference

Non-1ID sampling

Non-1ID action/
behavior recognition

Non-1ID perception, identification,

Non-11D imitation
learning

Non-lID image
analysis

Non-lID Vision
Learning

Non-11D multi-modal/view/task learning

Non-lID scene understanding

Non-lID visual analytics

Non-l1ID
Linguisti icisy { { Concept/topic/ Non-11D question/
relations sentiment coupling answering Linguistic non-1IDness
Non-11D Document/
Text Analysis/NLP
Ci non-liDness Non-1ID search/retrieval

relatodm’ss and c’oupllng

Multi-impact/risk/utility behavior

modeling Multi-party interaction modeling

Group behavior modeling

Logical behavior couplings

Non-1ID Behavior
Analytics/mode!

Non-1ID outlying dynamics

Context outliness

Value-feature non-liDness

Value non-lIDness

Non-1ID Out
Detection

Inlying/outlying non-liDness

Class non-liDness

Non-lID collaborative filtering

Non-lID session-based RS

Feature non-1IDness

Non-lID cross-domain RS

Non-1ID Recommender
Systems

Correlation analysis

Related Work

Similarity/metric learning

Feature relation analysis

Dependence modeling

Statistical relation learning

Disentangled representation

Heterogeneity learning

Coupling/interaction learning

Non-1ID matrix/tensor analysis

Non-liDness /
Nonstationarity learning Non-1ID sampling
Cleaning Discretization Missing value processing
Non-1ID Data
Preparation
Denoising Imbalance processing Transformation/normalization

Value non-lIDness
Non-11D Feature
Engineering

Feature non-liDness

Value-feature non-liDness

Learning

Value cluster 11D

Coupled feature analysis

Metric/similarity learning

Graphical representation

Non-1ID
Representation

Embedding/transformation Distributed representation P p
Rule relation analysis Heterogeneous patterns pattern i
Non-lID
Pattern Mining
Pattern relation analysis Logical pattern pling 'pai
patterns

Non-lID domain adaptation
Non:IID Federated/
transfer learning

Non-lID transfer learning

Non-11D federated learning

Non-1ID multitask learning

Non-1ID multiview learning
Multi-modal/source/
task Analysis

Non-1ID multimodal learning

Non-l1ID multitask learning

Non-lID sequential recommendation

Non-11D context-based RS

Non-lID group-based RS

Non-1ID multisource analysis

Non-1ID multi-label learning




Data Science Lab:
www.datasciences.org

Activities ~  Publications

Resources  About us

Home Research ~ Consultancy ~ Communities ~

People -

Survey on Negative Sequence Analytics with CSUR . }

2019 ARC Discovery Grant on deep behavior analytics \
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More News

The Data Science Lab has been dedicated to fundamental research in data science and complex intelligent
systems over a decade, mainly motivated by
e Significant real-world complexities, challenges and intelligences identified in different domains and
areas, in particular, public sector, business, finance, online and living societies, core industries, and socio-

economic areas;

e Fundamental theoretical gaps and innovation opportunities identified in both existing theoretical
systems of data/intelligence sciences and addressing theoretical and/or real-world challenges and
problems.

Enterprise Data Innovation

Enterprise data are growing increasingly bigger and bigger, more and more complex, and more and more
valuable. Data science and intelligence science have played critical roles in discovering the intelligence, value
and insight and in recommending smarter decision-making actions for enterprise innovation, productivity

transformation and competitive strength upgrading. Our team has been well known for its leadership in indust
and corporate engagement, high standard and demonstrated impact in assisting major industry and govermnm!
organizations in building
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innovation decision-making, plans, policies, mechanisms and specifications;

the competencies and skills
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systems, models, case studies, and practice
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the qualifications
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Master's/doctoral courses and corporate workshop/training to undertake and lead actionable enterprise data
science.
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