The Data Science Lab
since 2005
  • Home
  • Research
      • Research grants
      • Research interests
      • Research leadership
      • Student theses
      • Humanoid Ameca
      • AI Server
        • GPU
        • Request
        • Allocation
  • Consultancy
      • Consulting projects
      • Cooperate training
      • Enterprise innovation
      • Impact cases
      • Our clients
      • Partnership
  • People
      • Awards and honors
      • Staff
      • Team members
  • Activities
      • Events and services
      • Talks
      • Tutorials
      • Workshops
  • Publications
  • Communities
      • ACM ANZKDD Chapter
      • Big data summit
      • Data Analytics book series
      • DSAA conferences
      • IEEE TF-DSAA
      • IEEE TF-BESC
      • JDSA Springer
      • DataSciences.Info
      • MQ's DSAI
  • Resources
      • Actionable knowledge discovery
      • Agent mining
      • AI: Artificial-intelligence
      • AI4Tech: AI enabling technologies
      • AI4Finance: AI for FinTech
      • AI robots & humanoid AI
      • Algorithmic trading
      • Banking analytics
      • Behavior analytics, computing, informatics
      • Coupling and interaction learning
      • COVID-19 global research and modeling
      • Data science knowledge map
      • Data science dictionary
      • Data science terms
      • Data science tools
      • Data science thinking
      • Domain driven data mining
      • Educational data mining
      • Large-scale statistical learning
      • Metasynthetic engineering
      • Market surveillance
      • Negative Sequence Analysis
      • Non-IID Learning
      • Pattern relation analysis
      • Recommender systems
      • Smart beach analytics
      • Social security analytics
      • Tax analytics
  • About us
NeurIPS24: Revealing Distribution Discrepancy by Sampling Transfer

Revealing Distribution Discrepancy by Sampling Transfer in Unlabeled Data
Zhilin Zhao, Longbing Cao, Xuhui Fan, Wei-Shi Zheng. NeurIPS, 2024.

There are increasing cases where the class labels of test samples are unavailable, creating a significant need and challenge in measuring the discrepancy between training and test distributions. This distribution discrepancy complicates the assessment of whether the hypothesis selected by an algorithm on training samples remains applicable to test samples. We present a novel approach called Importance Divergence (I-Div) to address the challenge of test label unavailability, enabling distribution discrepancy evaluation using only training samples. I-Div transfers the sampling patterns from the test distribution to the training distribution by estimating density and likelihood ratios. Specifically, the density ratio, informed by the selected hypothesis, is obtained by minimizing the Kullback-Leibler divergence between the actual and estimated input distributions. Simultaneously, the likelihood ratio is adjusted according to the density ratio by reducing the generalization error of the distribution discrepancy as transformed through the two ratios. Experimentally, I-Div accurately quantifies the distribution discrepancy, as evidenced by a wide range of complex data scenarios and tasks.

About us
School of Computing, Faculty of Science and Engineering, Macquarie University, Australia
Level 3, 4 Research Park Drive, Macquarie University, NSW 2109, Australia
Tel: +61-2-9850 9583
Staff: firstname.surname(a)mq.edu.au
Students: firstname.surname(a)student.mq.edu.au
Contacts@datasciences.org