The Data Science Lab
since 2005
  • Home
  • Research
      • Research grants
      • Research interests
      • Research leadership
      • Student theses
      • Humanoid Ameca
      • AI Server
        • GPU
        • Request
        • Allocation
  • Consultancy
      • Consulting projects
      • Cooperate training
      • Enterprise innovation
      • Impact cases
      • Our clients
      • Partnership
  • People
      • Awards and honors
      • Staff
      • Team members
  • Activities
      • Events and services
      • Talks
      • Tutorials
      • Workshops
  • Publications
  • Communities
      • ACM ANZKDD Chapter
      • Big data summit
      • Data Analytics book series
      • DSAA conferences
      • IEEE TF-DSAA
      • IEEE TF-BESC
      • JDSA Springer
      • DataSciences.Info
      • MQ's DSAI
  • Resources
      • Actionable knowledge discovery
      • Agent mining
      • AI: Artificial-intelligence
      • AI4Tech: AI enabling technologies
      • AI4Finance: AI for FinTech
      • AI robots & humanoid AI
      • Algorithmic trading
      • Banking analytics
      • Behavior analytics, computing, informatics
      • Coupling and interaction learning
      • COVID-19 global research and modeling
      • Data science knowledge map
      • Data science dictionary
      • Data science terms
      • Data science tools
      • Data science thinking
      • Domain driven data mining
      • Educational data mining
      • Large-scale statistical learning
      • Metasynthetic engineering
      • Market surveillance
      • Negative Sequence Analysis
      • Non-IID Learning
      • Pattern relation analysis
      • Recommender systems
      • Smart beach analytics
      • Social security analytics
      • Tax analytics
  • About us
KDD2018 oral paper: High-order Proximity Preserving Information Network Hashing

Defu Lian, Kai Zheng, Vincent W. Zheng, Yong Ge, Longbing Cao, Ivor W. Tsang and Xing Xie. High-order Proximity Preserving Information Network Hashing, KDD2018, research track, oral presentation paper

Information network embedding is an effective way for efficient graph analytics. However, it still faces with computational challenges in problems such as link prediction and node recommendation, particularly with increasing scale of networks. Hashing is a promising approach for accelerating these problems by orders of magnitude. However, no prior studies have been focused on seeking binary codes for information networks to preserve high-order proximity. Since matrix factorization (MF) unifies and outperforms several well-known embedding methods with high-order proximity preserved, we propose a MF-based \underline{I}nformation \underline{N}etwork \underline{H}ashing (INH-MF) algorithm, to learn binary codes which can preserve high-order proximity. We also suggest Hamming subspace learning, which only updates partial binary codes each time, to scale up INH-MF. We finally evaluate INH-MF on four real-world information network datasets with respect to the tasks of node classification and node recommendation. The results demonstrate that INH-MF can perform significantly better than competing learning to hash methods in both tasks, and surprisingly outperforms network embedding methods, including DeepWalk, LINE and NetMF, in the task of node recommendation.

About us
School of Computing, Faculty of Science and Engineering, Macquarie University, Australia
Level 3, 4 Research Park Drive, Macquarie University, NSW 2109, Australia
Tel: +61-2-9850 9583
Staff: firstname.surname(a)mq.edu.au
Students: firstname.surname(a)student.mq.edu.au
Contacts@datasciences.org